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THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THE OSEEN

STEADY-STATE VISCOUS FLOW PAST OBSTACLES OF KNOWN OR

UNKNOWN SHAPES

ANDREAS KARAGEORGHIS AND DANIEL LESNIC

Abstract. In this paper, the steady-state Oseen viscous flow equations past a known or unknown
obstacle are solved numerically using the method of fundamental solutions (MFS), which is free
of meshes, singularities and numerical integrations. The direct problem is linear and well-posed,
whereas the inverse problem is nonlinear and ill-posed. For the direct problem, the MFS computa-
tions of the fluid flow characteristics (velocity, pressure, drag and lift coefficients) are in very good
agreement with the previously published results obtained using other methods for the Oseen flow
past circular and elliptic cylinders, as well as past two circular cylinders. In the inverse obstacle
problem the boundary data and the internal measurement of the fluid velocity are minimized us-
ing the MATLAB c⃝ optimization toolbox lsqnonlin routine. Regularization was found necessary
in the case the measured data is contaminated with noise. Numerical results show accurate and
stable reconstructions of various star-shaped obstacles of circular, bean or peanut cross-section.

1. Introduction

The equations of motion (Navier-Stokes equations) and continuity for an incompressible, New-
tonian viscous fluid flow past an arbitrary finite body Ω, at steady-state in the absence of body
forces can be written using Cartesian tensor notation as follows:

∂σjk

∂xk

− ϱ aj = 0, j = 1, d, in R
d\Ω, (1.1)

∂vk
∂xk

= 0 in R
d\Ω, (1.2)

where d is the dimensional space, usually d = 2 or 3, σjk is the stress tensor, vk are the fluid
velocity components, ϱ is the fluid density and aj are the acceleration components per unit mass
given by

aj = vk
∂vj
∂xk

, j = 1, d. (1.3)

The stress tensor can be written in the form:

σjk = −p δjk + 2µεjk, (1.4)
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2 ANDREAS KARAGEORGHIS AND DANIEL LESNIC

where p is the pressure, δjk is the Kronecker delta tensor which is unity if j = k and zero if j ̸= k,
µ is the Newtonian (constant) dynamic velocity and εjk is the rate of strain given by

εjk =
1

2

{
∂vj
∂xk

+
∂vk
∂xj

}
. (1.5)

The boundary conditions over ∂Ω = ∂Ω1 ∪ ∂Ω2 can be of Dirichlet type, i.e. prescribed velocity,

vj = v̂j on ∂Ω1, j = 1, d, (1.6)

and of Neumann type, i.e. prescribed stress force,

tj = t̂j on ∂Ω2, j = 1, d, (1.7)

where

tj = σjk nk, j = 1, d, (1.8)

is the stress force or force per unit area, and nk are the unit outward normal vector components
on ∂Ω. Robin or free surface boundary conditions can also be considered but are not discussed
herein.

Oseen’s linearized version of equation (1.3) for the external flow past a body Ω with the uniform
flow of velocity U∞ at infinity in the positive x1-direction, as shown in Figure 1, is obtained by
replacing the velocity vk in (1.3) with +U∞ δ1k such that the momentum equation (1.1) becomes:

∂σjk

∂xk

− ϱU∞

∂vj
∂x1

= 0, j = 1, d, in R
d\Ω. (1.9)

Physically, Oseen’s equations (1.9) are suitable approximations for the steady uniform flow of an

incompressible viscous flow past obstacles of relatively low Reynolds number Re =
U∞ℓ

ν
, where

ν = µ/ϱ is the kinematic viscosity and ℓ is a characteristic length of the obstacle (e.g. ℓ = diameter
for a circular cylinder). Introducing (1.4) and (1.5) in (1.9) results in, [28],

µ∇2v −∇p− ϱU∞

∂v

∂x1

= 0 in R
d\Ω, (1.10)

where v = (uk)k=1,d is the fluid velocity. We can also rewrite the continuity equation (1.2) in the
divergence-free form

∇ · v = 0 in R
d\Ω. (1.11)

The solution of (1.9), together with the continuity equation (1.2), the usual no-slip boundary
condition vj = 0 on ∂Ω for j = 1, d, and the infinity condition vj → +U∞δ1j for j = 1, d at
infinity, represents the perturbation to the uniform flow caused by the presence of the body.
Alternatively, it is the flow field generated by the same body moving in the negative x1-direction
with uniform velocity −U∞δ1j, j = 1, d, in a fluid otherwise at rest. The perturbation fluid
velocity defined as

uj = vj − U∞δ1j, j = 1, d, (1.12)



OSEEN FLOW 3

will also satisfy the Oseen flow equations (1.10) and (1.11) in the form

µ∇2u−∇p− ϱU∞

∂u

∂x1

= 0 in R
d\Ω, (1.13)

∇ · u = 0 in R
d\Ω, (1.14)

and the boundary and infinity conditions:

uj = −U∞ δ1j on ∂Ω, j = 1, d, (1.15)

uj → 0, p → 0 at infinity, j = 1, d. (1.16)

A boundary element method (BEM) for the Oseen flow problem (1.2), (1.9), (1.15) and (1.16) in
two dimensions was developed by Bush [5]. We next discuss the method of fundamental solutions
(MFS).

2. The method of fundamental solutions (MFS)

The MFS (which is free of meshes, singularities and numerical integrations) for the Stokes flow,
i.e. Re « 1, neglecting the inertia in which the terms aj in (1.1) are equal to zero, was developed
in [2, 29] for direct problems and in [6] for inverse boundary condition linear problems. For
Oseen flow, the MFS was developed by Yano and Kieda [28]. However, the MFS they propose
requires the use of complex variables and is restricted to two dimensions. For axisymmetric and
three-dimensional problems we refer to [27] and [23], respectively.
The fundamental solution of the Oseen equation in two dimensions is given by the matrix, see [5],

U11(x,x
′) =

1

2πϱU∞

{
κ eκ (x−x′)

[
K0(κ r) +

x− x′

r
K1(κ r)

]
−

x− x′

r2

}
,

U12(x,x
′) = U21(x,x

′) = −
y − y′

2πϱU∞r

{
1

r
− κ eκ (x−x′)K1(κ r)

}
,

U22(x,x
′) =

1

2πϱU∞

{
x− x′

r2
+ κ eκ (x−x′)

[
K0(κ r)−

x− x′

r
K1(κ r)

]}
,

For the pressure, we also define

P1(x,x
′) =

1

2π

(x− x′)

r2
, P2(x,x

′) =
1

2π

(y − y′)

r2
,

where x = (x, y), x′ = (x′, y′), r = |x − x′|, κ =
ϱU∞

2µ
, and K0 and K1 are the modified Bessel

functions of the second kind of order zero and one, respectively.

In the MFS we seek an approximation in the form

ui(x) =
N∑

j=1

(
αjUi1(x, ξj) + βjUi2(x, ξj)

)
, i = 1, 2, x ∈ R

2\Ω, (2.1)
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where ξj ∈ Ω for j = 1, N are the source points (or ’singularities’). The source points are taken
to lie on an internal pseudo-boundary ∂Ω′ ⊂ Ω which is a contraction of the boundary ∂Ω with
a contraction factor η ∈ (0, 1). The boundary conditions (1.15) on the perturbation fluid velocity
components

u1 = −U∞, u2 = 0, on ∂Ω (2.2)

will be collocated at M ≥ N points on the boundary ∂Ω in order to determine the coefficients
αj, βj for j = 1, N . The resulting linear system of 2M equations in 2N unknowns obtained by
collocation equations (2.2) at xi ∈ ∂Ω for i = 1,M , namely,

uk(xi) =
N∑

j=1

[
αjUk1(xi, ξj) + βjUk2(xi, ξj)

]
, i = 1,M, k = 1, 2, (2.3)

can be solved using Gaussian elimination if M = N or a least squares method if M > N . However,
as the numbers M ≥ N increase, or as the contraction factor η > 0 decreases, this system becomes
more ill-conditioned and then the truncated singular value decomposition, see Ramachandran [24]
or the Tikhonov regularization, can be employed. The convergence of the MFS expansions (2.1)
and (2.3) can be justified by the denseness of the set

SE(∂Ω, ∂Ω
′) := span{U (k)(x− ξ)|x∈∂Ω; ξ ∈ ∂Ω′, k = 1, 2} ⊕ R

2 in (H1/2(∂Ω))2,

and of the set

S(Ω, ∂Ω′) := span{U (k)(x− ξ)|x∈Ω; ξ ∈ ∂Ω′, k = 1, 2} in (L2(Ω))2,

where U (k) = Uek for k = 1, 2 and e1 = (1, 0) = i and e2 = (0, 1) = j. These results can
be proved in a similar way to those in [2] for the Stokes system and using the analytic unique
continuation property for Oseen’s equations established in [8].

Similar considerations can be posed in three dimensions.

Based on (2.1) the least squares imposition of the boundary conditions (2.2) reads as minimizing

S(α,β) =
M∑

i=1



{

N∑

j=1

[
αjU11(xi, ξj) + βjU12(xi, ξj)

]
+ U∞

}2

+

{
N∑

j=1

[
αjU21(xi, ξj) + βjU22(xi, ξj)

]
}2


 . (2.4)

Defining the matrix
Qij = U11(xi, ξj), i = 1,M, j = 1, N,

Qij = U12(xi, ξj−N), i = 1,M, j = N + 1, 2N,

Qij = U21(xi−M , ξj), i = M + 1, 2M, j = 1, N,

Qij = U22(xi−M , ξj−M), i = M + 1, 2M, j = N + 1, 2N,

γj = αj, j = 1, N, γj = βj−N , j = N + 1, 2N,
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bi = −U∞, i = 1,M, bi = 0, i = M + 1, 2M,

the expression for S becomes

S(γ) = ||Qγ − b||2.

Minimizing S we obtain

γ =
(
QTQ

)−1
QTb

where the superscript T denotes the transpose of a matrix.
Once the coefficients αj and βj for j = 1, N have been computed, the fluid velocity in R

2\Ω can
be obtained from equations (2.1) and (1.12). The pressure can also be obtained from

p(x) =
N∑

j=1

[
αjP1(x, ξj) + βjP2(x, ξj)

]
, x ∈ R

2\Ω. (2.5)

3. Calculation of the drag and lift coefficients

We shall be using the general formula for the total force per length in the direction perpendicular
to the plane, F = (F1, F2) = (DP +DF , LP + LF ), [25],

Fi = −

∫

∂Ω

p ni ds+ µ

∫

∂Ω

[
∂ui

∂x1

n1 +
∂ui

∂x2

n2 +
∂u1

∂xi

n1 +
∂u2

∂xi

n2

]
ds, i = 1, 2, (3.1)

where n = (n1, n2) is the outward unit normal to the boundary ∂Ω of the obstacle Ω and x1 =
x, x2 = y.

3.1. Flow past a circular cylinder. In order to calculate the drag coefficient we use the formula,

CD =
1

ϱ a U2
∞

(DP +DF ) , (3.2)

where, in the case of a circular cylinder of radius a > 0, we have that the pressure drag is

DP = −

∫ 2π

0

P (ϑ) cosϑ adϑ, (3.3)

where P (ϑ) := p(a cosϑ, a sinϑ), and the frictional drag is

DF = µ

∫ 2π

0

(W1(ϑ) cosϑ+W2(ϑ) sinϑ) adϑ = µ

∫ 2π

0

W (ϑ) sinϑ adϑ, (3.4)

where Wℓ(ϑ) := wℓ(a cosϑ, a sinϑ), ℓ = 1, 2, W (ϑ) := w(a cosϑ, a sinϑ) with

w1(x, y) = 2
∂u1

∂x
(x, y), w2(x, y) =

∂u1

∂y
(x, y) +

∂u2

∂x
(x, y)

and

w(x, y) =
∂u1

∂y
(x, y)−

∂u2

∂x
(x, y).
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We can also consider the flow past two cylinders, see Figure 2(a). Note that in the case of flow past
a single circular cylinder, we get that DP = DF , see [25, p.149]. Similarly, in order to calculate
the lift coefficient we use the formula

CL =
1

ϱ a U2
∞

(LP + LF ) , (3.5)

where, in the case of a circular cylinder, we have that the pressure lift is

LP = −

∫ 2π

0

P (ϑ) sinϑ adϑ, (3.6)

and the frictional drag is

LF = µ

∫ 2π

0

(W2(ϑ) cosϑ+W3(ϑ) sinϑ) adϑ = −µ

∫ 2π

0

W (ϑ) cosϑ adϑ, (3.7)

where W3(ϑ) := w3(a cosϑ, a sinϑ) with

w3(x, y) = 2
∂u2

∂y
(x, y).

3.2. Flow past an elliptic cylinder. In this case, we consider an elliptical cylinder with major
and minor axes of lengths 2a and 2b, respectively, with the major axis inclined at an angle ω to
the horizontal, as shown in Figure 2(b). In this case, the coordinates of the ellipse are defined
from the star shaped representation,

x = r(ϑ) cosϑ, y = r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.8)

where

r(ϑ) =
1√

cos2(ϑ+ ω)

a2
+

sin2(ϑ+ ω)

b2

. (3.9)

Moreover, the unit normal vector to the boundary is defined from

n(ϑ) =
1√

r2(ϑ) + r′2(ϑ)

(
r′(ϑ) sinϑ+ r(ϑ) cosϑ, r(ϑ) sinϑ− r′(ϑ) cosϑ

)
(3.10)

and ds =
√

r2(ϑ) + r′2(ϑ) dϑ. Thus, from equation (3.1) for i = 1, we get

DP = −

∫ 2π

0

P (ϑ)n1(ϑ)
√

r2(ϑ) + r′2(ϑ) dϑ = −

∫ 2π

0

P (ϑ) (r′(ϑ) sin(ϑ) + r(ϑ) cos(ϑ)) dϑ (3.11)

where P (ϑ) := p(r(ϑ) cosϑ, r(ϑ) sinϑ), and

DF =

∫ 2π

0

(W1(ϑ)n1(ϑ) +W2(ϑ)n2(ϑ))
√

r2(ϑ) + r′2(ϑ) dϑ

=

∫ 2π

0

(W1(ϑ) (r
′(ϑ) sin(ϑ) + r(ϑ) cos(ϑ)) +W2(ϑ) (r(ϑ) sinϑ− r′(ϑ) cosϑ)) dϑ, (3.12)
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where Wℓ(ϑ) := wℓ(r(ϑ) cosϑ, r(ϑ) sinϑ), ℓ = 1, 2, and W (ϑ) := w(r(ϑ) cosϑ, r(ϑ) sinϑ). Also,
the pressure lift is

LP = −

∫ 2π

0

P (ϑ)n2(ϑ)
√

r2(ϑ) + r′2(ϑ) dϑ = −

∫ 2π

0

P (ϑ) (r(ϑ) sinϑ− r′(ϑ) cosϑ) dϑ (3.13)

and the frictional drag is

LF =

∫ 2π

0

(W2(ϑ)n1(ϑ) +W3(ϑ)n2(ϑ))
√
r2(ϑ) + r′2(ϑ) dϑ,

=

∫ 2π

0

(W2(ϑ) (r
′(ϑ) sin(ϑ) + r(ϑ) cos(ϑ)) +W3(ϑ) (r(ϑ) sinϑ− r′(ϑ) cosϑ)) dϑ, (3.14)

where W3(ϑ) := w3(r(ϑ) cosϑ, r(ϑ) sinϑ). The drag and lift coefficients are obtained from (3.2)
and (3.5), respectively.

In the above, we approximate the integrals using the trapezoidal rule
∫ 2π

0

P(ϑ) dϑ ≈
2π

M

{
1

2
P0 + P1 + . . .+ PM−1 +

1

2
PM

}
, (3.15)

where Pi = P(2πi/M) for i = 0,M. In the numerical experiments we chose M = 400.

4. Numerical examples for the direct problem

4.1. Example 1: A single circular cylinder. We consider the Oseen fluid flow past a single
circular cylinder of radius a in the positive x1−direction, as shown in Figure 1. We chose the
radius of the disk to be a = 1 and took ϱ = 1, µ = 1. For various values of the speed U∞, the

corresponding Reynolds numbers are defined as Re =
2U∞a

ν
. The collocation and source points

(xi)i=1,M and
(
ξj
)
j=1,N

were spread uniformly on the boundaries of the circle ∂Ω (of radius a)

and of the contracted circle ∂Ω′ (of radius ηa). In Table 1 we present the values of the drag
coefficient CD for various numbers of MFS degrees of freedom and η = 0.8. Clearly, as M and N
increase these values converge. These converged values are in excellent agreement with the values
previously reported in [5, 25] (and also [20, 26]), see Table 2.
In the subsequent numerical experiments of this subsection we took M = 196, N = 148 and
η = 0.8.
The velocity vectors and pressure contours for Re = 1 are presented in Figure 3. We have also
computed the perturbation fluid velocity u1(x1, 0) for |x1| > a on the line of symmetry ahead
and behind the cylinder, as a function of the distance from the centre of the cylinder, namely
(|x1| − a)

a
, for various Reynolds numbers. The results shown in Figure 4 are in excellent agreement

with Figure 2 of [5].
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Table 1. The drag coefficient CD obtained using the MFS with various numbers
of degrees of freedom M and N for the Oseen flow past a circular cylinder of unit
radius a = 1 at various Reynolds numbers Re.

Re M = 13, N = 10 M = 25, N = 19 M = 49, N = 37 M = 98, N = 74 M = 196, N = 148
0.4 21.2519 21.2529 21.2527 21.2527 21.2527
1 11.8556 11.8571 11.8569 11.8569 11.8569
2 8.0805 8.0850 8.0847 8.0847 8.0847
3 6.6274 6.6366 6.6362 6.6362 6.6362
4 5.8282 5.8421 5.8416 5.8416 5.8416
6 4.9484 4.9699 4.9691 4.9691 4.9691
8 4.4597 4.4883 4.4869 4.4869 4.4869
10 4.1421 4.1774 4.1751 4.1751 4.1751

Table 2. The drag coefficient CD obtained using the MFS with M = 196, N = 148
and η = 0.8, for the Oseen flow past a circular cylinder of unit radius a = 1 at
various Reynolds numbers Re, in comparison with the results previously reported
in the literature.

Re CD Bush [5] CD Eq. (20) in [5] CD [25] CD current
0.4 21.242 21.25 21.26 21.2527
1 11.849 11.86 11.86 11.8569
2 8.078 8.15 8.08 8.0847
3 6.630 6.636 6.6362
4 5.836 5.84 5.8416
6 4.964 4.9691
8 4.482 4.48 4.4869
10 4.170 4.1751

4.2. Example 2: Two equal circular cylinders separated by a distance. We consider the
flow past two circular cylinders C1 and C2 of radius 1 separated by a distance h = 20, where the
line joining the centres of the two cylinders makes an angle ω with the horizontal as shown in
Figure 2(a). This problem was first considered in [9], see also [5, 28]. In our numerical experiments
we took M = 196, N = 148 and η = 0.8 for each cylinder. In Figure 5(a) we present the ratio
CD/C

∗
D versus the Reynolds number Re for various angles ω, where CD is the calculated drag

coefficient on cylinder C1, and C∗
D is the drag coefficient calculated for a single cylinder using

the formula (20) from [5]. In Figure 5(b) we present the lift coefficient CL on the cylinder C1

versus the Reynolds number Re for various angles ω. The results of both figures are in excellent
agreement with the corresponding results in [5, 9, 28].

4.3. Example 3: Elliptic cylinder. We next consider the flow past an elliptic cylinder with
major axis length 2a and minor axis length 2b, with the major axis inclined at an angle ω to the
horizontal as shown in Figure 2(b). The thickness of the ellipse is defined by the ratio t = b/a. In



OSEEN FLOW 9

our numerical experiments we took a = 1, M = 196, N = 148 and η = 0.8 for the case t = 0.5.
For the case t = 0.1 we took η = 0.1 and a special distribution of the collocation and source points
to avoid concentration near the ends of the minor axis. In Figures 6(a) and 6(b), we present the
drag and lift coefficients CD and CL, respectively, for Re=1 (where Re = 2aU∞/ν), t = 0.5 and
0.1. These results are in excellent agreement with the results of [5, 12].

5. Inverse obstacle problem

In the previous sections we were concerned with the formulation and solution of the direct problem
of the Oseen flow past an arbitrary obstacle Ω. In this section, we formulate and solve numerically
the inverse problem of determining the shape of a cylindrical obstacle immersed in an Oseen steady
flow from the knowledge of the fluid velocity on some curve (usually closed, but it can also be
only an arc in case of limited aperture) outside the obstacle. This inverse problem was previously
analysed in [21] where the uniqueness of the star-shaped obstacle (centred at the origin) was
established and a method based on the singular single layer potential combined with a regularized
Newton iteration scheme were numerically implemented. In our investigation we shall use the MFS
[16], which is meshless and non-singular, for approximating the solution for the perturbation fluid
velocity by (2.1) combined with a nonlinear regularized least-squares minimization for detecting
the radial polar coordinate 0 < r(ϑ) ≤ rmax for ϑ ∈ [0, 2π) and rmax > 0 an a priori given upper
size, parametrising the unknown star-shaped obstacle (with respect to the origin):

Ω = {r(ϑ) (cos(ϑ), sin(ϑ)) | ϑ ∈ [0, 2π)} . (5.1)

In this case, taking M = N , we collocate (2.3) at the boundary collocation points

xi = (ri cos(ϑi), ri sin(ϑi)) , i = 1, N, (5.2)

where ri = r(ϑi), ϑi = 2π(i− 1)/N for i = 1, N with the associated sources

ξi = (η ri cos(ϑi), η ri sin(ϑi)) , i = 1, N. (5.3)

The inverse flow problem and its MFS combined minimization procedure have similarities with
the inverse scattering by soft obstacles previously treated by the authors in [15]. However, we
remark that in comparison to the acoustic scattering problem, in the current fluid flow obstacle
formulation there is no a priori bound on the size of the obstacle required for the uniqueness of its
reconstruction [21]. In this formulation, the perturbed velocity u and the obstacle (5.1) need to
be reconstructed by solving the mathematical problem given by equations (1.13)-(1.16) and the
extra velocity measurement

u = ϕ on Γ, (5.4)

where ϕ is a given function and Γ is a closed circular or box frame boundary, (or, in case of remote
sensing, an aperture of it), placed at sufficiently large distances to ensure that it contains the
unknown obstacle, e.g. far upstream/downstream and on the banks of a flowing river containing
the immersed obstacle to be detected. Practically, the fluid velocity (5.4) is measured using flow
meters installed in the fluid. As such, their intrusiveness may disturb the true flow around the
obstacle, especially if the measurement curve Γ is situated in the proximity of the obstacle Ω
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whose position in the fluid is unknown. On the other hand, the closer the measurement curve
Γ is to ∂Ω, the more information on reconstructing the obstacle Ω is contained in (5.4). In this
numerical study, we neglect any errors in the fluid flow model caused by the flow meters presence,
but we do take into account the noisy errors in the fluid velocity measurement (5.4), as described
in (6.1).
Taking Γ to be a curve situated outside the disk B(0; rmax), usually a circle (or an arc of it)
of radius R1 > rmax, and collocating (5.4) at L distinct points (xℓ+N)ℓ=1,L ⊂ Γ (say uniformly

distributed) results in 2L equations

φk(xℓ+N) =
N∑

j=1

[
αjUk1(xℓ+N , ξj) + βjUk2(xℓ+N , ξj)

]
, ℓ = 1, L, k = 1, 2. (5.5)

The density of the measurement points (xℓ+N)ℓ=1,L on Γ, (which additionally cluster in case

of a limited aperture), depends on the complexity (5.1) of the star-shaped obstacle Ω to be
reconstructed. Altogether, expressions (2.3) (with M = N) and (5.4) yield 2N + 2L nonlinear
algebraic equations in 3N + 1 unknowns, namely, the MFS coefficients α = (αj)j=1,N , β =

(βj)j=1,N , r = (ri)i=1,N and we also treat η as an unknown (see [17]). Taking 2L > N , we solve
this system in a regularized least-squares sense given by

Tλ1,λ2
(α,β, r, η) := S (α,β, r, η) + λ1

N∑

j=1

(
α2
j + β2

j

)
+ λ2

N∑

ℓ=2

(rℓ − rℓ−1)
2

+
L∑

ℓ=1



{

N∑

j=1

[
αjU11(xℓ+N , ξj) + βjU12(xℓ+N , ξj)

]
− φ1(xℓ+N)

}2

+

{
N∑

j=1

[
αjU21(xℓ+N , ξj) + βjU22(xℓ+N , ξj)

]
− φ2(xℓ+N)

}2

 , (5.6)

where in the expression (2.4) defining S, the arguments (xi)i=1,N depend on r, as given by (5.2),

and
(
ξj
)
j=1,N

depend on r and η, as given by (5.3). Also, λ1 ≥ 0 and λ2 ≥ 0 are regulariza-

tion parameters penalising the ill-conditioning of the MFS spectral representation (2.1) and the
C1−smoothness of the boundary ∂Ω of the obstacle Ω, respectively. These regularization terms
are needed in order to stabilise the solution of the inverse and ill-posed obstacle problem under
investigation in this section. We postpone the discussion of their choices to the next section where
numerical results will be presented.
The minimization of the nonlinear functional (5.6) is performed subject to the simple bounds on
the variables

−105 ≤ αj ≤ 105, −105 ≤ βj ≤ 105, j = 1, N, 0.1 ≤ η ≤ 0.99, rmin ≤ rℓ ≤ rmax, ℓ = 1, N, (5.7)

where rmin and rmax are lower and upper bounds on the size of the obstacle to be prescribed. This
is accomplished using the MATLAB c⃝ [22] optimization toolbox routine lsqnonlin, which solves
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nonlinear least squares problems using either a subspace trust region method or the Levenberg-
Marquardt algorithm. The gradient of (5.6) does not need to be supplied by the user and
lsqnonlin offers the option of imposing lower and upper bounds on the elements of the vec-
tor of unknowns X = [α,β, r, η] through the vectors lb and up. We may thus easily impose
the constraints (5.7) on the unknown components of the vector X. The routine lsqnonlin stops
when one of the following criteria is met:

• the maximum number of iterations performed (MaxIter),

• the maximum number of evaluations of the objective function (MaxFunEvals),

• the termination tolerance for the vector of unknowns X (TolX),

• the termination tolerance for the objective function value (TolFun).

The quantities MaxIter, MaxFunEvals, TolX, TolFun are user–prescribed and, in the present
study, we took TolX=TolFun=10−14, MaxFunEvals=2× 106 and controlled the convergence with
appropriate values of MaxIter. In most cases the process stopped when MaxIter was exhausted,
but in some instances the tolerance TolX was reached. For more details, see, for example, [14, 17].

6. Numerical examples for the inverse problem

Bearing in mind that the obstacles (6.2)-(6.4) that are considered to be retrieved in the sequel are
all contained in the unit disk, we choose the location of the measurement curve Γ to be a circle
of radius R1 = 2.5 (centred at the origin), which is neither too close nor too far from the unity.
Limited aperture data (5.4) taken over an arc Γ, e.g. half of the circle, [21], did not produce
accurate results and are therefore not presented.
For the Oseen flow, we took the parameters ϱ = 1, µ = 1 and U∞ = 0.5 (corresponding to Re = 1).
The input velocity data (5.4) is numerically simulated by first solving the corresponding direct
problem, as described in Sections 2 and 4, with M = 196 and N = 148. Furthermore, in order
to simulate the errors that are inherently present in any practical measurement and to test the
stability of the inversion, this data is perturbed by a multiplicative noise as

ϕε(xℓ+N) = (1 + χ p)ϕ(xℓ+N), ℓ = 1, L, (6.1)

where p represents the percentage of noise and χ is a pseudo-random noisy variable drawn from
a uniform distribution in [-1, 1] using the MATLAB c⃝ command -1 + 2*rand(1,L). When the
noisy data (6.1) is inverted, due to the ill-posedness of the inverse obstacle problem, regularization
needs to be employed in the functional (5.6). The simultaneous choice of the two regularization
parameters could be based on the L-surface criterion, [4, 11], but in this study we choose the
regularization parameters λ1 and λ2 by taking one to be zero and varying the other by trial and
error or by the L-curve analysis [10, 18, 19]. In all examples considered we took M = N = 20,
L = 51 and the initial guesses α0 = β0 = 0 and η0 = 2/3. As previously mentioned in Section 5,
the number of sensors L giving the 2L fluid velocity measurements (5.5) needs to be taken greater
than N/2 = 10 in order for the functional (5.6) to impose at least the same number of equations
as unknowns. Thus, in principle, taking L = 11, should suffice. However, after a few numerical
trials we have decided to present results for a larger value of L, namely L = 51 which produces



12 ANDREAS KARAGEORGHIS AND DANIEL LESNIC

numerical reconstructions that do not significantly change under the adoption of a larger value
of L.

6.1. Example 4: Circular obstacle. In this case the obstacle to be reconstructed is a circle of
radius

r(ϑ) = 1, ϑ ∈ [0, 2π). (6.2)

We took rmin = 0.5 and rmax = 1.5 and the initial guess r0 = 0.7. In Figure 7(a), the convergence
of results obtained with no noise and no regularization for different numbers of iterations niter

is illustrated. In Figures 7(b) and 7(c) we present the plots of the reconstructed boundary for
various values of the regularization parameter λ1 when λ2 = 0, and λ2 when λ1 = 0, respectively,
and p =5% after 1000 iterations. From these figures it can be seen that regularization with λ2

which penalizes the smoothness of the shape to be reconstructed is more important than the
regularization with λ1 which is imposed to alleviate the ill-conditioning of the MFS.

6.2. Example 5: Bean-shaped obstacle. We next consider the bean-shaped domain [3, 21]
with polar radius

r(ϑ) =
1 + 0.9 cos(ϑ) + 0.1 sin(ϑ)

1 + 0.75 cos(ϑ)
, ϑ ∈ [0, 2π). (6.3)

We took rmin = 0.1 and rmax = 1.5 and the initial guess r0 = 1. In Figure 8(a) we present the
results obtained with no noise and no regularization for different numbers of iterations niter.
Compared to the smooth circular obstacle (6.2) of the previous example, the bean-shaped domain
(6.3) presents a cusp facing the incoming flow which makes the convergence of its reconstruction
much slower needing more than around 10000 iterations. In Figures 8(b) and 8(b) we present the
plots of the reconstructed boundary for various values of the regularization parameter λ1 when
λ2 = 0, and λ2 when λ1 = 0, respectively, and p =1% after 1000 iterations.

6.3. Example 6: Peanut-shaped obstacle. We finally consider the peanut-shaped domain
[13, 15, 21] described by

r(ϑ) =
√
cos2(ϑ) + 0.25 sin2(ϑ) =

1

2

√
1 + 3 cos2(ϑ), ϑ ∈ [0, 2π). (6.4)

We took rmin = 0.1 and rmax = 1.5 and the initial guess r0 = 1. Numerical results with or
without noise and regularization are presented in Figures 9(a)-9(c) and similar conclusions to
those obtained for Example 5 can be derived.
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7. Conclusions

In this paper, the MFS has been developed and applied for the solution of both direct and inverse
problems for the Oseen flow past arbitrary known or unknown obstacles. The numerically ob-
tained results are in good agreement with those previously reported in the literature for the direct
problem. The results obtained for the inverse problems considered yield comparable retrievals to
those obtained in [21] for the inverse obstacle problem using a half circle aperture but many fluid
velocities obtained by sending the fluid flow at five different angles inclined to the horizontal. The
MFS has further potential for the solution of three-dimensional such Oseen flow problems. Future
work will be concerned with solving the interior Oseen obstacle problem where the star-shaped
(soft/rigid inclusion) obstacle Ω has to be reconstructed from the measurement of the fluid velocity
on Γ = ∂B(0;R1) and the stress force (fluid traction) t on Γ1 ⊂ Γ, [1], or ∇p on Γ1, [7].
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cylinder C1 versus the Reynolds number Re.
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Figure 7. Example 4: Results (a) with no noise and no regularization, (b) for
various values of λ1, p = 5% noise, and λ2 = 0, (c) for various values of λ2, p = 5%
noise, and λ1 = 0.



20 ANDREAS KARAGEORGHIS AND DANIEL LESNIC

niter=1 niter=100 niter=1000 niter=10000

(a)

1=0 1=10-4
1=10-3

1=10-2

(b)

2=0 2=10-4
2=10-3

2= 10-2

(c)

Figure 8. Example 5: Results (a) with no noise and no regularization, (b) for
various values of λ1, p = 1% noise, and λ2 = 0, (c) for various values of λ2, p = 1%
noise, and λ1 = 0.
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Figure 9. Example 6: Results (a) with no noise and no regularization, (b) for
various values of λ1, p = 1% noise, and λ2 = 0, (c) for various values of λ2, p = 1%
noise, and λ1 = 0.


