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 
Abstract—In this paper, two flux-switching permanent-magnet 

(FSPM) wind power generators with 9- and 12-phase windings are 
designed and comparatively analyzed. Both two generators are 
designed under the rated specifications of 10 kW output power 
and 220 V phase voltage at 500 rpm. The static characteristics and 
power generating performances including output voltage, power 
and efficiency at rated and variable load/speed conditions are 
predicted by finite-element (FE) analysis and validated by 
experimental tests based on the two FSPM prototypes. It shows 
that the 12-phase 24-stator-slot/22-rotor-pole FSPM generator 
exhibits a higher air-gap flux density, a higher torque/power 
density and a lower voltage regulation factor. Besides, it has a 
better overload capability than its 9-phase 
36-stator-slot/34-rotor-pole counterpart when the load and wind 
speed exceed the rated levels. The comparative study reveals the 
benefits of the lower leakage flux and permeance from the larger 
stator-slot opening and longer magnetic circuit. 
 

Index Terms—9 phase, 12 phase, flux-switching, permanent 
magnet, switched flux, wind power. 
 

I. INTRODUCTION 
HE recent multiphase winding concept for electric 
machines, including generators and motors, has been 

proposed for many years due to the advantages of reduced 
power burden per phase, improved fault-tolerance and 
additional degrees of freedom. Moreover, the multiphase 
winding increases the system redundancy, which makes it 
possible to use modular design and control strategies. The pace 
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of research on multiphase machine systems started accelerating 
with the rapid development of many safety-critical applications 
in the early 21st century, such as aerospace, electric vehicles 
and wind power generation [1]-[4]. The combination of 
multiphase windings, advanced electric machine topologies 
and control strategies is a core way to improve the reliability 
and power density of the whole system [5], [6]. Research area 
in the multiphase machine has ranged from the design and 
modelling of novel multiphase machine topologies to the 
control strategies in normal or fault conditions [7]-[9]. 

As a novel stator-permanent magnet (PM) machine with both 
PMs and armature windings located in the stator, 
flux-switching (FS) PM (FSPM) machines have attracted wide 
attention due to high flux density, robust rotor and easy PM 
thermal management [10]-[12]. Reference [13] firstly applies 
multiphase windings to the FSPM machines for the aero-engine 
application. The 3-, 4-, 5-, and 6-phase windings are adopted 
and compared, showing that a higher phase number is 
beneficial to a lower mutual inductance, and hence a better 
fault-tolerant performance. A 5-phase FSPM machine 
presented in [14] employs E-shaped stator laminations to 
achieve an enhanced fault-tolerant capability. Further, a 
multiphase modular FSPM wind power generation system is 
proposed in [15], which adopts twelve 3-phase stator winding 
segments and twelve paralleled 3-phase converter modules to 
improve the fault-tolerance and reliability of the energy 
conversion system.  

From the viewpoint of control, an accurate torque model is 
established in [16] to optimize the reference currents of a 
5-phase FSPM machine under short-circuit faulty condition, so 
as to improve the post-fault operating performance. The 
open-circuit fault-tolerant control strategy with minimum 
copper loss for a 9-phase FSPM machine is proposed in [17]. 
Moreover, reference [18] elaborates a general subdomain 
model to predict the magnetic field of any FS machine topology 
with any phase numbers. Compared with the finite-element 
(FE) method, it greatly saves computational time, but reduces 
the calculation accuracy of the field tangential component as 
the soft magnetic material is supposed as linear or with infinite 
permeability. 

In this paper, a comparative study is implemented on two 
multiphase FSPM wind generators, namely a 9-phase 
36-stator-slot/34-rotor-pole (36/34) generator and a 12-phase 
24-stator-slot/22-rotor-pole (24/22) generator, as shown in Fig. 
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1(a) and Fig. 1(b), respectively. The 9-phase FSPM generator 
has the same dimension as that in [17], while the design process 
of the 12-phase FSPM wind generator has been introduced in 
[19]. This paper extends the analysis reported in [20], with 
additional comparisons between FE results and experimental 
measurements. Firstly, key differences between generator and 
motor designs are highlighted and the topologies of the two 
generators are presented in Section II, in which the influence of 
the design parameters is analyzed. For the optimized machines, 
the static characteristics including open-circuit air-gap field, 
flux-linkage, electromotive force (EMF), cogging torque and 
static torque under id=0 brushless ac (BLAC) operation are 
comparatively analyzed by FE analysis in Section III. Section 
IV analyzes the power generating performances of the two 
generators at both rated condition and variable load/speed 
operations. Lastly, the experimental tests are implemented on 
the 9- and 12-phase FSPM prototypes to validate the 
FE-predicted results in Section V. The comparative study not 
only makes an all-round investigation on the wind generators’ 
performances, but also gives a guidance for the selection of 
stator-slot/rotor-pole combinations. 
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Fig. 1. Topologies of the 9-phase and 12-phase FSPM generators. (a) 9-phase 
36/34 FSPM generator. (b) 12-phase 24/22 FSPM generator. 

II. DESIGN OF 9- AND 12-PHASE FSPM GENERATORS 
The design procedure of a generator is somewhat different 

from designing a motor. In most cases, a given point defined by 
the maximum torque under id=0 BLAC operation is focused 
upon for a motor design. However, for generator applications, 
the operating mode is determined by the external load. 
Moreover, the phase angle of the applied armature current is not 
as controllable as that in a motor. Therefore, it is not rational to 
optimize a generator under id=0 BLAC operation only. Here, a 
co-simulation method connecting the generator with external 
circuits is applied to analyze power generating performances. 

The stator- and rotor-pole combinations for 9- and 12-phase 
FSPM generators are determined to achieve a high torque, a 
low cogging torque and a symmetrical phase EMF waveform 
[11]. The phase relations of the coil and phase EMF phasors are 
illustrated in Fig. 2, where the phase shifts between adjacent 
two phases are 40 and 30 electrical degrees for 9- and 12-phase 
generators, respectively. 

Both generators are designed for a rated power specification 
of 10 kW and a rated phase voltage of 220 V at rated rotor speed 
of 500 rpm in [17] and [19]. It should be noted that the two 
generators are with the same stator outer diameter and stack 

length as well as the identical PM volume to make a fair 
comparison. These constraints are remained in this study. The 
main dimensional parameters of the generators are defined in 
Fig. 3, where the stator inner radius, stator tooth width, rotor 
pole width and the number of turns per coil will be optimized 
with emphasis on the phase EMF and cogging torque in the 
following parts. The optimized values are given in TABLE I. 
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Fig. 2. Coil and Phase EMF phasors of 9-phase and 12-phase FSPM generators. 
(a) 9-phase 36/34 FSPM generator. (b) 12-phase 24/22 FSPM generator. 
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Fig. 3. Linear illustration of main dimensional parameters of FSPM generators. 

TABLE I 
MAIN DESIGN PARAMETERS OF 9- AND 12-PHASE FSPM GENERATORS 

Item Unit 9-phase 12-phase 
Stator outer diameter, Dso mm 327 
Stator inner diameter, Dsi mm 261.6 
Rotor inner diameter, Dri mm 120 
Effective stack length, Ls mm 185 

Air-gap length, g mm 1 
Stator tooth arc, θst ° 2.625 3.94 

PM arc, θPM ° 2.25 3.375 
PM volume mm3 89.5×104 

Area of each slot mm2 217.7 283.1 
Rotor pole arc, θrt ° 3.5 5.25 

Number of turns per coil, Ncoil - 42 65 

A. Stator Inner Radius 
Since the stator outer diameter Rso is fixed, the stator inner 

radius Rsi is proportional to the split ratio, which is defined as 
the ratio of Rsi to Rso. The split ratio influences the RMS value 
and total harmonic distortion (THD) of open-circuit phase EMF 
and the magnitude of cogging torque (Tcog) by changing the 
relation of magnetic and electric loadings. 

As can be learned from Fig. 4, the peak points for the EMF 
and Tcog variation curves exist but correspond to different split 
ratio values. A high magnitude but a low THD of EMF per turn 
are preferred for a generator, since fewer coil turns would be 
required to produce the rated voltage specification. Besides, a 
low cogging torque is favorable for the wind turbine’s startup 
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performance. Therefore, tradeoffs need to be made. The 
optimization goal is to maximize the RMS value of EMF on the 
premise of THD<6% and Tcog<4 Nm. The optimal split ratio is 
0.8 for both generators, since only 0.8 and 0.85 match the 
requirement of THD [Fig. 4(a)], and cogging torque [Fig. 4(b)]. 

 

(a) 

 

(b) 
Fig. 4. Influence of split ratio. (a) Phase PM EMF (500 rpm, 1 turn). (b) 
Cogging torque (Peak value). 

 

(a) 

 

(b) 
Fig. 5. Influence of stator tooth width. (a) Phase PM EMF (500 rpm, 1 turn). (b) 
Cogging torque (Peak value). 

B. Stator Tooth Width 
The stator tooth width ratio is defined as the ratio of stator 

tooth arc θst to 1/4 of the stator slot pitch, which influences the 
cross-sectional area of the effective flux path and tooth-tip 

leakage by changing the tooth width. Thus, a maximum value 
exists in the curve of RMS EMF per turn versus stator tooth 
width, as shown in Fig. 5(a). Luckily, both low THD and Tcog 
are obtained when the phase EMF reaches the peak value. Thus, 
the optimal stator tooth width ratio is 1.05 for both generators. 

 

(a) 

 

(b) 
Fig. 6. Influence of rotor pole width. (a) Phase PM EMF (500 rpm, 1 turn). (b) 
Cogging torque (Peak value). 

C. Rotor Pole Width 
Similarly, the rotor pole width also has effect on the 

cross-sectional area of the effective flux path. The rotor pole 
width ratio is defined as the ratio of rotor pole arc θrt to 1/4 of 
the stator slot pitch. As seen from Fig. 6(a), the RMS EMF 
increases slightly with rotor pole width. The cogging torque 
magnitude is kept at a low level (Tcog<2.5 Nm) during the whole 
variation range of the rotor pole width (see Fig. 6(b)). For both 
analysed generators, the optimal rotor pole width is 1.4 for 
maximization of the EMF under the constraint of THD<6%. 

D. Number of Turns Per Coil 
Basically, the turn number per coil Ncoil should be designed 

to make phase voltage satisfy the rated specification. However, 
a 20% higher margin is secured to avoid the decrement of 
voltage caused by manufacture and assembly. 

It should be noted that a higher Ncoil is detrimental to the 
voltage regulation factor U, which evaluates the generator’s 
voltage stabilization capability when the load changes, as 

𝑈 = ൬𝐸଴𝑈௢ − 1൰ × 100%
= ⎝⎛

ට൫𝑅ே + 𝑅௣௛൯ଶ + 𝑋௦ଶ𝑅ே − 1⎠⎞ × 100% 
(1) 

where E0 and Uo are the open-circuit EMF and output voltage 
(RMS values) per phase, respectively. RN, Rph and Xs are the 
external resistive load, winding resistance and synchronous 
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reactance per phase, respectively. The voltage phasor diagram 
relations are defined in Fig. 7. 

I Uo

jIXs

E0

IRph

β

 
Fig. 7. Simplified voltage phasor diagram of the synchronous generator 
operating with resistive load RN (Uo= IRN). 

 

(a) 

 

(b) 
Fig. 8. Influence of turn number per coil. (a) 9-phase 36/34. (b) 12-phase 24/22. 

Since Rph is proportional to Ncoil and reactance Xs is 
proportional to the square of Ncoil, the voltage regulation factor 
definitely increases with the coil turn number as verified in Fig. 
8 where the normalized value is calculated based on the rated 
specification. Besides, the growth rate of E0 with Ncoil is much 
smaller than that of IXs with Ncoil, so the reactive power spent on 
the winding reactance increases fast with the number of coil 
turns, which would cause the decrease of the output voltage as 
learned from Fig. 8(a). Consequently, Ncoil should be restricted 
for an acceptable voltage regulation factor on the premise of 
meeting the rated demand. 

III. COMPARISON OF STATIC CHARACTERISTICS 
The static characteristics of the 9- and 12-phase FSPM 

generators are predicted by FE, including the open-circuit 
characteristics and on-load torque with the slot current density 
Js of 2.5A/mm2 (RMS value) under id=0 BLAC operation. 

The open-circuit air-gap radial flux density waveforms are 
shown in Fig. 9, where the ‘local-max’ flux density values 
corresponding to the d-axis air-gap flux density [21] are 1.58 T 
and 1.75 T for the 9- and 12-phase generators, respectively. The 
phase PM flux-linkage of the 9-phase 36/34 FSPM machine is 
smaller than that of the 12-phase 24/22 counterpart, as shown in 
Fig. 10(a). This is caused by a significant leakage flux existing 

between the adjacent stator teeth in the 9-phase machine, as 
shown in Fig. 11, due to a smaller stator-slot opening. However, 
the relationship between EMF magnitudes is opposite to the 
flux-linkage because of a higher rotor-pole number in the 
9-phase machine. 

 
Fig. 9. Open-circuit air-gap radial flux density as function of angular position. 

 

(a) 

 

(b) 
Fig. 10. Open-circuit phase PM flux-linkage and EMF waveforms. (a) Phase 
PM flux-linkage. (b) Phase EMF (500 rpm). 

 

(a) (b) 
Fig. 11. PM flux lines distributions. (a) 9-phase 36/34. (b) 12-phase 24/22. 

The cogging torque and electromagnetic torque are shown in 
Fig. 12. The torque ripple factor krip is calculated by (2), where 
Tmax, Tmin and Tave are the maximum torque, minimum torque 
and average torque, respectively. 
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𝑘𝑟𝑖𝑝 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛𝑇𝑎𝑣𝑒 × 100 (2) 

The mean values of the electromagnetic torque for the 9- and 
12-phase FSPM generators with Js=2.5A/mm2 under id=0 
BLAC operation are 390.7 Nm and 393.8 Nm, respectively. 
Both generators demonstrate a good starting and low-speed 
performance with little vibration since the cogging torque and 
torque ripple are relatively small, as learned from TABLE II. 

 

(a) 

 

(b) 
Fig. 12. Cogging torque and electromagnetic torque waveforms. (a) Cogging 
torque. (b) Torque (BLAC, id=0, Js=2.5 A/mm2). 

TABLE II 
FE-PREDICTED CHARACTERISTICS @500 RPM 
Item Unit 9-phase 12-phase 

Open-circuit EMF (rms), Eo V 364.9 313.6 
Rated output voltage (rms), Uo V 266.2 273.3 
Rated output current (rms), Io A 6.1 4.7 

Rated output power, Po kW 14.6 15.6 
Rated torque, Te Nm -290.8 -312.8 

Torque ripple factor, krip
 % 0.7 0.6 

Voltage regulation factor, U % 37 14.7 
d(q)-axis inductance, Ld(Lq) mH 19.9 (17.4) 18.6 (19.9) 
d(q)-axis reactance, Xd(Xq) Ω 35.5 (30.9) 21.5 (23.0) 

Phase winding resistance, Rph Ω 1.59 1.65 
Copper loss, pCu W 534.4 443.3 

Core loss, pFe W 301.6 292.8 
PM eddy-current loss, pec W 57.4 104.7 

Efficiency, η % 94 93 

IV. COMPARISON OF POWER GENERATING PERFORMANCES 
The generating performances including output voltage, 

phase current and electromagnetic torque as well as losses of 
the two generators operated with symmetrical external resistive 
loads are predicted by FE co-simulation. Then, the output 
power, voltage regulation factor and efficiency are calculated 
from the FE-predicted data. The rated resistive load RN is 
calculated from the rated power and voltage of each phase. 
Thus, RN is 43.6 Ω for the 9-phase generator, while it is 58 Ω for 
the 12-phase one. Furthermore, the output characteristics of the 

two generators operating within a load range and a rotor speed 
range are predicted to evaluate their overload and over-speed 
capabilities. 

A. Rated Performance 
The output phase voltages and currents of the 9- and 

12-phase generators working at rated generating condition are 
shown in Fig. 13. Obviously, a higher phase number brings a 
lower current for each phase under the same power 
specification, thus helps to mitigate the stator winding loss and 
overheating problems [2]. Besides, as shown in Fig. 13 and Fig. 
14 the 12-phase generator has a higher output voltage, output 
power and torque than its 9-phase counterpart although with a 
lower phase current. The reason for the larger output voltage 
lies in a smaller voltage regulation factor for the 12-phase 
FSPM generator, as shown in TABLE II. Both generators have 
a symmetrical voltage waveform with a low THD and a smooth 
torque with a low torque ripple as in Fig. 13, due to low EMF 
harmonics and cogging torque. The small overshoot on the 
torque waveform of the 9-phase machine is caused by the 
insufficient damping of the small resistance in the circuit. 

 
Fig. 13. Output phase voltage and current at rated condition (500 rpm, RN). 

 
Fig. 14. Electromagnetic torque at rated generating condition (500 rpm, RN). 

B. Overload Capability 
The output voltage, current and power of the 9- and 12-phase 

generators working with different resistive loads at 500 rpm are 
predicted by FE co-simulation. 

 
Fig. 15. Output voltage versus phase current (RMS value) @500 rpm. 
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Fig. 15 shows the variation curves of the output voltage 
versus phase current. Obviously, the slope of the 9-phase 
generator’s curve is greater than that of the 12-phase 
counterpart, indicating a greater voltage variation when the 
load changes in the 9-phase FSPM generator. This means the 
12-phase FSPM generator is more advantageous than the 
9-phase counterpart in terms of maintaining a stable output 
voltage. Fig. 16 illustrates the variation curves of the output 
power versus phase current, which indicates the overload 
capability of the generators. The maximum points’ coordinates 
of the two curves are (6.2 A, 15 kW) and (8.3 A, 20.4 kW) for 
the 9- and 12-phase generators, respectively. Referring to their 
rated points, the maximum output power is quite close to the 
rated power in the 9-phase generator, while it is 1.3 times of the 
rated value in the 12-phase generator. Clearly, the 12-phase 
FSPM generator has a better overload capability. However, the 
9-phase generator has a higher efficiency when the phase 
current is lower than 9 A, as shown in Fig. 17, due to a smaller 
eddy-current loss in the PMs. 

 
Fig. 16. Output power versus phase current @500 rpm. 

The great difference on the overload capability between the 
two generators is caused by the distinct winding reactance. The 
d/q-axis inductance and the corresponding reactance are 
calculated as shown in TABLE II, by taking the d- and q-axis 
cross-coupling into account [22]. The reactance of the 9-phase 
FSPM generator is much larger than another one, due to a 
higher rotor-pole number. Therefore, the reactive power spent 
on the winding reactance increases a lot even though the phase 
current grows slightly, which brings a large drop in the output 
voltage and prevents the output power from increasing. 

 
Fig. 17. Efficiency versus phase current @500 rpm. 

C. Variable Speed Performances 
The electromagnetic torque in Fig. 18 “saturates” with the 

rotor speed increment. Besides, when the speed rises to a 
certain value, the torque may start to decrease due to the decline 
of the q-axis current, since the load angle between the 

open-circuit EMF and phase current also increases with the 
rotor speed. The growth rate of the load angle is related to the 
winding reactance. The higher the reactance, the faster the load 
angle increases, as learned from Fig. 7. Thus, the torque of the 
9-phase generator is more easily to get saturated and then 
decrease with the rise of the rotor speed. This applies equally to 
the output power shown in Fig. 19. 

 
Fig. 18. Torque versus rotor speed of the generators connected with RN. 

 
Fig. 19. Output power versus rotor speed of the generators connected with RN. 

 
Fig. 20. Efficiency versus rotor speed of the generators connected with RN. 

 
Fig. 21. Core loss versus rotor speed of the generators connected with RN. 

Fig. 20 and Fig. 21 show the efficiency and core loss 
variation with the speed, respectively. The core losses of the 
two machines at low speeds are close to each other due to the 
compensation between flux density and electric frequency. 
However, when the rotor speed grows over 1200 rpm, the core 
loss of the 9-phase machine begins to surpass the 12-phase 
counterpart and the difference gets greater with the increase of 
rotor speed, due to the higher rotor pole number. The efficiency 
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of the two generators hardly changes within 200-1000 rpm. 
However, it should be noted that the winding current increases 
greatly with the rotor speed, so a better cooling condition is 
needed in high-speed operation. 

V. EXPERIMENTAL VALIDATION 
To verify the FE predicted results, two FSPM prototypes 

with 12-phase 24-stator-slot/22-rotor-pole and 9-phase 
36-stator-slot/34-rotor-pole combinations are manufactured as 
shown in Fig. 22 and Fig. 23, respectively. The two prototypes 
have the same stator outer diameter and stack length as well as 
identical core and PM material properties. The test bench 
including a DC motor, an FSPM prototype generator, the 
variable resistance, the shaft coupling and a torque sensor as 
shown in Fig. 24 is set up for the implementation of the 
open-circuit and on-load power generating experiments. 

 
 

(a) (b) 
Fig. 22. Prototype of the 12-phase 24/22 FSPM machine. (a) Stator. (b) Rotor. 

 

 

(a) (b) 
Fig. 23. Prototype of the 9-phase 36/34 FSPM machine. (a) Stator. (b) Rotor. 

DC motor
Variable resistance

FSPM prototype

Torque sensor

 
Fig. 24. Test bench of the 9- and 12-phase FSPM prototypes. 

A. Open-Circuit Test 
As shown in Fig. 25, the measured phase fundamental RMS 

EMFs for two generators are 308 V and 271 V, respectively, as 
shown in TABLE III. The measured results for the 9- and 
12-phase generators are 15% and 13% lower than the 

FE-predicted results, respectively, which is mainly caused by 
the end effect and lamination stacking factor. 

B. On-Load Test 
The on-load experiments are implemented on each prototype 

which is connected to the variable resistance and driven by a 
DC motor at 500 rpm. The resistive load is adjusted to 43.6 Ω 
for the 9-phase generator, while 58 Ω for the 12-phase one, to 
establish the rated power generating condition. The output 
voltage waveforms of each phase for the 9- and 12-phase FSPM 
generators are measured as shown in Fig. 26(a) and (b), 
respectively. Meanwhile, the torque waveforms are measured 
and compared with the FE-predicted results as shown in Fig. 27. 
The RMS value of the phase voltage, the average mechanical 
torque and the calculated test results including output power, 
voltage regulation factor and efficiency are listed in TABLE III. 
It can be learned that the measured results are consistent with 
the FE predictions, although with the differences of 11% and 8% 
for 9- and 12-phase prototypes due to manufacturing and 
measurement errors. 

A1 C1B1

 
(a) 

A1A2A3A4

 
(b) 

Fig. 25. Measured open-circuit phase EMF waveforms @ 500rpm. (a) 9-phase 
36/34 FSPM generator. (b) 12-phase 24/22 FSPM generator. 

TABLE III 
MEASURED RESULTS OF THE TWO FSPM GENERATORS @500 RPM 

Item Unit 9-phase 12-phase 
Open-circuit phase EMF (rms), Eo V 308 271 

Rated phase voltage (rms), Uo V 222 223 
Rated phase current (rms), Io A 4.9 3.9 

Rated output power, Po kW 9.8 10.3 
Input mechanical torque, Ti Nm 210 230.4 

Voltage regulation factor, U % 38.7 22 
Efficiency, η % 89 87.8 
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A1 C1B1

 
(a) 

A1A2A3A4

 
(b) 

Fig. 26. Measured phase voltage waveforms of prototypes connected with rated 
resistive load @500rpm. (a) 9-phase. (b) 12-phase. 

 

(a) 

 

(b) 
Fig. 27. Measured and FE-predicted torque waveforms of prototypes connected 
with rated resistive load @500rpm. (a) 9-phase. (b) 12-phase. 

VI. CONCLUSION 
This paper compares the performances of the 9-phase 36/34 

and 12-phase 24/22 FSPM machines designed for wind power 
generation. The results show that the 12-phase generator has a 

higher power density, a lower voltage regulation factor and a 
stronger overload/over-speed capability than the 9-phase 
counterpart. It also indicates that a high pole number may not 
be preferred for a small-scale FSPM wind generator, since it 
causes higher leakage flux, magnetic circuit permeance and 
winding reactance, although it brings lower cogging torque and 
torque ripple. Therefore, more stator- and rotor-pole 
combinations will be studied in the future, e.g. 18/16 and 18/17 
may be good choices for the 9-phase machine with larger slot 
openings. The slot opening width can also be optimized to 
reduce the leakage flux between adjacent two stator teeth, thus, 
to reduce the leakage inductance. To improve the 
performances, further work will also be carried out on the 
magnetic path optimization to balance the magnetic flow and 
the magnetic permeance, since both a high magnetic flow for a 
large torque and a low permeance for a high power factor are 
preferred. The FE predicted performances and analyzed results 
are validated by experimental tests based on two FSPM 
prototypes. 
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