
This is a repository copy of Enhanced multiple model GPB2 filtering using variational 
inference.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146719/

Version: Accepted Version

Proceedings Paper:
Li, X., Liu, Y., Mihaylova, L. orcid.org/0000-0001-5856-2223 et al. (3 more authors) (2020) 
Enhanced multiple model GPB2 filtering using variational inference. In: 2019 22th 
International Conference on Information Fusion (FUSION). 22nd International Conference 
on Information Fusion, 02-05 Jul 2019, Ottawa, Canada. IEEE . ISBN 9781728118406 

© 2019 ISIF. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Enhanced Multiple Model GPB2 Filtering Using

Variational Inference

Xi Li1†, Yi Liu2†, Lyudmila Mihaylova3, Le Yang4∗, Steve Weddell4, Fucheng Guo1

1. State Key Lab of Complex Electromagnetic Environment Effects on Electronics and Information Systems,

National University of Defense Technology, Changsha China

2. School of Internet of Things (IoT) Engineering, Jiangnan University, Wuxi China

3. Department of Automatic Control and System Engineering, University of Sheffield, Sheffield UK

4. Department of Electrical and Computer Engineering, University of Canterbury, Christchurch NZ
†: Equal contributors, *: corresponding author: le.yang@canterbury.ac.nz.

Abstract—Multiple model filtering has been widely used to
handle uncertainties in system dynamics and noise characteristics
in state estimation problems. The generalized pseudo-Bayesian
filter of order 2 (GPB2) is a suboptimal multiple model state es-
timator. It achieves computational tractability via approximating
each model-matched state posterior, which is a Gaussian mixture,
with a single Gaussian density. This paper illustrates from the
viewpoint of variational inference that this approximation affects
the performance of GPB2 through the model probability update
stage. An enhanced GPB2 algorithm is proposed. It takes into
account the above approximation by applying a correction factor
that is dependent on the Kullback-Leibler divergence (KLD) of
the Gaussian mixture and single Gaussian density. A control
variate-based Monte Carlo method for evaluating the KLD is
developed. The upper and lower bounds for the desired KLD
are derived to correct the Monte Carlo KLD result if it falls out
of bounds. Simulations show that the enhanced GPB2 algorithm
outperforms the original GPB2 and interacting multiple model
(IMM) methods in maneuvering target tracking tasks.

I. INTRODUCTION

Estimating the state of a dynamic system from noisy mea-

surements up to the current time, also referred to as filtering

[1], has been extensively studied due to its diverse applications.

Many filtering algorithms become available [1], [2]. Normally,

they are designed on the basis of a state-space model with a

process equation describing system state evolution and a mea-

surement equation relating the measurement to the state. For

example, the celebrated Kalman filter (KF) [1] was developed

for linear state-space models with white Gaussian noise.

The performance of state estimation algorithms relies heav-

ily on that the assumed state-space model matches the actual

system. However, model uncertainties arise when the system

has high complexity and is difficult to be modeled accurately

[3]. Uncertainties can also come from the process and/or

measurement noise statistics if they are not known [4]. Another

common source for model uncertainties is the abrupt change

in the system dynamics due to e.g., target maneuvering [5].

The presence of model uncertainties may degrade the state

estimation performance greatly. To address this problem, ro-

bust techniques such as the risk sensitive filter and H∞ filter

have been proposed (see [6], [7] and references therein). They

are designed to avoid large errors for a wide range of model

parameters. On the other hand, multiple model approaches

employ a set of candidate models to tackle model uncertainties

[8]. The state estimate is obtained via performing model-

matched filtering and combining the filtering results. We shall

consider multiple model filtering in this work.

The optimal Bayesian solution to multiple model state

estimation is computationally intractable due to the exponen-

tially increasing number of hypotheses [1], [2]. Suboptimal

techniques have thus been developed. The interacting multiple

model (IMM) estimator and the generalized pseudo-Bayesian

filters of orders 1 and 2 (GPB1 and GPB2) [1], [2] are among

the most well-known methods. They constrain the number of

hypotheses through approximating at each time instant every

Gaussian mixture with a single Gaussian density via moment

matching. IMM performs this approximation before the model-

matched filtering, while GPB1 and GPB2 apply it after the

model-matched filtering. Among the three methods, GPB2 has

the highest complexity because it considers model transition

between two consecutive time instants. But it performs as good

as and sometimes better than IMM and GBP1 [9], [10].

In this paper, we focus on mitigating the effect of approxi-

mating the Gaussian mixture with the moment-matched single

Gaussian density to improve the performance of GPB2. The

error caused by this approximation in measurement update

has been analyzed in [10], and the error covariance was

approximately derived. A mixed IMM-GPB2 algorithm was

built, where the more time-consuming GPB2 is performed only

if the error covariance is above a threshold [10]. This method

has an accuracy close to GPB2 but with reduced complexity.

Different from [10], this work examines the effect of the

approximation error from the viewpoint of variational infer-

ence [11]. For this purpose, the development of the GPB2

algorithm is re-visited by following the derivation of the

optimal Bayesian filter for the multiple model state estimation

problem. We find that the approximation affects the filtering

performance through the model probability update stage in

GPB2. It is also shown that the approximation can be ac-

counted for by introducing a correction factor, which depends

on the Kullback-Leibler divergence (KLD) between the Gaus-

sian mixture and the moment-matched single Gaussian density.

An enhanced GPB2 algorithm is then proposed that applies

the aforementioned correction factor in its model identity



probability updating. We modify the control-variate based

Monte Carlo method originally proposed in [12] for evaluating

the KLD between two Gaussian mixtures to compute our

analytically intractable KLD at low cost. To monitor the

quality of the Monte Carlo result, the upper and lower bounds

for the desired KLD are established by following [13], [14]. If

the Monte Carlo result does not belong to the interval specified

by the corresponding upper and lower bounds, we replace it

with the mean of the two bounds. Simulation results show that

the new GPB2 algorithm, which uses only 103 samples for the

KLD evaluation, outperforms standard IMM and GPB2 in a

linear and a nonlinear maneuvering target tracking problems.

The proposed enhanced GPB2 algorithm is different from

the re-weighted IMM (RIMM) filter [15] that is based on

expectation maximization (EM). Within RIMM, the correc-

tions are applied in both the mixing step and model identity

probability updating. In [16], the variational inference was

applied to derive a new multiple model filtering method. It

utilizes the mean field approximation and assumes that the

joint posterior of the state and model identity can factorize.

The enhanced GBP2, on the other hand, takes into account

the effect of the moment matching-based approximation in its

model probability updating only. It is still an approximation of

the optimal Bayesian filter and does not require the posteriors

of the state and model identity to be independent to each other

as in [16].

The rest of this paper is organized as follows. Section II

re-examines the derivation of the standard GPB2. Section III

gives the enhanced GPB2 algorithm. Section IV shows the

simulation results and Section V concludes the paper.

II. GPB2 ALGORITHM RE-VISITED

In this section, we re-visit the GPB2 algorithm by follow-

ing the establishment of the optimal Bayesian filter for the

multiple model state estimation problem [2]. The impact of

approximating each Gaussian mixture with a single Gaussian

density is analyzed from the viewpoint of variational inference.

The multiple model filtering problem in consideration is

formulated as follows. There are M models and the model

switching is independent of the system state transition. Let the

model identity at time k be rk. The evolution of rk (i.e., the

model switching) is a homogeneous Markovian jump process

with a transition probability matrix P defined as

P(i, j) = p(rk = j|rk−1 = i) = pij , (1)

where i, j = 1, 2, ...,M and
∑M

j=1 pij = 1.

The state-space model under model rk is described by

the following model-conditioned state transition probability

density function (PDF) and measurement likelihood function

xk|xk−1, rk ∼ p(xk|xk−1, rk), (2a)

zk|xk, rk ∼ p(zk|xk, rk). (2b)

Here, xk and zk are the system state vector and measurement

vector at time k, respectively. It is assumed that the process

noise and measurement noise are independent and both white.

We are interested in finding the posterior of the state vector

xk, denoted by p(xk|Z1:k), where Z1:k = {z1, z2, ..., zk}
collects the measurements obtained up to time k.

A. Optimal Multiple Model Bayesian Filter

The optimal Bayesian filter evaluates p(xk|Z1:k) recur-

sively. For this purpose, the state posterior is expressed as

p(xk|Z1:k) =

M∑

j=1

p(xk|rk = j,Z1:k) p(rk = j|Z1:k)
︸ ︷︷ ︸

u
j

k|k

, (3)

where p(xk|rk = j,Z1:k) is the model-matched posterior of

xk and uj
k|k is the model identity probability at time k.

Invoking Bayes’ theorem yields

p(xk|rk = j,Z1:k) =
p(zk|xk, rk = j)p(xk|rk = j,Z1:k−1)

p(zk|rk = j,Z1:k−1)
,

(4)

uj
k|k =

p(zk|rk = j,Z1:k−1)u
j

k|k−1

p(zk|Z1:k−1)
. (5)

Here, p(zk|xk, rk = j) is the measurement likelihood function

under model rk = j (see (2b)) and uj
k|k−1 is the predictive

model identity probability, which is equal to

uj
k|k−1 = p(rk = j|Z1:k−1) =

M∑

i=1

piju
i
k−1|k−1. (6)

ui
k−1|k−1, i = 1, 2, ...,M , are the model identity probabilities

at the previous time instant k − 1.

We evaluate (4) and (5) to establish the optimal multiple

model Bayesian filter. Specifically, computing (4) requires

the model-conditioned predictive PDF p(xk|rk = j,Z1:k−1),
which is

p(xk|rk = j,Z1:k−1)

=
M∑

i=1

p(xk|rk = j, rk−1 = i,Z1:k−1)λ
ij
k .

(7)

In (7), λijk is the mixing probability defined as

λijk = p(rk−1 = i|rk = j,Z1:k−1) =
piju

i
k−1|k−1

∑M
i=1 piju

i
k−1|k−1

(8)

and p(xk|rk = j, rk−1 = i,Z1:k−1) is given by the Chapman-

Kolmogorov equation [1]

p(xk|rk = j, rk−1 = i,Z1:k−1)

=

∫

p(xk|xk−1, rk = j)p(xk−1|rk−1 = i,Z1:k−1)dxk−1.

(9)

Here, p(xk|xk−1, rk = j) is the state transition PDF under

model rk = j (see (2a)) and p(xk−1|rk−1 = i,Z1:k−1) is the

model-matched posterior of the state vector at time k − 1.



To evaluate (5), we need to compute the model-conditioned

measurement likelihood p(zk|rk = j,Z1:k−1), which is also

the normalization factor in (4). It can be found via

p(zk|rk = j,Z1:k−1)

=

∫

p(zk|xk, rk = j)p(xk|rk = j,Z1:k−1)dxk.
(10)

This completes the derivation of the optimal Bayesian filter

for the considered multiple model state estimation problem. To

summarize, at time k, we start with p(xk−1|rk−1 = i,Z1:k−1)
and ui

k−1|k−1, and performs two processing steps:

1) Model-matched filtering: For rk = j, j = 1, 2, ...,M ,

first evaluate (9) for i = 1, 2, ...,M . Then, combine the results

using (7) and mixing probabilities λijk from (8) to obtain the

model-conditioned predictive PDF. Finally, perform the model-

matching filtering using (4) to produce the model-matched

state posterior at the current time p(xk|rk = j,Z1:k).
2) Model identity probability updating: For rk = j,

j = 1, 2, ...,M , first find the predictive model identity proba-

bility uj
k|k−1 from (6). Next, compute the model-conditioned

measurement likelihood using (10) and put the result into (5)

to generate uj
k|k, the model identity probability at time k.

B. Standard GPB2

In the optimal Bayesian filter, the model-matched state

posterior p(xk|rk = j,Z1:k) is always a mixture, due to the

interaction among the models in (7). This would eventually

lead to an exponentially increasing number of components in

p(xk|rk = j,Z1:k). To address this drawback, the standard

GPB2 assumes a linear multiple model state-space model [1],

[2]. Suppose at time k− 1, the model-matched state posterior

p(xk−1|rk−1 = i,Z1:k−1) is a single Gaussian PDF. As such,

evaluating (9) would produce a Gaussian density as well and

the model-conditioned predictive PDF in (7) now becomes a

Gaussian mixture with the functional form

p(xk|rk = j,Z1:k−1) =

M∑

i=1

λijk N (xk;µ
ij

k|k−1,Σ
ij

k|k−1),

(11)

where λijk are the mixing probabilities defined in (8).

N (x;µ,Σ) represents a multivariate Gaussian density with

mean µ and covariance Σ.

At time k, the GPB2 algorithm first follows exactly the

processing of the optimal Bayesian filter. Specifically, it substi-

tutes p(xk|rk = j,Z1:k−1) in (11) into (4) and carries out the

model-matched filtering, which involves applying the updating

stage of a KF M times for a given j. The obtained model-

matched state posterior would also be a Gaussian mixture,

which can be expressed as

p(xk|rk = j,Z1:k) =
M∑

i=1

wij
k N (xk;µ

ij

k|k,Σ
ij

k|k). (12)

The weights wij
k are equal to wij

k = 1

c
j

k

λijk Λ
ij
k , where they

satisfy
∑M

i=1 w
ij
k = 1 and

Λij
k =

∫

p(zk|xk, rk = j)N (xk;µ
ij

k|k−1,Σ
ij

k|k−1)dxk. (13)

cjk is the normalization factor equal to

cjk = p(zk|rk = j,Z1:k−1) =

M∑

i=1

λijk Λ
ij
k . (14)

GPB2 finds the model identity probability at time k using

uj
k|k ∝ cjk · uj

k|k−1. (15)

To prevent the number of components in p(xk|rk = j,Z1:k)
from growing exponentially, GPB2 introduces an additional

operation. Specifically, it approximates p(xk|rk = j,Z1:k) in

(12) using a single Gaussian density such that

p(xk|rk = j,Z1:k) ≈ qj(xk) = N (xk;µ
j

k|k,Σ
j

k|k). (16)

The approximated posterior mean and covariance µ
j

k|k and

Σ
j

k|k are obtained via moment matching. They are equal to

µ
j

k|k =
M∑

i=1

wij
k µ

ij

k|k, (17a)

Σ
j

k|k =
M∑

i=1

wij
k

(

Σ
ij

k|k + (µij

k|k − µ
j

k|k)(µ
ij

k|k − µ
j

k|k)
T
)

.

(17b)

It is worthwhile to point out that the standard GPB2 derived

above can be generalized to nonlinear multiple model filtering

scenarios (see e.g., [17]). They apply nonlinear Gaussian filters

such as the deterministic/random-point-based filters [18]–[22]

to evaluate the integrals in (9) and (13), and perform the

model-matched filtering in (4).

C. Analysis from the Viewpoint of Variational Inference

As shown in the previous subsection, the standard GPB2

propagates the approximated model-matched state posteriors

qj(xk) to the next time instant to achieve computational

tractability. The model identity probabilities uj
k|k are also

passed on but they are computed under the condition that the

corresponding model-matched posteriors are Gaussian mix-

tures. To further illustrate this, we note from (15) that updating

the model identity probabilities requires the model-conditioned

measurement likelihood cjk but it is obtained in (14) before the

approximation in (16). In other words, in the standard GPB2,

the effect of replacing the model-matched state posteriors with

their single Gaussian density approximations on the model

identity probability updating is not taken into account.

From the perspective of variational inference, for the model-

matched filtering problem (4), the logarithm of the associated

measurement likelihood when using qj(xk) to approximate the

true posterior p(xk|rk = j,Z1:k) is [11]

L(qj(xk)) =

∫

qj(xk)log
p(zk,xk|rk = j,Z1:k−1)

qj(xk)
dxk.

(18)

As expected, if qj(xk) = p(xk|rk = j,Z1:k), the model-

conditioned measurement likelihood computed from (18), de-

noted for notation simplicity as

c̃jk = exp(L(qj(xk))) (19)



would be equal to p(zk|rk = j,Z1:k−1) = cjk in (14), because

p(zk,xk|rk = j,Z1:k−1)

= p(xk|rk = j,Z1:k)p(zk|rk = j,Z1:k−1).

In general, c̃jk is smaller than cjk, which can be verified via

L(qj(xk)) =

∫

qj(xk)log
p(zk,xk|rk = j,Z1:k−1)

p(xk|rk = j,Z1:k)
dxk

+

∫

qj(xk)log
p(xk|rk = j,Z1:k)

qj(xk)
dxk

= log(cjk)−D(qj(xk)||p(xk|rk = j,Z1:k)),
(20)

where

D(qj(xk)||p(xk|rk = j,Z1:k))

=

∫

qj(xk)log
qj(xk)

p(xk|rk = j,Z1:k)
dxk

(21)

is the KLD between qj(xk) and p(xk|rk = j,Z1:k). As the

KLD is non-negative [23], we have

L(qj(xk)) ≤ log(cjk) ⇐⇒ c̃jk ≤ cjk. (22)

In literature, L(qj(xk)) is sometimes referred to as the ev-

idence lower bound (ELBO) [11]. Its applications include

model selection [11] and particle filter (PF)-based online

multi-output Gaussian process regression and learning [24],

to name a few.

The above analysis reveals that propagating the approxi-

mated model-matched state posterior qj(xk), a single Gaussian

density, instead of the true version p(xk|rk = j,Z1:k), a

Gaussian mixture, leads to decreased model-conditioned mea-

surement likelihood. More importantly, from (20), we have

c̃jk = cjk · exp(−D(qj(xk)||p(xk|rk = j,Z1:k)))
︸ ︷︷ ︸

Γj

k

, (23)

where Γj
k can be considered as the correction factor due to

the approximation in (16).

III. PROPOSED ALGORITHM

A. Enhanced GPB2

We shall present an enhanced GPB2 algorithm for multiple

model state estimation based on the insights obtained in

Section II.C. The proposed method differs from the standard

GPB2 only in the model identity probability updating. More

specifically, the enhanced GPB2 algorithm finds the model

identity probability using, after substituting (23),

uj
k|k ∝ c̃jku

j

k|k−1 = cjkΓ
j
ku

j

k|k−1. (24)

In words, the new method considers the impact of approxi-

mating the true model-matched state posterior with a single

Gaussian density by utilizing the ELBO of the correspond-

ing measurement likelihood in the model identity probability

updating.

Because cjk and uj
k|k−1 are already calculated in the stan-

dard GPB2, the rest of this section will focus on how to find

the correction factor Γj
k to complete the establishment of the

enhanced GPB2 algorithm.

B. Control Variate-based Monte Carlo for Computing Γj
k

We note from (23) that in order to evaluate Γj
k, we just need

to compute the KLD D(qj(xk)||p(xk|rk = j,Z1:k)). For this

purpose, putting (12) and (16) into (21) yields

D(qj(xk)||p(xk|rk = j,Z1:k)) = −H(qj(xk))− ψj
k. (25)

Here, H(qj(xk)) is the entropy of the multivariate Gaussian

distribution qj(xk), which is equal to [14]

H(qj(xk)) = −

∫

qj(xk)logqj(xk)dxk =
1

2
log(|2πeΣj

k|k|),

(26)

and ψj
k is defined as

ψj
k =

∫

qj(xk)log

M∑

i=1

wij
k N (xk;µ

ij

k|k,Σ
ij

k|k)dxk. (27)

Unfortunately, ψj
k does not have a closed-form expression.

Because it is easy to draw samples from qj(xk), the naive

Monte Carlo method might be used for computing the integral

in (27). However, as shown in [13], [14], even with 105

samples, the obtained result could still have large errors

frequently, and the use of 106 samples is recommended, which

is computationally quite expensive.

We shall follow [12] and develop a low-complexity control

variate-based Monte Carlo method for evaluating (27). The

idea is to first find a control variate fj(xk), which is an

integrable function, such that

ψj
k =

∫

fj(xk)dxk + ψ̃j
k, (28)

where ψ̃j
k is defined as

ψ̃j
k =

∫ (

qj(xk)log

M∑

i=1

wij
k N (xk;µ

ij

k|k,Σ
ij

k|k)−fj(xk)

)

dxk.

(29)

With the control variate fj(xk), the problem of eval-

uating the integral in (27) reduces to calculating ψ̃j
k. If

fj(xk) is a good approximation to the original integrand

qj(xk)log
∑M

i=1 w
ij
k N (xk;µ

ij

k|k,Σ
ij

k|k) , ψ̃j
k can be computed

using the naive Monte Carlo method with low variance. This

makes it possible for the control variate-based approach to

achieve relatively high accuracy in estimating ψj
k with a

reasonably small number of samples.

We shall adopt the following control variate to find ψj
k

fj(xk) = qj(xk)

M∑

i=1

aijk log
wij

k N (xk;µ
ij

k|k,Σ
ij

k|k)

aijk
, (30)

where aijk are non-negative parameters to be determined and

they satisfy
∑M

i=1 a
ij
k = 1. It can be shown by invoking the

Jensen’s inequality that

qj(xk)log

M∑

i=1

wij
k N (xk;µ

ij

k|k,Σ
ij

k|k) ≥ fj(xk). (31)



As a result, we have from (29) that with the control variate

fj(xk) in (30), ψ̃j
k would be non-negative.

We shall find the parameters aijk in fj(xk) by maximizing
∫
fj(xk)dxk with respect to aijk . This could produce a control

variate that is close to the integrand in (27), as desired.

Mathematically, the associated optimization problem is

max
a
ij

k

∫

fj(xk)dxk, subject to

M∑

i=1

aijk = 1. (32)

The method of Lagrange multipliers is applied to solve (32).

In particular, the Lagrangian is

Lj =

∫

fj(xk)dxk + γj(

M∑

i=1

aijk − 1), (33)

where γj is the Lagrange multiplier. Setting the partial deriva-

tive of Lj with respect to aijk to zero yields

aijk = eγj−1exp

(∫

qj(xk)logwij
k N (xk;µ

ij

k|k,Σ
ij

k|k)dxk

)

.

(34)

Putting the above result into the equality constraint in (32)

leads to

eγj−1 =
1

∑M
i=1 w

ij
k e

∫
qj(xk)logN (xk;µ

ij

k|k
,Σ

ij

k|k
)dxk

. (35)

As a result, the solution to (32) is

aijk =
wij

k e
∫
qj(xk)logN (xk;µ

ij

k|k
,Σ

ij

k|k
)dxk

∑M
i′=1 w

i′j
k e

∫
qj(xk)logN (xk;µ

i′j
k|k

,Σ
i′j
k|k

)dxk

. (36)

After multiplying both the numerator and denominator in (36)

with e−
∫
qj(xk)logqj(xk)dxk , we have

aijk =
wij

k e
−D(qj(xk)||N (xk;µ

ij

k|k
,Σ

ij

k|k
))

∑M
i′=1 w

i′j
k e

−D(qj(xk)||N (xk;µ
i′j
k|k

,Σ
i′j
k|k

))
, (37)

where D(qj(xk)||N (xk;µ
ij

k|k,Σ
ij

k|k)) is the KLD between two

multivariate Gaussian PDFs, qj(xk) and N (xk;µ
ij

k|k,Σ
ij

k|k). It

has the following closed-form expression [25]

D(qj(xk)||N (xk;µ
ij

k|k,Σ
ij

k|k)) =
1

2
log|Σij

k|k| −
1

2
log|eΣj

k|k|

+
1

2
Tr

(

(Σij

k|k)
−1(Σj

k|k + (µj

k|k − µ
ij

k|k)(µ
j

k|k − µ
ij

k|k)
T )

)

,

(38)

where Tr(A) denotes the trace of matrix A.

Substituting (37) back into (30) yields the optimized control

variate function fj(xk). Integrating it gives
∫

fj(xk)dxk = −H(qj(xk)) + βj
k, (39)

where

βj
k = log

M∑

i=1

wij
k e

−D(qj(xk)||N (xk;µ
ij

k|k
,Σ

ij

k|k
))
, (40)

and H(qj(xk)) is the entropy of qj(xk) (see (26)). The result

in (39) is identical to the variational approximation result in

[13], although no details on the theoretical developments are

provided there.

Putting (39) into (28) and substituting the result back to

(25), we obtain that the KLD between qj(xk) and the true

model-matched state posterior can be found using

D(qj(xk)||p(xk|rk = j,Z1:k)) = −βj
k − ψ̃j

k. (41)

The term ψ̃j
k now becomes, after utilizing (29) and (30),

ψ̃j
k =

∫

qj(xk)

(

log

M∑

i=1

wij
k N (xk;µ

ij

k|k,Σ
ij

k|k)

−
M∑

i=1

aijk log
wij

k N (xk;µ
ij

k|k,Σ
ij

k|k)

aijk

)

dxk.

(42)

We evaluate the above integral using the naive Monte Carlo

method with samples from the approximated model-matched

state posterior qj(xk). Let us denote the result by
ˆ̃
ψj
k. Replac-

ing ψ̃j
k with

ˆ̃
ψj
k and substituting (41) into the definition of the

correction factor in (23) yields an estimate of Γj
k given by

Γ̂j
k = exp(βj

k +
ˆ̃
ψj
k). (43)

This completes the development of the control variate-based

method for evaluating the correction factor Γj
k in the enhanced

GPB2 algorithm.

C. Upper & Lower Bounds for D(qj(xk)||p(xk|rk = j,Z1:k))

In this subsection, we shall establish the upper and lower

bounds for D(qj(xk)||p(xk|rk = j,Z1:k)) to monitor the

estimation accuracy of the Monte Carlo KLD result.

An upper bound for D(qj(xk)||p(xk|rk = j,Z1:k)) is −βj
k.

This can be verified by noting from the discussion under (31)

that with the used control variate in (30), ψ̃j
k would be non-

negative. As a result, we have, from (41),

D(qj(xk)||p(xk|rk = j,Z1:k)) ≤ −βj
k. (44)

The lower bound for D(qj(xk)||p(xk|rk = j,Z1:k)) can be

found by applying the Jensen’s inequality in (27) such that

ψk
j ≤ log

M∑

i=1

wij
k

∫

qj(xk)N (xk;µ
ij

k|k,Σ
ij

k|k)dxk

= log

M∑

i=1

wij
k N (µj

k|k;µ
ij

k|k,Σ
j

k|k +Σ
ij

k|k),

(45)

where the second equality is established using the update stage

of a KF. Putting the above result into (25) and considering that

D(qj(xk)||p(xk|rk = j,Z1:k)) is non-negative [23] yield

αj
k ≤ D(qj(xk)||p(xk|rk = j,Z1:k)), (46)

where the lower bound αj is equal to

max{0,−H(qj(xk))−log

M∑

i=1

wij
k N (µj

k|k;µ
ij

k|k,Σ
j

k|k+Σ
ij

k|k)}.

(47)



If the Monte Carlo KLD result −(βj
k +

ˆ̃
ψj
k) falls out of the

interval [αj
k,−β

j
k], we replace it with the mean of the two

bounds, which is (αj
k − βj

k)/2. In this case, the correction

factor in the enhanced GPB2 algorithm is computed via

Γ̂j
k = exp

(

(αj
k − βj

k)/2
)

. (48)

IV. SIMULATIONS

In this section, we examine the performance of the newly

proposed enhanced GPB2 algorithm in maneuvering target

tracking. The benchmark methods are the standard IMM [1]

and GPB2 [2]. In future works, we shall study its performance

in angle and range-based [26] as well as time difference of

arrival (TDOA) and frequency difference of arrival (FDOA)-

based [27] target tracking problems.

A. Tracking Scenario

Consider tracking a point target on the 2-D plane. The

target motion starts at [234.9km, 85.5km]T with a velocity

[−176.8m/s,−176.8m/s]T . Its motion state at time k is de-

noted by xk = [xk, ẋk, yk, ẏk]
T , where [xk, yk]

T contains the

target position coordinates along the x-axis and y-axis, and

[ẋk, ẏk]
T is the velocity vector. xk evolves according to the

constant turn (CT) model [5]

xk = Fk(ω)xk−1 +Gkwk, (49)

where ω is the turn rate, the state transition matrix Fk(w) is

Fk(ω) =







1 sin(ωT )/ω 0 −(1− cos(ωT ))/ω
0 cos(ωT ) 0 − sin(ωT )
0 (1− cos(ωT ))/ω 1 sin(ωT )/ω
0 sin(ωT ) 0 cos(ωT )







and T = 3s is the sampling period. Gk = I2 ⊗ [T 2/2, T ]T is

the gain matrix for the process noise wk, which is assumed to

be white Gaussian with zero mean and covariance σ2
wI2. Here,

σw = 0.1m/s and ⊗ denotes the kronecker product. By setting

the turn rate w to zero, the CT model reduces to the constant

velocity (CV) model with the following state transition matrix

Fk(0) = I2 ⊗

[
1 T
0 1

]

. (50)

In the whole tracking process of 600s, the target has zero

turn rate, except that during the two intervals (150s, 360s) and

(399s, 600s), its turn rate is changed to ω = −0.0147rad/s and

ω = 0.0208rad/s, respectively.

A stationary sensor located at the origin is used to perform

target tracking. At time k, the sensor measurement can be

either linearly related to the target motion state xk as

zk = [xk, yk]
T + nk, (51)

or nonlinearly dependent on xk as

yk =

[ √

x2k + y2k
arctan(xk/yk)

]

+mk. (52)

nk is the noise in the linear measurements and it is white

Gaussian with zero mean and covariance Rk,n = σ2
pI2 (σp =

5km). On the other hand, mk is the noise in the nonlinear

measurements. It is assumed to be zero-mean Gaussian noise

with covariance Rk,m = diag(σ2
r , σ

2
θ), where σr = 25km and

σθ = 0.5o.
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Fig. 1. The 2-D maneuvering target tracking scenario in consideration.

The three algorithms considered, IMM, GPB2 and the

enhanced GPB2, all have M = 11 state-space models. These

models have the same measurement equation. For the linear

measurement case, the measurement equation is given in

(51), while it is given in (52) for the nonlinear measure-

ment case. The state-space models differ in their process

equations. Specifically, they follow the CT model in (49) but

with turn rates being 0, ±0.25rad/s, ±0.05rad/s, ±0.025rad/s,

±0.0167rad/s and ±0.0125rad/s. The models have the same

model probability at the beginning of the tracking process.

The model transition probability matrix P have its diagonal

elements equal to 0.95 and its off-diagonal elements equal to

0.005. In each simulation, 100 ensemble runs are conducted.

The estimation root mean square error (RMSE) for the target

position and the velocity RMSE normalized with respect to

the true velocity are used as performance metrics.

B. Results and Discussions

1) Linear measurements: In the first simulation, we con-

sider the case of linear measurements (see (51)). Every model

is initialized using the measurement at time 0. Their ini-

tial model-matched state posteriors have the same Gaussian

distribution with mean [z0(1), 0, z0(2), 0]
T and covariance

diag(σ2
p, V

2
max, σ

2
p, V

2
max), where Vmax = 300m/s. The en-

hanced GPB2 uses N = 1000 samples to compute the KLD

in (21) and the associated correction factor Γj
k via the control

variate-based approach developed in Section III.B.

The results are summarized in Figs. 2 and 3, where the

target position and velocity RMSEs are plotted as a function of

time. It can be seen that the enhanced GPB2 algorithm offers

significant performance improvement over the standard IMM

and GPB2, especially during the time when the target performs

turn motion. This might be explained as follows. The assumed

turn rates of the models are different from those of the target.

As a result, there normally exist several models with non-

negligible model probabilities. Merging their model-matched

state posteriors into a single Gaussian density could lead to
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Fig. 2. Comparison of target position RMSE in the linear measurement case.
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Fig. 3. Comparison of target velocity normalized RMSE in the linear
measurement case.
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Fig. 4. Comparison of model identity probabilities of the IMM and enhanced
GPB2 algorithms from a certain ensemble run in the linear measurement case.

large approximation error that needs to be accounted for in

model identity probability updating, as in enhanced GPB2.

To further investigate the reasons underlying the observed

performance improvement, Fig. 4 depicts as a function of time

the model identity probabilities of the IMM and enhanced

GPB2 algorithms from a certain ensemble run. For clarity,

only the temporal evolution of the model identity probabilities

of model 10 (with a turn rate w = −0.0167rad/s) and model

4 (with a turn rate w = 0.025rad/s) are shown. Their assumed

turn rates are respectively the closest among all the 11 models

to the true target turn rates during the two intervals (150s,

360s) and (399s, 600s). We can see from Fig. 4 that compared

with the IMM technique, the use of the correction factor in the

model probability updating also enables the enhanced GPB2

algorithm to emphasize more the models matching well with

the target motion. This could contribute to the improvement

in the state estimation performance observed in Figs. 2 and 3.

2) Nonlinear measurements: This simulation experiment

examines the performance of the enhanced GPB2 algorithm

when being applied to a nonlinear filtering problem. The

setup is the same as the previous experiment, except that the

measurements are now nonlinearly related to the target motion

state (see (52)). The models are again initialized using the

measurement at time 0 such that the initial model-matched

state posteriors have the same Gaussian PDF with mean

[y0(1) sin(y0(2)), 0,y0(1) cos(y0(2)), 0]
T . The associated co-

variance can be found via applying the first-order perturbation

analysis, which is omitted here due to save space. When

realizing the IMM, GPB2 and enhanced GPB2 algorithms, the

nonlinear model-matched filtering (see (4)) and the evaluation

of the model-conditioned measurement likelihood in (13) are

carried out using a cubature KF (CKF) [20].

The obtained results are shown in Figs. 5 and 6. The

observations are very similar to those from Figs. 2 and 3.

Specifically, in the presence of nonlinear measurements, the

enhanced GPB2 continues to provide superior performance

over IMM and standard GPB2 when the target conducts turn

motion. The model identity probabilities of models 10 and 4

from the considered IMM and enhanced GPB2 algorithms in

a certain ensemble run are plotted in Fig. 7 as a function

of time. Again, it can be seen that the models that better

match the true target motion are assigned with higher model

probabilities under the enhanced GPB2 algorithm over the

IMM technique. This might be part of the reason for the

performance improvement demonstrated in Figs. 5 and 6.

In this simulation, it takes the enhanced GPB2 algorithm

0.066s on average to process a newly obtained measurement.

This is almost two times higher than the average amount of

running time required by GPB2, which is 0.035s. The increase

in the computational time mainly comes from applying the

control variate-based Monte Carlo method to find the correc-

tion factor Γj
k (see Section III.B).

3) Effect of the number of Monte Carlo samples: In the

previous two experiments, the enhanced GPB2 algorithm uti-

lizes N = 1000 samples when computing the correction factor

Γj
k. In this experiment, the value of N is varied to investigate

the impact of different numbers of Monte Carlo samples used

to compute Γj
k on the estimation accuracy of the enhanced

GPB2. For this purpose, we repeat the previous simulation on

tracking the maneuvering target using nonlinear measurements

but with N set to be equal to 1000, 2000 and 5000. The

results are shown in Figs. 8 and 9. We see that increasing the

number of Monte Carlo samples does not lead to significant

improvement, which indicates that with the developed control
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Fig. 5. Comparison of target position RMSE in the nonlinear measurement
case.
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Fig. 6. Comparison of target velocity normalized RMSE in the nonlinear
measurement case.
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Fig. 7. Comparison of model identity probabilities of the IMM and enhanced
GPB2 algorithms from a certain ensemble run in the nonlinear measurement
case.

variate-based approach, the use of N = 1000 samples already

yields a satisfactory performance.

V. CONCLUSIONS

This paper investigated the effects of the approximation used

in the standard GPB2 for achieving computational tractability,

which at every time instant, replaces each model-matched
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Fig. 8. Target position RMSE of the enhanced GPB2 algorithm with different
number of samples in the control variate-based Monte Carlo.
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Fig. 9. Target velocity normalized RMSE of the enhanced GPB2 algorithm
with different number of samples in the control variate-based Monte Carlo.

state posterior, a Gaussian mixture, with a single Gaussian

density. It was found by re-visiting the derivation of GPB2

that this approximation is not taken into consideration when

updating the model identity probabilities. Resorting to varia-

tional inference, we proposed an enhanced GPB2 algorithm

that introduces a correction factor into the model identity

probability updating to account for the above approximation

and improve performance. The correction factor depends on

the KLD between the true model-matched state posterior and

the corresponding single Gaussian density approximation ob-

tained via moment matching. As the KLD cannot be evaluated

analytically, a control variate-based Monte Carlo approach was

developed. Besides, the upper and lower bounds for the KLD

were established and the estimated KLD is corrected if it falls

out of bounds. The enhanced GPB2 algorithm was shown

via simulations to be able to outperform, in a linear and a

nonlinear maneuvering target tracking tasks, the standard IMM

and GPB2 techniques.
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[22] J. Duńik, O. Straka, M. S̆imandl, and E. Blasch, “Random-point-based
filters: Analysis and comparison in target tracking,” IEEE Trans. Aerosp.

Electron. Syst., vol. 51, pp. 1403–1421, April 2015.

[23] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley-Interscience, 2006.

[24] L. Yang, K. Wang, and L. S. Mihaylova, “Online sparse multi-output
Gaussian process regression and learning,” IEEE Trans. Signal and Info.

Process. over Networks, vol. 5, pp. 258–272, June 2019.

[25] M. J. Beal, “Variational algorithms for approximate Bayesian inference,”
Ph.D. dissertation, University of London, 2003.

[26] X. Chen, Z. Liu, and X. Wei, “Unambiguous parameter estimation of
multiple near-field sources via rotating uniform circular array,” IEEE

Antennas and Wireless Propagation Letters, vol. 16, pp. 872–875, 2017.
[27] X. Li, L. Yang, L. S. Mihaylova, F. Guo, and M. Zhang, “Enhanced

GMM-based filtering with measurement update ordering and innovation-
based pruning,” in Proc. Intl. Conf. Information Fusion (FUSION), July
2018, pp. 2572–2579.


