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Abstract ���

 ���

Paternal contributions to the zygote are thought to extend beyond delivery of the ���

genome and paternal RNAs have been linked to epigenetic transgenerational �	�

inheritance in different species. In addition, sperm<egg fusion activates several �
�

downstream processes that contribute to zygote formation, including PLC� zeta<���

mediated egg activation and maternal RNA clearance. Since a third of the ���

preimplantation developmental period in the mouse occurs prior to the first cleavage ���

stage, there is ample time for paternal RNAs or their encoded proteins potentially to ���

interact and participate in early zygotic activities. To investigate this possibility, a ���

bespoke next generation RNA sequencing pipeline was employed for the first time to ���

characterise and compare transcripts obtained from isolated murine sperm, MII eggs ���

and pre cleavage stage zygotes. Gene network analysis was then employed to ���

identify potential interactions between paternally and maternally derived factors �	�

during the murine egg to zygote transition involving RNA clearance, protein �
�

clearance and post<transcriptional regulation of gene expression. Our in silico ���

approach looked for  factors in sperm, eggs and zygotes that could potentially ���

interact co<operatively and synergistically during zygote formation. At least five ���

sperm RNAs (Hdac11, Fbxo2, Map1lc3, Pcbp4 and Zfp821) met these requirements ���

for a paternal contribution, which with complementary maternal co<factors suggest a ���

wider potential for extra<genomic paternal involvement in the developing zygote.  ���
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Introduction ���

 ���

Assuming fertilisation is successful, spermatozoal entry into the egg triggers a series �	�

of events that ends with the transformation of the terminally differentiated egg into �
�

the totipotent zygote. Alongside the paternal genome, the sperm also delivers non<���

genomic factors including the microtubule organising centre or centriole (excepting ���

rodents), the oocyte<activating factor, PLC�����(Saunders et al, 2002; Barroso, et al. ���

2009) and a complex repertoire of RNAs to the egg (Ostermeier, et al. 2004, Yuan, et ���

al. 2015). Both sperm and egg are transcriptionally silent (Braun 2000, Richter and ���

Lasko 2011) and the egg<to<zygote transition (EZT) occurs in the absence of ���

transcription (Evsikov, et al. 2006). While somatic nuclear cloning (Gurdon and ���

Melton 2008) and the generation of viable gynogenetic mice (Kono, et al. 2004) ���

suggest that maternal factors alone are sufficient to guide early embryo �	�

development, these processes are grossly inefficient and structural or signaling �
�

factors from the sperm may complement maternal factors that could participate in ���

and aid the early programming of embryonic development (Jodar, et al. 2015, Miller ���

2015).   ���

 ���

Paternal RNAs can epigenetically affect transgenerational inheritance through ���

specific small non<coding RNAs (sncRNAs) and associated RNA<binding proteins ���

(Chen, et al. 2016, Rodgers, et al. 2015). In Caenorhabditis elegans, a hybrid strain ���

crossing showed that approximately 10% of embryonic RNA is of paternal origin with ���

functional importance during EZT and possibly embryogenesis (Stoeckius, et al. �	�

2014b). An equivalent paternal contribution to the mammalian zygote will be small by �
�

comparison, but evidence of the potential for sperm RNAs (or their translated ���

proteins) to contribute to and participate in zygote formation is strong and worthy of ���

further investigation.  ���

 ���
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Early molecular processes in the zygote can be classified into three main categories ���

including maternal clearance, chromatin remodeling and eventually zygotic genome ���

activation (ZGA) (Lee, et al. 2013). Maternal clearance is the process of removing ���

maternal factors including RNAs and proteins essential for oogenesis that become ���

surplus to requirements after fertilisation (Tadros and Lipshitz 2009). Post<�	�

transcriptional regulation plays a role during EZT and includes the destruction of �
�

maternal mRNAs guided by their 3’ untranslated (3’ UTR) sequences (Giraldez 	��

2010). Compared with approximately 2000 proteins reported in pre cleavage stage 	��

zygotes of M. musculus, over 3500 proteins have been identified in metaphase II 	��

eggs (Wang, et al. 2010, Yurttas, et al. 2010). During the embryonic development, 	��

this removal of maternal factors is guided mainly by ubiquitin<dependent degradation 	��

pathways and by autophagy (Marlow 2010).  	��

 	��

While transcriptionally inert, MII eggs and zygotes are likely to be translationally 	��

active (Fang, et al. 2014, Potireddy, et al. 2006), leaving open the possibility for 		�

sperm RNAs to be translated into proteins following their introduction to the egg 	
�

(Fang, et al. 2014).  We reasoned that a potential non<genomic paternal contribution 
��

would most likely involve interactions with maternal factors responsible for the 
��

regulation of gene expression prior to the EZT and the clearance of maternal factors 
��

prior to embryonic genome activation.  The main objective of the study, therefore was 
��

to see if in silico analysis of RNA sequencing data obtained from sperm, MII eggs 
��

and pre cleavage stage zygotes (PCZ but henceforth referred to as zygotes) using 
��

an identical bespoke protocol, could highlight potential interactions between paternal 
��

and maternal cofactors brought together by fertilisation. Herein, we focus on five, full 
��

length mRNAs present at high levels in murine sperm that with associated maternal 
	�

cofactors, fit the requirements for a potential paternal, non<genomic metabolic 

�

contribution to the zygote. �����
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Materials and Methods  ����

Study design ����

RNAs isolated from pooled murine spermatozoa, single MII eggs and single zygotes ����

were sequenced and compared. To help identify paternal RNAs with the potential to ����

participate in EZT events, we looked firstly for candidate RNAs that were highly ����

represented in sperm, thus increasing the probability of being delivered to and ����

translated by the zygote or being translated into protein during the late stages of ����

spermatogenesis and delivered to the MII egg at fertilisation. Secondly, considering ��	�

the highly fragmented nature of sperm RNA, no less than 80% of the exonic regions ��
�

of at least one gene isoform of a ‘candidate’ paternal cofactor had to be covered by ����

RNA<Seq reads, giving a greater potential for the RNA to be functional. Thirdly, ����

sperm RNAs with good sequence coverage were only considered further if their ����

ontological descriptions suggested functions other than spermatogenesis.   ����

 ����

A bespoke identical library preparation method and sequencing pipeline was applied ����

to all samples allowing accurate comparative assessment of RNAs across the ����

different samples. The library kit used (Ovation single cell RNA<Sequencing system, ����

NuGEN, CA, USA), has a mix of oligo<dT and random primers targeting a wider ��	�

range of transcripts, including those with varying poly(A) tail lengths, typically ��
�

encountered in gamete and zygotic mRNAs (Paranjpe, et al. 2013). Cytoscape’s ����

GeneMANIA module (see below) was then employed for the in silico analysis ����

investigating potential interactions between gene products of paternal and maternal ����

origin (Warde<Farley, et al. 2010). ����

 ����

Ethics  ����

Experiments involving the use of animals were regulated under the Home Office, UK ����

Animals Scientific Procedures Act (ASPA) under license service PPL 40/3391 ����

approved by the University of Leeds AWERC (Animal Welfare Ethical Review ��	�
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Committee). All animals were culled using cervical dislocation in accordance to ��
�

Schedule 1 of the ASPA. ����

 ����

Mouse gamete and zygote harvest ����

Groups of C57BL/6J females were super<ovulated with a 5 IU dose of pregnant ����

mares’ serum gonadotropin (PMSG) (Sigma Aldrich, MO, USA) injected ����

intraperitoneally (I/P) on day 1, followed at day 3 by a 5IU dose of human chorionic ����

gonadotropin (HCG) (Sigma Aldrich, MO, USA) I/P and mated with vasectomised ����

males to provide MII eggs. The zygote groups were mated to proven C57BL/6J stud ����

males immediately after hCG dosing and checked the following day for post coital ��	�

plugs. Plugged females were pooled and used for zygote harvest. Both zygote and ��
�

MII egg groups were sacrificed on day 4. Oviducts from the zygote and egg groups ����

were harvested separately and suspended in M2 media (Sigma Aldrich, MO, USA). ����

Dissected oviducts were placed into a pre<heated dish of synthetic Human Tubal ����

Fluid (HTF) media (Irvine scientific, CA, USA) with bovine serum albumin (BSA) ����

(Sigma Aldrich, MO, USA). Cumulus masses were released into the HTF/BSA ����

medium and transferred into a drop of hyaluronidase (Sigma Aldrich, MO, USA) ����

following which, a wide bore pipette was used to strip the eggs and zygotes of their ����

cumulus cells. These were in turn collected by mouth pipette and washed through ����

sequential drops of M2 media (Sigma Aldrich, MO, USA).  ��	�

 ��
�

Sperm harvest ����

The epididymides of fertile C57BL/6J males were dissected out and transferred into ����

pre<warmed HTF (Irvine Scientific, CA, USA). Using a sterile 26G needle, small ����

incisions were made in the cauda and sperm were allowed to swim out before ����

collection by gentle aspiration. Spermatozoa were washed in HTF (Irvine, CA, USA), ����

filtered through an 80<micron mesh (Sigma Aldrich, MO, USA) and centrifuged at ����

500xg prior to resuspension and centrifugation through a two<layer (65%<50%) ����
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discontinuous percoll gradient (GE Healthcare Biosciences, Uppsala, Sweden) at ����

300xg, employing the ProInsert technology (Nidacon International AB, Gothenburg, ��	�

Sweden) to facilitate the selective isolation of pelleted spermatozoa while preventing ��
�

possible contamination by somatic cells (Fourie, et al. 2012). Spermatozoa were ����

pelleted at 500xg and washed twice in Dulbecco’s phosphate<buffered saline (DPBS) ����

(Thermo Scientific, MA, USA) Approximately 1 million spermatozoa were harvested ����

before the second wash and Giemsa stained (Sigma Aldrich, MO, USA) to visually ����

confirm lack of other cell types using a Leica Leitz DMRB microscope (Mazurek ����

Optical Services, Southam, UK). ����

 ����

RNA isolation and library construction ����

Sperm RNA was extracted using the method described by Goodrich (Goodrich, et al. ��	�

2013) with modifications. Briefly, 107 spermatozoa were placed in RLT buffer ��
�

(Qiagen, Hilden, Germany) with 1.5% β<mercaptoethanol (Sigma Aldrich, MO, USA) ����

and 0.5mm nuclease free stainless steel beads. Following homogenisation with a ����

DisruptorGenie™ cell disruptor (Thermofisher Scientific, MA, USA), an equal volume ����

of chloroform was added followed by centrifugation at 12,000xg (4oC), allowing ����

recovery of the RNA. Prior to library construction, any residual genomic DNA was ����

removed from the samples by digestion with Turbo DNase (Thermofisher Scientific, ����

MA, USA) following the manufacturer’s instructions. Quantitative Real<Time PCR ����

(qRT<PCR) using Prm2 and Map1lc3a intron spanning primers with SybrGreen PCR ����

mastermix (Applied Biosystems, CA, USA) was employed to monitor for DNA ��	�

contamination.  ��
�

 �	��

Sperm RNA quality assessment was carried out using the RNA<6000 pico assay �	��

(Agilent, CA, USA) on a 2100 Bioanalyzer (Agilent, CA, USA), where the absence of �	��

clearly defined peaks from 18S and 28S ribosomal RNAs (low RIN score) indicates �	��

corresponding absence of contaminating somatic cell RNA (supplementary Figure 1). �	��
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As additional QC, Real<Time qPCR primers for the Melanoma<Associated Antigen �	��

D2 (Maged2) were used to confirm potential contaminating somatic cell RNA in these �	��

preparations (principally from Leydig and Sertoli cells; Chalmel, et al. 2007). Only �	��

spermatozoal cDNAs shown to be free of genomic DNA and somatic RNA �		�

contamination were used for library construction.  �	
�

 �
��

Mouse eggs and zygotes were processed at the single cell level. Each cell was �
��

transferred by mouth pipette into lysis buffer, after being immersed in DPBS (LIFE �
��

Technologies, USA) in a washing step containing 0.1% BSA (Sigma<Aldrich, MO, �
��

USA). Following first and second strand synthesis and processing using the Ovation �
��

single cell RNA<Seq system (NuGEN, USA), Illumina adaptor sequences were �
��

ligated to the sperm, egg and zygote cDNAs. Two rounds of library amplification �
��

were carried out and the fragment distribution was checked using the Agilent high �
��

sensitivity DNA assay on the 2100 Bioanalyser (Agilent Technologies, CA, USA).  �
	�

The libraries were quantified using Picogreen assay (Thermo Scientific, MA, USA) on �

�

a FLUOstar Galaxy plate reader (MTX Lab Systems, USA) and pooled. The Illumina ����

HiSeq 2500 and 3000 platforms were employed for RNA<Seq.  ����

 ����

Bioinformatics Analysis ����

Spermatozoa, MII eggs and zygotes from a minimum of three biological replicates ����

each were sequenced using either 50bp (single<ended) or 150bp paired<end reads. ����

RNA<Seq data underwent automated adapter and quality trimming using Trim ����

Galore! v0.4, ignoring reads with MAPQ<20 (Krueger 2015). The reads above this ����

threshold were mapped to the Mus musculus reference genome (mm10) using the ��	�

subjunc function of the Rsubread package version 1.20.3 (Liao, et al. 2013b).  The ��
�

output BAM format files were sorted using Samtools version 1.3 (Li, et al. 2009) and ����

duplicate reads removed using the Picard MarkDuplicates tool version 2.1.1 (Broad ����

Institute. (2010), available online at http://broadinstitute.github.io/picard). BedGraph ����
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and bigwig files were generated using Bedtools version 2.25.0 (Quinlan and Hall ����

2010), and the function bedGraphToBigWig ����

(http://hgdownload.soe.ucsc.edu/admin/exe/macOSX.x86_64/bedGraphToBigWig). ����

After removal of duplicate unmapped and incorrectly paired reads using Samtools ����

version 1.3 (Li, et al. 2009), the reads were visualized on the UCSC genome browser ����

(Kent, et al. 2002). The numbers of reads assigned to genomic features were ��	�

counted using the featureCounts function of Rsubread (Liao, et al. 2013a). For ��
�

paired<end libraries, we required both read mates to be uniquely mapped in the ����

correct orientation. All remaining options were set to featureCounts default. ����

Differential RNA representation in MII egg and zygote RNA<Seq libraries was tested ����

using the edgeR exact test (Robinson, et al. 2010) and only genes represented at ����

levels ≥10 counts<per<million reads (CPM) in at least 6 out of 7 MII and zygote ����

libraries were included in the downstream analysis. The only exception to this rule ����

was for five maternal transcripts with reads just below 10 CPM, represented across ����

all exons, that were also included. Data normalisation was based on the trimmed ����

mean of M value (TMM) using the calcNormFactorsfunction (Robinson and Oshlack ��	�

2010).  ��
�

 ����

Ontological analysis, gene networks and molecular interactions  ����

Ontological descriptions of RNAs from sperm, MII eggs and zygotes were derived by ����

DAVID v6.8 (Huang, et al. 2009), with a subsequent focus on biological processes. ����

Gene networks involving candidate spermatozoal and maternal factors were ����

identified by the Cytoscape module GeneMANIA v.3.4.1; (Warde<Farley, et al. 2010). ����

GeneMANIA uses publically available data sets, encompassing physical and ����

molecular interactions, co<expression, co<localisation and molecular pathways.  ����

 ��	�

NGS validation using quantitative real)Time PCR ��
�
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Following first<strand cDNA synthesis, the cDNA of mouse MII egg, zygote, ����

spermatozoal and testicular RNA (positive control) was amplified by long distance ����

PCR, using the SMART<Seq v4 ultra low input RNA kit (Clontech, USA). Validatory ����

quantitative real<time PCR was carried out as required using gene<specific primers ����

(supplementary Table 1) and SYBR green on an ABI 7900HT Real<time PCR system ����

(Applied Biosystems, CA, USA) over 40 cycles according to the manufacturer’s ����

instructions. The annealing temperature per primer pair ranged between 590C and ����

620C.  ����

Results ��	�

 ��
�

1. RNA characterisation and ontological profiles ����

The average correctly paired and mapped reads per sperm RNA sample was ����

calculated at 20 ± 2 x 106. The average number for MII eggs was 18 ± 1.5 x 106 and ����

for the zygotes 20 ± 1.5 x 106 per sample. RefSeq IDs for sperm, MII eggs and ����

zygotes, alongside differentially expressed RNAs using EdgeR for MII eggs and ����

zygotes are listed in the supplementary info (RNA lists). While we cannot be certain ����

that RNAs common to sperm and zygotes originated in the fertilising sperm, our ����

initial approach was to look for sperm RNAs that were absent in MII eggs but present ����

in zygotes. Figure 1A shows Venn diagrams for overlaps between sperm, MII egg ��	�

and zygote RNAs ≥10 CPM. In aggregate, 5,368, 5,148 and 1,918 RNAs were ��
�

reported, respectively from MII eggs, zygotes and sperm with 75 shared between ����

sperm and zygotes that were either absent altogether or present in MII eggs at well ����

below threshold reporting levels. The same sperm list compared with EdgeR ����

normalised reads for MII egg and zygote RNAs yielded 56 RNAs shared between ����

sperm and zygotes (Figure 1B). Closer scrutiny of the read data, however, showed ����

all but four of these ‘shared’ RNAs were detected in MII eggs albeit at low levels of ����
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expression (<10 CPM). The four absent in MII eggs were more fragmented in sperm ����

than in zygotes, suggesting they were not sperm<specific.  ����

 ��	�

An alternative approach focused simply on highly abundant sperm RNAs with good ��
�

exon coverage that were essentially absent in both MII eggs and zygotes. To help ����

narrow down the list of hundreds of possible RNAs to pursue in this regard, ����

functional annotation clustering (supplementary info; FAC sheets) was employed to ����

provide a general overview of MII egg and zygote RNAs using the lists of ����

differentially expressed MII egg and zygote RNAs generated by EdgeR alongside the ����

list of sperm RNAs selected on the basis of high representation and good exon ����

coverage. A graphical representation of the numbers of genes in the main ontological ����

annotations (biological processes) for sperm, MII eggs and zygotes is shown in ����

supplementary Figure 2.  ��	�

 ��
�

As shown in Table 1 and in supplementary info (BP; EdgeR sheet), the expected top �	��

sperm annotation related to spermatogenesis as a differentiation process, with �	��

associated weaker enrichments in processes associated with lipid metabolism and �	��

DNA condensation. Enrichment for annotation relating to the control of transcription �	��

dominated the ontological descriptions for both MII eggs and zygotes, which was �	��

expected considering the similarity between them (Table 1 and supplementary info; �	��

BP EdgeR sheet). Focusing on differential expression between the two, however, �	��

revealed interesting differences (supplementary info; BP EdgeR MII or PCZ Up �	��

sheet). MII eggs showed specific enrichments in activities relating to mRNA �		�

processing, while the cell cycle showed the strongest enrichment in zygotes. �	
�

Processes relating to ubiquitination and transcription were more apparent in �
��

differentially up<regulated RNAs from zygotes but not MII eggs, suggesting that �
��

clearance activity and perhaps renewed RNA processing triggered by fertilisation �
��

may have already commenced in zygotes at the time of harvesting.  �
��
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Using the functional annotation of highly expressed RNAs as guidance alongside �
��

closer inspection of the selected gene lists from sperm, MII eggs and zygotes, �
��

potential interacting partners relating to clearance of maternal factors were revealed.  �
��

Considering the RNAs’ high expression in sperm compared with MII eggs and �
��

zygotes, their exclusion from the dominant spermatogenesis ontology and their �
	�

relative freedom from fragmentation as assessed by exon coverage, five sperm �

�

RNAs were selected for follow up (Table 2). These include the histone deacetylase ����

11 (Hdac11), the Rbx1<SCF E3 ubiquitin<ligase component F<box protein 2 (Fbxo2), ����

the microtubule<associated protein 1A/1B light chain 3A (Map1lc3a), the poly (rC)<����

binding protein 4 (Pcbp4) and the zinc finger protein 821 (Zfp821). These five sperm ����

RNAs were in turn interrogated using GeneMANIA for all known interacting partners, ����

which returned approximately 100 genes of which 37 were either present in the up<����

regulated zygotic transcripts or in the list of shared (MII & zygote) maternal RNAs ����

(Table 2). Together, these paternal and maternal RNAs comprise the gene network ����

profile shown in Figure 2. The network’s functional annotation was dominated by ��	�

strong enrichment in processes related to ubiquitin<mediated degradation pathways ��
�

(supplementary info; BP EdgeR sheet), reflecting the ontology of up<regulated ����

transcripts in zygotes.   ����

  ����

2. Predicting and providing evidence for potential parental interactions ����

Network analysis (Figure 2) suggested that paternal (♂) and maternal (♀) cofactors ����

could interact in pathways leading to EZT. An example is illustrated in Figure 3 for ����

the gamete<specific cofactors of the multiple component SCF E3 ubiquitin ligase ����

complex which includes Fbxo2 (also known as Fbs1♂; A) alongside Cullin 1 (Cul1♀; ����

B), Ring Box 1 (Rbx1♀; C) and S<Phase Kinase<Associated Protein 1A (Skp1a♀; D). ��	�

These genes are indicated in Figure 2 by boxes. Note that reads covering all exons ��
�

for Fbxo2, were strongly represented in the sperm RNA libraries but with few or no ����

reads from either MII egg or zygote libraries. In contrast, with the exception of Fbxo2, ����
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RNAs encoding the other cofactors of the SCF<E3 ubiquitin ligase complex were ����

highly represented in both MII eggs and zygotes but not in sperm. Additional ����

predicted interactions between Fbxo2♂ and the maternally expressed Fbxo5♀ and ����

Fbxo34♀ were also suggested (Table 2 and Figure 2; boxes). Real<time qPCR ����

confirmed the expression of paternal factors in sperm and testis (Figure 4) and ����

although products were generated for Map1lc3a from all sources (panel A), Ct data ����

confirmed that the RNA was considerably more abundant in sperm (see panel B). A ��	�

142bp product from Maged 2 was only detected in RNA from eggs and testis, ��
�

indicating that sperm libraries were free of contamination by RNAs from testis<����

derived somatic cells. All PCR products were obtained from samples after 40 PCR ����

cyles and so the products shown in panel A are only qualitative. The corresponding ����

Ct values give more quantitative assessments.  ����

 ����

UCSC tracks are shown in supplementary Figure 3 for a number of additional, ����

GeneMANIA suggested potential paternal<maternal interacting cofactors. Hdac11♂ ����

(A), which was highly expressed in sperm, could interact withthe Mitotic Checkpoint ����

Serine/Threonine Kinase B, (Bub1♀; B) and cell division cycle protein 20 (Cdc20♀; ��	�

Figure 2; ovals). GeneMANIA also suggested potential co<localisation and co<��
�

expression between Hdac11♂, Hdac2♀ and Hdac8 (Figure 2; ovals) with Hdac11♂ ����

and Hdac2♀ having shared protein domains. Predicted interactions with the Nelfcd♀ ����

and Aamp♀ were also highlighted (Figure 2; ovals). Reads from a long terminal ����

repeat (LTR♂) region located within the 8th intron of Hdac11, which could potentially ����

be expressed independently of Hdac11♂ RNA were also noted (supplemental Figure ����

3A).  ����

 ����

The ubiquitin<like protein Microtubule Associated protein 1, light chain 3 alpha ����

(Map1lc3a♂; C) is involved in autophagosome formation and GeneMania indicated ��	�

functional interactions with several maternal factors, including Map1b♀ (D), Atg3♀ ��
�
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(E) and Atg10♀ (Figure 2, boxes with course dashed lines) of which Atg3♀ and ����

Map1b♀ showed high levels of expression in MII eggs and zygotes with good exonic ����

representation and were absent in sperm. In addition, Pcbp4♂ (F), which may ����

complement the heterogeneous nuclear ribonucleoprotein K (Hnrnpk♀; G) and ����

Quaking (Qk♀; H; and Figure 2, pentangles) were highly represented in MII eggs and ����

zygotes but not in sperm. The corresponding maternal proteins are involved in post<����

transcriptional regulation of gene expression, protein degradation and the cell cycle. ����

Pcbp4� ♂ also has predicted interactions with Pcbp1♀ and co<localises with the ����

Pcbp2♀ isoform. Finally, GeneMANIA reported predicted interactions between ��	�

Zfp821♂ (I), which may be involved in transcriptional regulation, Fchsd2♀ and ��
�

Rimlkb♀ (Figure 2; boxes with fine dashed lines). Zpf821♂ is highly expressed in ����

sperm but not MII eggs and zygotes.  ����

Discussion                               ����

Existing sequencing germ line and zygote datasets are not fully complementary and ����

are therefore difficult to compare (they either omit sperm or MII eggs or zygotes from ����

their analysis) and are derived from library construction methods that differ between ����

the various cell types (Johnson, et al. 2015, Tang, et al. 2010, Xue, et al. 2013). To ����

avoid introducing methodological effects and bias, we used a bespoke pipeline that ����

included construction of our own libraries for sequencing and analysis. Sperm ��	�

contain far less RNA than either MII eggs or zygotes; therefore, sperm libraries were ��
�

unavoidably derived from sperm<specific pooled samples while MII egg and zygote ����

libraries were from individual cells. The equivalent read counts obtained from the ����

three sources demonstrate the care taken to assure quantitative equivalence of input ����

RNA. We found, however, that relying on comparisons between the three to select ����

sperm<specific factors were problematic, because although representation may have ����

been too low to report the RNA as present in MII eggs or zygotes (for example), we ����

frequently encountered reads indicating fragmented RNA in both regardless. We ����
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focused, therefore, on highly abundant RNAs with full<length transcripts in sperm, MII ����

eggs and zygotes and with demonstrably reciprocal representation (in sperm but not ��	�

MII eggs or zygotes and the reverse) following inspection of RNA<Seq tracks on the ��
�

UCSC browser and where necessary, confirming by qRT<PCR.  �	��

 �	��

In silico analysis of our RNA sequencing data supports the possible complementation �	��

of maternal with paternal factors introduced at fertilization. Five highly expressed �	��

sperm RNAs were considered based on their relative low abundance or absence in �	��

MII eggs or zygotes. All factors potentially interacting with translated products from �	��

these RNAs were mapped out using the pathway and network analyses tools in �	��

GeneMANIA. These factors were then matched to corresponding maternal cofactors �	��

to help identify those with a greater potential to participate in EZT pathways. As the �		�

predicted interactions were more likely to be between proteins, where possible we �	
�

checked for a corresponding proteomic record of the RNAs in question (Skerget, et �
��

al. 2015, Wang, et al. 2013, Wang, et al. 2010). Sperm RNAs could either be �
��

translated into proteins during late spermatogenesis or if delivered to the MII egg, in �
��

the pre cleavage stage zygote (Fang, et al. 2014). We also searched for reproductive �
��

effects of existing knockout models for the corresponding genes of parental factors �
��

where available (supplementary Table 2).  �
��

 �
��

The current study provides evidence of a novel role for paternally introduced factors �
��

in murine zygotic RNA/protein clearance (Sato and Sato 2013, Stitzel and Seydoux �
	�

2007). The RBX1<SCFE3 ubiquitin ligase complex, for example, plays an important �

�

role during gametogenesis and mouse embryogenesis, catalysing the ubiquitination ����

of proteins during cytoplasmic turnover, which are then destined for proteasomal ����

degradation (Jia and Sun 2009, Sato and Sato 2013). The F<box family includes ����

FBXO2, which is an E3 ligase adaptor protein targeting glycosylated proteins for ����

degradation. Our network analysis, showed that all RBX1<SCF E3 ubiquitin ligase ����
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components but one (Fbxo2♂) were maternally expressed (McCall, et al. 2005) and ����

on fertilisation, FBXO2♂ could complete the complex and be active in the EZT. The ����

FBXO2 protein is also present in mature sperm (Wang, et al. 2013) and has been ����

linked to idiopathic male infertility (Bieniek, et al. 2016). Similarly, MAP1LC3A♂ is a ��	�

ubiquitin<like modifier (Cherra, et al. 2010) with potential autophagic interactions with ��
�

ATG3♀ and MAP1B♀. MAP1B protein is also present in eggs and zygotes. Both ����

Atg3 and Map1b KO studies show lethality one day after birth (supplementary Table ����

2). ����

  ����

Quaking (QK)♀, HNRNPK♀ and PCBP1/2/4♀/♂ showed predicted in silico ����

interactions as part of the post<transcription regulatory process. In C. elegans, the ����

first wave of degradation of egg factors involves PES4 (Stoeckius, et al. 2014a), a ����

member of the PCBP family of RNA<binding proteins that post<transcriptionally ����

regulate alternative polyadenylation at a global level (Ji, et al. 2013). Both members ��	�

of the Poly<(rC) binding protein family, PCBP4♂ and PCBP1/2♀, detected in our ��
�

analysis, are mammalian orthologues of the nematode PES4 protein. Potential ����

interactions between HDAC11♂, BUB1B♀ and CDC20♀ were predicted by our ����

analysis and both Hdac11 and Bub1b were detected in high levels in sperm and ����

eggs/zygotes, respectively. HDAC11♂ is involved in epigenetic repression, ����

transcriptional regulation and embryonic development (Bagui, et al. 2013, Haberland, ����

et al. 2009, Sahakian, et al. 2015). HDAC11 activates BUB1B by deacetylation, ����

which in turn lifts the inhibition of the CDC20/APC complex, activating its ubiquitin ����

ligase activity (Watanabe, 2014). Although the fertility rate of mice homozygous for ����

Hdac11 deletion has not been reported, Cdc20 KO mice showed 2<cell embryo arrest ��	�

and Bub1b KO mice show developmental arrest in early gestation (E8.5) ��
�

(supplementary Table 2).  ����

 ����
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A particularly interesting finding was the expression of a long terminal repeat (LTR) ����

transposable element, located entirely within the 8th intron of Hdac11 (intragenic) in ����

sperm, which was absent in both MII eggs and zygotes. LTR RNAs are expressed ����

abundantly in mouse eggs and zygotes where they are thought to augment the ����

regulation of host gene expression (Göke, et al. 2015, Peaston, et al. 2004). ����

Spermatozoal LTRs transferred into the oocyte during fertilization, could lead to new ����

retrotransposition events and possibly genetic alterations (Kitsou, et al. 2016). ��	�

Paternally derived Hdac11 LTRs may have maternal targets that together participate ��
�

in the regulation of zygotic gene expression.  ����

 ����

In conclusion, our data supports the argument favouring extra<genomic contributions ����

by the fertilising sperm to the zygote. In addition to the inheritance of acquired traits ����

propagating transgenerationally via sperm RNA (Chen, et al. 2016, Gapp, et al. ����

2014), our data and its analysis provides evidence for a role of paternal RNAs or ����

proteins in maternal clearance during EZT. Sperm may deliver signals or factors that ����

can potentially interact locally with maternal cofactors and act, perhaps as a ‘last ����

minute’ checkpoint or gateway for embryonic genome activation (EGA). The ��	�

hypothesis of confrontation and consolidation with regard to the uniquely invasive ��
�

nature of sperm entry to the egg falls into this latter category (Bourc’his and Voinnet ����

2010, Miller 2015). Figure 5 shows a model for how a sperm factor introduced at ����

fertilisation might complement a maternal cofactor or pathway required for the EZT. ����

At least one such sperm<borne factor, PLC zeta♂ is already known to activate the ����

oocyte (Saunders, et al. 2002). A similar approach to ours could be employed to ����

investigate paternal/maternal interactions in humans. However, to confirm the ����

potential biological relevance of the suggested interacting cofactors reported in this ����

study, additional work such as RNA knock down upon or conditional gene knock out ����

prior to fertilization would require the mouse model. In view of the renewed concern ��	�

over rising human male infertility (Levine 2017) and the rapid rise and expansion of ��
�
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infertility treatment by ICSI, further research into extra<genomic paternal contributions ����

using model systems is fully justified.  ����

  ����

  ����
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Figure legends ����

 ����

Figure 1.  Venn diagrams for the cross)representation of sperm, MII egg and ����

zygote RNAs. Panel A shows the overlaps between all RNAs, aggregated from all ����

biological replicates at ≥ 10 CPM from each of the three sources. Panel B shows ����

similar overlaps, except that the selected lists for MII eggs and zygotes were ����

obtained after testing with Edge R, which normalises the data and identifies ����

differentially expressed RNAs that are significantly ‘up’ in MII eggs or in zygotes. ��	�

These over<represented RNAs are then added to the list of RNAs common to both ��
�

MII eggs and zygotes. Complete RNA lists are provided in the supplementary ����

information.  ����

 ����

Figure 2.  GeneMANIA network nodes.  The nodes represent paternal (blue) and ����

maternal (black) factors and their predicted interactions (interconnecting lines). ����

Colours signify the interaction type including co<expression (purple), physical ����

interactions (red), shared protein domains (green), co<localisation (blue) and all ����

predicted interactions (orange). Nodes with boxes around them belong to the E3 ����

ubiquitin ligase complex. Other encircling borders indicate additional inter<parental ��	�

interactions supported by the RNA<seq data (see text for details).  ��
�

 ����

Figure 3. Alignment of RNA sequencing reads (pile ups) across representative ����

components of the E3 ubiquitin ligase complex.  As tracked on the UCSC ����

genome browser for all spermatozoal (sperm 1<3), egg (MII 1<4) and zygote (PCZ 1<����

3) biological replicates, reads for components of the E3 ubiquitin ligase complex are ����

shown for Fbxo2♂ (A) alongside Cul1♀ (B), Rbx1♀ (C) and Skp1a♀ (D). Genes are ����

depicted at the foot of each diagram with exons shown as filled blocks.  ����

 ����

Figure 4. Real)time qPCR. Real<time qPCR was carried out on 400 pg of cDNA ��	�

using primers for the five RNA<seq predicted paternal factors Hdac11, Fbxo2, ��
�

Zfp821, Pcbp4 and Map1lc3a, the maternal Hdac2 and the testis<expressed somatic �	��

cell RNA control Maged2. QPCR products are shown for sperm (S), MII eggs (M), �	��

Zygotes (Z) and Testis (T) cDNAs in panel A with corresponding Ct values shown in �	��

panel B. A DNA ladder is shown for gel calibration with 100 bp and 500 bp markers �	��

indicated. Note that very high Ct values (>37) corresponding with samples not �	��

supporting specific PCR products and assumed to be PCR artifacts are plotted as 0.  �	��

��	��
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Figure 5. Alternative potential pathways for a paternal contribution to the �	��

zygote. The first panel (A) depicts the MII egg and the spermatozoon just before �		�

fertilisation with i, a metabolic pathway that needs one or more paternal factors to be �	
�

fulfilled (either RNA or protein); ii, a protein complex that needs a paternal factor to �
��

be functional; iii, the incoming fertilizing spermatozoon. The second panel (B) depicts �
��

the MII egg and spermatozoon after fertilization with, i a functional metabolic pathway �
��

following the insertion of a paternal factor; ii, an activated protein complex due to the �
��

addition of the missing paternal factor, such as Fbxo2 in the Rbx1<E3 ubiquitin �
��

ligase. The disintegrating sperm membrane with arrows illustrating the released �
��

sperm<borne factors into the MII ooplasm is also shown (iii). ��
��

Supplementary Figure 1.  Bioanalyser traces for the three sperm RNA pools are �
��

shown. Note the absence of 28S and 18S rRNA peaks, low R.I.N. and the generally �
	�

short RNAs that make up the profile, all typical of sperm RNA and showing no �

�

evidence of contamination from other (somatic) cell sources. ����

Supplementary Figure 2. Gene ontology descriptions for parent bioprocesses ����

derived from all RNAs (≥10 CPM) reported in sperm (green), MII eggs (blue) and ����

zygotes (orange). The general similarity between MII eggs and zygotes compared ����

with sperm is clear. This figure is best downloaded for onscreen viewing and ����

magnification. ����

 ����

Supplementary Figure 3. Alignment of RNA sequencing reads (pile ups) across ����

other paternally and maternally expressed components. As tracked on the ��	�

UCSC genome browser for all spermatozoal (sperm 1<3), egg (MII 1<4) and zygote ��
�

(PCZ 1<3) biological replicates, reads are shown for Hdac11♂ (A), Bub1b♀ (B), ����

Mapl1c3a♂ (C), Map1b♀ (D), Atg3♀ (E), Pcbp4♂(F), Hnrnpk♀ (G), Qk♀ (H) and ����

Zfp821♂ (I) are shown. Genes are depicted at the foot of each diagram with exons ����

shown as filled in blocks. A box indicates the LTR in Hdac11 ����

 ����

 ����

 ����

 ����
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Table 1.� Top biological processes for source and differentially expressed ��	�

RNAs. RNA lists from each source (sperm, MII eggs and zygotes) and differentially ��
�

expressed MII<Zygote genes flagged by EdgeR analysis (MII up and PCZ UP) were ����

submitted to DAVID for ontological analysis. Bioprocesses are reported alongside ����

uncorrected p values, Benjamini corrected p values and False Discovery Rates ����

(FDRs). ����

 ����

Table 2. Paternally)derived factors and their potential maternal cofactors in ����

���� ��������. Column 1 shows spermatozoal factors with good exonic ����

representation as revealed by RNA<seq and UCSC browsing. Column 2 gives the ����

associated gene name and MGI accession number. Column 3 briefly depicts their ��	�

functionality as described in UniProt. Column 4 shows the potentially interacting ��
�

maternal factors as predicted by GeneMANIA. ����

 ����

Supplementary Table 1. Primer names, oligonucleotide sequences, annealing ����

temperatures and expected product sizes for real<time qPCR. ����

 ����

Supplementary Table 2. Paternally)derived factors and their ���� �������������

knock)out phenotypes. Column 1 shows spermatozoal genes with good exonic ����

representation as revealed by RNA<seq and UCSC browsing. Column 2 indicates ����

any available KO studies for the paternally<derived factors. Column 3 shows the ��	�

maternal factors that may have potential interactions with the paternal cofactors ��
�

based on GeneMANIA. Column 4 shows KO studies reported for maternal factors ����

listed in column 3, with some conclusions for each study. ����

 ����

Full supporting supplementary information.xlsx (supplementary info).  Details ����

of original RefSeq accession numbers for the most highly expressed RNAs (≥10 ����

CPM) in sperm, MII eggs and zygotes (RNA Lists (All) sheet). The gene ontology ����

data for these lists is listed in the BP All sheet. The RNA Lists (EdgeR) sheet ����

includes the most highly represented sperm RNAs with good exon coverage (column ����

A) and lists of Edge R<determined more highly represented RNAs in MII eggs ��	�

(column C), zygotes (column D) or not differentially represented in either (column E). ��
�

The RNAs participating in the GeneMania network (Figure 2) are listed in column G. ����

Column B indicates the sperm<specific RNAs chosen for further study.  Other sheets ����

contain more complete lists of functional annotation clustering and enrichment for ����

sperm (FAC_Sperm), MII eggs (FAC_MII) and zygote (FAC_Zygote), RNAs common ����

to MII egg and zygotes (FAC_MII&Zygote). The BP EdgeR sheet includes ����
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bioprocesses for the selected sperm, MII egg and zygote RNA lists and RNAs in the ����

GeneMANIA network. The BP EdgeR MII or PCZ Up sheet includes lists of ����

differentially expressed RNAs higher in MII eggs or Zygotes. ����
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