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Abstract

The west Antarctic Peninsula (WAP) region has undergone significant changes in temperature and
seasonal ice dynamics since the mid-twentieth century, with strong impacts on the regional
ecosystem, ocean chemistry and hydrographic properties. Changesseltmgterm trends of
warming and sea ice decline have been observed in tilec@atury, but their consequences for
ocean physics, chemistry and the ecology of the high-productivity shelf eeosgse yet to be fully
established. The WAP shelf is important for regional krill stocks and higher trophic levedsiivehil
degree of variability and change in the physical environment and documented biological and
biogeochemical responses make this a model system for how climate and sea ice changes might
restructure high-latitude ecosystems. Although this region is arguably the best-measured and best
understood shelf region around Antarctica, significant gaps remain in spatial and temporal data
capable of resolving the atmosphere-ice-ocean-ecosystem feedbacks that control theidyrzend
evolution of this complex polar system. Here we summarise the current state of knowledge
regarding the key mechanisms and interactions regulating the physical, biogeochemical and
biological processes at work, the ways in which the shelf environment is changing, and the
ecosystem response to the changes underway. We outline the overarching crostrdiscip

priorities for future research, as well as the most important discipline-specific objectives
Underpinning these priorities and objectives is the need to better-define the causes,todgand
timescales of variability and change at all levels of the system. A combination itibtrabland
innovative approaches will be critical to addressing these priorities and develagiogrdinated
observing system for the WAP shelf, which is required to detect and elucidate cimamgiee

future.

Introduction

The west Antarctic Peninsula (WAP) continental shelf hosts a productive marine ecosystem, which is
regionally important for krill stocks over the shelf and downstream in the Southern Ocean circulation
system (e.g. Atkinson et al. 2004; Quetin et al. 1996), and for larger marine organisneediago
and/or feeding ground for migratory and year-round species (e.g. Costa and Cro8ke DL@&klow

et al. 2007; Friedlaender et al. 2006). From a climatic and biogeochemical perspective, thre WAP i
important because the southern flank of the Antarctic circumpolar current (ACC) flows particularly
close to the shelf edge in this region (Orsi et al. 1995). As such, circumpolar deep ws@If(@D

its mid-depths incurs directly on to the shelf in a less modified form than elsewhere around
Antarctica, facilitating greater connectivity and exchange of physical and biogeochemical properties
between these intermediate water masses and the atmosphere and surface ocean (Hofmann et al.
1996; Klinck 1998). Significant variability in the physical environmentulated by strong coupling

to climate processes over interannual and decadal timescales, is having a strong impagiooal
biogeochemistry and all levels of the shelf ecosystem, making the WAP an importantrawidalin
which to understand the impacts of climate on polar marine systems

Temperature recordfor the WAP have shown the largest average atmospheric warming in the
southern hemisphere during the twentieth century, with particularly pronounced warming during
winter (King et al. 2003; Vaughan et al. 2003). This has been accompanied by a digieifiadal
warming of surface and deeper waters and changes in salinity over large parts of the WAP shelf
(Meredith and King 2005). Significant warming and salinification of the deeper watarthev
southern and central WAP shelf resdtfrom shoaling of the thermocline along the slope and
increased transport of warm upper circumpolar deep water (UCDW) onto the shelf, as well as
increased heat content of the UCDW layers themselves (Martinson et al. 2008d&chet al.



85
86
87

88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131

2014) Significant surface freshening has been observed closer to coastal glacial meltwater sources,
whilst upper layer salinification has occurred further offshore (Bers et al. 2013; Meredith and King
2005; Schloss et al. 2012).

Atmospheric and oceanic warming trends have been accompanied by strong changes in iceslynami
along the WAP, with the regional extent and duration of sea ice cover declining signifeiang

the late 1970s (Stammerjohn et al. 201@)imate change appears more advanced in the northern
region of the WAP as the warmer maritime climate moves southwards displacing tiez dakr
continental climate that dominated previously (Ducklow et al. 2007; Montes-Hugo 20@9)

Substantial and widespread glacial retreat along the WAP has been attributed primarily to increasing
ocean temperatures (Cook et al. 2016; Padman et al. 2012), with an important role for agniesph
forcing in the northern WAP (Falk and Sala 2015)

Whilst the regional warming and sea ice declines have been particularly rapid since the mid-
twentieth century, these trends have slowed and plateaued since the late 1990s (Figwith9n
absence of statistically significant atmospheric warming and sea ice losses between 1999 and 2014
(Turner et al. 2016tatistically significant increases in sea ice extent have been observed in the
northern WAP since the late 1990s (Turner et al. 2016), and an increase in both the extent and
duration of sea ice cover, and its interannual variabiligye been observed in the coastal WAP
since the late 2000s (FigureSchofield et al. 2017 hese recent short-term reversals and the
plateauing of longer-term trends reflect significant natural internal variability inréiggonal climate
superimposed on longer-term trends, which leads to substantial short-term variation inesea
dynamics (Hobbs et al. 2016; Stammerjohn and Maksym 2017; Turner et d\. @01t the
plateauing of temperature and sea ice trends has weakened the magnitude of the longer-term
trends, the overall warming and sea ice losses are still statistically significant (Bigure 1

Large-scale atmospheric circulation patterns and in particular the Amundsen Sea Low (ASL) exert a
strong control on the observed climatic variability and change at the WAP (Ragile#eP016). The

ASL is a persistent low pressure region between the Ross Sea and the Bellingshausen Sea/WAP
sector, which is strongly influenced by the Southern Annular Mode (SAM) and also by tfie El Ni
Southern Oscillation (ENSO) (Lachlan-Cope et al. 2001; Raphael et al. 2016; Tur@ed.aj al

Changes in the ASL affect the strength and direction of winds over the WAP, whicla &etyas

control on the amount and meridional extent of sea ice (Turner et al. 2013). A degp&SL over

the second half of the twentieth century, associated with positive SAM and more persistent La Nifia
phases, generated stronger north-northwesterly winds that advect warm moisture-laden air from

the north and drive sea ice to the south, creating warm, low-ice conditions over the WAP and
increasing precipitation (Turner et al. 199The recent plateauing of temperature and sea ice

trends is associated with periods of more neutral to negative SAM phases, or positive SAM offset by
El Nifio, that promote cyclonic to anticyclonic conditions east to west of thanpelai, respectively,
leading to more frequent cold easd-southeasterly winds over the WAP and increased ice extent
(Meredith et al. 2016; Stammerjohn et al. 2008; Turner et al. 20&) combination of short-term
internal variability and longer-term changes in atmospheric and ocean circulation patterns
responding to global climate change complicates future projections of Antarctic seaticat®AP

and circumpolar scales (Turner and Comiso 2017). Understanding the extenttotiwhilong-term

trend of atmospheric warming and declining sea ice will continue in future, and the timescales over
which different forcings are relevant, are leading-order challenges for the WAP scientific community.

The pronounced variability and change observed in atmospheric forcing, seanamidyg, glacial
retreat, freshwater distribution and ocean physics along the WAP have a strong impact on primary
production, community composition, ecosystem functioning, ocean chemistryeedn-

atmosphere exchanges of heat and dissolved gases (e.g. Ducklow et al. 2013; Meredith &t al. 201
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Venables and Meredith 2014mproving our understanding of this dynamic system is of high
scientific priority as a result of significant variability and change in the phgsigcabnment,

important biological and biogeochemical consequences, and documented sensitivigntb

feedbacks ont climate change. The documented responses of ocean chemistry and biology to
changes in climate and ocean physics make the WAP shelf region a unique model system for
assessing how changes in climate might restructure ecosystems here and in other polar regions
where sea ice changes are underway or expected in fulithiess importance is one of the key

reasons why the WAP shelf region is the focus of a large international research effort, with a number
of long-term records and spatially-extensive studies that are unparalleled around Antarctica. There
are over thirty research stations along the WAP, either permanent or summer only, and a nuimber o
research ships that frequent the region, predominantly during summer.

Figure 2 shows the major sustained research efforts along the WAP, delineation of the northern,
central and southern sub-regions referred to in this paper, and the major circulation and

bathymetric features of the shelf system. The US Palmer Antarctica Long-Term Ecological Research
(LTER) project has been in operation since 1990, and consists of spring/summer time-segiigg sam
adjacent to Palmer Station, Anvers Island, and an annual summer cruise occupying a grid &f station
over the WAP shelf between Anvers and Charcot Islands. The US National Oceanic and Atmospheric
Administration Antarctic Marine Living Resources (AMLR) program has been active around the South
Shetland Islands in the northern WAP since 1986, conducting annual research surveys and land-
based field measurements with a focus on ecosystem-based management of fisheries, primarily krill.
Since 1997, the Rothera Time Series (RaTS) of the British Antarctic Survey, located in Ryder Bay
northern Marguerite Bay adjacent to Rothera Research Station on Adelaide Island, has made year-
round quasi-weekly measurements of physical and biogeochemical oceanographic parameters,
benthic ecology and sea ice cover, with a large number of linked and complementary studies
conducted by UK and international partners. The establishment of additional laboratories at Rothera
by the Netherlands Organisation for Scientific Research (NWOQO) in 2012 increased the Dutch research
effort in the WAP region substantially. The Argentinian Antarctic Program consists of timeaseries
process studies at a number of research stations along the WAP, as well as ship-based campaigns
across the shelf. Year-round time-series monitoring of hydrographic and biologicalesiiaPotter

Cove, King George Isldrdla 25 de Mayo, South Shetland Islands, has been conducted folynight
monthly since 1991, based at Carlini Station, which has been in operation since 1982. A joint
Argentinian-German research program at Dallmann Laboratory on Carlini Station focusirtteon Po
Cove started in 1994, and forms an important part of the German research efforts in the WAP

region, coordinated by the Alfred Wegener Institute (AWI). The Chilean Antarctic Institute (INACH)
conducts scientific research programs at four bases along the WAP, supported by the Armed Forces.
Chilean base Yelcho on Doumer Island was reopened in 2015 and there are plans to reopen Base
Carvajal on Adelaide Island to complete a latitudinal transect from King George Islandainié\del

Island, as well as developing a long-term monitoring program. The Peruvian &l&iaarctic

Program comprises summertime studies at Machu Picchu Research Station on King Geakge Islan
which was established in 1989, and oceanographic cruises. Spanish research programs centre on
Juan Carlos | and Gabriel de Castilla Stations in the South Shetland Islands, which were opened in the
late 1980s, as well as ship-based research. Brazilian research efforts have been underway in the
northern WAP since the 1980s, with dedicated ship-based monitoring programs conductedthroug

a number of initiatives coordinated by the Brazilian Antarctic Program since 2odtese

monitoring programs at Great Wall Station on King George Island have been in opesatiart af

the Chinese National Antarctic Program since the base was established in 1985. The Korea Pol
Research Institute (KOPRI) rangear-round marine ecosystem monitoring program in operation

since 1996 at King Sejong Station on King George Island, which was inaugura&&l in 19
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The Southern Ocean Observing System (SOOS) is an international organisation supported by the
Scientific Committees on Antarctic Research (SCAR) and Oceanic Research (SCOR), which aims to co-
ordinate Southern Ocean research, disseminate key findings and identify future directions and

priorities (Meredith et al. 2013). The WAP working group of SOOS aims to bring together the

different national programs, initiatives and projects working in the Peninsula region to maximise t
science output across the spectrum of WAP marine research activities, to improve cooruerad
collaboration amongst ongoing research efforts, and to instigate and promote futmelajaments

and progress by identifying key gaps and opportunities to be addressed by future resedhit

paper, we summarise the current state of knowledge under two high-priority overarching guestio

in WAP marine science:

1) What are the key mechanisms and interactions regulating ecosystem functioning and ocean-
atmosphere coupling along the WAP shelf?

2) How is the WAP shelf environment changing and what are the ecosystem responsesteand
climate feedbacks on the changes underway?

We take a whole ecosystem approach and consider the full range of dynamics and interactions from
sea ice and water properties and circulation through phytoplankton dynamics and ocean
biogeochemistry to pelagic, benthic and microbial food webs. We then discuss the most significan
challenges and key overarching priorities for the international scientific community wit@in t
framework of these two questions, and present a model for an observing system for the 4884 b

on sustained observations of key variables and detailed process studies thatowillialto address

these priorities. Figure 3 summarises the current state of knowledge of the key components of the
WAP marine system and the most important mechanisms and interactions in the context of the two
overarching questions outlined above, as well as the major priorities and approaches for future
marine research at the WAP.

1) What are the key mechanisms and interactions regulating ecosystem functioning and ocean-
atmosphere coupling along the WAP shelf?

1.1. Physical oceanography

The hydrography and circulation of the WAP shedffinfluenced by intrusions of oceanic water from
the ACC, inflow around the tip of the Peninsula from the Weddell Sea, and coupling avith th
atmosphere, cryosphere and land (Klinck et al. 2004; Martinson et al. 2008uldled by shelf
dynamics, these processes lead to significant spatial and temporal property gradientsragibrs
Large seasonal variability occurs in surface waters, driven by strong heat loss and ice growth and
advection in autumn and winter that leads to the formation of a deep winter mixed layer, and ice
melting and partial restratification during spring and summer (Klinck et al. 2004; Meredith et al.
2008). Precipitation, glacial melt and sea ice melt modulate the freshwater content andictaitn

of the surface layer, with significant variability driven by ENSO and SAM over interannual #sescal
(Meredith et al. 2010; Meredith et al. 2017). A main feature of the surface circulation Antiaectic
Peninsula Coastal Current (AP@Ggasonal buoyancy- and wind-forced surface current, which
flows southwestwards along the coast south of Anvers Island and west of Adelaide and Alexander
Islands during summer and autumn with a cyclonic circulation inferred within Marguerite Bay
(Beardsley et al. 2004; Moffat et al. 2008; Savidge and Amft 2009).
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The deep circulation and properties, particularly in the southern and central WAP, are strongly
influenced by the proximity of the ACC to the shelf break, and by shelf topographeditéiv

mixing with the upper layers (Klinck 1998; Klinck et al. 2004; Martinson28C8; Orsi et al. 1995)

The CDW that resides in the mid-depths of the ACC is the main source of heat, salt, macronutrients
and carbon for the subsurface shelf waters. Observational studies have revealed that CDW intrusions
move across the shelf as small (~5 km wide) subsurface eddies, and are transported prefenentially
deep, glacially-scoured submarine troughs that cross-cut the shelf (Couto et al N2dxtifison and
McKee 2012; Moffat et al. 2009). Numerical models of the region have recemdyrie eddy-

resolving and revealed that shoreward transport can be expected via several of these troughs
(Graham et al. 2016). The available observational evidence points to only weakaeastability in

deep water properties, with synoptic-scale intrusion of eddies and other intraseasonal variability
dominating instead (Martinson and McKee 2012; Moffat et al. 2009). The intruditeys cool and
freshen on the shelf due to mixing with overlying waters and heat loss to the surface layer and
atmosphere. Although the drivers of modification and vertical ventilation of CDW remaitypoo
understood, recent observations suggest that flow-topography interactions along the deeaghrou
constitute a key mechanism for vertical mixing (Venables et al. 2017). Mean upward heat fluxes from
modified CDW to the surface layer are small (on average ~1?)With stronger fluxes observed in
early spring shortly after the first seasonal retreat of sea ice, but before the upper layer iglgtron
restratified (Brearley et al. 2017). Both of these processes highlight the importance of snell-scal
spatial(<l km) and temporal (days to weeks) variability in controlling mixing ratesvarer

modification at the WAP.

Bransfield Strait in the northern WAP differs markedly from the shelf to the south, with deep
properties being modulated by colder, fresher waters originating in the Weddell Sea (Gordon and
Nowlin 1978; Hofmann et al. 1996; van Caspel et al. 2018). The circulation in BileDis&élis

generally cyclonic, with southward flow along the WAP coast and then turning towards the South
Shetland Islands (Sangra et al. 2011; Zhou et al. 2002). A significant temperature grasiignt exi
across Bransfield Strait, with warmer waters around the South Shetland Islands than along the
mainland. The strong contrast in deep properties between Bransfield Strait and the shelf to the
south suggests that deep water exchange between these two basins is limited (Hofmann e6gl. 199
although its magnitude, temporal evolution, and dynamics are not fully describedratetstood.

1.2. Phytoplankton community dynamics
1.2.1. Pelagic primary production

The WAP shelf is a productive marine ecosystem, where primary production varies sitipifican

time and space, due to its regulation by upper ocean physics, light availability and the auppl
macro- and micronutrients. As well as the role of phytoplankton in taking up nutrients and carbon
dioxide, thus mediating air-sea gas exchange and larger-scale biogeochemical cycling, thege primar
producers constitute a critical food source for the entire WAP shelf ecosystem. High-biomass
phytoplankton blooms occur during spring and summer (Hart 1942; Nelson and S@ithPi@zelin

et al. 2000; Smith et al. 2008), when solar illumination increases and sea icerbateateaving an
exposed ocean surface (Moline and Prézelin 1996; Smith and Stammerjohn 2001). @lsdrerg
productivity gradient with high productivity (~1000 mg C d1) inshore compared with offshore
waters (~100 mg C frd™) (Vernet et al. 2008). Seasonal satellite studies and in situ measurements
show that net community production peaks first offshore and follows the inshore retreat of the sea
ice (Arrigo et al. 2017; Li et al. 2016). The magnitude of primary prodydivian annual basis is

linked to climate modes such as ENSO and SAM, and their effect on the ASL, which influence the
amount of sea ice present in the winter (Stammerjohn et al. 2008a), and this in turn affects primary
productivity in the following spring and summer seasons (Saba et al. 2014). The duratioteof win
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sea ice and the extent of winter wind-driven mixing, combined with the timing of ice redreat
mixing during spring, has been shown to control upper ocean stability during spring and summer,
thus preconditioning the water column for phytoplankton growth (Venables et al. 284i3a et al.
2014; Schofield et al. 2017; Rozema et al. 2017a). In high-ice years, less woettindxing over
winter and a subsequent strong seasonal melt results in a more stable water column that retains
phytoplankton in a shallower surface layer, where light conditions are favourable for growtméMo
1998; Vernet et al. 2008; Carvalho et al. 2016). In low-ice years, enhanced wind-diiregnand
subsequently deeper mixed layers, combined with a smaller input of meltwater to restabilise the
upper ocean, result in phytoplankton cells being mixed over a greater depth interval, expegienci
lower light levels overall, such that primary productivity is reduced (Figure 4). Supsgtpa the
seasonal bloom dynamics are shorter-lived phytoplankton blooms (days-week) facilitated by periods
of low wind that lead to increased water column stability (Moline 1998; Vernet et al.; Zi08alho

et al. 2016). High primary productivity supports a productive food web that is tightiyled to the
seasonal phytoplankton dynamics, suggesting strong bottom-up control of thestensySaba et

al. 2014).

While WAP phytoplankton communities are often dominated by diatoms, other taxa@eagingly
recognised as important components of the food web. The importance of nanoplank6n (u

and picoplankton (<2.. uhas been documented, with cryptophytes being the dominant nano-
flagellate over much of the region (e.g. Krebs 1983; Buma et al. 1991; Kopczy®2k&afbotti et
al. 2003; Varela et al. 2002; Rodriguez et al. 2002). Other major phytoplankioimtéxde mixed
flagellates and haptophytes, with haptophytes (e.g. the prymnesiopRieocystiantarctica

being more prominent than cryptophytes in Marguerite Bay (Garibotti et al. 2003oWski et al.
2011; Rozema et al. 2017a; Stefels et al. 2A8antarcticadominated the phytoplankton
community during spring 2014 in the central WAP prior to the peak of gtemi bloom (Arrigo et

al. 2017). During high-chlorophyll years, the late-spring/summer gtgitdcton communityis
dominated by larger cells, primarily diatoms, with only a minor contributiomfsmnaller size
classes, primarily haptophytes and cryptophytes (Moline et al. 2004; Rozem&@1ah; Schofield
et al. 2017; Schloss et al. 2014). In low-ice low-chlorophyll years, the haptophyteyptapbyte
contributions increase, whilst the diatom contribution is reduced. Cryptophyte abundanceases
when a shallow meltwater lens, probably of glacial origin, overlies a well-mixed upper watemcolu
(Mura et al. 1995; Moline et al. 2004). Cryptophytes take up lesp&Qunit chlorophyll than
diatoms, such that a greater cryptophyte contribution may lead to reduced carbon uptakeacedthp
to diatom-dominated assemblages (Schofield et al. 2017).

Whilst the factors influencing phytoplankton community composition remain poorlerstdod, it is
possible to segregate the presence and abundance of cryptophytes and diatoms at Palmer Station in
temperature-salinity phase space (Figure 5a) (Schofield et al. 2017). Diatoms wereedlmsarvthe

full range of observed salinities and temperatures, with their abundance being significanglyih

colder and lower-salinity waters. Conversely, cryptophytes were most abundiowén-salinity

colder waters (-1 to 1° C), and absent at higher temperatures and salinities. The segregation of major
phytoplankton taxa based on water mass properties at Palmer Station is not robust at the wider

shelf scale (Figure 5b), since ship-based surveys indicate a range of cryptophyte apexss the

WAP that can occupy a range of hydrographic niches.

1.2.2. Coupling between sea ice and pelagic ecosystems

As well as regulating phytoplankton productivity through its control on upper ocean physidsgse
can also play an important role in seeding the pelagic community. Primary produates in
Antarctic sea ice are highly variable, ranging from 0.5 to 1250 mg &' Arrigo 2017), and
reaching maxima in spring and summer, when ice algae can contribute up to 50-60 % of total



316 primary production in a given area (e.g. McMinn et al. 2010). The direct coupling between sea ice
317 and pelagic ecosystems varies seasonally, according to ice extent and its prodoctiypared to

318 underlying waters. When ice melts in spring, release of algal cells into the water column e initi
319 under-ice algal blooms (Lizotte 2001), although differences in species ctimpdsitween sea ice

320 and water column communities have been documented (e.g. Riaux-Gobin et al. P& 1jming

321 and pulse size of release act as strong controls on the fate of sympagic (ice-assabigtedelz et
322 al. 2018), with a rapid early release contributing substantially to pelagic productiors latet

323 release being more likely to be consumed by pelagic zooplankton or benthic comm(mities

324 Riebesell et al. 1991).

325 Antarctic sympagic algae are an important food source for zooplankton, such as jkviinile

326 (Kohlbach et al. 2017) and various life stages of copepods (Bluhm et al. 2014 73.€5pecially the
327 case during winter, when chlorophyll concentrations in bottom sea-ice layers close ioet-water
328 interface can be 10 to 100-fold higher than in the underlying seawater. At the WAP, bottom-ice
329  chlorophyll increased from ~5 pg to ~500 g t from September to December 2014 in land-fast
330 ice adjacent to Rothera Station (Meiners etimlpress.

331 Export of ice-associated organic carbon, that is not remineralised in the sea ice or surface waters, to
332  benthic ecosystems occurs at rates determined by its composition (Riebesell et al. 199%¢ and t

333 dynamics of ice retreat (e.g. Norkko et al. 2007; Wing et al. 2012). Whilst oxgabon fluxes

334  during ice-covered seasons are small compared to summertime fluxes along thes&#A€t algae

335 are most relevant for local and episodic inputs preceding pelagic blooms, and in proviging s

336 material that is remineralised in winter to support detritus feeders (Mincks et al. 2@dgenic

337 particle fluxes beneath land-fast sea ice were ~0.2%gifhduring winter at King George Island/ Isla

338 25 de Mayo (Khim et al. 2007), and would be expected to increase dramatically dermeglt in

339 spring In the Ross Sea, tracer analysis shows that sea ice organic carbon fluxes can contribute >50 %
340 of the total diet of Antarctic benthic organisms (Wing et al. 2012).

341  1.3. Nutrient biogeochemistry

342  The supply and cycling of inorganic and organic macro- and micronutrients along thesWA

343 regulated by physical and biological processes, and influences the spatial and temporal variation in
344  production and ecosystem structure. Inorganic macronutrients are supplied to WAP shelf

345  ecosystems primarily by CDW intruding onto the shelf from the ACC (Klinck ed41P268zelin et al.

346  2000). Cross-shelf transport of CDW in deep glacially-scoured canyons increases the supply of
347 nutrients to biota in overlying waters, as well as increasing heat flux and reducing sea ice coverage,
348  such that phytoplankton biomass is higher and more diatom-dominated over the cangonzared

349 with adjacent shelf areas (Kavanaugh et al. 2015). The supply of inorganic nitrogen and silicic acid
350 from seaice is small compared to CDW, and dominated by regenerated nutrients (Fripiat et al. 2015;
351 Henley et al. 2017). Phosphate accumulates in sea ice (Fripiat et al. 2017), but itereffexder

352 column phosphate and micronutrient inventories remains unclear (Hendry et al. 2010). A glacial
353  source of silicic acid in basal meltwater has been demonstrated around Greenland (Hawkings et al.
354  2017), and warrants investigation along the WAP.

355  Vertical nutrient fluxes from the modified CDW source into the surface ocean vary substantially in
356 space and time. Vertical nitrate fluxes during summer in Marguerite Bay and along Marguerite
357  Trough were estimated as 0.18 + 0.17 mmok NG d* with a maximunof 0.56 mmol NQm? d*

358 (Henley et al. 2018). The mean summertime vertical nitrate flux for the Palmer LTER grigBfor 19
359 2007 was estimated as 1.36 + 1.79 mmok NG d* (Pedulli et al. 2014), although the latter study
360 used a uniform value for the vertical eddy diffusivi) that is likely to overestimate fluxes

361 Seasonal variability is poorly constrained, although vertical nutrient fluxes are expected to be
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greatest following the initial retreat of sea ice, in agreement with heat fluxes (Brearley et al. 2017).
Whilst macronutrients are normally replebe WAP surface waters, intense biological drawdown by
phytoplankton can lead to transient nutrient limitation in coastal areas during some summers
(Henley et al. 2017). Interannual variability in CDW-derived nutrient supply isusiti to the

degree of wintertime mixing at Palmer Station (Kim et al. 2016), but this cannoafidbunt for the
observed variability at Rothera (Henley et al. 2017).

The degree of summertime surface ocean macronutrient depletion shows an onshore-offshore
gradient driven by higher primary production in inshore regions (Pedulli et al. 2B&d¥onal
nutrient drawdown during summer follows interannual variability in chlorophylliseand upper
ocean conditions, such that high-ice, high-chlorophyll years lead to greater nutrient drawdown than
lower-chlorophyll years (Figurg éHenley et al. 2017; Kim et al. 2016), with the potential to
influence WAP shelf nutrient budgets and exports. In the coastal regions, the summer N/P uptake
ratio varies between ~13, indicative of diatom-dominated phytoplankton conitiesnunder bloom
conditions, and ~21, indicative of communities dominated by non-diatontopkankton and/or
lower productivity conditions (Clarke et al. 2008; Henley et al. 2017; Kim etl#l). Zthe summer
Si/N uptake ratioigiey c0oC Hi Jv §Z Z}58Z (E v, iNdicating@iatohudomidatpd
production in these coastal regions (Henley et al. 2017; Kim et al. 20d@)ent uptake varies
significantly within a seasodue to changes in water column structure, sea ice and phytoplankton
communities (Hendry et al. 2009). For example, time-series analyses of the stabfeisiltope

}u %o} » ]38 1¥%i) efwgilicic acid from northern Marguerite Bay show strong silicic acid drawdown by
diatoms, interspersed with wind-driven mixing events that replenish the silicic acid reservoir from
underlying waters (Cassarino et al. 2017)

Nitrate, phosphate and inorganic carbon are progressively enriched in subsurface aa@bW
moves across the shelf, ar§lZ +§ o Vv]3¥ERP v JvE C'®)vsotope composition of
nitrate (Figure 6) and nutrient stoichiometry show that this is driven by local remineralisdtion o
organic matter and nutrient recycling in the upp&r 3 E }opuv ~@ehidyewral. 2017, 2018).
Nitrification (regeneration of nitrate via ammonium oxidation) occurs in the deepsteat part of

the euphotic layer, making the regenerated nitrate contribution to surface ocean primary groduc
sensitive to whether the base of the euphotic layer resides within the mixed. Ialjteate and
phosphate regenerated in subsurface shelf waters, as opposed to that supplied from the CDW
source, can account for up to one third of the surface ocean nutrient pools during summer, with
implications for new production, néZQ uptake and organic matter export. Silicic acid is also
enriched across the shelf, with maximum enrichment at depth (Henley et al. 2018). This indicates
biogenic silica dissolution occurring deeper in the water column than organic matter
remineralisation, and potentially in sediment porewaters, driving a return flux of silicic athe to
water column. New porewater silicon isotope data provide evidence for dovva-changes in silicic
acid being driven by dissolution of diatom frustules and potentially reverse weatheringomesacti
(Cassarino et ain prep.

Our understanding of organic nutrient budgets and cycling is more limited. Dissolvedcorgeon
(DOC) and nitrogen (DON) concentrations are low in the Southern Ocean compared to other ocean
regions, with a labile to semi-labile pool in the upper ocean and a large refractoryngobWwW

(Hansell et al. 2009; Kirchman et al. 2009; Ogawa et al. 1999). Low DOC concendradidow

bacterial production rates and biomass along the WAP suggest that bacterial production may be
limited by the availability of dissolved organic matter (DOM) (Ducklow €04Pa; Kim et al. 2016),

but this is yet to be fully understood.

The essential micronutrient iron is supplied to the WAP surface ocean primarily from glacial
meltwater and shallow sedimentary sources (Annett et al. 2015; Annett et al. 2017; Balvn e
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2018; Monien et al. 2017; Sherrell et al. 2018). Iron concentrations are replatshore regions,
but can be drawn down by phytoplankton blooms to limiting levels further offshore. Mitriemnts
other than iron show temporal and spatial variability, although their roles in regulating primary
productivity along the WAP are yet to be determined (Bown et al. 2017; Hendry eD8).. 20

1.4. Climate-active gases
1.4.1. Marine carbonate chemistry and air-sea, @xes

Carbonate chemistry and air-sea ZglDxes along the WAP are influenced strongly by ocean physics
and biological processes. Year-round measurements of dissolved inorganic carbon (DIC) and total
alkalinity (TA) taken at the Rothera Time Series since 2010 show that all carbonate chemistry
parameters have a strong, asymmetric seasonal cycle in surface waters with sonte-year-

variation (Figure 7; Legge et al. 2015, 2017; Jones et al. 2017). Concurrent Watie tring/early
summer phytoplankton bloom, DIC, TA and the fugacity of carbon didxid® decrease sharply,

while pH and the saturation state #the calcium carbonate minerals calcite and aragonite
increase sharply. Values for all parameters then gradually return to winter values. Aragonite
saturation state shows notably low wintertime values, just above 1, a critical boundary below which
aragonitic organisms can become susceptible to growth impairment and dissolution (Jahes et
2017). Photosynthesis and respiration dominate these seasonal changes in surface wateatearb
chemistry, with biological uptake driving the substantial reductions in DIC during spring anéésumm
(Carrillo et al. 2004; Legge et al. 2017; Tortell et al. 2Q1yelling and vertical mixing of carbon-

rich deep water increase upper ocean DIC, especially during winter, whilst sea ice redgices CO
outgassing. Ryder Bay is a net sink for atmospherim®©M90-1.39 mol C fyr* (Legge et al. 2015).

It remains unclear whether the WAP shelf as a whole is a net annual sink or source for atmospheric
CQ.

Across the WAP shelf, carbonate system parameters show strong onshore-offshore gradients in the
upper ocean during summer, with low DIC d@d) and high pH and aragonite saturation state in
near-shore waters, due to strong biological carbon uptake, especially in the southern WAP sub-
region (Figure 8) (Carrillo et al. 2004; Hauri et al. 2015; Ruiz-Halpern et al. Ztd degree of
summertime DIC anfCQ drawdown is closely related to phytoplankton biomass and primary
production (Moreau et al. 2012), which are regulated by winter sea ice coverage atighatierns

during spring (Montes-Hugo et al. 2010). In the central Ydi&tion by meltwater inputs reduces

TA and DIC in near-shore waters (Hauri et al. 2015). Most of the WAP shelf exi@iited
undersaturation and net CQuptake during summers between 2005 and 2009, although there was a
region offCQ supersaturation and net G@elease in the outer shelf region to the north of Anvers
Island (Ruiz-Halpern et al. 2014). Air-sea fiRes in Bransfield Strait are highly variable, with

surface waters switching between sink and source behaviour in consecutive summer seasons (Ito et
al. 2018).

1.4.2. Halogens

Halogen gases can be released from phytoplankton and ice algal communities along theitWAP, w
consequences for atmospheric chemistry and regional climate. The halogens play an important role
in the Antarctic atmospheric boundary layer, being involved in the cycling, 2@ NQ, Hg, Ck

and the formation of precursor molecules to cloud condensation nuclei (CCN) (reviewed-by Saiz
Lopez and von Glasow 2012). Destruction by bromine radicals is thought to berttaypdriver for
ozone depletion events, during which Antarctic boundary laygcdd decrease from around 30 ppb

to below instrumental detection (1-2 ppb) for up to a few days (e.g. Jones et al. 2013). Adlgitional
modelling studies suggest that some halogen oxides are involved in comtrGIGN formation
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through oxidation of the semi-volatile organic sulphur compound dimethy! gigpby bromine
monoxide (Breider et al. 2015) and possibly new particle formation involvimgeiaaides (e.g. Saiz-
Lopez et al. 2008; Roscoe et al. 2015).

Biotic and abiotic sources of halogens to the Antarctic atmospheric boundary layer have been

] v8](] X dZ Z A%o0}*]A [ u]ee]}vinitiate@Gzpné depletion evéits is driven by
catalytic liberation from condensed-phase sea-salt bromide present on airborne particulates, and
snow and sea ice surfaces (reviewed by von Glasow and Hughes 2015). Sea salt aerosol (Legrand et
al. 2016) and blowing saline snow (Yang et al. 2008, 2010; Lieb-Lappen and Obbaat@lso
thought to be important sources of gaseous inorganic bromine in Antarctica. Whilst these abiotic
sources are thought to dominate, Hughes et al. (2009, 2012) show that high rates of biogenic
bromoform (CHBy flux from diatom blooms in the seasonal ice zone of the WAP could also
contribute significantly to gaseous inorganic bromine during certain times of year. Siortihe t
uptake of macronutrients being reduced during relatively low-productivity springisanseasons
following winter periods with reduced fast-ice duration (Henley et al. 2017), biogenic bromofo
(CHBg) emissions are also reduced in low-ice low-productivity years (Hughe<26t.2)

Whilst iodine emissions to the Antarctic atmosphere have also been linked to abiotic reagtions o
the snowpack (Saiz-Lopez et al. 2008; Freiss et al. 2010), additional biological bauecbsen
proposed for coastal regions at the WAP and elsewhere. These include iodocarbon {e,. HIH
emissions from surface waters and sea ice (Chance et al. 2010; Granfors et al. 2013), andahicroal
mediated inorganic iodine flux from sea ice brine channels (Saiz-Lopez et3l. 201

1.4.3. Organic sulphur compounds

Dimethyl sulphide (DMS) is the most important natural sulphur source to the atmosphereg Wwher

is oxidised to form sulphate aerosols, which act as CCNs and exert a cooling effect thoedgh al
feedbacks. DMS can also be released from phytoplankton and ice algal communities alond’the WA
resulting in a direct feedback between the ecosystem and regional climate. Climatologies of DMS
concentrations and fluxes show that the Southern Ocean as a whole is a global hotspot of DMS
production, and its modelled contribution to atmospheric sulphate is especiglty(@ondwe et al.

2003; Lana et al. 2011). The Southern Ocean also exhibits the highest temporal vainaDNit$
concentrations, and the highest concentrations in the marginal ice zone. The latest Southern Ocean
climatology indicates that the WAP is not a particular hotspot of DMS production (Jar@ikdv

Tortell 2016), although this may reflect a shortage of published datasets, particularly from the
marginal ice zone. Two time series from the Palmer LTER show highest DMS concentrations in
January between 5 and 15 nM (Asher et al. 2017; Herrmann et al. 2012), whichreonadl with

the climatological mean for January of 10.8 £ 6.9 (SD) nM for the whole Austral Peiacer(Lana

et al. 2011). A recent continuous 5-year time series at Rothera shows large seasonal fluctuations in
northern Marguerite Bay, with considerably higher concentrations in January, reaching an average of
24 + 35 (SD) nM and a maximum of 160 nM in January 2015 (Weblnetesiew. This new time

series documents a 3-fold higher flux of DMS to the atmosphere than previously calctiajhd.
concentrations were also observed throughout Marguerite Bay and out to the shelf edge in January
2015, and are likely associated with the location of the marginal ice zone (Figuree®s Stefl.

2018).

The role of sea ice in the sulphur cycle is complex and the processes involved arejpaotiffed.
Large phytoplankton blooms and spikes of DMS have been linked to melting seaveaélaad
Jones 2006), potentially caused by the release of large amounts of ice algae that produté&She D
precursor, dimethylsulphoniopropionate (DMSP) (Stefels et al. 2018). This is supportetehyedxt
high DMSP concentrations common in sea ice, 2-3 orders of magnitude highen thagterlying
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500 surface waters. However, release from sea ice does not necessarily result in high DMS

501 concentrations (Tison et al. 2010). The efficiency of DMSP conversion to DMS dependsg strong
502 phytoplankton community structure, @haeocystignd dinoflagellates readily convert DMSP into
503 DMSwhilst diatoms do not, on bacterial processes, which often demethylate DMSP rather than
504 producing DMS, and on abiotic factors (Stefels et al. 2007). With particular relewaAogatctic ice
505 and surface waters, high levels of UV radiation can photo-oxidise DMS to dimethylsulphoxide

506 (DMSOQ), as well as inhibiting algal and bacterial activity (Toole and Siegel 2004; Zkrenadlin

507 2008a). Whilst high DMS fluxes have been found above sea ice, it remains uncleautioig m

508 derived from surface ice communities, which are often dominated by the well-known DM8agamo
509 Phaeocystisand/or from leads between ice floes, where surface-microlayer concentrations of DMS
510 can be an order of magnitude higher than in the underlying water column (Zenioetlal. 2008a,

511 b). Ice-derived DMS fluxes are likely to be largest during early spring, when surface ice d@smun
512 are developing and surface ice and snhow layers become permeable due to rising temperatures. Sea
513 ice dynamics also impact on pelagic DMSP production, both directly via DM&serisbm ice algae
514 input to surface waters, and indirectly by shaping the conditions for pelagic bloomprtiduce

515 DMSP (Stefels et al. 2018; Webb eirateview.

516 1.5. Microbial processes

517 Bacterioplankton (free-floating and particle-attached archaea and bacteria) community dynamics
518 are closely coupled to phytoplankton dynamics in the upper ocean, and strongly influenced by
519 environmental characteristics, such as sea ice, salinity, temperature, stratification and nutrient
520 availability (e.g. Ghiglione and Murray 2012; Luria et al. 2016, 2@jifetret al. 2011; Rozema et al.
521 2017b; Signori et al. 2014; Obryk et al. 2016). These microbial communtétjea key role in

522  biogeochemical cycling. Close coupling between bacterial and phytoplankton aynalong the

523 WAP has been emphasised by microbial studies conducted as part of the Palmer LTER (2002
524  ongoing) and earlier RACER (1987-1989) projeeatsability in abundance and productivity of

525 bacterioplankton is governed largely by the availability of phytoplankton-deid/@M, as terrestrial
526  input of organic carbon is negligible (Ducklow et al. 20%2a)great contrast to the Arctic

527 Bacterioplankton abundance varies across the WAP shelf, being higher further south and towards
528 the inshore regions, in broad agreement with phytoplankton distributions (Fig@.ePronounced

529 temporal variability is evident as abundance increases from winter minima of 2.0 + @ 8edl$ [*

530 to a maximum of ~2-3 x i@ells [* during summers with high phytoplankton biomass (Ducklow et
531 al. 2012a; Evans et al. 2017). Hotspots of bacterial production and abundance daxessardy

532  overlap, as production per bacterium can vary by up to an order of magnitude between years, in
533 addition to spatial differences (Figut€). Multi-year and spatially-extensive studies have suggested
534 alow ratio (~4 %) of bacterial to primary production (Ducklow et al. 2012a; Kimuakibly 2016),
535 which is unique to the Southern Ocean and the cause remains unknown (Kirchman et al. 2009
536 Seasonal-scale studies that have addressed phytoplankton bloom dynamics and bacterioplankton
537 diversity simultaneously suggest that time-lagged responses are important in the cobgtimgen

538 phytoplankton and bacteria, leading to increased heterogeneity in the microbial communits €turi
539 al. 2014; Moreno-Pino et al. 2016; Piquet et al. 2011; Rozemazi&alb; Bowman et al. 2017,

540 Bowman et al. 2016A stronger relationship between summertime bacterial production and

541  phytoplankton biomass estimated from chlorophyll than with primary production sugtfests

542  bacteria preferentially utilise DOM derived from grazing, sloppy feeding and viral lysis, rather than
543 DOM excreted by phytoplankton (Ducklow et al. 2012a; Kim and Ducklow 201&jdRpérn et al.

544  2011) Bacterioplankton itself could be an underestimated source of DOM through grazing by

545  zooplankton and mixotrophic algae, or by viral lysis; an important loss factor farctio

546  bacterioplankton (Brum et al. 2015; Evans et al. 2017; Evans and Brussaard 2012; Vaq@4 &) al.
547  Although studies of DOM origin, speciation and bioavailability are rare in this regienyioter
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548 survey revealed that ~35 % of dissolved amino acids, and thus potentially a large proportien of t
549 DOM pool, was of bacterial origin (Shen et al. 2017).

550  Whilst lowin situtemperatures could be co-limiting bacterial production along the WAP érom
551 and Wiebe 2001), no significant relationship between bacterial production and temperature was
552  observed for half of the summers since 2002, and for the other summers, only weakigderately
553 significant relationships were found over seasonal timescales (Kim and Ducklowh6grature
554  may affect bacterial production indirectly, due to its influence on phytoplanktonyccton, grazer
555  activity and diversity, and viral infection (Ducklow et al. 2012b; Kim and Du2RIb&y Maat et al.
556  2017; Vaqué et al. 2017).

557  Stark contrasts exist between surface and deep (>100 m) community composition along the WAP,
558  with diversity being more stable over time and space at depth than in surface waters (Luria et al.
559  2014) Metabolic structure also varies seasonally and with depth, and can be used to segment
560 bacterioplankton communities along the WAP (Bowman and Ducklow 2015; Bowrahr2@17)

561 Microbial communities can be transported by ocean currents and winds, increasing comyectivi
562 amongst populations (Bowman and Deming 2017; Wilkins et al.)28%3n the wider Southern

563 Ocean, the dominant phyla are Alpha- and Gamma- Proteobacteria, Actinobacteria and

564 Bacteroidetes (the Cytophaga-Flavobacterium-Bacteroides group) (Abell and Bowdtan 20

565 Delmont et al. 2014; Gentile et al. 2006; Landa et al. 2016).

566 The pelagic archaeal community along the WAP is dominated by ammonia-oxidising

567 Thaumarchaeotdpreviously Marine GroupQrenarchaeotp(Abele et al. 2017; Grzymski et al. 2012;
568 Hernandez et al. 2015; Luria et al. 2014; Signori et al. 20h4umarchaeotavere also found to

569 dominate sea ice and benthic archaeal communities (Cowie et al. 2011; Learma204i6al. The

570 widespread distribution o haumarchaeotauggests an important ecological function involved in
571 nitrogen recycling (Tolar et al. 2016), particularly in winter when bacterioplankton cortigsiare

572  enriched in archaea compared with summer communities (Church et al. 2003; Grzymski &2al. 20
573 Hernandez et al. 2015; Murray et al. 1998; Murray and Grzymski 2007), and nitrogelmgecy

574  pathways have been identified in proteomic data (Williams et al. 2012).

575  High functional diversity is suggested by studies of species composition using the 16S rRNA gene,
576 and confirmed by metagenomics and metaproteomics approaches, which provide a méchanis

577 understanding of the microbial processes at work. Bacterioplankton are involved in

578 chemoheterotrophy, photoheterotrophy or aerobic anoxygenic photosynthesis during summer,

579  whilst chemolithoautotrophic pathways dominate during winter (Grzymski et al. 201Ramé et al.

580 2012) Abundant Flavobacteria have been shown to bind and exploit polymeric substrates, including
581 carbohydrates, polypeptides, and lipids, thereby providing a crucial function in microbial

582 decomposition (Williams et al. 2013). 16S rRNA sequencing data from King George |saaddhav

583 revealed a previously unknown clade of Archaea potentially capable of oxidising ferrous iron (Abele
584 etal. 2017; Hernandez et al. 2015).

585 1.6. Zooplankton dynamics

586  Zooplankton abundance, distribution and species assemblages along the WAP are influenced
587  strongly by the availability and composition of their phytoplankton food sguasevell as the

588 physical structure of the water column, and play a pivotal role in food web interaciwthsarbon
589 and nutrient cycling. The major taxa comprising meso- and macrozooplankton @20@reafter
590 macrozooplankton) assemblage composition along the WAP are well known, with the Ankaiiti
591 Euphausia superbdeing well-established as a keystone species in the regional food web (e.g.
592  Quetin and Ross 2003)he WAP is an important spawning and nursery are& feuperbavhere
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spawning success, larval survival over winter and recruitment the following summer are largely
dependent on winter sea ice coverage through provision of the ice algal food sourcg arttiig
favourable conditions for summer phytoplankton blooms (Atkinson et al. 2B88a et al. 2014).

Krill spawning and recruitment along the WAP plays a key role in supporting large krédkbio

across the southwest Atlantic (Atkinson et al. 2004). The important roles of other taxa, gheh as
salpSalpa thompsorand the pteropod.imacina helicinan WAP food web dynamics and
biogeochemical cyclingreincreasingly being recognised (e.g. Bernard et al. 20dBotter Cove,

South Shetland Islands, inshore macrozooplankton assemblages are numerically dominated by the
small copepodithona similiswhereas large copepods suchRisincalanus gigaandCalanus
propinquustend to dominate in terms of biomass (Garcia et al. 2016).

WAP microzooplankton (<20Bn) assemblages are dominated by aloricate ciliates and athecate
dinoflagellates (Calbet et al. 2005; Garzio and Steinberg 2013), with tintinnids assodthtedanice
(Alder and Boltovskoy 1991). In summer, aloricate ciliate and tintinnid biomass increases with
increasing latitude, with high microzooplankton biomass hot spots in productive innerasbel to

the south, such as Marguerite Bay (Garzio and Steinberg 2013). Microzooplankton biomass is
positively correlated with chlorophydl and particulate organic carbon (POC) concentrations (Garzio
and Steinberg 2013).

Consistent with most ocean regions, microzooplankton are the dominant grazers durmyer,
consuming 55-85 % of primary production per day, whilst macrozooplankton (copekrit salps,
pteropods) consume on average ~1 % (Bernard et al. 2012; Garzio et al. 20dBge8Sall 2013;
Gleiber et al. 2015). However, aggregations of krill, salps or copepods common/iiheesult in
higher localized macrozooplankton grazing contributions (Bernard et al. 2CdiBefGét al. 2015). In
summer, the impact of macrozooplankton grazing on phytoplankton increases significéuethy

salps are present, due to high ingestion rates (Bernard et al. 2012). Krill and pteropods misgdhe
macrozooplankton grazers near the coast and over the shelf, whilst salps dominate ime#kipe
waters (Bernard et al. 2012). Ingestion rates of copepods in summer are up to 70 times greater in
productive coastal waters than offshore (Gleiber et al. 2015). Daily phytoplanktonrceations for
WAP macrozooplankton are often similar to, or even below, those needed to satisfyrisigibolic
needs and fuel reproduction, indicating that protozoans and other zooplankton are an importan
food source even during the productive summer period (Bernard et al. 2012; GleibeR61 5).
Macrozooplankton have been shown to feed on smaller zooplankton prey in the WAP (e.gorAtkins
and Snyder 1997; Calbet et al. 2006; Atkinson et al. 2012), although potentiaictegscades that
could result have not been investigated. There are also regional differences in zooplangy

guality that could affect top predators, indicated by lower lipid contenEo$uperban the central
WAP compared to the southern sub-region (Ruck et al. 2014).

A year-round time-series sediment trap located over the WAP shelf indicates that zoopldasad
pellets (mostly from krill) dominate export, comprising on average 67 % abtaePOC flux over

170 m (Gleiber et al. 2012). By comparing copepod fecal pellet flux from the samesettiap and
copepod egestion rates from experiments, Gleiber et al. (2015) estimate on average 58 % metenti
of copepod fecal pellets in the upper 170 m, such that copepod pellets are likely recycled in surface
waters to a greater extent than those from kriflalpa thompsoralong the WAP produce large fecal
pellets that sink on average 700 m per day, and have defecation rates that can exceed those of krill
(Phillips et al. 2009). Changes in zooplankton species composition can therefera sigwnificant

effect on POC fluxes, biogeochemical cycling, benthic food supply and the biotagi pump
(Gleiber et al. 2012; Steinberg and Landry 20E7superbas known to forage on the benthos,

which has further implications for benthic-pelagic coupling, including the vertical tramisfer

particulate iron ingested at depth into surface waters where it is subsequently metabolised and
made bioavailable to phytoplankton (Schmidt et al. 2011; Schmidt et al. 2016).
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1.7. Higher trophic levels

The WAP ecosystem comprises diverse assemblages and high biomass of top predators that
represent both Antarctic and sub-Antarctic habitats, supported by the large and persistent biomass
of krill predominantly in the central and southern WAP and the pack ice zone (Costa and Crocker
1996; Ducklow et al. 2007; Friedlaender et al. 2011; Kock and ShimadzuNb@@cek et al. 2011)
Along the northern slope and in oceanic waters where copepods dominate, mesopelagic fish and
squid act as intermediate consumers. Predator hotspots develop in areas where bathymetric troughs
facilitate intrusions of nutrient-rich CDW onto the continental shelf (Dinniman et &l;20

Friedlaender et al. 2011; Friedlaender et al. 2006; Kavanaugh et al. R0drg)ephemeral predator
hotspots are found along fronts and filaments that aggregate and concentrate prey (Bost@l. 2
Cotté et al. 2015; Dragon et al. 2010; Scheffer et al. 2010; Warren et al. Z86@)iophysical

coupling by which predators use and rely on mesoscale features that can aggregate their prey, and
the dive behaviours that determine the decisions predators make in response to prey availability
(Friedlaender et al. 2016), are critical to how top predators partition their habitat.

While top predators exist in similar regions and often share the same prey, they have different lif
history patterns and habitat preferences that likely alleviate some of the potential for competitio
During the summer, penguins, flying seabirds and fur seals forage along the shelf break and the
southern boundary of the ACC, periodically returning to their breeding colonies (Rabi@611). In
winter, seabirds are found near the ice edge, along the shelf break and around the PolaoRhmt t
north (Chapman et al. 2004). While gentoo penguiygpscelis papuagmain near their breeding
colonies throughout the year (Cimino et al. 2016; Miller et al. 2009li&dP. adeliaend chinstrap
(P. antarcticuspenguins move far away from their colonies in winter, with Adélie penguins
preferring winter sea ice, and chinstrap penguins preferring open water (Hinke et al. 2015;
Trivelpiece et al. 2007). Adélie penguins forage in shallow (<200 m) waters near land angein dee
waters (20500 m) near the edge of deep troughs cross-cutting the shelf (Erdmann et al. 2011)
Crabeater l(obodon carcinophagysWeddell Leptonychotes wedde)lind leopard Hydrurga
leptonyy seals remain in the WAP year-round, maintaining access to ice or land to haul out and
reproduce (Figure 11) (Costa et al. 2010). While Weddell seals remain in the fjords, crabalater s
move extensively along the shelf, staying closer to the coast in regions with greatesé éghang
bathymetry, and deep within the pack ice throughout the winter (Burns et al. 2004 shidre
breeding season of southern elephant sedMi#r¢unga leoninaenables them to spend months at
sea movingnto the pack ice, along the outer shelf and offshore into pelagic waters (Costa et al.
2010). Seals patrtition their habitat by foraging depth and duration, with the longest and deepest
dives by elephant seals (Hindell et al. 20F&ir seals show significant seasonal variability in their
distribution, remaining within a few hundred kilometres of their breeding colonig;mdisummer

and dispersing widely during winter (Figure ympback whaledMegaptera novaeangligeforage
broadly across the WPshelf during summer, moving inshore in autumn, with their density and
distribution controlled by those of their krill prey and their preference for ice-free conditions and
dense aggregations of larger, older krill (Friedlaender et al. 2006; Johnston et alMAOpRy et al.
2007; Weinstein and Friedlaender 2017; Weinstein et al. 2017). Humpback whalesifoeag
manner consistent with optimal foraging theory to maximize their energetic &insdlaender et

al. 2013; Friedlaender et al. 2016; Tyson et al. 2016) and remain in sigmifizabérs in ice-free
areas until the beginning of winter. Minke whal&a(aenoptera bonaerngiavoid competition with
humpback whales by foraging on deeper krill aggregations (Friedlaender et al. 2009) and, being
smaller and more manoeuvrable, they can forage under the ice, their preferred habitat (Friedlaender
et al. 2014). Recent work found long-term preferences of minke whales fed@g®regions during
summer (Williams et al. 2014) and throughout the foraging season (Lee2ét14l). While they are
known to be the only endemic cetacean species, present year-round, evidence suggests that some
portion of the population migrates to sub-tropical latitudes in winter (Lee €2@17). Blue
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(Balaenoptera musculushd right Eubalena glacial)svhales are also seasonally present and
similarly feed on krill. Different ecotypes of killer whal@sqinus orchare seasonally present in the
WAP following the distribution of their prey (e.g. seals, whales or fish) (Pitman andZD0s).

As well as providing top-down control on the ecosystem, top predators can also influence
biogeochemical cycling by transporting macro- and micronutrients vertically andhtaity
(Doughty et al. 2016; Ratnarajah et al. 2016; Roman et al. 2014).

1.8. Benthic ecosystems

Benthic organisms and processes play a critical role in whole-ecosystem structure and functioning
along the WAP, as well as biogeochemical cycling and sequestration of carbon from timgverl
water column. WAP benthic ecosystems are characterised by a rich diversity of macro- and
megafauna including echinoderms such as brittle stars, holothurians, sea urchinsjdssterd

crinoids, as well as abundant sponges, ascidians, polychaetes, bivalves, gastropods, brachiopods,
bryozoans and sipunculan worms (e.g. Clarke et al. 2007; Gutt 2007; R&cliPRipenburg et al.

2002; Sahade et al. 1998; Smith et al. 2012ydidubstrate communities are widespread in the

region around Palmer Station and further north to the South Shetland Islandsyraddminated by
large perennial brown macroalgae in shallow waters, with red macroalgae dominating the
understory (Wiencke and Amsler 2012; Deregibus et al.  2D&éklow et al. 2013). These

macroalgae and their epiphytes form important year-round carbon sources in coastal and near
shore systems (Dunton, 2001; Gillies et al. 2012; Jacob et al. 2006; BaabtB015), and support

rich assemblages of benthic invertebrates, including amphipods, gastropods and echinoderms
(Huang et al. 2007; White et al. 2013puth of the Palmer Station region, benthic communities at
depths >50 m are dominated by sessile invertebrates including sponges, soft coralsabhsyand
tunicates (Ducklow et al., 2013), whilst mobile scavengers such as starfish, brittle stars and urchins
are abundant in shallower waters (Clarke and Johnston 2003). Fjordic systems along thaw&/AP
been shown to exhibit higher abundance and diversity than adjacent shelf areas (Grange and Smith
2013).

In general, benthic organisms in the WAP region are characterised by very slow growth and
development rates, which are slowed beyond the expected effects of temperature compared to
temperate and tropical species (Figure 12) (Peck 2016, 2018). Rates of activity and other processes
including routine oxygen consumption are not similarly slowed, indicating thdirttiations on

growth and development are likely caused by restricted protein manufacture at low temperatures
(Fraser et al. 2004, 2007; Peck 2016). The slow growth rates result in extendedtioagdvi

deferred maturity (longer generation times), which has been demonstrated in amphipods (Johnson
et al. 2001), the bivalvAdacnara nitengHiggs et al. 2009), and a range of other molluscs,
brachiopods and echinoderms (Peck 2018). High-latitude Southern Ocean benthic organisras, such
fish (Leis et al. 2013), hyppolytid shrimps (Clarke 1985) and several starfish (Bosch an@l9@&3yse
also produce fewer larger eggs, with egg diameters generally 2-5 times greater tdsmahlower-
latitude species (Arntz et al. 1994; Peck 2018).

Benthic organisms assimilate carbon fixed by primary producers in the overlying water column
and/or sea ice, and can store carbon more efficiently and over longer periods thancpaiggnisms
(Barnes 2017; Peck et al. 2010). The degree and timescale of carbon sequestration is dependent
sea ice dynamics and the duration of the ice algal and phytoplankton blooms, local o@ganng
conditions such as current speeds and nutrient suppSE P v]eu <[ odrdbBhavieurs, and the
frequency of ice scour, which has a major role in structuring benthic ecosystems (Barnes et al. 2018).
The contribution of benthic processes to pelagic productivity via nutrient supply at the WAP is a
current area of debate. Nutrient release from sediments and porewaters by diffusion, physical
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disturbance and bioturbation by burrowing organisms, such as polychaetes, echinoderms and
bivalve molluscs (Poigner et al. 2013), has the potential to act as a significace sbumutrients to

water column biota. Physical disturbance by iceberg scour can expose buried sediments from water
depths exceeding 300 m, and can produce sediment scours over 10 m deep (Lien éd)al. 198
releasing large quantities of sediment-derived nutrients. Currents entrained by moving icebergs can
redistribute sediment several metres up into the water column for short periods and across many
metres of the seabed (Bigg 2016; Peck et al. 2005). Icebergs can also distribute sediments over
considerable distances and through the water column as ice melts, and act as a dispersal mechanism
for some benthic species (Peck 2018). Mixing of the upper water column by icebergs, winds and
currents will regulate the extent to which sediment-derived nutrients reach the surface ocean and
influence pelagic primary productivity.

2) How is the WAP shelf environment changing and what are the ecosystem responses to and ocean-
climate feedbacks on the changes underway?

Our knowledge of the key mechanisms and interactions regulating ecosystem functioning and
ocean-atmosphere coupling along the WAP shelf, and in particular the interdependemngeehet

physical, biogeochemical and biological processes, paves the way for understanding theg ongoin
changes in ice dynamics, ocean physics, biogeochemistry, air-sea exchange, and pelagic, benthic and
microbial food webs.

2.1. Physical oceanography and ice dynamics

The long-term change in atmospheric and oceanic properties along the WAP has been #ostuisng

of scientific efforts given its large magnitude, and its observed and potential impact on the regional
ecosystem (Constable et al. 2014a, b; Ducklow et al. 2013; Martinson 608}. Meredith et al.

2017; Schofield et al. 2017; Venables et al. 2013). The evolution of sea ice woveescales from
seasonal to inter-decadal is a key modulator of physical and biogeochemical processes orfthe shel
For example, sea ice extent and its growth and retreat modulate vertical mixing, ditrses, light
penetration, and the salt and heat content of the surface ocean. On average, sea ice extent in the
WARP region varies between 1 and 6 X &’ over the annual cycle (Meredith et al. 201&)ongside
substantial warming of the atmosphere and ocean, the period of seasonal sea ice cover has
shortened by more than three months since the late 1970s, with autumn advance being delayed by
two months and spring retreat occurring more than one month earlier (Stammerjohn et al. 2012;
Stammerjohn et al. 2008a). Strong correspondence between retreat and subsequent advance
suggests a strong feedback in ocean thermal properties in autumn in response to changes in the
timing of retreat in spring. The trend is less clear in the northern WAP (Schloss et al. 2012) where
substantial sea ice declines have already occurred, although Bers et al. (2013) showed the strong
effect of climatic forcing even in inshore waters of King George Island.

The warming trends and salinity changes documented in the surface and deep water layers across
much of the WAP shelf have not been observed in Bransfield Strait, likely because ofthlatioa

by Weddell Sea inflow around the northern tip of the Peninsula (Bers et al. 2013; Mereditimgnd K
2005; Schloss et al. 2012chmidtko et al. 2014). This highlights strong gradients along the shelf in
the processes controlling long-term property trends, as well as the mean properties themselves. The
alongshore structure of mid-depth (>100 m) ocean temperature plays a pivotal role in glacier retreat
rates along the WAP, with warmer subsurface waters in the southern and central WAP (south of
Bransfield Strait) acting as the primary driver of substantial glacial retreat along the adjacent coast
(Cook et al. 2016; Padman et al. 2012). In contrast, glaciers along Bransfield Stra#teimin
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colder Weddell-modulated waters and are retreating at slower rates, with some even advancing. In
cases where glaciers in the northern WAP are experiencing high melt rates and retreat, for example
at King George Island, atmospheric forcing is thought to be the primary driver (Falk andiS§la 20

The observation that the long-term trends of atmospheric warming and sea ice declines have
plateaued since the late 1990s (Figure 1), with recent increases in sea ice extent and duration
recorded in some places (Schofield et al. 2017; Turner et al. 2016), reflects substantal natur
internal variability that is likely to have broad-scale impacts on ocean properties anioacwof

the WAP shelf. The nature and importance of these interactions superimposed onto the long-term
trendsis still to be determined. In contrast, there is no evidence for a slow-down or reverse in

trends of oceanic warming over the southern and central WAP shelf, or glacial retreat along much of
the WAP coast (Cook et al. 2016).

2.2. Phytoplankton and microbial community dynamics

The documented sea ice declines since the late 1970s have led to overall reductions in
phytoplankton biomass, with regional differences along the WAP in the response of phytoplankto
dynamics to the climatic and oceanic changes observed (Montes-Hugo et al. P9€83.changes in
phytoplankton dynamics are attributed to changes in sea ice and upper ocean conditions, rather
than any longerm trend in CDW incursion and/or nutrient suppBatellite analyses suggest that

the shelf sub-region to the north of Anvers Island experienced decadal declines in summer
chlorophyll levels between the early 1980s and early 2000s concurrent with declinirgp sedent
and duration (Montes-Hugo et al. 2009; Stammerjohn et al. 2008a, b).e&avee cover during

winter and early spring leads to low chlorophyll in summer due to increased wind-drivergrandn
potentially increased cloud cover, and consequently a less favourable light enviroroment f
phytoplankton growth (Montes-Hugo et al. 2009; Saba et al. 2014; Venreitdés2013). In contrast,
satellite-derived chlorophyll increased in the central and southern sub-regions over the same period
attributed to longer periods of open water (Montes-Hugo et al. 2009) resulting frenseasonal
declines in sea ice (Stammerjohn et al. 2008a, b). However, strong decreases in chlardaphyl
northern sub-region outweighed the increases further south, leading to an overall reduction in
phytoplankton biomass along the WAP (Montes-Hugo et al. 2009). More rectmgtlyicrease in sea
ice duration since the late 2000s has led to higher chlorophyll levels in WAP coastas regi
(Schofield et al. 2017).

Coastal time-series data from Potter Cove at King George Island/ Isla 25 de Mayo €Setloss
2012) and Palmer Station at Anvers Island (Schofield et al. 2017) suggest that the obseiued decl
in phytoplankton biomass reversed around 2010. In Potter Cove, chlorophyll concemdratize
typically low between 1991 and 2009, with maximum values (~4 fM)gdoring short-lived episodic
events, when phytoplankton assemblages were dominated by large diatoms from several genera
(Corethron criophilum, Odontella weissflogii, Eucampia antarctica, Thalassiosira spraPmpsi
(Schloss et al. 1997). Nutrients were not limiting, and low phytoplankton biomesstivibuted to
adverse physical conditions, with intense turbulent mixing and sediment-rich meltwatetsinpu
limiting light conditions for phytoplankton growth and preventing bloormiation (Schloss et al.
2002; Kim et al. 2018). A first highlorophyll bloom (~14 mg 1) lasted approximately two weeks

in January 2010 and was followed by several subsequent high-chlorophyll seasons, withehe sa
genera present as earlier in the time series (Schloss et al. 2014; Kim et al. 2018). Whilst a
combination of low air temperatures, which delayed the melting of the surrounding Fourcade
glacier, and low wind intensities can explain the bloom duration in January 2010, different
mechanisms are behind increased productivity in more recent years. Experimental work has shown
that smaller diatoms (e.dNavicula Nitzschia etc.) have greater tolerance to low salinities than large
diatoms (Hernando et al. 2015), such that the phytoplankton response to glacial melinaaes
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may differ depending on community composition and the timing of inputs redat bloom
progression

Chlorophyll concentrations have also increased since the late 2000s at Palmer Stdn, ~4
kilometres to the south, concurrent with an increase in the number of days of sea ice colier eac
year and shallower spring/summer mixed layers, which have led to larger phytoplankton blooms
dominated primarily by diatoms (Schofield et al. 2017). This is in contrast to much ofrdtedwf

the Palmer time series, where a statistically significant decline in sea ice duration was observed. At
the Rothera Time Series (RaTS) in northern Marguerite Bay, ~400 kilometres south of Palmer Station,
short-lived winter sea ice cover led to a substantial reduction in summertime chloropbsii |

between 2007 and 2010 (Venables et al. 2013). Since 2010, sea ice duration andnsfilbeoge
increased again, with sea ice persisting into December and large phytoplankton bloomsgeyllor

>15 mg nit) in the most recent years. A recent synthesis of chlorophyll and physical oceanographic
time-series data from Potter Cove, Palmer and Rothera demonstrates that whilst largetsnate
forcing influences all three sites, local processes such as ice melt and mixing superpose distinct
interannual patterns and trends (Kim et al. 2018). Longer-term changes in primary poodacd
community structure over the WAP shelf will depend on the interaction of long-tematit

warming trends and large natural internal variability in regulating seasonal sea ice idgranar
interannualto-decadal timescales.

Projected increases in glacial meltwater input (Meredith et al. @8 likely to modify
phytoplankton dynamics by promoting upper ocean stability and altering nutrient avaytabil
Combined with long-term reductions in sea ice cover and persistence of deeper mixed layers,
increased surface stratification would potentially favour cryptophytes and smaller diatmer
larger diatoms, with shifting phytoplankton community structure as a result (Moline 208#4;
Schofield et al. 2017).

There has been significantly less focus on the consequences of sea ice and physical oceanographi
changes for the direct coupling between sea ice and pelagic ecosystems, through ice-ocean
exchange and sea ice algal inputs to the water column. Changes in the tinsieg io€ retreat may

lead to phenological changes, and earlier or later ice algal and/or phytoplanidomb may result

in trophic mismatches as pelagic herbivores become less able to synchronize with thnes plgith
negative reproductive consequences and the potential for cascading effects through the entire foo
web (e.g. Sgreide et al. 2010).

Relatively little is known about the response of microbial communities to ongoampels in the
physical environment and phytoplankton dynamics. However, response time to changing
environmental conditions is known to vary spatially and between phytoplankton and
bacterioplankton (Moreno-Pino et al. 2016; Rozema et al. 2017b), likebasiog spatial patchiness
in the microbial community (Figurl)) and functional diversity, thus affecting ecosystem resilience.
The strong dependence of microbial processes on other rapidly changing ecosgstgronents,

e.g. phytoplankton (Bertrand et al. 2015), zooplankton, benthic organisms, seeding from
macrofaunal microbiomes (Bik et al. 2016) or terrestrial systems (CaviccHib)i 20d the
bioavailability of DOM substrate, suggests that continual and pronounced ekamgnicrobial
community composition and functioning are likely.

2.3. Biogeochemical changes and air-sea exchange
Physical and biological changes along the WAP are closely related to changes in ocestnychiedni

biogeochemistry, in particular the budgets and cycling of macro- and microntgyriend the
production and air-sea exchange of climate-active gases, with the potential for larger-scale
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consequences and feedbacks. For example, continued glacial retreat can be expected to increase the
supply of iron and other micronutrients (Zn, Cd, Co etc.) from glacial and shallow sediment sources,
and potentially their availability to phytoplankton (Annett et al. 2015; éthet al. 2017; Bown et al.

2017, 2018; Hendry et al. 2008; Monien et al. 2017). Seasonal biologiakéwgs nutrients and

carbon will be determined by the documented variability and ongoing changes in sttason
phytoplankton dynamics driven by changes in sea ice and upper ocean coadlienley et al.

2017; Legge et al. 2015; Kim et al. 2016).

Changes in the properties, transport and circulation of CDW across the shelf, particularly in the
southern and central WAP regions to the south of Bransfield $haittinson et al. 2008; Schmidtko

et al. 2014), are likely to increase the supply of macronutrients andd€dbsurface shelf waters.

The extent to which this affects surface ocean nutrient and carbon budgets will depend on the
evolution of mixing processes in response to sea ice and atmospheric forcing. Carbstete sy
parameters (DIC, TA, pg©n the Palmer LTER grid do not show statistically significant trends

during summer seasons between 1993 and 2012 (Hauri et al. 2015). However, a contiofithie
long-term reduction in seasonal sea ice cover and continued strengthening and soutshifirdy of
westerly winds (Le Quéré et al. 2007; Stammerjohn et al. 2008b; Landschitzer et aim2915

increase upwelling of DIC-rich water and,@Qtgassing in winter, as well as altering the

phytoplankton community and potentially reducing biological @take in summer (Legge et al.

2015; Saba et al. 2014). The resultant reduction in net annual@@ke along the WAP is unlikely,

in itself, to make a significant difference to the functioning of the Southern Oceasi@Qdue to

the small size of the WAP shelf region. However, if the changes anticipated at the WAP are manifest
across larger areas of the Southern Ocean in the coming decades, the detailed knowledge of the
physical and biological mechanisms regulating {i@es obtained in the WAP system will be useful

in projecting change at the wider scale, which could be significant terms in the global carbon budget.

Given that sede-air emissions of halogens and DMS are directly linked to sea ice dynamics (von
Glasow and Hughes 2015) or are derived from the ecosystems that exist within or around sea ice
(Hughes et al. 2013; Stefels et al. 2018), it is likely that the sea ice chambesriability observed
along the WAP in recent decades will alter thedkiaf these gases to the atmosphere over
interannual and longer timescales. This will be important for climate (throughsatamd CCN
formation) and atmospheric chemistry (via tropospheric ozone destruction) locally and aégion

2.4. The WAP pelagic food web

Interannual variability in phytoplankton biomass has strong implications for the preityatif the
entire food web, with low chlorophyll years leading to less successful recruitment of thtokey
species Antarctic kri{fEuphausia superbgftkinson et al. 2004; Saba et al. 2014). As such, low sea
ice conditions are likely to hold negative consequences for higher trophic lewbl@iswpenguins,
flying sea birds, seals and whales (Constable et al. 2014a, b; Costa et al. 20X0edeietlal.

2011). Conversely, the recent increases in chlorophyll are likely to be beneficial ftarddop and
their pelagic and benthic consumers (Saba et al. 2014).

Seasonal changes in WAP macrozooplankton abundance are driven by a combinatgrtefrto
trends linked to warming and sea ice declines, sub-decadal shifts attributed to oscillations i
atmospheric forcing, such as SAM and ENSO, which affect sea ice dynamics and sea surface
temperature, and local and regional changes in primary production, all of which trang s
interdependences (Figure 13; Steinberg et al. 2015). For example, a decrease in krill dewsignbet
the 1970s and early 2000s in the WAP and southwest Atlantic sector of the Southemvi2sea
attributed to long-term warming and sea ice declines, which reduce the availabiling aée algal
food source required to promote larval survival and recruitment, as well as driving theloveral
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decline in the summer phytoplankton food source (Atkinson et al. 2004; deHugo et al. 2009). It

has been contested that this decline in krill resulted from a pendtie decadal-scale population
variability of unusually high krill abundance in the late 1970s, rather than beivendoy climate

change over subsequent decades (Loeb and Santora 2015). However, more recent evidence has
shown a southward contraction of krill distribution throughout the sector over thed@stears,

with a concomitant reduction in juvenile recruitment linked to reduced food availabditg, a
concentration of the population over the WAP shelf (Atkinson et al. 2019). Siaaarly 1990s, krill
abundance on the Palmer LTER grid (central and southern WAP) has shown a stable 5-year cycle that
reflects variability in reproductive and recruitment success linked to ENSO cycles andftericin

on sea ice dynamics (Loeb et al. 2009; Quetin and Ross 2003; Ross et al. 201elgteaib2015),

in broad agreement with findings from the northern WAP around the South Shetland Islands (Loeb
and Santora 2015; Richerson et al. 2017). Accordingly,bbashiperband Thysanoessa macruiee
positively correlated to regional primary production two years prior (Figure 13;ltajret al.

2015). Local effects can also be pronounced, for instance high krill montaRtytter Cove in recent
yearsis attributed to unfavourable conditions caused by high meltwater-sourced pattelds from

a retreating glacier (Fuentes et al. 201I®8)contrast to krill, abundance of the major copepod taxa
showed a regional long-term increase between 1993 and 2013 (Gleiber 2015). \fpiraBiilpa
thompsoniover the shelf is influenced by both ENSO (Loeb and Santora 2012) and SAM (Figure 13
Steinberg et al. 2015), whilst long-term increases throughout the southwest Atlantic sector have
accompanied the declines in krill (Atkinson et al. 2004). Variability in abundarioe pteropod

Limacina helicinalong the WAP is also linked to ENSO cycles (Figure 13; Loeb et al. 2009; Loeb and
Santora 2013; Ross et al. 2014; Steinberg et al. 2015). Shifts in phytoplanktomnity structure

can also affect the abundance of krill relative to other major zooplankton taxa, because the grazing
efficiency ofE. superbas reduced significantly on particles <20u U «p Z §Z -domjndtéd
communities are likely to favour krill, whilst communities dominated by crypttgshgnd/or

haptophytes are likely to favour salps and other taxa (Haberman et al. 2003; Meyé&il-&ayed

1983; Moline et al. 2004). Shifts in the dominance of krill compared to otlxerltave major
consequences for higher trophic levels that rely on krill as their primary food sourcelas\ior

carbon export and nutrient recycling, and may lead to substantial reorganisations of the pelagic food
web (e.g. Atkinson et al. 2004, 2019; Quetin and R0ss)2003

The distribution and abundance of a number of krill-dependent pelagic consumers arenghangi
concert with changes in the physical environment and the availability of krils{@laa et al. 2014a

b). Winter sea ice conditions along the WAP are particularly important for krill presidbecause

they regulate krill availability and therefore foraging conditions, whighaakey determinant of
recruitment and overwinter survival of adult and juvenile animals (Hinke et al. 208&a)ice-driven
changes in phenology can also lead to trophic mismatches between predator fpreggds and

prey availability, with major demographic consequences (Youngflesh et al. 2017 atiRopubf ice-
dependent Adélie and chinstrap penguins have declined significantly (e.g. Figure 14; Ducklow et al.
2013; Hinke et al. 2017a; Juares et al. 2015; Trivelpiece et al. 2011) and the palpiEpenguin

colony at the WAP has been lost due to changes in seasonal sea ice duration (Trathabddi.al. 2
Southward shifts of the maritime climate, displacing the Antarctic climate, have also increased
precipitation and snow accumulation, which reduces the survival of Adélie penguin chidks éCa

al. 2009; Chapman et al. 2011). In the northern WAP in particular, the shift to a more raaritim
climate is likely to shift southward the distributions of ice- and krill-dependent speciesasuch
Weddell and crabeater seals, minke whales and Adélie penguins, leading to local declirés as th
habitat contracts with diminishing sea ice (Ducklow et al. 2013; Huckstadt et al. 20li#fa&tSiin

2008). In contrast, ice-tolerant species such as fur s@éattdcephalus gazelJahumpback whales

and gentoo penguins and those less dependent on krill, such as elephant seals, have increased in
number (Costa et al. 2010; Ducklow et al. 2013) and in the length of time theyindeeding locally
(e.g. Friedlaender et al. 2016; Weinstein and Friedlaender 2017). The decline in Adélie penguin
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969 numbers slowed down in the mid-2000s and the total number of penguins stabilised, althosigh thi
970 was a consequence of increasing gentoo penguin numbers (Figur8de krill predators exhibit
971 trophic plasticity and can increase their consumption of fish in years of lower krill availability (e.g.
972 crabeater seals; Huckstadt et al. 2012a), although the extent to which this plasticity cae teke
973 dependence on krill remains unknowsubAntarctic King penguinéptenodytes patagonicyiiave
974  extended their distribution southwards, recently being recorded for the first time at King George
975 Island (Juares et al. 201 Mcreasing westerly wind intensity has benefitted wandering albatrosses
976 (Diomedea exulansby increasing their foraging speeds and reducing trip length, thus enhancing
977 their foraging efficiency and breeding success (Weimerskirch et al. 2012).

978 25. The WAP benthic food web

979 Benthic communities along the WAP are sensitive to variability in physical and thegeical

980 forcing, because many organisms are sessile and therefore unable to migrate. Benthicessjoon

981 ocean warming dependn } E P v ]abiltt{es to adapt or acclimate to altered conditions. Antarctic

982  benthos have a reduced capacity to adapt compared to lower-latitude populations, due tddkeir

983 production rates of novel genetic material that enhance suryivhlch arise from longer generation

984 times and production of fewer larger eggs without an increase in mutation rate or popukitien

985 (Arntz et al. 1994; Higgs et al. 2009; Johnson et al. 2001; Peck 2018). Gdratfl@en Antarctic

986 populations is also slower than for temperate or tropical populations duelatively high levels of

987 protected development and proportionally fexw species using pelagic larval dispersal (Arntz et al.

988 1994; Peck 2018; Hoffman et al. 2011, 2012). For species that do use pelagjisadisjsing ocean

989 temperatures increase larval development rates, thus shortening the larval phase substantially (Peck
990 2016, 2018). This reduces dispersal distances and increases isolation between populations, as well as
991 altering the timingf reproductive cycles in relation to key environmental events (Bowden et al.

992  2009), such that larval success may decline significantly due to phenological mismatelaes g

993 proceeds.

994  Given limited rates of adaptation, Antarctic benthos need sufficient phenotypic plasticity to

995 acclimate to altered conditions and survive the projected climate change in coming decadks (P

996 2011). Antarctic fish (Bilyk and DeVries 2011) and invertebrates (Morley et al. 2016; PedRe2(18;

997 etal. 2009, 2014) have very limited tolerance to warming in laboratory-bageetienents,

998 indicating that acclimation to elevated temperature is poor in Antarctic species (Peck @14). 2

999 Thermal tolerances are influenced by a number of different species-specific factors (Clark et al.
1000 2017), including heat shock responses to warming (Clark and Peck 2009; Clark é&@)ahar&dQpper
1001 temperature limits being set by accumulation of toxic metabolic end-products (Heise280al),
1002 limitation of energy reserves (Peck 2018; Peck et al. 2014), and temperature sgnsitoritical
1003 enzymes (Clark et al. 2016). In general, the rate of oxygen supply to tissues (Portner and Farrell
1004 2008; Portner et al. 2012) does not exert a major limitation on thermal toterga.g. Devor et al.
1005 2016). The firsin situwarming experiment in the Southern Ocean, conducted at Rothera, showed
1006 that growth of biofouling species was significantly faster at 1°C above ambient than eramb
1007  (Figure 15) and this was attributed to factors including more efficient protein egigtand faster
1008 processing of food allowing greater nutrient intake in a summer season (Ashton et al. 20Ed). Mix
1009 results from +2°C treatments likely indicate that growth of some species was restricted by their
1010 temperature limits.

1011 Benthic community structure is strongly influenced by ice dynamics along the WAP. Whereas sea ic
1012 organic fluxesire an important food source for the benthos, solid ice can have a devastating effect
1013 by removing a significant proportion of macro- and meiofauna from the seabed éPatk1999;

1014 Lee etal. 2001). Iceberg impacts can be very frequent in shallow waters along the WAP (Brown et al.
1015 2004), and ongoing increases in iceberg scour driven by glacial retreat, receding ice shebses and
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overall declie in fast ice have caused a marked drop in biomass of shallow benthic fauna in Ryder
Bay, Adelaide Island (Barnes and Souster 2011). This is expected to continue, atidllyoten

intensify in the coming decades (Barnes 2015; Smale et al. 2008). In Potter Cove, Sthati Sh
Islands, increased sedimentation from a retreating glacier was the most important factor driving
sudden shifts in nearby benthic assemblage composition with unexpectedly rapid loss of diversity
and biomass (Sahade et al. 2015; Torre et al. 2017). Contrary to the adverse effects afrie@dco
ice-derived sedimentation, the retreat of coastal glaciers and disintegration of ice shelvesteong
WAP has opened up new ocean areas for pelagic productivity and benthic ecosystem development
(Peck et al. 2010). The loss of benthic carbon storage caused by increased iceberg sopur durin
glacial retreat and ice shelf disintegration is significantly outweighed by the increase imcarbo
storage resulting from increased primary production and benthic biopsas$ that theseice losses

lead to a substantial net increase in carbon drawdown to the seabed (Barnes 2015, 2017; Barnes et
al. 2018). Glacial retreat has also opened up newly ice-free areas in Potter Cove, incluing a n
island, which have been colonised by communities exhibiting high diversity, biomassa@nglaxc
structure at rates far exceeding previously observed or predicted rates in Antarctic benthos (Lagger
et al. 2017a, p Macroalgal forests can colonise recently ice-free hard substrates (Campana et al.
2018; Quartino et al. 2013), and may expand further in the northern WAP in future as moreritequ
ice-free winters and early spring fast-ice disintegration are expected to increase the annual light
budget (Deregibus et al. 201@acterial groups that dominate in sediments enriched with

macroalgal detritus (e.g. Proteobacteria, Bacteroidetes, Planctomycetes and Verrucomiaamldiz)
also become increasingly important with continued macroalgal expansion (Abele el 3dj.R2sotti

et al. 2015)The net effect of ongoing ice changes for benthic commustieng the WAP will

depend on water depth and proximity to glaciers and/or ice shelves, and their effect on iceberg
scour, sedimentation and light availability. Results from Potter Cove show that bentisizséam
responses may be non-linear and particularly rapid, intense and heterogeneouslin §gstems.
Throughout the coastal WAP, longer-term losses of glaciers and ice shelves may reduce ice scour and
sedimentation significantly, increasing benthic carbon drawdown substantially, but the timing of
these changes is unknown.

Invasive species occur on the WAP shelf as a result of larval dispersal and anthropogenic vectors
such as ship ballast water and hull biofouling (Clayton et al. 1997; Hughes and Axhiphex and
Chown 2009). The long-term warming and sea ice trends are altering the natural®orspecies
invasions along the WAP, by dampening the effect of sea ice cover in reducing diapdrkiling
potential invasives, by increasing the coverage of year-round ice-free shallow benthic halpithts,

by weakening the temperature limitation of biological processes in warmer-water species. These
trends combined with increasing ship traffice likely to promote the import and success of

invasives along the WAP, with potential for major ecosystem disruption, although threytim
magnitude and impact of these invasions is not known.

2.6. Ecosystem responses to ocean acidification

Ocean acidification is expected to be particularly pronounced and to occur earlier in the Southern
Ocean, which absorbs more than 40 % of global anthropogeni¢FRIicher et al. 2006; Orr et al.

2001), than in other ocean regions (Feely et al. 2009; McNeil and Matear 2008; Or2@G2%)

Whilst statistically significant trends in inorganic carbon and pH have not yet been detected at the
WAP (Hauri etal. 2015),(E P}v]S O o0} erecéntly hiéem documented in the coastal WAP

during winter (Jones et al. 2017), making aragonitic organisms susceptible tolsamgjes in pH

Decadal enrichment in inorganic carbon and acidification have been documented in the Drake
Passage to the north (Hauri et al. 2015; Takahashi et al. 2014), suggesting that this mechanism may
have significant ecosystem consequences along the WAP in future.
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Ocean acidification has the potential to impact on WAP phytoplankton communities, asregpeyi
from the Ross Sea have shown a shift from the small haptogtiyéeocystis antarcticar pennate
diatoms at low C@xto large centric chain-forminGhaetocerosliatoms at elevated GQevels (Tortell
et al. 2008; Feng et al. 2010). These findings were supported by laboratory studies that suggest
diatoms may have a competitive advantage over other taxa at elevated@@n and Gao 2004,
Sobrino et al. 2008; Wu et al. 2010). An acidification-driven shift towards larger diatontd act
against the proposed shift towards smaller diatoms, haptophytes and cryptophytes driven by
changing ice distributions and freshwater inputs (e.g. Hernando et al. 2015; Rerema017a;
Schofield et al. 2017). As such, the phytoplankton response to competing physicabkagithl
forcings along the WAP could vary significantly over time and space, compoundatgliain the
forcings themselves. Shifts in phytoplankton species composition could havecaignifi
consequences throughout the food web due to different feeding preferences of the major
zooplankton taxa and their consumers.

The effects of ongoing atmospheric Qfptake and ocean acidification on polar zooplankton are not
well understood. To the north of the WAP in the Scotia Sea, live pteropotglicing showed signs

}( *Z o0 Jee}ops]}v]v & PJ}v uv Ee+ SpE 8 Al3z E P}v]s -~
recent evidence fok. helicindrom the Arctic repairing their shells after mechanical and dissolution
damage suggests that these pteropods may be more resilient to ocean acidificatioprthanusly
thought (Peck et al. 2018E. superban the WAP region have been shown to increase their feeding
and excretion rates under high €€bnditions, especially in the case of pregnant krill (Saba et al.
2012).

Antarctic benthos are thought to be vulnerable to current and future ocean acidification, because

Vv

CEu

many have calcified skeletons that use up a greater propor}ibns§zZ }EP v]eu[s v EPC pn P §

lower-latitude species (Watson et al. 2017), as well as low physiological rates aritea dihility to

resist environmental change in general. Research on the capacity of Antarctic benthos to acclimate

to loweredpHis conflicting, with some studies showing poor capacitiesertain organisms (e.g.
Schram et ak016), whilst most studies demonstrate little effect of lowered pH, even on early
stages (e.g. Catarino et @D12), and several studies demonstrate gezadffects of temperature

than pH (Byrne et a013; Cross et al. 2015; Kapsenberg and Hofmann 2014). Recent studies show

that although long acclimation periods are required, Antarctic benthos can acclimate to altered pH
at least to end-century conditions, and acclimated organisms exhibit ghgsial and reproductive
performance similar to those in controls (Cross et al. 2015; Suckling etL&l. K0rley et al. 2016).

3. Overarching priorities and approaches for future work

Whilst significant progress has been made in recent decades in understanding the functioning of the
WAP shelf ecosystem, its physical and biogeochemical drivers, the coupling between the ocean and

atmosphere, and how these interactions are changing ovee,tcritical knowledge gaps remain.
Further elucidation is required regarding the relative importance of the different controlling

mechanisms and the interactions between these mechanisms, in order to develop asystde
understanding of the WAP shelf ecosystem and its response to ongoing cliamtjgsgate and the
physical environment over seasortaldecadal timescales. As sea ice dynamics exert such an

important control on ocean physics, chemistry and ecosystem functioning, a fundamental challenge

for the observational and modelling communities is to unravel the importancangfterm climate-
driven trends compared with large natural internal variability, and consequently the exteviith
the recent slow-down in warming and sea ice losses will persist against the background long-term
trend. This challenge is a highly active area of research for the international community (Reid and
Massom 2015; Reid et al. 2018), but will ultimately require longer time serggalfite and in situ

ocean and sea ice measurements, and an improvement in the performance of IPCC-class models for
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the forthcoming Coupled Model Intercomparison Project Phase 6 (CMIP6). Regadeds can be

used to elucidate the important local-scale ice-ocean-atmosphere feedbacks modulatedtixehgl
small-scale processes (e.g. ocean eddies with scales of a few kilometers). However, given the known
dependence of WAP climate on remote processes (e.g. ENSO, and its interaction with the SAM),
these models would need to take reliable boundary conditions from global climate/Egstem

models that reproduce both the low-latitude modes and their propagation to litituties Such a
framework would allow us to increase the reliability of the relevant signals in the IPCC-oltiels m

and improve our ability to project future changes in ice coverage and duration.

Table 1 outlines the important discipline-specific research objectives in WAP reei@mee over the
next 2-10 years, and Table 2 outlines the key approaches and innovations requireddesatiese
objectives. One of the major findings over the last three decades has been the importance of
physical oceanographic processes in modulating biological and biogeochemical processes, from
nutrient supply and phytoplankton dynamics to zooplankton distributions and fordgghgviour of
pelagic consumers. This degree and multilateral nature of physical control makes defeing th
processes of oceanic water mass transport onshore, and its modification and vegtitiEdtion on

the shelf a key priority. The importance of ice-ocean interactions necessitates full characterisation
of sea ice dynamics, glacial meltwater and other freshwater inputs, and their modulation of these
physical processes. Quantifying these physical dynamics will pave the way for projecting their
impacts on biogeochemical and biological processes throughout the entire food veetmuPced
spatial heterogeneity and temporal variability on timescales of several days to decades necessitates
longer time series capturing the complete annual cycle and increased temporal and spatial
resolution of observations across the shelf, including under the sea ice. This increasetiomeswold
capability can be achieved by developing an observing system for the WAP shéliingmb
traditional ship- and station-based approaches with novel technologies based on gliders,
autonomous underwater vehicles (AUVs), and mooring and high-frequency (HF) radar networks.

HF radar measures ocean surface (upper 1 m) current velocities over hundreds of square miles
simultaneously. A shore-based three-site HF radar network deployed recently at the WAP provides
hourly surface current data over the entire Palmer Station region (Figure 16), and has been used
with penguin foraging data to identify the selection of foraging locations relative to mapped
convergent features over the Palmer Deep canyon (Kohut et al. 2014). Thegashsve proven to

be robust and cost-effective with many applications, and a significant opportunity exigévelop a
shelf-wide integrated system to define the regional surface ocean circulation, which is curreatly on
of the least understood aspects of the shelf circulation.

Moorings have been deployed routinely along the WAP, providing high-frequencéiries-
measurements year-round for over a decade. These moorings have been critical in documenting the
frequency and mechanisms of subsurface intrusions of modified CDW onto the continental shelf
(Martinson and McKee 2012; Moffat et al. 2009). A key limitation of mooringatistiby are

typically unable to collect data near the surface, due to the presence of seasonal ice and icebergs
(Savidge and Amft 2009), and their spatial coverage is limited.

Autonomous gliders (Sherman et al. 2001; Eriksen et al. 2001; Webb edd).&@ complementing
mooring measurements by providing high-resolution spatial measurements over the full shelf depth
(Carvalho et al. 2016; Carvalho et al. 2017; Couto et al. 2017; Brearley €t7)l. P@ese gliders are
capable of sampling over thousands of kilometres and spending months at sea, makingeaém i

for maintaining a sustained presence and filling critical observational gaps between ship-board
surveys, research stations and mooring arrays, and at smaller spatial scales than are captured by
shipboard sampling (Venables et al. 2017). These systems are cost-effective, capable of carrying a
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range of sensors, and have been proven to be effective tools to leverage data collectioraacross
broad range of applications and ocean regions (Schofield et al. 2015).

Powered AUVs have been used in the Southern Ocean for bathymetric, physical oceanographic and
biological surveyunder and in the vicinity of sea ice (e.g. Brierley et al. 2002). Expanding the use of
such AUVs in the WAP region has the potential to provide a wealth of water column data fro
under-ice environmentdVost under-ice powered AUV missions to date have been conducted by
large complex platforms capable of under-ice navigation and advanced autonomous decision-
making, requiring ship support and making deployments expensive. Transitioning tersieak

complex and less expensive systems capable of sustained missions would increase the number and
scope of deployments at the WAP and elsewhere.

Using autonomous technologies will be of particular value in improving obsemahtioverage

during ice formation in autumn, the ice-covered winter period and the springtime tranditom

winter into the ice-free phytoplankton growing season. These times of year are critically important
in regulating phytoplankton bloom dynamics, and other key ecosystem processesyenre
severely undersampled across all disciplines of WAP marine scierioture, real-time sampling

and data transfer using these technologies has the potential to inform predictions of keystem
processes at the seasonal scale, e.g. phytoplankton bloom timing, magnitude anduticstritased

on mooring- and glider-derived measurements/parameterisations of mixed layer depthtabiity.
Upscaling the use of gliders and powered AUVs in the seasonally ice-covered WAP shathenti
would require a robust and well-integrated system for under-ice navigationgusimpact accurate
inertial navigation systems and/or acoustic telemetry networks that allow AUVs to tletegheir
position. Such systems would facilitate major innovations in future observational stumlies, f
example in elucidating the role of small- and meso-scale processes under the ice, thertsatisno
produce, and their effect on the larger-scale circulation, under-ice ecosystems and biogécahem
cycles. Alongside technological developments in observational approaches, improvements in the
resolution of regional ocean circulation models and incorporation of realistic botbgography are
required to fully resolve the most important physical drivers of the shelf ecosystem

Utilising the WAP shelf regi@sa natural laboratory or model system to understand the impacts of
climate and sea ice changes and the resultant physical oceanographic changes here and in other
marginal ice zone settings on phytoplankton dynamics, carbon and nutrient cycling, #inssaof
climate-active gases, and pelagic, benthic and microbial food webs requires an integrated approach.
Novel process-based experimental, technological and modelling approaches should heetbmb
with the long-running time-series and spatial measurements that form the backbone of our
knowledge of variability and change in the WAP marine system. Given pronounceodesieity
across the shelf, quantifying the importance of biological hotspots for the regionalstenoswand
biogeochemical cycling is a high priority. Detailed process studies and repeat sarhieseo
hotspots, including along the sea ice edge and in the high-productivity fjords, witisnpur
understanding of the conditions required to create these hotspots and their change ower ti

In such a highly coupled system, it is imperativeross-cut disciplinary boundaries and characterise
the interactions between different system components, e.g. phytoplankton, zooplankton and
microbial dynamics in regulating biogeochemical cycling and the biological carbon paotigm-up
versus top-down predation control of zooplankton distributions, benthic faunal compositio
behaviours and benthic-pelagic nutrient fluxes. For example, further application of genomics,
transcriptomics and proteomics approaches have the potential to revolutionise our undenstpoidi
microbial processes and interactions, and marine ecosystem functioning in gdmeraealing vital
functions of phytoplankton and bacterioplankton, and identifying the many viruses infeatiange

of hosts. Combining a range of methodologies relevant to different processes, intesaatiol
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timescales will also be critical to making progress. Adopting such an interdisciplimalarsystem
approach offers perhaps the most promising opportunity for driving a step-change in our
understanding of the functioning of the WAP marine ecosystem and its response to, amal, rol
ongoing climatic and environmental changes, making this a clear overarching priothg fo
international community.

Temporal and spatial coverage of data illuminating these physical-biological-biegeicah

interactions can be augmented by maintaining and strategically enhancing the existing psagram
sustained observations, by adopting the essential ocean variables (EOVs; Constable et Al. 2016
Framework for Ocean Observing, 2012) as a framework for an observing system fokfheakd by
employing technological innovations to fill data gaps and increase resolution in time and space.
addition to the discipline-specific approaches and innovations outlined in Table 2 eptykics-

based technologies detailed above, a number of sensor-based innovations can be emplogsd a
disciplines and provide a more integrated perspective. For example, the utility of Ald¢ss ghd
moorings can be expanded substantially by increasing the number and reliability of seapsaivkec

of measuring a range of physical, biological and chemical parameters (e.g. turbulence, fluorescence,
pCQ, nitrate). Equipping seals with small CTD tags has provided the extensive hydrographic MEOP
(Marine Mammals Exploring the Oceans from Pole to pole) dataset alongsigdernentary animal
behaviour data (Treasure et al. 2017), with significantly greater coverage than otherwise available.
Developing and deploying a greater range of sensors (e.g. fluorescence, dissolved oxygen etc.) woul
facilitate more detailed sampling in ice-covered regions, near-shore embayments and over larger
spatial scales than ship-based efforts. Systematic deployment of multi-frequency aconsthigs,
moorings and AUVs would allow us to estimatiéd kiomass and distribution, and the movement

and foraging behaviour of their pelagic predators, with unprecedented accuracy and coveragge acro
the shelf, including in the data-sparse southern region and under ice.

In the context of physical controls on ecosystem structure and functioning, a major questien t
addressed is the extent to which organisms at all trophic levels can acclimate, adapt, nagchte
change their behaviours, and the rates at which these processes can occur. Process studies and
manipulation experiments are required, focusing on the physiological profilé® ahajor species of
phytoplankton, bacterioplankton, viruses, zooplankton and benthic organisms acrosstcamnd

future physical (temperature, salinity, mixing), chemical (macro- and micronutrients, pCO O

and ecological (grazing pressure, viral infection) conditions, and therefore thely &biicclimate.
Rates of geneflow within and between populations are needed to quantify the capacity of benthic
and pelagic communities to adapt to altered environments. Top predators can be used as sentinels
of ecosystem change as their abundance and distributions reflect those of their prey. Repmductiv
studies targeting major zooplankton taxa and lgtrophic level organisms and in-depth studies of
the growth, diet and behaviours of juveniles would inform our assessments of recruitment success
and population dynamics of key species, and their responses to different conditindsrstanding
}EP v]eue[ J0]8] ¢ 8§} ,nodrateSand/or cliarge behaviours, and over what
timescales, will shed light on the resilience and sensitivity of different ecosystem oamigdn the

face of pronounced environmeatvariability and change, and their response to multiple natural and
anthropogenic stressors.

Direct human pressure on regional krill stocks is increasing as a result of expanding commercial
fishing activity, particularly in the northern WAP and adjacent open aqesentially reducing food
availability for krill predators (Trivelpiece et al. 20INanagement of this fishery by the Convention
on Conservation of Antarctic Marine Living Resources (CCAMLR) must be informed bywenidao
of the foraging behaviour of krill predators, for instance using satellite tags and motion-g¢agm
to determine the critical locations and times of year for their feeding (Weinstein 20al), so that
any overlap and potential competition with fishing activity can be minimised (Hinke20141b).
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Enhancements of our observational capacity and coverage across the WAP shelf must be
accompanied by continued development of modelling frameworks and capabilitiesdal rine

most important mechanisms behind variability and change at all levels of the ecosysteraving

the resolution and scope of regional physical, biogeochemical and habitat or ecosystem madels i
particular priority, given large heterogeneity spatially and over daily to decadal timesBalisr-
constraining the rates of key processes, such as onshelf CDW transport, meltwater inputs, algal
growth and organic matter remineralisation, and the major fluxes of heat, nutrients, gases and
particles based on coherent high-quality observational data is needed for optinnisztinodel

input parameters and boundary conditions. Ongoing development of regional systei@lsnaill

allow us to test the relative importance of different processes, elucidate the combined and/or
competing effects of multiple stressors, and explore the feedbacks between the drivers and
conseqguences of change amongst the different system components over a range of timescales
Further, only once we can represent accurately the key processes and interactions at work in
modelling frameworks can we be confident in our projections of future changes in upper ocean
mixing, nutrient supply, primary production, ecosystem functioning and resilience, and air-sea
exchange of climate-active gases as the changes in sea ice extent, duration and atmospheric forcing
continue to evolve. Ultimately, better quantification of the processes and feedbadks &/AP, and

their interactions with systems up- and down-stream in regional atmospheric and oceanic circulatio
systems, will enable us to better-represent this Southern Ocean region in global climate models and
understand its role in contemporary global change.

4. Closing remarks

We have demonstrated the importance of the WAP marine system due to pronounced variability
and change in the physical environment and ocean-climate interactions, strologjical and
biogeochemical consequences locally and regionally, and its utility as a natural laboratory fo
examining how climate and sea ice changes might restructure ecosystems here and elsewhere. We
have summarised the state of knowledge regarding the key mechanisms and interactions regulating
ecosystem functioning and ocean-atmosphere coupling, as well as the changes undentlay and
ecosystem responses and ocean-climate feedbacks. We also highlight the overaratritigs and
discipline-specific objectives for future research and present a vision for an observing syste
capable of addressing these priorities and objectiVi#gerking towards this vision will require further
improvements in integration, collaboration and co-ordination across natiormrpms, projects and
initiatives, including sharing of expertise, standardisation of field, experimental andiaakly
techniques, and optimisation of ship-time, station infrastructure and other resources. Terithjs

SOOS has recently launched the Due South online database of ship- and station-based fieldwork
programs in the Southern Oceadnttps://data.aad.gov.au/duesouth/ as well as establishing

regional working groups for the WAP and other regions. More effective engagement with other
research communities, such as the climate science, meteorology, glaciology, terrestrial
biogeochemistry and paleoclimate communities will be critical in defining the mpsiriant

external controls on the WAP marine environment, the key fluxes into and out of thensyand

the longerterm context of the changes underway.

Improvements in data accessibility across disciplines and national programs is also called for
following the examples of the Palmer LTER projeitp{/pal.lternet.edu/data), the KRILLBASE
database for zooplankton survey data (Atkinson et al. 2017) and the Surface Oceatia8(Bakker
et al. 2016). Widespread adoption of similar data policies and practices across the international
community, and efficient linking of existing publicly available databases, for examplehsing
SOOSmap online data portal (http://www.soos.ag/data/soosmap), would be of significant benefit
Coordinating and opening up all data sources is recommended as a significant sciepufituapy

for the international community working across multiple disciplines in the WABnegid beyond.
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Figures

Note: Figures 2-11 and 113 should be published in colour; Figures 1 and 12 should be black and
white.
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Figure 1. (a) Trend in winter air temperature (June, July, August; JJA) as recorded at Faraday/
Vernadsky Station (65.4 °S, 64.4 °W) from 1951 to 2017. The long-term linear trésér(soll951-
2017) is significant at the <0.001 level, while the shat-term trends (dotted: 1979-1997; dashed:
1999-2017) are not significant at tipe<0.1 level. (b) Trend in the annual ice season duration
determined using the GSFC Bootstrap version 2 sea ice concentration time series from-Rimbus
SMMR and DMSP S8MSMIS and methods described in Stammerjohn and Maksym (2017). The
trend was determined for the WAP continental shelf, extending from Anvers Island to Charcot
Island. The long-term trend (solid line: 1979-2017) is significant gi #@05 level, while the
shorter-term trends (dotted: 1979-1997; dashed: 1999-2017) are not significaimé @t<0.1 level.
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Figure 2. Map of the WAP showing the major sustained research efforts represented, delineation of

the northern, central and southern sub-regions referred to in the text (white dashed lines; N =

northern sub-region, C = central sub-region, S = southern sub-region), and the major circulation and

bathymetric features of the shelf system. Modified from Moffat and Meredith (2018).
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Figue 3: Infographic summarising the key components of the WAP marine system, the most
important mechanisms and interactions in the context of the two overarching questions addressed
in this paper, and the major priorities and approaches for future marine research at the WAP.
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Figure 4. Time-series data from RaTS, July 2004 to April 2010, showing that high sea ice winters lead
to shallow mixed layers, high chlorophyll and strong nutrient drawdown, whilst lowceegeears
lead to deeper mixing, lower chlorophyll and less nutrient drawdd@nsea ice score (grey shading;
coverage normalised to ice type, out of ten where ten is full fast-ice cover), mixed layer def@h (ML

op o]v V % 8Z g +B.05kdrd, 5% PAR depth (orange line; depth where
photosynthetically active radiation is 5 % of its surface value), chloraophgihcentration at 15 m
(black line). Nutrient concentrations (b) nitrate, (c) phosphate, (d) silicic acid. Green shadittg depi
the period when chlorophyk >1 ug . Modified from Henley et al. (2017); sea ice, MLD, PAR and
chlorophyll data from Venables et al. (2013).
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Figure 5The relative presence of diatoms (from fucoxanthin, blue) and cryptophytes (from
alloxanthin, green) plotted in temperature-salinity phase space for (a) Palmer stations B and E, and
(b) the Palmer LTER grid. The size of the circles indicates the relative concentration of gfilaroph

for discrete samples. Modified from Schofield et al. (2017).

Figure 6. Relationships between nitrate concentration and its (a) nitrogen and (b) oxygen isotope
composition, compared to modelled relationships based on nitrate uptake alone with fractionati

( S}Ee ~x* }( 0 v A : ~}0]

\'

4

(0]

| oPE » W & plestingS]A 0CeX }3:

below the modelled lines indicates remineralisation of organic nitrogen where nitrate uptake js high
and subsequent nitrification in the subsurface water column. Data point colours represent different

stations. Modified from Henley et al. (2018).
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Figure 7(a) Seasonal cycle of DIC from December 2010 to February 2014 at 15 m depth at RaTS sites
1 (blue) and 2 (red), both in Ryder Bay. Error bars are uncertainty (2SD) based on measurement
precision. (b) Red solid line shows the seasonal cycle of the differefic&ihetween the sea and

] EFCEY, with the pink shaded region representing approximate 95 % confidence from uncertainty

V 0Ce]eX Z «Z oD@ =<0 WAeredcean G@oncentration is in equilibrium with the
atmosphere.4CQ > 0 during winter indicates supersaturated conditions and an efflux pfdCtbe
atmosphereV f@Q < 0 during summer indicates undersaturated conditions and oceanic uptake of
atmospheric C@Blue bars show percentage ice cover, with dark blue representing fast ice,
turgquoise representing pack ice and light blue representing brash ice. Reproduced with permission
from Legge et al. (2015).

35



1385
1386

1387 Figure 8. Summertime distribution of inorganic carbon system and other biogeochemical pammeter
1388 in surface water for the Palmer LTER grid for the period 1993 to 2012, showing onshore-adfsthore
1389 north-south gradients in carbonate chemistry, salinity and inorganic nutrients. Reproduced with
1390 permission from Hauri et al. (2015).
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1391
1392

1393 Figure 9. Surface DMS concentrations during cruise JR307 in January 2015 plotted on tdxbf the
1394 gridded January DMS climatology (Lana et al. 2011). JR307 data were calculated from filtered
1395 DMS(P) values (Stefels et al. 2018). The black line depicts the shelf edge; the redinotted

1396 indicates the approximate position of the northern edge of the marginal ice zonegdilmnsecond
1397 half of December 2014, immediately preceding the cruise.
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1398 Bacterial Abundance
1399

1400 FigurelO. Long-term averages (2003-2017) for January of both bacterial abundance (top left) and
1401 production (top right) in the surface ocean (maximum depth 10 m), showing intense spatial

1402 heterogeneity with higher abundance and production in inshore regions, and higher abundance

1403 further south Lower panel shows strong variability in bacterial production with abundance for

1404 individual January cruises, as per legend. All linear regressions are statistically sigpifi€ad5),

1405 except for 2012. These data were collected as part of the Palmer LTER project and are updated from
1406 Ducklow et al. (2012a).
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1407

1408 Figure 11. Comparison of the tracks of crabeater seals (dark red) (Burns et al. 2004), elephant seals
1409 (green) (Huckstadt et al. 2012b), Weddell seals (blue), leopard seals (purple) (Cost@Edhland
1410 fur seals (yellow) (Arthur et al. 2017) over an annual cycle.
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Figure 12Brooding period and development rates of brooding marine gastropod snails at ambient
temperatures for tropical to polar species) Time from brood initiation to release (1/development
rate) versus ambient temperature. In most cases release is of crawling juveniles, but for two
Antarctic species, release is of veliger larvae and development time to juvenile is approximatel
double that of brooding per se (Peck et al. 2006b). Data shown for 68 gastropod spe@ex, nin
which live at temperatures around 0°C, is the full development period to juvebjlédr(henius plot

of Ln developmental rate to juvenile stage for brooding gastropod molluscs. Fitted line is for
temperate and tropical species (filled circles; brooding rate (1/weeks) = 20.37 - @25 16 =

0.36, F = 32.4, 58 d§,<0.001); Antarctic species fall significantly below. Reproduced from Peck
(2018).
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Figure 13. Relationships between annual abundance anomalies of specific zooplanktom tia&a o
Palmer LTER grid, 1993-2013, and sub-decadal climate oscillations and annual abundaradiean

of primary production. (apalpa thompsonénd SAM winter index from the year prior, (b) pteropod
Limacina helicinand multivariate ENSO index (MEI) from winter the year prior, (cEkplhausia
superbaand primary production from two years prior, (d) Kfilysanoessa macruand primary
production from two years prior. Full refers to the full LTER grid, North refers to the nortbetnm
three sampling lines, which are referred to as the central WAP sub-region in this paper, and South+
refers to the southernmost five sampling lines, referred to as the southern WAP sub-nediis i

paper (Figure 2). Modified with permission from Steinberg et al. (2015).
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1434

1435 Figure 14. Population census data for Adélie, chinstrap and gentoo penguins in the Palmer Station
1436 region, 1975-2016. Updated from Ducklow et al. (2013).
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Figure 15Effects of in situ warming on the growth of common epifaunal marine invertebrates on
Rothera Point, Adelaide Island. Panels show area covered by the spatially dominant bryozoan
(Fenestrulina ruguleand spirorbid Romanchella perrigrunder warming (+1°C and +2°C) and

control treatments, showing different growth rate responses between species. Data show the mean
and interquartile range of panel surface area covered by a single colony (top) or individt@i{bo
Different letters indicate significantly different areas per ages(®ith p <0.01) Modified from

Ashton et al. (2017).

a)

Figure 16. Hourly surface current map for the Palmer Station region for January 2Zr Q'
2015. The HF radar sites located at Palmer Station (green triangle) and the Wauwenmeans (g
diamond) and Joubin (green circle) island groups are also shown.
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