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Eukaryotic flagellate swimming is driven by a

slender motile unit, the axoneme, which possesses

an internal structure that is essentially conserved

in a tremendous diversity of sperm. Mammalian

sperm, however, which are internal fertilisers, also

exhibit distinctive accessory structures that further

dress the axoneme and alter its mechanical response.

This raises the fundamental question of what is

the functional significance of these structures, how

they affect the flagellar waveform and ultimately

cell swimming. Hence we build on previous work

to develop a mathematical mechanical model of

a virtual human sperm to examine the impact of

mammalian sperm accessory structures on flagellate

dynamics and motility. Our findings demonstrate

that the accessory structures reinforce the flagellum,

preventing waveform compression and symmetry

breaking buckling instabilities on increasing the

viscosity of the surrounding media. This is in

agreement with previous observations of internal

and external fertilizers, such as human and sea-

urchin spermatozoa. In turn, possession of accessory

structures entails that the progressive motion during

a flagellum beat cycle can be enhanced as viscosity

is increased within physiological bounds. Hence

the flagella of internal fertilisers, complete with

accessory structures, are predicted to be advantageous

in viscous physiological media compared to watery

media for the fundamental role of delivering a genetic

payload to the egg.

c© 2014 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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The mammalian sperm flagellum differs crucially from the simplest flagellar axonemes found

in nature [1,2]. In addition to the intricate 9 + 2 axonemal scaffolding of the simple structure,

each of the nine concentric axonemal microtubule doublets is attached to an outer dense fibre

(ODF), forming a complex known as the 9 + 9 + 2 flagellum [3,4], as depicted in Fig. 1(a). These

ODFs consist of highly condensed, modified intermediate cytoskeletal filaments strengthened by

disulfide linked keratin proteins, and taper along the flagellum length, terminating prior to the

distal end. The 9 + 9 + 2 complex is further surrounded by a proteinaceous keratin-like material,

which forms the fibrous sheath (FS) that provides two further longitudinal columns that are

diametrically opposite and also taper along the flagellum, from the mid-piece to the principal

piece, in effect structurally replacing two of the ODFs at the principal piece [2–4] (Fig. 1(a)). In

addition, the mammalian flagellum is proximally sheathed by mitochondria in the midpiece, and

all of this flagellar structure is enveloped by a cell membrane.

Despite the mechanical significance of the ultrastructural flagellar components exhibited by

mammalian sperm, little is known about their biological function nor the evolutionary pressures

that lead to these critical flagellar adaptations [4]. Since the first electron-micrograph observations,

it has been conjectured that the ultrastructural complex is necessary to provide the structural

and mechanical support to stabilize long flagella observed in most mammalian spermatozoa

[2,3,5–9]. In particular, Lindemann [9] hypothesised that only a reinforced flagellum would be

capable of harnessing the increased power from a larger number of molecular motors present in

a long flagellum, which is especially relevant for motility within the highly viscous fluids of the

mammalian female reproductive tract [10].

Such ideas are reinforced by experimental observations of sea urchin sperm, which possess

flagella that consist of a simple axoneme with no additional ultrastructure [11]. In particular when

migrating in a high viscosity methylcellulose solution with a similar viscosity to cervical mucus

in the mammalian reproductive tract [10], such sperm reveal a rich flagellar dynamics (Fig. 1(b)

and [11]), consistent with theoretical predictions of a flagellar buckling instabilities [12]. Woolley

& Vernon [11] further reported symmetric wave compression behaviour, as also illustrated in

Fig. 1(b), and even more extreme levels of flagellar wave confinement if the head is attached to the

coverslip, indicating sensitvity to dynamical constraints of the sperm head. Elastohydrodynamic

systems are well known for its sensitvity to boundary conditions [13,14]. Indeed, non-linear

flagellar instabilities [10] are dramatically changed upon different end conditions, from fixed to

free sperm head constraints. In particular, the magnitude of the symmetry-breaking events is

highly dependent on the head size of free swimming spermatozoa, where tight circular swimming

trajectories are associated with large head sizes, as depicted in Fig. 1(e). In contrast, a very

distinct behaviour is observed for human spermatozoa migrating in methylecellulose solutions of

similarly high viscosity [10], as depicted in Fig. 1(c), where the flagellar wave form is characterised

instead by a smooth flagellar meandering envelope with a gradual increase of the wave amplitude

along the flagellum. In particular, the human sperm flagellum responds very differently to

viscosity increases compared to sea urchin. This may be observed by contrasting Fig. 1(b) with

Fig. 1(c). The latter highlights how the ultrastructural components of the mammalian flagellum

are likely to have a major impact on the flagellar waveform, and thus the cell swimming behaviour

in high viscosity media.

Despite such observational evidence for the structural significance of accessory structures

on flagellar bending propagation and modulation [4,10,11], their influence on the swimming

behaviour of mammalian spermatozoa have been markedly overlooked in the literature. In

the inaugural theoretical study, Lindemann [8,9] modified the geometric clutch model [15] to

incorporate the effect of accessory structures, by assuming a linear tapering of the elastic stiffness

along the arclength, for immobilised sperm cells. The model successfully predicted a reduction in

the maximum flagellar curvature caused by the additional stiffness, together with a qualitative

agreement for bull sperm experiments. Eleven years later, Riedel et al. [16] investigated the

effects of perturbative, and thus small, structural inhomogeneity, via a linear decay of the bending

rigidity. In particular, several existing models incorporating molecular motor coordination
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Figure 1: A comparison between the mammalian sperm and the naive axonemal flagellum.

(a) Illustration of a mammalian flagellum, depicting the additional reinforcing structures (red

shading) and the cross-section of the mid-piece, characterised by the presence of nine outer

dense fibres exterior to the axoneme and a fibrous sheath (yellow shading); all reinforcing fibres

gradually taper along the flagellum, ending prior to the distal tip of the sperm. (b) Wave-

compression and symmetry breaking buckling instabilities in a high viscosity methylcellulose

solution for sea urchin sperm, which possess a flagellum without accessory structures of length

∼ 42µm; reproduced from [11], permission pending. (c) Human spermatozoa, with reinforcing

accessory structures on a flagellum of length ∼ 50µm, swimming in a similar highly viscous

methylcellulose solution, which highlights a suppression of buckling instabilities; reproduced

from [10] with permission pending. (d) Modelling predictions for the non-dimensional absolute

compression, as a function of time t and arclength s for a naive flagellum undergoing buckling

instability in high viscosity [12]. The predicted transition can induce high curvatures and

asymmetric waveforms, inducing circular swimming paths, depicted in (e), with smaller circular

radius for spermatozoa with larger heads. Note that plot (d) shows that high elastohydrodynamic

internal compression is predicted at regions where the ultra-structural components are larger

in mammalian flagellum (black arrows in (d)). Plots (d,e), have been adapted from [10] with

permission.

dynamics [15,17,18] were compared with the flagellar beating of bull spermatozoa. A satisfactory

fitting was reported for the self-organization model with load dependent detachment rate of

motors [18,19], if the variation of the elastic stiffness along the flagellum is negligible. The model
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curve fitting was not significantly improved by the flagellar tapering of the bending stiffness [16].

This suggested that the flagellar ultrastructural components may play a minor role in shaping the

flagellar waveform at the perturbative level, and thus at the leading linear order approximation

considered. More recently, the role of temporal nonlinearities arising from second harmonics of

the flagellar beat was also shown to contrast very well with experiments, without reoccurring

to the spatial structural inhomogeneity present along the human sperm flagellum [20]. These

results are, however, in contrast with estimates from videomicroscopy experiments Gaffney et

al. [4] for the distribution of hydrodynamic, elastic, and internal sliding bending moments, which

did not treat flagellar mechanical heterogeneity as a perturbation, nor the flagelar beat was

truncated in the frequency domain [4]. In another empirical investigation, Lindemann and co-

workers [21,22] estimated the internal sliding forces by considering an exponential decay of the

flagellum stiffness. An approximately constant magnitude of the sliding force along the arclength

was reported, agreeing with [4]. The flagellar elastic tapering was equally observed to influence

the beating pattern of hyperactivated mammalian sperm [23], which was biochemically regulated

within a model assuming a significant varying tensile stiffness. To date, theoretical investigations

focusing on the effects of ultrastructural flagellar apparatus on the sperm swimming in high

viscous fluids are still lacking in the literature.

Here, our fundamental aim is to extend the elastohydrodynamic formulation presented in

Gadêlha et al. [12] to study the mechanical role of accessory flagellar structures and their tapering

in mammalian spermatozoa (Fig. 1(a)). Hence we investigate the impact of the flagellar bending

stiffness decreasing monotonically and significantly with arclength for a virtual model of a free

swimming human sperm. In particular we will explore the observation highlighted in [12] that

the ultrastructural components reinforce regions along the flagellum where high compression is

expected, as illustrated in Fig. 1(d). In the absence of flagellar reinforcement, this compression

mechanics is predicted to subsequently induce asymmetric waveforms and circling trajectories,

as shown in Fig. 1(e). Hence we explore the resulting consequences of flagellar reinforcement by

accessory structures for waveform formation and cell motility in light of such mechanics, together

with a consideration of how the underlying model dynamics is altered by the heterogeneity of the

structural mechanics.

1. Flagellar ultrastructure elastohydrodynamic formulation

To proceed, we generalise the planar sliding filament mechanism [12,16,17,19,24–31] to

incorporate the role of tapering in the accessory flagellar structures of mammalian sperm cells.

The model axoneme filaments are represented by a pair of parallel, planar elastic Euler-Bernoulli

rods, depicted in black in Fig. 2a, and associated with a reinforcing structure, represented by

the light blue shading. The model filaments are assumed to be homogeneous, inextensible and

separated by a constant gap space b, which corresponds to the axoneme diameter. Dynein motors

induce active sliding stresses along the axoneme, thus inducing a relative sliding couple acting

on the model axonemal filaments and the paired ultrastructural components. However, at the

connecting piece of the sperm head junction, the axonemal filaments are highly constrained [11]

and we assume no interfilament sliding is permitted at this point; thus the filaments bend due to

the dynein couples, which is the basis of the sliding-filament mechanism.

We describe the flagellum position, relative to the laboratory frame of reference, by its neutral

line X(s, t) (see Fig. 2a), noting that t is time and s denotes the distance along the flagellum with

0≤ s≤L, where L is the filament length. The local flagellum coordinate system is represented

as an orthonormal pair with a positive orientation {ŝ, n̂}, where ŝ = Xs ≡ ∂X/∂s is the tangent

vector and n̂ is the vector normal to the flagellum centreline (Fig. 2a). The flagellar dynamics is

inertialess to an excellent approximation and is governed by balancing the viscous drags and

couples per unit length with the internal forces and torques, both structural and dynein induced,

per unit length.

We generalise the elastohydrodynamic formulation presented in Ref. [12] by incorporating the

effect of the ultrastructural components, captured by the effective elastic stiffness E(s) that varies
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(a) Human sperm model (b) Tapering function

Figure 2: A schematic of the sliding filament mechanism modified by the ultrastructural

components of mammalian spermatozoa. Relative to a laboratory fixed frame {x̂, ŷ}, the vector

X(s, t) describes the position of the flagellum neutral line (dashed curve) at time t. The internal

shear force f(s, t) is acting tangentially and in opposite directions on each sliding filament

(solid black arrows) within the axoneme (light yellow shading) with diameter b, with the

flagellar reinforcing structure given by the light blue shading. Note that relative spatial extent

of the shaded regions are not to scale. The reinforcing structures are paired with each sliding

filament, with a spatial heterogeneity that is captured by an effective elastic stiffness E(s), which

monotonically decays with the arclength s. (b) Tapering functions, as discussed in Sec. (b): (i) e1,

represents the absence of additional structures, (ii) e2, a linear taper [8,9], (iii) e3, a an cotangent

taper, corresponding to the qualitative trend in flagellum stiffness measurements [21,22], and (iv)

an inverse cotangent taper, relative to the function e2.

along the arclength s. Nondimensionalising with respect to the length scale L, time scale ω−1 and

force density E0/L
3, for a given beating frequency ω and a constant axonemal elastic stiffness E0,

the modified dimensionless elastohydrodynamic equation for a mammalian flagellum is given by

Sp4
Xt =− (eXss)ss − (γ − 1)

(

eXs · Xssss + 2es Xs · Xsss
)

Xs

+ (TXss + γTsXs) + (fsn̂ + γf n̂s), (1.1)

where the subscripts s and t respectively denote differentiation with respect to arclength and

time. The sliding force density within the axoneme is given by f(s, t), γ = ξ⊥/ξ‖ is the ratio

between the perpendicular, ξ⊥, and parallel, ξ‖, fluid dynamic resistance coefficients. The function

e(s) represents the flagellar bending stiffness relative to the axoneme stiffness, referred to here

as the tapering function, as we discuss in Sec. (b) below and in Fig. 2b. The dimensionless

sperm-compliance parameter,

Sp =L

(

ωξ⊥
E0

)1/4

, (1.2)

characterises the relative importance of elastic forces to viscous drag [32]. The non-dimensional

tensile force T (s, t) is the Lagrange multiplier for the inextensibility constraint, and it is implicitly

determined by the identity Xs · Xs = 1,

γTss − (Xss · Xss)T =−3 eγ (Xsss · Xsss)− e (3γ + 1)(Xss · Xssss)

− es (7γ + 2)(Xss · Xsss)− ess (2γ + 1)(Xss · Xss)

− (γ + 1)(n̂s · Xs)fs − γ(n̂ss · Xs)f. (1.3)

In the absence of structural components, the tapering function is a constant, e(s) = 1, and the

governing equations are equivalent to earlier models [12,19,25,33]. A variety of derivations of

active elastohydrodynamic systems have been presented in the literature, and thus these are not
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reproduced here. Instead, we direct the reader to excellent discussions and detailed derivations

in Refs. [12,19,25,29,31,32,34–38] and their appendices.

Empirical estimates of the effective sliding moment density [4], resulting from the coupling

between the dynein molecular motor activity and the passive cross linking proteins within the

flagellum [10,16,39–41], indicate that the observed flagellar waveform of human sperm migrating

in high-viscosity fluid can be captured by a simple travelling wave of dynein contraction, with

a single characteristic frequency, and approximately constant magnitude along the flagellum

length [10,42,43]. This in-situ observation has motivated the use of a simple prescribed travelling

wave to model the internal sliding density,

f(s, t) = a cos(ks− t), 0≤ s < 1, (1.4)

where a, k are respectively the dimensionless force amplitude and wavenumber. This allows

the investigation of pure elastohydrodynamical effects arising from flagellar structural tapering,

unbiased by further complications associated with dynein control. We further consider the distal

end of the flagellum to be free from sliding forces due to the lack of structural and motor elements

at the very most distal part of the flagellum [2,3,5,6,44].

(a) Boundary Conditions

The equations governing the flagellar dynamics are complemented by boundary conditions, in

which either the movement of the flagellar endpoints is specified or a balance of forces and

torques at each end is imposed [45]. In particular, at the distal boundary, s= 1, the flagellum

is free to move and, therefore, the external contact forces and torques are zero, i.e.

0 = Fext =−eXsss − es Xss+f n̂ + TXs,

0 = Mext × Xs = eXss. (1.5)

At the proximal end, s= 0, the flagellum is driving the sperm head and thus experiences a non-

dimensional viscous drag force, Fhead, and moment, Mhead, given by
(

Fhead

Mhead

)

=L4 R(r/L, t)

(

U

Ω

)

, (1.6)

where L=L(ηω/E0)
1/4, and η denotes the fluid viscosity. R represents the dimensionless grand-

resistance matrix for the sperm head, and depends on the head morphology, though we consider

a ‘human-like’ sperm head geometry taken from [46]; in addition r denotes the distance between

the head centre of mass and the sperm head-flagellum junction at s= 0. The torque and force

balance at s= 0 yield the required boundary condition for the flagellum in terms of the motion of

the sperm head from a specification of the head velocity field (U, Ω), via

Fhead = eXsss + es Xss − f n̂ − TXs,

Mhead × Xs =−eXss − n̂

∫
1

0

f(s′)ds′, (1.7)

where the linear and angular velocity coupling with the basal flagellar movement via Xt|s=0 =U

and [Xs · (ẑ ×Xts)]|s=0 =Ω closes the system.

(b) Ultrastructure tapering function

The dimensionless tapering function e(s), depicted in Fig. 2b, captures the arclength variation of

the bending stiffness associated with the tapering of the flagellar ultrastructure. These reinforcing

components gradually decrease in size, terminating prior to the distal tip of the flagellum (Fig.

1). Here, the tapering function, e(s), measures the flagellar bending stiffness relative to the

bending stiffness of the axoneme, E0 = 0.9× 10−21 Nm2 [47–49], taken from demembranated

sperm axonemal flagella of sea urchin Lytechinus pictus. Direct measurements of bending stiffness
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for human sperm flagellum are not available, however estimates can be inferred from rat sperm

measurements, given the similarity of the ultrastructural components [4]. Mammalian flagellar

structural properties are observed to allometrically scale with geometry, consistent with a fixed

material [1], with the exception of the anomalous bull and guinea pig sperm. Since the cross-

sectional area of the human mid-piece outer dense fibre is 1/8 that of the rat [1], the prediction for

the bending stiffness of human flagellum yields 4× 10−21 Nm2 in this region, about four times

the stiffness of the axoneme. Due to the absence of quantitative studies on the elastic properties

of accessory structures in other sections of the flagellum, we smoothly fitted the upper and lower

bound of bending stiffness so that 1≤ e(s)≤ 4. We considered four distinct cases for comparison

purpose, illustrated in Fig. 2b: (i) a constant function e1, representing the absence of additional

structural components characteristic of simple flagellar axonemes [47–49], (ii) a linear decaying

taper e2, as utilised in Refs. [8,9,16], (ii) a cotangent decaying function e3, motivated from spatially

resolved data [21,22], and therefore the biologically relevant case, and finally (iii) an inverse

cotangent decay e4, representing the mirror image of e3 relative to the linear function e1.

(c) Resistive Force Theory

One should note that the above framework captures the viscous interaction between the flagellum

and the surrounding medium by resistive force theory (RFT), which approximates the local drag

on a flagellar element by using the leading order term of slender-body hydrodynamics [50].

Although RFT is theoretically only valid for sufficiently slender filaments that are of sufficiently

low curvature and sufficiently far from intersection or self-intersection, its region of validity is

still not entirely clear, given reasonable accuracy is regularly observed in comparison studies

[14,32,34,51,52]. In particular, agreement with the high-precision microscopy imaging of bull

sperm flagella is especially relevant in the context of this study [16,41].

Furthermore, RFT is popular in negotiating the complications of elastic and hydrodynamic

interactions, including relaxational and forced dynamics of stiff polymers [13,14,29,51,53–58],

as well as flagellar dynamics, for example [16–19,25,27–29,52,53,59–64]. While RFT is an

approximation, its popularity in these previous elastohydrodynamical investigations arises

from investigation objectives that are concerned with overall mechanism rather than precise

prediction. Under such circumstances, RFT is generally fit for purpose, and brings the additional

convenience of mitigating the extreme numerical stiffness of elastohydrodynamic systems,

especially in the presence of buckling instabilities, and we analogously inherit these motivations

and considerations in implementing RFT for the current study.

(d) Model parameter estimation

Numerical simulations were carried out for a free swimming cell with a ‘human-like’ sperm head

geometry taken from [46], with dimensions 4.5× 2.8× 1.12µm, and assuming a fluid dynamic

resistance ratio γ = 2. For human sperm experiments [4,10,12], the sperm number may vary from

Sp = 4, for low viscosity, watery, in-vitro fertilisation medium, up to Sp = 24, for a cervical mucus

substitute, assuming Newtonian behaviour. We focus our attention on the consequences of a high

viscosity medium and thus the high sperm number regime Sp = 20− 25, although we also display

results for Sp as low as 5 for comparison.

Estimates for the sliding force density magnitude, a, may be inferred from measurements of

the sliding bending moment density [4], extracted from spatial and temporal cinemicroscopy

for a swimming cell, or from direct force measurements of molecular motors [65,66]. Indirect

measurements of the sliding bending moment density extracted from human sperm indicate a

maximum magnitude of 8× 10−10 N, when the tapering of the structural components is taken

into account. Taking the axonemal diameter b= 200 nm [21], with a maximum flagellar length

of L= 60µm, the upper limit of the dimensionless force density magnitude yields a= 3200. The

inferred sliding bending moment density in Ref. [4] is also in agreement with direct measurements

of the total force that a dynein motor can generate, which ranges between 2− 8 pN per motor
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domain for, respectively, the inner arm axonemal dynein and cytoplasmic dynein [65,66]. In this

context, we may also add the intrinsic contribution from the inter-doublet elastic resistance within

the axoneme, observed to be 2 pN per structural repeat for flagellar axoneme [67], which yields an

average sliding force density magnitude of a= 2400. Here, we will allow the sperm-compliance

parameter to vary in the range 5≤ Sp ≤ 25, with a sliding force density magnitude no larger

than a= 2000, noting that the above values for a are estimates only, and the non-physiological

behaviour of flagellar self-intersection can manifest once a is too large. For comparitive purposes

in the results section, it is convenient to display a in terms of the sperm-compliance parameter,

thus hereafter the force amplitude a is rescaled by E0/ℓ
3, where ℓ=L/Sp, also known as the

penetration length [68].

Motivated by the observed flagellar waveform in different viscosities (Fig. 1 and [10,11]), we

restrict our investigation to sliding force wave numbers that are even multiples of π, k= 2π, 4π

and 6π. Previous investigations have revealed that, in general, wave numbers that are odd

multiples of π do not generate realistic wave patterns [12]. The further property of a consistent

wave amplitude without a significant decay as the waveform progresses depends on the interplay

between k and Sp, and can be predicted from linear analysis [12,60]. Hence, we focus our

investigation on the cases where a noticeable forward motion is achieved as a result of the flagellar

beating. Typically, this corresponds to small (large) k for low (high) Sp, also in agreement with

flagellar wave number viscous modulation in human spermatozoa [10]. Furthermore, the sliding

force density magnitude a was gradually increased, within the range of validity above. This

is necessary as higher force magnitudes are required for large amplitude motion when Sp is

increased in elastohydrodynamic systems [12,31,68], though the relation between the force and

amplitude is non-linear [12,32]. The described approach has allowed an investigation of the entire

spectrum of beating patterns for each (Sp, k)-pair. For sufficiently large a, however, flagellar self-

intersection occurs, even though the force magnitude is within its range of validity. In such cases,

the numerical simulation is terminated and the upper limit of the force density is restricted so

that flagellar self-intersection does not occur in the simulations.

2. Results

We begin by presenting a general overview of the distinct flagellar behaviours across a wide

range of sperm compliance factors, from as low as Sp = 5 to as high as Sp = 25. We firstly contrast

large amplitude beating patterns for the flagellar axoneme and human sperm flagellum cases,

given respectively by the tapering functions e1 and e3. Fig. 3 illustrates the time evolution for

six distinct pairs of sperm compliance number and wave number (Sp, k), and force amplitude

a, as detailed above. The flagellar waveform associated with low (Sp, k) is characterised by a

large wave amplitude and a significant forward motion, as demonstrated for (Sp = 10, k= 2π).

Meandering formation and wave compression are distinctive characteristics of large (Sp, k) in

Fig. 3.

For large values of Sp, when the reinforcing flagellar components are absent, extensive wave

confinement is observed (see also Fig. 4), in addition to the flagellar symmetry breaking, driving

the cell in a circular trajectory, see the plot (e1, Sp = 25, k= 6π) in Fig. 3. This is in contrast with

the case e3 with a reinforced, tapering flagellum, akin to the human sperm, with the same values

of Sp and k, where both flagellar wave confinement and symmetry breaking-buckling are not as

pronounced in the results of Fig. 3. Instead, the meandering formation is characterised by a wave

envelope that gradually changes with arclength. At low (Sp, k), however, the waveform is only

weakly modified by the tapering function e3, as shown in Fig. 3 for Sp = 5, 10, k= 2π. Hence,

below we focus on the region of the parameter space where the flagellar ultrastructure is most

relevant, i.e. for large (Sp, k).

However, before continuing with our analysis, we briefly interlude to discuss the mechanism

behind the flagellar symmetry-breaking described above (Figs. 3 and 4) [12]. The latter is a

direct consequence of a dynamical buckling instability of the beating flagellum [12], though

frequently found in filaments under large tangential forces [14,29,57,58,69,70]. In this case, the
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Figure 3: Snapshots of the flagellar evolution for the tapering functions e1 and e3, and six

distinct pairs of wave number and sperm compliance number (Sp, k) across parameter space,

as indicated, plotted at equal time intervals over one period (darker curves denote later times

and the sperm head is only shown at final time for clarity). In particular in the figure, there

are four columns and three rows. In the first two columns from the left one has the profiles e1
and e3, with the Sperm number then increasing on descending the rows. In columns 3, 4 the

wavenumber is increased, as is the Sperm number, and again one has the profiles e1 and e3
with Sperm number increasing on descending the rows. The values of force amplitude a, for

each row, from left to right are, respectively, a= 2.24, 2.54, 1.96, 2.37, a= 2.02, 2.93, 2.04, 2.55 and

a= 2.54, 3.63, 1.30, 2.21, after nondimensionalisation with E0/ℓ
3, where ℓ=L/Sp.

excess in elastohydrodynamic friction experienced by the flagellum causes the compressive forces

to increase beyond a critical value (Fig. 1(d)), which the elastic structure cannot support and thus

buckles (Fig. 1(e)) to release the excess in compression. Upon buckling, however, the flagellum

is still driven by the same internal, periodic internal force, which continuously maintains the

emerging asymmetric bending pattern, thus leading to circular trajectories for free swimming

sperm cells (Fig. 1(e)), as described in Ref. [12].

The stabilising effect of the ultrastructural components for high viscosities is further illustrated

in Fig. 4, which plots the time evolution of the beating shape for each tapering function

e1, e2, e3, e4 and seven pairs of (Sp, k). In this instance, the same force amplitude, a, given by

the upper limit of the non-tapering, pure axonemal case e1, is used for each e2, e3 and e4 case,

for each (Sp, k)-pair. The resulting waveform for the tapering functions e2 − e4 is characterised

by the formation of a wave envelope with a gradual change of the wave amplitude and wave

compression with increasing arclength, while still maintaining a meandering form. The wave

envelope, however, carries critical signatures of the tapering function: narrow wave envelopes

are observed for the tapering cases e2 and e4, whilst wider envelopes are associated with the

tapering function e3.

Furthermore, Fig. 4 also allows one to examine whether the waveform changes are dominated

by the increase in overall stiffness with use of tapering functions e2, e3, e4 compared to e1, or

whether the waveform changes are induced by the introduction of stiffness heterogeneity. Firstly,

noting the quarter-power dependence of the Sperm compliance factor on inverse stiffness in Eq.

(1.2), changing Sp from 20 to 15 represents a factor of three increase in the stiffness, while changing

Sp from 25 to 15 represents approximately a factor of eight increase. However these factor of three

and eight changes in the homogeneous stiffness are insufficient to radically change the structure

of the flagellar waveform, as seen from the persistence of wave confinement for e1 on reducing

Sp from 25 to 15 in the first column of Fig. 4. In contrast, changing from homogeneous stiffness
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Figure 4: Snapshots of the flagellar evolution for the tapering functions e1 − e4, and seven distinct

pairs of wave number and sperm compliance number (Sp, k), as indicated, plotted at equal time

intervals over one period (darker curves denote later times and the sperm head is only shown

at final time for clarity). The same force amplitude, a, given by the upper limit of the tapering

case e1 consistent with the absence of self-intersection (as discussed in the final paragraph of

section (d)) is used for the other stiffness functions e2, e3 and e4. The value of a for each row,

from top to bottom, is thus a= 2.08, 1.96, 2.04, 2.09, 2.22, 1.81, 1.3, nondimensionalised by E0/ℓ
3,

where ℓ=L/Sp. Red markers depict the initial and final position of the flagellum centroid over a

period.

to any of the tapering cases e2, e3, e4, with Sp=25 for example, has an extensive impact in the

wave form, modulating the wave envelope and suppressing waveform compression. Hence one

can observe that it is the tapering, rather than the overall increase in stiffness, that dominates the

observed waveform differences between homogeneous flagellar stiffness on the one hand, and

tapering flagellar stiffness on the other.

We proceed to consider the distance travelled per period, as depicted by the red markers in

Fig. 4. For all tapering functions considered e2 − e4, an increase in the total swimming distance

is observed as Sp increases (for clarity, see also Fig. 5 for the travelled distance over one period).

In general, the swimming distance is larger for e3 when compared with e2, e4 for each (Sp, k)-

pair. However for lower values of the Sperm compliance number, and hence less viscous media

together with typical wave numbers, for example (Sp = 10, k= 4π), the beating shapes associated

with the tapering functions e2 − e4 are marked by a sharp decay of the wave amplitude in the

central part of the tail. As a consequence of such erratic waveform, forward motion is relatively

small for sperm with reinforced flagella, in distinct contrast with the untapered, e1-case, where

the associated sperm possesses a noticeable forward motion in Fig. 4. Hence in less viscous media

the modelling indicates a trend that there is a modest mechanical advantage for swimming with

the absence of accessory structures.

The effect of ultrastructural components on the distance travelled per beat cycle is further

shown in Fig. 5, where the flagellum wave and waveform centroid (red markers) across the

allowed range of a instead are displayed for one period in (a-d) for Sp = 15, 20, 25 and k= 4π,

respectively, for both stiffness functions e1 and e3, as indicated. For both cases, the irregular wave

amplitude along the flagellum switches to a regular wave envelope, subsequently followed by

a wave compression that is much more extensive for the naked axoneme, case e1. Furthermore

one can again observe the trend of a modest increase for the predicted swimming distance per
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Figure 5: Comparison between the stiffness functions e1 and e3: the flagellar waveform and

centroid displacement (red markers) for the maximum travelled distance over one beat cycle,

within the allowed range of the internal force magnitude, as discussed in section (d). (a-d) are

respectively for Sp = 10, 15, 20, 25 for k= 4π. Except for the final time, the sperm head has been

omitted for clarity.

Sp 10 15 20 25

de3/de1 0.77 0.83 1.03 1.53

Table 1: In the above table, Sp is the Sperm number and de3 denotes the distance moved by the

centroid over a beat cycle for the reinforced flagellum, with stiffness function e3, in Figure 5,

whilst de1 is defined analogously for the naked axoneme with stiffness function e1. Hence by

examining the ratio of these distances, one has that the reinforced flagellum travels significantly

more per beat cycle at a high Sperm number of 25 in Figure 5, relative to the naked axoneme, with

the converse observation at a lower Sperm number of 10.

beat cycle for the reinforced flagellum, case e3, as Sp increases from (a) to (d) by comparing the

red tracers along each column, with the converse trend for the undressed axoneme, case e1, as

quantified and further emphasised in Table 1. In particular, it should be noted that while resistive

force theory may not be trustworthy at the highest waveform compression depicted in Fig. 5, due

to the near flagellar self-intersection, the trends in the movement per beat cycle emerge from far

less extreme waveform patterns, away from flagellar self-intersection.

In Fig 6, we present a qualitative comparison with the observations of sea-urchin and

human spermatozoa in methyl-cellulose solutions from Fig. 1(b,c) - a detailed description of

the model and empirical parameters are provided in the figure caption. This firstly indicates

the broad differences in waveforms across different tapering accessory structures. In particular,

a comparison of the flagellar waveforms of the predicted beat patterns highlights the presence

of extensive flagellar compression in column (a) for both observation and simulation, where no

accessory structures are present, as indicated by the bare axoneme in column (a). This contrasts

the observations and simulations of sperm with a dressed axoneme in column (b). However, while

one can readily find qualitative agreement between modelling and observation for both species,

it is not feasible to attempt a quantitative test of the simulation framework by comparison to

observation, for instance since the viscosity measurements for the sea urchin experiments are

lacking and the active forces should be assigned in the simulations. Nonetheless, the qualitative
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Figure 6: A comparison of predictions of the virtual sperm flagellar waveform and observation

in a highly viscous medium. (a) The sea urchin micrographs from Fig. 1(b) are reproduced,

together with net plots of predicted flagellar waveforms (upper: Sp=25, k= 6π, a= 1.3, as in

Fig. 4, first column, 7th row; lower: Sp=25, k= 4π, a= 2.09, as in Fig. 4, first column, 4th row ). The

naked axoneme cross-section in the plot emphasises both that sea urchin sperm has no accessory

structures and that the modelling predictions are for virtual sperm with the homogeneous non-

tapering stiffness function, e1. (b) Human sperm micrographs from Fig. 1(b) are reproduced,

together with plots of simulated waveform netplots (upper: Sp=20, k= 4π, a= 2.55, as in Fig. 3,

final column, 2nd row; lower: Sp=25, k= 6π, a= 2.21, as in Fig. 3, final column, 3rd row).

The dressed human sperm flagellum cross section in the plot emphasises both that the human

sperm has accessory structures and that the modelling predictions are for virtual sperm with the

tapering stiffness function, e3. The sea urchin and human sperm micrographs are respectively

reproduced from [11] and [10], with permissions pending. For the observations in column (a) the

high viscosity was achieved by adding 2% methyl-cellulose to the media with different molecular

weights specified by a nominal viscosity of, respectively, 1.5 Pa.s (upper) and 4 Pa.s (lower). For

column (b), a 1% methyl-cellulose was added for the upper frame and 2% methyl-cellulose added

for the lower frame. However the methyl-cellulose used had the same molecular weight, specified

by a nominal viscosity of 4 Pa.s for a 2% methyl-cellulose aqueous solution at 20 degrees Celsius.

The resulting methyl-cellulose solutions in column (b) was explicitly measured using a cone-and-

plate rheometer [10] with an effective viscosity given by 0.14 Pa.s (upper) and 1.6 Pa.s (lower),

while the beating frequency was 11Hz (upper) and 3Hz (lower). Explicit measurements for the

fluids in the observations of column (a) are not available, though the averaged beat frequencies

reported in [11] for nominal viscosities of 1.5 Pa.s (upper) and 4Pa.s (lower) are, respectively,

3.8Hz (a) and 2.8Hz (b). The flagellum length reported for column (a) was approximately 42µm

while for column (b) it was is 50µm. The sperm number for each case (a, upper; a, lower; b, upper;

b, lower), respectively, is Sp = 23, 27, 20, 26. However the Sp estimates for the experiments in

column (a) are likely to carry systematic error as the media viscosity was not explicitly measured.

agreement further motivates the study of how accessory structures and their tapering impacts the

flagellum waveform and, for example, the presence or absence of waveform compression.

The maximum curvature, κmax, and maximum absolute tension, Tmax, over one period, are

depicted in Fig. 7 for (Sp = 25, k= 4π), as a function of the scaled sliding force magnitude, a. The

maximum curvature and tension for the tapering function e1 is characterised by the presence of

a sharp transition, depicted by the points ‘a’ and ‘b’ in Fig. 7. For the purpose of comparison,
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Figure 7: The maximum curvature κmax (a) and the maximum absolute tension Tmax (b), over

one period, as a function of the maximal sliding force density magnitude, a, nondimensionalised

by E0/ℓ
3, where ℓ=L/Sp. This magnitude is limited for the e1 curves to ensure the absence of

flagellar self-intersection, as detailed in the final paragraph of Section (d). The same points ‘a-f’ in

(a) are depicted in (b), in addition to the associated beating shape, on the right side of (b), with the

sperm head only shown at final time for clarity. Red markers depict the initial and final position

of the flagellum centroid over a period.

the same jump transitions ‘a’ and ‘b’ from Fig. 7(a) are depicted in Fig. 7(b), in addition to the

associated beating shape, shown on the right side of Fig. 7(b). The beating patterns for ‘a’ and ‘b’

are separated by a transition from a diffuse waveform in ‘a’ to a large wave confinement in ‘b’. A

distinct behaviour is found for the tapering functions e2 − e4, in which the maximum curvature

and tension are always lower than the ones observed for the constant tapering function e1. In

this case, while the rapid transition in κmax is gradually decreasing in magnitude for the stiffness

functions e3, e2 and e4, respectively, in Fig. 7(a), no sharp increase in magnitude is detected for

Tmax. Instead, Tmax is non-monotonic and decreases after the transition, as illustrated near the

points ‘c’ and ‘d’ in Fig. 7(b).

This transition is also associated with flagellar wave compression, as portrayed by the beating

patterns in ‘c’ and ‘d’, for the tapering function e3 in Fig. 7. After the waveform compression

transition, Tmax decreases with the sliding force density magnitude between points ‘d’, ‘e’ before

reverting to an increasing behaviour once more between ‘e’, ‘f’. Despite the non-monotonic

behaviour in Tmax between ‘d’ and ‘f’, the variation in κmax is monotonic in this region, as

also portrayed by the beating patterns of ‘d’, ‘e’ and ‘f’. A similar behaviour to e3 is observed

for e2 and e4, with the appropriate scaling, as larger values of Tmax are permitted in these cases.

The tapering functions e3, e2, e4 are able to withstand increasing values of Tmax, respectively

before a transition associated with wave compression occurs, as seen from Fig. 7(b). In contrast,

the absence of wave compression and buckling for waveforms with Sp ∈ {5, 10} in Fig. 3 also

highlights that the sharp transitions in maximal curvatures and tensions seen in Fig. 7(a),(b) are

absent at low sperm compliance factors.

3. Discussion

Since the discovery of the flagellar ultrastructural components in mammalian spermatozoa, the

biological function of this accessory complex has generated extensive debate [2,3,5–9]. Several

studies, from electron microscopic to biochemical techniques, have revealed detailed information

about the morphology, internal structure and molecular basis of these structures [2,3,5–8],

ultimately unveiling its passive reinforcing nature. Despite this crucial advance, the functional
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significance of this sperm flagellum adaptation by passive, reinforcing structures is unclear.

To provide further insight into such questions, we have considered the physical principles of

the flagellar ultrastructural components for free swimming spermatozoa in a viscous fluid. The

structural response of a virtual sperm flagellum is modified by the addition of reinforcing elastic

components that gradually taper along the flagellum length. The fluid-structure interaction is

simplified to the level of resistive-force theory, while keeping the geometrically exact nature of

the flagellar elastic structure, as well as taking into account the presence of the sperm head.

The internal forcing is represented via the sliding filament model of eukaryotic flagellar motility,

ultimately responsible for generating complex flagellar waveforms that are examined in detail

through numerical simulations.

While geometrically linear theory [16] and temporal non-linearities of the beat [20] support

the idea that gradual, spatial tapering of structural components play a minor role in shaping

the flagellar waveform, we have demonstrated that these reinforcing flagellar appendages are

fundamental for the emerging beating pattern, as well as the resulting swimming behaviour of

the spermatozoa. A wide range of beating patterns emerged, from large amplitude waveforms

and substantial sperm head yawing, for a low (Sp, k)-pair, to the meandering flagellar wave

envelope formation, when (Sp, k) is large. In all cases, the flagellar accessory structures acted

to significantly reduce the maximum flagellar curvature when compared with the naive flagellar

axoneme, i.e. when the additional elastic components are absent. Such a reduction of flagellar

curvature was also reported by the pioneering theoretical work by Lindemann [8].

Our numerical simulations further revealed the emergence of a wave-compression instability

in the regime of high sperm compliance, illustrated in Fig. 4 (e1, Sp = 25, k= 4π), similar to the

symmetric waveform confinement reported for sea urchin sperm migrating in high viscosity [11]

(Fig. 1(b) and Fig. 6). This wave-compression instability is characterised by an extreme wave

confinement and formation of symmetric flagellar ‘loops’ in the limit of self-intersection, with

a vanishing time-averaged curvature, resembling Euler-elasticas [29,30]. The wave compression

instability we observe here is, however, triggered dynamically by internal sliding moments

driving the flagellum, further augmented by large elastohydrodynamic friction for a high sperm-

compliance number [12], or equivalently for high viscosity. As the sliding force magnitude

increases, the internal flagellar compression rises until a critical value, which the flagellar

structure cannot support; the flagellar waveform thus tends to collapse onto itself, releasing

excessive internal stresses. As a result, the maximum absolute compression is characterised by

a transition associated with a concomitant rise in the maximum curvature along the flagellum

(Fig. 7) as the sliding force magnitude a is increased. This causes the beating patterns ’a’ and ’b’

in Fig. 7 to change from a spread waveform in ’a’ to a large confinement in ’b’. Naive flagellar

axonemes are also predicted to be susceptible to a symmetry-breaking, buckling, instability,

as previously reported in Ref. [12], in which asymmetric waveforms, instead, drive the sperm

cell in circular swimming trajectories, as illustrated in Fig. 4 (e1, Sp = 25, k= 6π). Asymmetric

waveforms were also observed experimentally for sea-urchin sperm swimming in high viscosity

medium [11], in the absence of chemotactic cues, as depicted in Fig. 1(b) and Fig. 6.

These results provide evidence that asymmetric beating patterns and extreme wave

confinement, as in Fig. 1(b) and Fig. 6, for sea-urchin flagellar axoneme in high viscosity

medium [11], may emerge dynamically, via compression-driven and buckling instabilities due to

the large effective drag experienced by the flagellum, without recourse to variations in structure or

signalling influencing the molecular motors within the flagellum. In this case, the sperm flagellum

becomes unable to sustain the high internal compression, ultimately, compromising the sperm

migration in a high viscosity medium. Sea-urchin sperm however are not generally prone to

flagellar compression and buckling as they fertilise in low-viscosity seawater. Internal fertilisers,

on the other hand, are required to migrate in high viscosity liquids, and therefore are susceptible

to flagellar waveform compression and buckling without ultrastructural flagellar adaptation.

Hence the ultrastructural components found in mammalian spermatozoa are implicated as

important for sperm migration in high viscosity media, with further indirect support from the



15

rs
o

s
.ro

y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
R

.
S

o
c
.

o
p

e
n

s
c
i.

0
0

0
0

0
0

0
..............................................................

qualitative agreement between prediction and observation for the flagellar waveform in Fig 6.

By reinforcing the flagellum in regions where high compression may occur [12], between the

mid- and principal pieces, the flagellar accessory complex is predicted to be able to prevent

flagellar compression and buckling instabilities in high viscosity liquid [10,11], as shown in Fig. 4.

Analysis of this figure has also revealed that the inhibition of wave compression and buckling

is predominantly due to the tapering of flagellar stiffness rather than the overall stiffness of

the flagellum, with the latter simply perturbing the sperm compliance factor, Sp, due to its

quarter-power dependence on the inverse stiffness.

Furthermore, the tapering, heterogeneous stiffness of the ultrastructural complex is seen to

stabilise the flagellar structure by reducing internal compression (Fig. 7), consequently decreasing

the overall curvature along the flagellum. This regulates the absolute tension, thus suppressing

large jumps in Tmax, as illustrated in Fig. 7(b). As a result, for an increasing sliding force

amplitude, the beating patterns are characterised by a gradual increase of the wave amplitude

along the flagellum, with the formation of a wave envelope and the decrease of waveform

compression (Figs. 4 and 7). The shape of the wave envelope depends on the functional form of

the ultrastructural tapering, associated with the functions e2 − e4. In particular, we have seen that

the larger the gradient of stiffness in the distal regions of the flagellum, as depicted in Fig. 2b, the

greater the stabilising influence. Hence, for example, the tapering of e4 inhibits wave compression

and buckling more, albeit subtlety in that this is only clear in Fig. 7, and is not evident in Figs. 3

and 4.

Nonetheless, compared to homogeneous stiffness, flagellum tapering is observed to prevent

excessive flagellar wave-compression (Fig. 7), and consequently reduce curvature and self-

intersections, enabling a modestly increasing progressive movement per beat for a flagellum

reinforced with tapering stiffness as the sperm compliance number is increased (Figs. 4 and 5). It

is also worth noting that such differences in progressive swimming will be cumulative, and thus

not insignificant in absolute terms, for timescales longer than the 0.1 second scale of a single beat

cycle period.

Modelling refinements to the presentation here are certainly possible. For instance the fact

observations show that the wave compression is highly suppressed towards mid-piece [10], as

opposed to the end piece, (Fig. 1c), indicate that a systematic parameter estimation study may

increase current estimates for the average bending stiffness of the flagellum mid-piece, with

subsequent refinement of the presented results. In addition, while elastic effects are relatively

limited in methyl-cellulose solutions [10], which were used in both the observational human and

sea urchin sperm studies considered here [10,11], elasticity is often extensive in physiological

media [71,72] and may act to favour the concentration of large amplitude bending waves

at the end piece region [60] and warrants further study. Similarly, incorporating non-local

hydrodynamic interactions [23,35,36,73,74] are likely to refine predicted waveforms, possibly

further reducing the tendency to symmetry break [73], though this would require careful

consideration of sperm head elastohydrodynamic boundary conditions.

However, such refinements are not anticipated to alter the qualitative modelling observations

that the reinforcement of the flagellum in regions where high compression is expected [12], due

to flagellar accessory structures, acts to prevent elastic instabilities that could compromise a

core biological function: the transport of genetic material within high viscous environments. The

presented results more generally demonstrate that the tapering of structural components plays an

important role in shaping the flagellar waveform. They further suggest that the above aspects of

the flagellar viscous modulation observed empirically [10] may be achieved without recourse to

intricate molecular motor regulation [4] with only, for example, a constant sliding force amplitude

along the flagellum [20]. It can also be hypothesised that the viscosity of the medium where

the spermatozoa naturally swim may have acted decisively during the evolutionary process

for internal fertilisers, such as human sperm, thus inducing specialised mutations favouring

flagellar ultrastructural components to enable cell penetration in high viscosity. Finally, we note

the prospect that human sperm are adapted to swim in viscous media further emphasises the
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importance of using high viscosity fluid while assessing and screening spermatozoa in the clinical

setting [4,10,43,75].
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Appendix. Numerical Scheme.

Numerical solutions of the elastohydrodynamic formulation for a free swimming cell, described

by Eqs. (1.1)-(1.7), were carried out by employing the numerical scheme devised in Ref. [12],

which uses a combination of second-order finite differences and second-order implicit time-

stepping. The latter has been validated against analytical and non-linear numerical solutions,

in addition to experiments for an oscillating elastic filament in a viscous fluid [12,29,51]. In

particular, to avoid severe constraints on the time-stepping, the higher-order terms in Eq. (1.1) are

treated implicitly, by employing a second-order implicit-explicit method (IMEX) [76]. The spatial

discretization is uniform in arclength. Second-order divided differences are used to approximate

spatial derivatives [34], in which skew operators are applied at the boundaries. Finally, periodicity

is expected from the imposed sliding force in Eq. (1.4), and therefore the time iteration continues

until the maximum difference between consecutive solutions, Dmax =maxs |X(s, t)− X(s, t+ T)|,

one period apart, is below 5× 10−4.
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