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Abstract
We propose to perform quantum key distribution using quantum correlations occurring within
thermal states produced by low power sources such as LEDs. These correlations are exploited
through the Hanbury Brown and Twiss effect. We build an optical central broadcast protocol
using a superluminescent diode which allows switching between laser and thermal regimes,
enabling us to provide comparable experimental key rates in both regimes. We provide a
theoretical analysis and show that quantum secrecy is possible, even in high noise situations.
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Prelude

In 2016, China launched what Gibney dubbed the first quantum
satellite [1], the intent of which is to perform quantum key
distribution between the satellite and ground stations, see for
instance [2]. This is just one of the current practical schemes
designed to perform quantum secure key distribution and
communication between parties; other examples include
the DARPA network [3], the SECOQC project [4], or the
Durban-QuantumCity project [5, 6], which use fibre-optic
technologies to build quantum networks. These technologies
rely on optical communication setups that were proven to be
sufficient for performing quantum key distribution (QKD) [7].
Optical setups commonly work over great distances and achieve
high bit rate; for instance, the Cambridge Quantum Network
achieves a secure key rate of about 2.5Mb s−1 [8, 9]. Such
heavy duty infrastructure is, however, impractical for a plethora
of short distance applications which nonetheless require high
levels of encryption. Examples include key distribution and
renewal between a mobile device and a medical implant,
between an electronic car key and its lock or even between a

mobile device and a password blackbox. These low power
applications may need shorter key, lower bandwidth and as a
result, an infrastructure built on high power lasers, single pho-
tons or entangled photons sources, may well be unsuitable.
Reducing light source requirements to LEDs producing thermal
states would allow us to explore the realm of low power
applications and to appeal to a different set of customers.

The consideration of thermal states as a resource for QKD
is not merely a technological preference, quite far from it.
Thermal radiation is bunched, meaning that its quanta are likely
to be detected in correlated pairs. These correlations produce
quantum discord, as demonstrated by Ragy and Adesso using
the Rényi entropy [10]. Furthermore, Pirandola [11] establishes
theoretically that non-zero quantum discord is necessary for
QKD, and that positive discord in a central broadcast-type
protocol allows a quantum secure key to be extracted even with
high levels of noise. Indeed, quantum discord has been estab-
lished as a measure of quantum correlations [12]. Correlations
can be qualified using the second-order correlation coefficient,
generally known as g(2)(τ), defined as
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where Y(t) is the radiation intensity. Radiation can then be
characterised using g(2) as: anti-bunched (purely non classical)
when g(2)(0)<1, coherent when g(2)(0)=1, and bunched
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when g(2)(0)>1 [13]. We use this classification in order to
experimentally verify that we are operating in the thermal
regime, as can be seen later in figures 3 and 4.

To exploit the correlations within bunched pairs requires
the photon pairs to be separated and shared between two parties
(e.g. Alice and Bob); this is done using the Hanbury Brown
and Twiss (HBT) interferometer [14, 15], designed in the 50ʼs
to remedy the shortcomings of amplitude interferometers, such
as the Michelson interferometer [16, 17], used in astronomy to
determine the radius of stellar objects. The HBT’s table-top set-
up is simple: a source shines onto a beamsplitter, creating two
arms, each shining onto a separate detector. The theory behind
the observed interference effect has been studied by a number
of authors, amongst the first Purcell [18] and Mandel [19, 20],
whose papers provide a nicely intuitive pre quantum optical
description (see [21]) of the statistics.

Mandel’s analysis relies on the fact that what we count are
not the photons themselves, but the photoelectrons ejected by
the detector. Fluctuations in that number have two origins: very
fast fluctuations in the intensity of the incoming signal, and the
stochasticity of the reaction of the photo-sensitive material to
its interaction with the radiation field (namely the ejection of a
photoelectron). However, the detector is also fundamentally
limited by its reaction time (or bandwidth) and therefore, very
fast fluctuations may occur undetected. Yet, if these fluctua-
tions are invisible, the correlations between them are not; in the
original experiment and in current radio astronomy, the data
used for calculations is often data which has been fed through a
correlator (either hardware or software).

The production of photoelectrons is completely char-
acterised by its average number nT and several experiments
have been performed to estimate it, such as [22–24]. These
photon-counting experiments highlight that the bandwidth of
the detector relates to the coherence time tc of the source, and
that when the observation time tT n,c T follows a single-
mode Bose–Einstein distribution. This is in fact how thermal
states are usually modelled in quantum optics, especially
since this distribution naturally arises through the modelling
of blackbody radiation. Thermal sources have short coherence
times, so to resolve thermal behaviour, we require broadband
detectors to satisfy tT c. Resolving thermal behaviour in a
HBT set-up means that the individual detection events of the
divided photons must take place within the coherence time.

A natural objection to the use of thermal states for
quantum cryptography is the lifetime of the correlations,
perhaps in light of the fragility of entanglement. However,
current common implementations include very large telescope
arrays such as VLA, ATCA or soon the SKA; another famous
usage is the observation of the cosmic microwave back-
ground. Furthermore, the original HBT experiment was per-
formed in the optical regime. In either regime, the correlations
literally survive astronomical distances in free space. The use
of thermal states therefore, naturally emerges as a potential
partner to optical QKD techniques, especially with the rise of
technologies such as WiFi and Bluetooth, which offer ever-
increasing possibilities, such as through wall or medium
range free space communications. Furthermore, we will show

in the following, that in either the optical or the microwave
regime, the protocol described below is quantum secure.

Next we describe the protocol we propose. We continue
with a discussion of the eavesdropper (Eve), which will
naturally lead us to analysing the security of the protocol and
its theoretical modelling. As such, we show experimental
results, as well as further theoretical discussions, including on
the issue of detector noise.

Protocol

We propose a central broadcast protocol, reminiscent of
Maurer and Wolf’s scenario 1 in [25], shown on figure 1. It is
described as follows:

• Alice creates a beam from a trusted thermal source.
• They then use a trusted beamsplitter with transmittance η1
to divert and detect part of the transmission and send the
rest on to Bob (Eve).

• The bunched nature of a thermal source means that
fluctuations present at Alice’s detector are correlated with
those at Bob’s detector.

• These fluctuations can be sliced into bits any number of
ways, but with no loss of generality, we assume here that
a fluctuation above the signal mean is a 1 and one below
the mean is a 0.

• In order to detect an eavesdropper, Alice sends small
random chunks of data to Bob who performs a g(2)

calculation to verify thermality.
• Alice and Bob now have a stream of independent and
randomly correlated bits from which they can derive a
key, the security of which they can improve with Cascade
and Advantage Distillation, as per any QKD scheme.

This scheme was implemented as shown on figure 2. In order
to simulate high levels of noise, we consider an attenuator
channel between η2 and Bob, equivalent to adding a
beamsplitter of transmittance η4 between η2 and Bob, with a
input state of variance N at the second input arm.

Let us emphasise that this is not a prepare-and-send
scheme, but instead relies on central broadcasting. This means
that although we assume that Alice controls the source, they

Figure 1. Schematic of the protocol. Even though Alice controls the
source, this is a central broadcast because the signal is split between
Alice and Bob. Alice does not prepare their state.

2

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 125501 E Newton et al



do not in fact, prepare their states. Most current QKD
schemes use a point-to-point scheme; as a result, in these
schemes thermal states are a hindrance. We shall show here
that this is not the case in a Central Broadcast Scheme.

Even if Eve interferes with the signal on its way to Bob
via the most powerful attack available, we assume that she
has no control over any part of Alice’s apparatus, including
the source, the beamsplitter (η1) or the detector. Similarly, she
has no control over Bob’s detector.

The security of this protocol arises from the quantum cor-
relations within the thermal fluctuations, those responsible for
the Hanbury Brown and Twiss effect. Upon arrival at η1 from
the source, a bunched pair will either travel whole to Alice,
travel whole onwards to face η2 or split between Alice and η2.
Any pair travelling onwards to η2 (and then η4) will suffer the
same fate, but the pairs we can exploit are those splitting
between Alice and either Bob or Eve. Using the quantum cor-
relations within the pairs is what allows us to cascade the
beamsplitters this way, however, at the cost of photons pairs, and
so of correlations. For instance, when η1 is at 50%, half the light
goes to Alice, the rest is to be shared between Eve and Bob. If η2
is also at 50%, only a quarter of the original source signal is
available to Bob (provided full transmission at η4).

To model our protocol, we must know how to model Eve
and for that, we must understand what actions she can take.
Alice controls everything, from the source to their detector,
including η1. This means that the only place for Eve to ‘insert’
herself is on Bob’s branch of the distribution, much like on
most current prepare-and-send QKD schemes.

By current standards, the most powerful attack at Eve’s
disposal is a collective Gaussian attack. This is typically
modelled by Eve mixing one mode out of an EPR sate with
Bob’s signal and recording the outcome for measurement
upon Alice and Bob’s classical communication [26]. As such,
it is the attack modelled in this paper.

However, it is doubtful that Eve can, in fact, obtain any
relevant information in a central broadcast scheme (CBS). The
reason for that lies in the physics of the correlations themselves.

One conceivable attack would be for Eve to measure the
signal going to Bob and reproduce it. We rely on bunched

pairs, correlated via second-order temporal coherence. Should
Eve be able to measure and reproduce Bob’s photons fast
enough, what prevents her from escaping detection?

The operative words in that sentence are ‘fast enough’. Eve
cannot beat Heisenberg’s uncertainty principle, which limits her
ability to detect and recreate withing a specific time, which is the
signal coherence time τc. In the case of our experiment,
τc≈5 ps. Correlations in bunched pairs exist only for detection
during that time. Simply applying Heisenberg’s uncertainty
principle, setting Δt=τc/2, yields D ´ -E 8.2 10 eV28 for
a photon of energy E=1.59 eV. This is the maximum uncer-
tainty which Eve is allowed for detecting and recreating the
photon, to have a chance at fooling Alice and Bob by making
Bob’s detector click within the allotted time. This uncertainty
does not of course, account for shot noise, and Eve can only
allow for detection and/or preparation noise within the ΔE

margin. Vacuum energy here is  l= »E c
1

2
0.13 eV;0 this

means that a single inescapable unit of shot noise is enough to
push Eve past her limit.

This is a very crude argument, but it demonstrates that a
simple intercept-and-resend scenario is useless. Actually, as
we have explained before, Eve gains very little in using even
an entangling cloner, because of the probabilistic ways that
the photon pairs will split at η1 then at η2.

Modelling

Thermal states are Gaussian states; these states can be easily
defined and manipulated through their first and second
moments [27, 28]. The former are contained in the displace-
ment vector á ñr̂ , where r̂ is the system’s operator, and ρ the
state’s density operator. The second moments are contained in
the covariance matrix g defined as

g r r= - á ñ - á ñ[ {( ˆ ˆ ) ( ˆ ˆ )} ]r r r rTr , ,ij i i j j

where we write the anti-commutator using {}.
A thermal state has covariance matrix g = +( ¯ )In2 1in ,

where n̄ is the average photon number and I the identity
matrix, and null displacement. We consider in the present
work, a displaced thermal state, with covariance matrix as
before, but with non-null displacement (it can also be con-
strued as a noisy coherent state).

We use the Bose–Einstein distribution


=

-w
¯ ( )n

e

1

1
, 1

k TB

acknowledging all the caveats highlighted in the introduction,
and considerdetectors measuring radiation at 30GHz and
T=300K, so that =n̄ 1309.

A beamsplitter is modelled as

h m
m h

=
-

⎛
⎝⎜

⎞
⎠⎟V

I I

I I
,i

i i

i i

where m h= -1i i represents the loss. The input state at the
first beamsplitter contains the thermal source and a vacuum

Figure 2.Diagram of the experimental set-up. Thermal or coherent light
is produced at the source. The combination of half wave plate l( )2

and

polarising beam splitter (PBS) acts as a controllable beam splitter,
allowing a controlled amount of light through. This first combination
acts as η1, directing part of the beam to Alice, and the second
combination acts as η2, directing a further part of the beam to Eve.
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state; it has covariance matrix and operator vector

g =
⎛
⎝⎜

⎞
⎠⎟ ⨁ I

V

V

0

0
.s

x

s
pin

Since we give Eve an entangling cloner, she inputs one
mode of her state at η2 so the input state is of the form

g g=h h ⎛
⎝⎜

⎞
⎠⎟⨁

V

V

0

0
.e

x

e
pin out

2 1

In fact, Eve’s full input state can be written as

g n n

n n
= -

-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟I Z

Z I

1

1
,eve

2

2

with Z the Pauli-Z matrix. However, only one mode of the
EPR mixes with the legal signal at η2. Since the rest of their
state is unavailable to us, and of little practical value, we can
trace it out for the sake of clarity. We can make further
assumptions on Eve’s state; she can be merely there and tap
the channel, in which case, her inputs is one shot noise unit

=V 1SNUe . If she inputs a state, the minimum variance she
can get away with is =V 2SNUe , where 1SNU comes from
her coherent state and the complementary 1SNU through shot
noise.

We make the channel between η2 and Bob a thermal
noise channel by inputting a state of variance


h c

h
c

h
h

=
-

=
-

+N
1

, with
1

,4

4

4

4

and  the channel excess noise [28]. The input state at η4 is

g g=h h ( )⨁ N
N
0

0
,int out

4 2

where gh
out

2 is the state at the output of η2 and N as defined
previously.

The output covariance matrix is

G =

G G G G
G G G G
G G G G
G G G G

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟

a ea ab an

ea e eb en

ab eb b bn

an en bn n

out

where the sub-matrices of interest are

The remaining block sub-matrices are given in the
Appendix.

The secrecy will be witnessed using the secret key rate K
(A : BPE), defined here in terms of its lower bound as K(A :
BPE)=I(A : B)−χ(B : E), where χ(B : E) is the Holevo
bound, between Bob and Eve, which maximises their mutual
information I(B : E).

We define the mutual information as

= G + G - G( ) ( ) ( ) ( )I A B S S S: ,a b ab

where G( )S is the Von Neumann entropy. The Von Neumann
entropy r r r= -( ) ( )S Tr log , for a Gaussian state, is simply
determined in terms of the symplectic eigenvalues xi of its
covariance matrix G [28], as G = å =( ) ( )S g xi

k
i1 , where
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The correlation in the pairs shared between Alice and
Bob is described with the quantum discord, ( ∣ )D B A , defined
as the difference between the mutual information I(A : B) and
the classical mutual information ( ∣ )J B A (or ( ∣ )J A B ). I(A : B)
quantifies all possible correlations between Alice and Bob,
but ( ∣ )J B A quantifies those measured by local operations at
Alice’s and Bob’s sites. We define the discord ( ∣ )D B A as,

= G - G + G

G = G - G G G
G
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is the covariance matrix of B conditionned by a homodyne

measurement on A [29], with = ⎜ ⎟
⎛
⎝

⎞
⎠X 1 0

0 0
and ()−1 the

pseudo-inverse.
We write the Holevo bound χ(B : E) as

c = G - G( ) ( ) ( )∣B E S S: ,e e xb

where we estimate G ∣e xb
as above, using the submatrices we

have derived through our modelling.

Results

The protocol was realised experimentally. The thermal source
consists of a tuneable laser consisting of a superluminescent
diode and an external cavity. When run above the operating
current, the laser emitted non-thermal coherent light; when run
below this operating current, it acted as a diode, producing

thermal light. This effectively acts as a switch allowing the
addition or removal of thermality in the source without altering
any other part. We apply no modulation to the signal beyond
that of the source. The source bandwidth was measured to be
lD = 0.4 nm spread around a centre wavelength of l =0

780.09 nm and the coherence time is as mentioned above,
τc=4.8 ps. The detectors are ThorLabs Det36A photodiodes,
coupled to a LeCroy Waverunner 44xi oscilloscope; the com-
bined integration time is 14ns and the oscilloscope samples at
5GSps.

To determine the g(2)(0) coefficient, the source is run
above and blow its operating current, so that we can make
sure of its use as a thermal source. The data is normalised to
zero; then the two data streams are shifted relative to each
other by a time step defined by the sample rate D =t 0.2 ns.
Figures 3 and 4 show the second order correlations for each
regime and show that

>( )∣ ( )∣( ) ( )g g0 0 ,2
thermal

2
coherent

which we expected. In particular, figure 4 shows that in the
thermal regime, g(2)(0)>1, which means that we are dealing
with bunched radiation, fluctuations and as a result, correlations.
Using the experimental parameters mentioned above, we can
calculate a theoretical value of g(2) (0)=1.0001 [30, 31], which
agrees with the experimental values. This value of second order
correlation is much less than 2; this is the result of experimental
constraints, such as the relatively long integration time with
respect to the source linewidth. However, by contrast, figure 3
shows virtually no deviation of g(2)(0) from 1. Since what we are
interested in is the presence of correlations, not necessarily how
much correlations there are (though obviously, the more the
better), we can qualitatively establish the thermality of our
source when it operates under its operating current. We now
shine it through two variable beamsplitters, the first dividing a
portion to Alice, and the second splitting the remaining light
between Eve and Bob.

The data streams are sliced into bit strings. The infor-
mation quantities are calculated using the Shannon
entropies = -å( ) ( ) ( ( ))H x p x p xlog , where the p(x)ʼs are
the measured frequencies. We plot the secret key rate
¢ = -( ) ( ) ( )K A B E I A B I B E: : : in figure 5.

The use of thermal light clearly provides a higher key
rate than coherent light. The most optimal regime is for Alice
and Bob to both receive equal portions of light, so the key rate
peaks when η1=0.5. We note easily that ¢ ( )K A B E:
(which is a lower bound) is negative when h  11 , so when
no signal goes to Alice and as a result, they share no infor-
mation with Bob. Recall that Alice is in control of η1, and we
assume that Eve cannot adversely affect this beamsplitter.
When h = ¢ ( )K A B E0.5, :1 decreases as η2 decreases (so
when Eve gets more of the signal) but nonetheless, it remains
positive, meaning that key exchange is always possible, albeit
with reduced rate in the high loss regimes. Furthermore,
unlike conventional continuous variable schemes, a central
broadcast scheme has the advantage that it does not exhibit a
sharp drop off, so a secret key can always be produced. We
should remark that since this specific implementation of the

Figure 3. Experimental results : second order correlation coefficient
for coherent states.

Figure 4. Experimental results : second order correlation coefficient
for thermal states.
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scheme uses broadband detectors, it is not sensitive to the loss
of phase information. That being said, the theoretical analysis
considers homodyne detection and would detect attacks
which affect phase.

As seen on figure 6, the secret key rate is always positive,
and so we conclude that there is always secrecy. It does,
however, stagnate until η2 approaches unity, i.e. until Eve lets
most of the signal through. Key exchange is slow until Eve

lets signal out; as a result, Eve is easily detectable. Let us
recall also, that ( ∣∣ )K A B E: is a lower bound; we can
therefore expect better key rates. The secret key rate improves
if Eve inputs a coherent state =V 2SNUe , albeit marginally.
This improvement is more pronounced if Eve inputs a thermal
state =V 5SNUe .

A crossover is obvious on the figure; at η2=30% (so
actually fairly low), Alice and Bob lose out if Eve inputs

Figure 5. Experimental results : secret key rate for coherent states (left) versus thermal states (right). η1 is controlled by Alice; when η1=1,
she has no signal and therefore, the key rate becomes negative. Similarly, as h  01 , she gains the advantage over Bob and Eve. As expected,
the most advantageous value is when η1=0.5.

Figure 6. Secret key rate ( ∣∣ )K A B E: , plotted against η2, for
η4=−7 dB and  = -10 2. The full line shows the secret key rate
when the complementary input at η2 is a vacuum state. The dashed-
dotted line shows the secret key rate when Eve inputs a coherent
state; the dashed line, when =V 5SNUe . Visibly, any input on the
part of Eve improves the key rate. As η2 approaches full
transmission, the secret key rate increases rapidly. The x-axis is
cropped for readability.

Figure 7. Discord ( ∣ )D B A , plotted against η2, for η4=−7 dB and
 = -10 2. The full line shows the discord when the complementary
input at η2 is a vacuum state. The dashed-dotted line shows the
discord when Eve inputs a coherent state; the dashed line, when

=V 5SNUe . As η2 increases, so does the portion of the signal which
goes to Bob and therefore, so does the discord. A non-vacuum
complementary input at η2 reduces the discord as it interferes with
the correlated signal which Bob shares with Alice.
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anything. As η2 increases, Bob gets more and more of the
signal; as a result, Alice and Bob’s mutual information
increases, and as can be seen on figure 8, I(A : B) increases
faster than χ(B : E).

Figure 7 demonstrates the effect of the presence of Eve
on the discord. Of highest importance to us is that the discord
is always positive. This means that the correlations between
Alice and Bob are always quantum, and as a result, so is our
security. As the transmittance η2 increases, Eve gets less and
less signal, so naturally, the discord increases. When Eve’s
input is higher than 1SNU (so when she inputs a coherent
state), the discord gets worse, but not significantly.

Figure 8 shows how Eve’s input influences the amount of
information she could gain, by the input of a state such as defined
previously. Contrary to what one might expect, coming from a
point-to-point prepare-and-send mindset, Eve does not gain much
by inputting a coherent state. The Holevo bounds χ(A : E) and χ

(B : E) are worse for =V 2SNUe than they are for =V 1SNUe

(vacuum). This scheme relies on bunched radiation; Eve’s effect
is to destroys these pairs. As a result, she becomes (separately)
correlated with Alice and with Bob, which is what the Holevo
bounds show. Her inputting a coherent state will not provide her
with any more information, since it will not increase her corre-
lation with either Alice nor Bob.

On figure 8, we also explore briefly the influence of
channel excess noise  (dashed lines). We note that c( )A E:
is not affected by  ; since the thermal noise channel is that
which separates Eve and Bob, Alice is not affected. This is
not the case for I(A : B) and χ(B : E) which are both reduced
by the channel excess noise. However, that reduction is

insufficient to cause the key rate great damage. It is reduced
but not significantly enough to impede key distribution.

Concluding remarks

The outcome of this analysis is that our scheme can always be
considered quantum secure, since both the secret key rate and
the discord are positive. Furthermore, we have shown that Eve’s
input is merely a disturbance, not only to the legal parties but
most importantly to herself. This is simply a result of the phy-
sics; the thermal radiation is correlated and since Eve can only
place herself after it has been split at η1 (and therefore she has no
access to Alice’s information), she can gain little information.
Eve’s attack might be construed as a jamming attack; she is
detected prior to reconciliation, can construct no key, but she can
prevent Alice and Bob from building key.

Although we have included thermal channel noise, we
have so far neglected the issue of preparation noise and of
detector noise. We note that any preparation noise from the
source is thermal, and so a part of the thermal state input at η1,
therefore affects both Alice and Bob (and Eve).

Detector noise, on the other hand, affects Alice and Bob
individually and independently. Adding detector noise to
Alice’s and Bob’s signal yields = +V V Na a a

pure and
= +V V Nb b b

pure . We assume that Eve has no detector noise.
Figures 6–8 were plotted for detector noise at the mandatory
unit of shot noise, = =N N 1SNUa b . Detector noise will
prevent Alice and Bob from detecting their correlations, but
will not increase the correlations between Alice (Bob) and
Eve. Therefore, it reduces the secret key rate, but also the
Holevo bounds χ(A : E) and χ(B : E), as illustrated on

Figure 8. Holevo bounds and mutual information, plotted against η2,
for η4=−7 dB and ò=10−2. The full line indicate that the
complementary input at η2 is a vacuum state; the dashed-dotted line,
that =V 2SNUe . Eve gains no more information by inputting a non-
vacuum state; in fact, she fares worse. By contrast, the mutual
information is only marginally reduced. The dashed line illustrates a
channel excess noise  = 1SNU; as we expect, I(A : B) and χ(B : E)
suffer from a higher excess noise, but not χ(A : E) as neither Alice
nor Eve are concerned with the thermal noise channel.

Figure 9. Effects of the detector noise on χ(B : E) and
h = -( ∣∣ )K A B E dB: , 74 and  = -10 2. The full lines indicates that

the detector noise at Alice and Bob’s detectors, respectively Na and
Nb, are 1SNU. The dashed lines show such noise at 5SNU. The
secret key rate suffers from detector noise, but so does χ(B : E). The
x-axis is cropped for readability.
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figure 9. Although the key rate remains positive, detector
noise is the greatest threat to it.

Figure 6 through 9 are plotted using theoretical values,
and show a best case scenario. In contrats, figure 5 is obtained
directly with experimental data and illustrate the limitations
associated with the bandwidth. This explains the apparent
discrepancies of scale.

There remains to be had perhaps, a discussion about dis-
tance. This issue is a subtle one. Bunched pairs (and quantum
correlations) survive astronomical distances; in fact, they only
vanish upon measurement. However, the correlations themselves
will disappear if the photons are detected outside the coherence
time. This means that the distance between η1 and either Alice or

Bob itself is not important; however, the path from η1 to Alice
and from η1 to Bob should be of more or less equal length, i.e.
within the coherence time of the source. This of course, places
restrictions on Eve’s attack, such as we have already described.

A central broadcast scheme is attractive because the source
need not be controlled to the extent of a point-to-point scheme,
and two parties can negotiate a key based on their correlated local
noise. This leads to a number of potential applications for key
exchange in a microwave system, such as long distance satellite
communications and for example, between mobile phones in a
mobile network, mass synchronisation of secure keys within an
office space connected to a WiFi node, or even key synchroni-
sation between a mobile phone and an implanted medical device.

NOTE IN REVIEW : since sending this work to publication,
the authors have become aware of a subsequent publication [32].

Data that support the findings of this study are available
from the Research Data Leeds Repository with the identifier
https://doi.org/10.5518/206 [33].
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Appendix. Full results

On the output of η2, the submatrices are as follows

On the output of η4, the submatrices are as follows
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