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Context:Kisspeptin-Neurokinin B-Dynorphin neurons areicat regulators of the
hypothalamic-pituitary-gonadal axis. NeurokininKB) and dynorphin are hypothesized to
influence the frequency of gonadotropin-releasiogrione (GnRH) pulses; whereas kisspeptin
is hypothesized to be a generator of the GnRH ptle® these neuropeptides interact remains
unclear.

Objective:To probe the role of NKB in GnRH pulse generatmd to dissect the interactions
between NKB, kisspeptin, and dynorphin in humargmaice with a complete absence of NKB.
Design:Case/Control

Setting Academic medical centers

LL
—
S
|_
is
<
L
O
Z
<
>
a
<

ENDOCRINE =
SOCETY Ema

6102 Ae 2z uo Jasn spaaT Jo Aisioaun Aq 9£086v5/9 1006102 0l/01Z L 0 L/10P/AOBSHE-2|dlE-80UBADE/LISD|/W0D dNO"dIWspEoe)/:SAjy WO} POPEOJUMOQ



The Journal of Clinical Endocrinology & Metabolis@opyright 2019 DOI: 10.1210/jc.2019-00146

Patients or ParticipantsMembers of a consanguineous family bearing biallelss-of-function
mutations in the gene encoding NKB and NKB defitimice

Interventions:Frequent blood sampling to characterize neuroemumprofile and
administration of kisspeptin, GnRH, and naloxonepa-specific opioid receptor antagonist
used to block dynorphin.

Main Outcome Measure(sluteinizing hormone (LH) pulse characteristics

Results:Humans lacking NKB demonstrate slow LH pulse festry which can be increased by
opioid antagonism. Mice lacking NKB also demong&tiatpaired LH secretion which can be
augmented with an identical pharmacologic manipamatBoth mice and humans with NKB
deficiency respond to exogenous kisspeptin.

Conclusion:The preservation of LH pulses in the absence oBNIKd dynorphin signaling
suggest that both peptides are dispensable for Gnikd¢ generation and kisspeptin
responsiveness. However, NKB and dynorphin appehate opposing roles in the modulation
of GNRH pulse frequency.

This study uses pharmacologic probes to demonstrate that endogenous GnRH-induced LH pulses can be
generated in the absence of neurokinin B and dynorphin activity in humans and mice. .

Introduction

Despite nearly 50 years since the discovery of G{iBHunderstanding the factors that trigger
GnRH neurons to drive the onset of sexual maturatim subsequently maintain reproductive
function remains a challenge. Patients with idibgabypogonadotropic hypogonadism (IHH)
are a key population to uncover these signalf)estiave abnormal GnRH secretion/action (2,
3). Most IHH patients present as teens with delgydukbrtal development and suffer life-long
sexual infantilism and infertility if left untreadg2, 3).

Identification of the afferent pathways through e¥fhendogenous factors (e.g. gonadal
steroids, stress hormones, and nutrient signatseaternal cues (e.g. social cues and day length)
regulate GnRH release have recently focused okisspeptin/neurokinin B/dynorphin system
(4). Inactivating mutations in kisspeptin, neurokiB (NKB), and their respective receptors
cause IHH in humans and mice, implicating theseapmaptides in the generation of GnRH
pulses (5-12). Dynorphin is thought to oppose shimulatory activity by providing critical
slowing of GnRH pulse generator activity in respotes progesterone during the luteal phase of
the menstrual cycle (13-15). These three neurogeptioalesce in a population of neurons in the
arcuate nucleus, KND{KisspeptinNeurokinin BBynorphin) neurons, and are postulated to
work in a coordinated fashion to synchronize theretery activity of GnRH neurons to generate
the pulses of GnRH secretion that are necessaigwve reproductive endocrine function (16-
18).

Because biallelic loss-of-function mutations digriapth copies of a gene, patients carrying
such mutations (i.e. “human knockouts”) provide elaasights into the phenotypic
consequences of gene disruption or loss. In thidysfour sisters carrying biallelic, complete
loss-of-function mutations in the gene encoding NiéBe of the key neuropeptides in KNDy
neurons) underwent genotype-driven phenotypespite an initial diagnosis of IHH, several
sisters spontaneously recovered reproductive eimgoftmction in adult life. Studies were
performed in both normal and neurokinin B-deficifarhily members as well as normal and
neurokinin B-deficient mice to investigate the rofeNKB in GnRH pulse generation and to
dissect the interactions between NKB, kisspeptid, dynorphin. Use of a combination of
specific neuroendocrine probes revealed that tpethgalamus is capable of generating GnRH-

THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

=
L
W
-
L
-
S
—
oC
<
LL
O
Z
<
>
QO
<

ENDOCRINE =
SOCETY Ema

6102 Ae 2z uo Jasn spaaT Jo Aisioaun Aq 9£086v5/9 1006102 0l/01Z L 0 L/10P/AOBSHE-2|dlE-80UBADE/LISD|/W0D dNO"dIWspEoe)/:SAjy WO} POPEOJUMOQ



THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

=
L
W
-
L
-
S
—
oC
<
LL
O
Z
<
>
QO
<

ENDOCRINE =
SOCETY Ema

The Journal of Clinical Endocrinology & Metabolis@opyright 2019 DOI: 10.1210/jc.2019-00146

induced LH pulses despite genetic and pharmacobrgi&gonism of two of the three KNDy
constituents, NKB and dynorphin.

Methods

Subjects and Eligibility Criteria

Five women from a single consanguineous family weceuited on the basis of their genotype
(Table 1). Subjects were either reproductively rair(8ubject 1; genotypEAC3c.61 61delG
p.A21LfsX44 heterozygote) or carried a diagnosiBygogonadotropic hypogonadism (Subjects
2-5; genotypd AC3c.61_61delG p.A21LfsX44 homozygote). The brotteard parents were not
available for study participation. IHH was defiresihypogonadal sex steroid levels (estradiol
<20 pg/mL in women) in the setting of low or normgahadotropin levels at agd8 years and
the absence of any identifiable medical condittmat tould cause hypogonadotropic
hypogonadism. As in our previous report (19), reakof IHH in women was defined as: 1)
fertility without use of exogenous GnRH or gonadptn therapy; 2) spontaneous menstrual
cycling for at least 3 months in the absence @itinent; and/or 3) LH pulse frequency and
amplitude within the normal range for women. Reéapfier reversal was defined as again
having hypogonadal sex-steroid levels (serum esira@0 pg/mL in women) and/or
amenorrhea.

Subjects also participated in a genetics studyePADNA was screened for rare sequence
variants (RSVs), defined as having a minor alledgjéiency of less than 1% in The Genome
Aggregation Database (gnomAD), in genes known tsedHH, as described previously (20,
21). Genes screened we2elD7 (MIM 608892),FGF8 (MIM 600483),FGFR1(MIM 136350),
GNRH1(MIM 152760),GNRHR(MIM 138850),HS6STIMIM 604846),ANOS1(previously
calledKAL1, MIM 300836),KISS1(MIM 603286),KISS1IRMIM 604161),NSMF (previously
calledNELF, MIM 60813),PROK2(MIM 607002),PROKR2(MIM 607123),TAC3(MIM
162330), and ACR3(MIM 162332) by PCR amplification of exons follod/&y Sanger
sequencing. RSVs were reported if they were preditd be damaging by at least 2 out of 4 in
silico prediction programs: PolyPhen-2 (22), SIRB)( Mutation Taster (24), or Panther (25).
The University of Pennsylvania Smell Identificatibast (UPSIT) scores, from a 12-item smell
test, were used to classify olfactory capabili{@s, 27).

Study Design
In 2010, the subjects with hypogonadotropic hypagiism (Subjects 2, 3, 4, 5) underwent
detailed neuroendocrine phenotyping in which blsachpling was performed every 10 minutes
(q10 min) for 6-8 hours to map endogenous LH pidsatat the Wellcome Trust Clinical
Research Facility, Cambridge, UK under the direcodProfessor I. Sadaf Farooqi (Figure 1A).
In 2016, Subjects 1, 3, 4, and 5 were invited tigipate in a second series of daytime
studies at Massachusetts General Hospital (MGHji€ali Research Center (CRC) to determine
whether their endogenous LH pulse patterns coulthddified by administration of GnRH,
kisspeptin 112-121 (kp-10) and the non-specifiompantagonist which blocks dynorphin,
naloxone (NLX) (Figure 2A, Figure 3A, Figure 4A). Basure that the pituitary gonadotropes
would be in a state of readiness, Subjects 3 aredelved exogenous pulsatile GnRH 25 ng/kg
every 2 hours (g2h) by a Crono F portable infugiamp (Cane S.p.A, Turin, Italy) for 3 days

prior to admission to the MGH CRC (28). Subjeciafl hecent evidence of some neuroendocrine

activity (yearly spontaneous bleeding) so she veaprimed with pulsatile GnRH (Table 1).
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Baseline studies: All subjects underwent g10 moodisampling for at least 6 hours to
evaluate endogenous GnRH-induced LH secretion gumire of their visit days to the MGH
CRC (Figure 1A, Figure 2A).

Kisspeptin boluses: After assessment of endogeGoiH-induced LH secretion, subjects
3,4, and 5, received the administration of kp-mol/kg intravenous bolus (IVB) as prior
work by our group demonstrated that this dose stersily elicits GnRH-induced LH pulses of
physiologic amplitude in healthy men and healthgailrphase women (29, 30) (Figure 2A).
Subjects 4, 5 received subsequent kp-10 IVBs & il 2.4 nmol/kg. Subjects 3, 4, and 5 then
received 75 ng/kg IVB of GnRH at the conclusiorttadse studies, as our group has previously
shown that this dose results in robust GnRH-indudedesponses in individuals with intact
gonadotrope function (31).

Kisspeptin Infusion: In contrast to the IVB studi€sibject 3 returned to the CRC to
participate in a second admission in which kp-18 a@ministered as a continuous infusion (9.5
nmol/kg/hr) for 12 hours to determine its effectammdogenous GnRH-induced LH pulsations.
Similar to the IVB studies, blood samples were drgi&0 min and GnRH 75 ng/kg IVB was
administered at study conclusion (Figure 3A).

Naloxone Infusion, Blocking Dynorphin: Subjectsitéb returned to the CRC and received
an NLX infusion (NLX 10 mg IVB, followed by infusioat 0.8 mg/hr) for 13 hours to determine
the effect of blocking dynorphin signaling with o antagonism on endogenous LH pulses in
the absence of NKB signaling. Midway through thiesion, kp-10 and GnRH boluses (kp-10
dose range: 0.24 to 2.4 nmol/kg, GnRH: 75 ng/kgeveeiministered to determine whether NLX
administration might enhance the response to thegtdes (Figure 4A). Again, blood samples
were drawn 10 min for hormone measurements. Duaerging error, subject 5 had the NLX
infusion terminated early at hour 9.

Source of Peptides

Kisspeptin 112-121, the 10-amino-acid isoform gkkieptin (corresponding to amino acids
112-121 of the pre-prohormone), and GnRH were ggitled using good manufacturing
practices by NeoMPS (PolyPeptide Laboratories,[Hago, CA). NeoMPS provided kisspeptin
112-121 under contract to the Eunice Kennedy Shi\ional Institute of Child Health and
Human Development. Naloxone was ordered from Hagjhiake Forest, IL).

Human Laboratory Assays

LH for each sample and estradiol on 2-hour pooleeweeasured by direct immunoassay using
the automated Abbott ARCHITECT system (Abbott Lattories, Inc., Abbott Park, IL) as
previously described (28). Estradiol was measused Bnd generation immunoassay traceable
to mass spectrometry-based assays for the 2010s20dies and by Elecsys (Roche
Diagnostics, Indianapolis, IN) for 2016 studies,(33).

Assessment of Pulsatile LH Release in Peripubertahd Adult Tac2 Knockout Mice
TacZ” breeding pairs were generated by the Texas A&NMitirie for Genomic Medicine
(College Station, TX) and genotyped (34). All migere generated and maintained on a
Sv129/C57BL/6 hybrid background and group houseé to five per cage) at the Brigham and
Women’s Hospital in a temperature- and light-colfétbenvironment with lights on from 0600—
1800 h and food and water provided ad libitum. Mi@re handled daily for two to six weeks
prior to the experiment to allow acclimation to dimg conditions.

Changes in LH secretion was assessed in sexuatlyrima (6-week-old) and adult (16-
week-old) intact and ovariectomized (OVXac2knockout (KO) female mice and control (wild-
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type; WT) littermates (n=4-5 per group). Siricac2in mice encodes for NKB in humans, these
mice are lacking NKB. Pulsatile measurements ofsieldretion were assessed by repeated blood
collection through a single incision at the tiptloé tail. The tail was cleaned with saline then
four ul blood was taken at each time point fromdhetail with a pipette. Whole blood was
immediately diluted in 116 ul of 0.05% PBST, voedxand frozen on dry ice. Samples were
stored at -80°C for a subsequent LH ELISA. For Rpatiministration studies, thirty-six
sequential blood samples were collected over aus-bmmpling period. At 170 min of sampling
(or 180 min of sampling for peripuberfBdc2knockout mice), mice were injected with mouse
kp-10 intraperitoneally (7.5 nmol/100 ul salinejp@hix Pharmaceuticals). For NLX
administration studies, thirty sequential blood pkas were collected over a 5-hour sampling
period from WT and’ac2KO mice. WT andlac2KO mice were OVX'd to increase the
frequency and amplitude of LH pulses to better mieitge the action of dynorphin removal in the
generation of LH pulses. At 120 min of samplingcenwvere injected with NLX intraperitoneally
(5 mg/kg/100 ul saline; Sigma Aldrich).

Data Analysis

Human Pulse Analysis: LH pulses were identifiechgs validated modification of the Santen
and Bardin method (35, 36) augmented by a decohwaalalgorithm (29). Pulse amplitude of
kp-10-induced or GnRH- induced LH pulses was caled as the difference between time 0 of
kp-10 or GnRH administration and the peak of thisgu

Mouse Pulse Analysis: LH pulses were identifiechgsa custom-made MATLAB code that
reads the LH pulse data gathered by LH sandwiclSELTThe code includes a loop that
determines a pulse based on if: a) the height af-hmalue is 20% greater than the heights of
either of the 2 previous values as well as 10%tgrahan the height of the following value; b)
the peak at the second-time interval (i=2) is >2ff#ater than the single value that comes before
it to be considered a pulse.

Statistics: Paired two-way t-tests were used tesssshanges in mean LH, LH amplitude
(nadir to peak of an LH pulse) and FSH at basebsalefined in methods above, as compared to
responses to neuropeptide interventions. All vairegeports as mean * standard deviation,
unless otherwise noted.

Study Approval

All human studies were approved by the Institutiddeview Board of MGH/Partners
Healthcare, or by the Local Regional Ethics Comemitbf Cambridge, United Kingdom. Al
subjects gave written informed consent prior tdusion in the studies. For the mouse studies,
the Brigham and Women'’s Hospital Institutional AminCare and Use Committee approved all
procedures.

Results

Study Subjects Initial Clinical Presentation and Sbsequent Course

Subject 1 had a normal timing of menarche, normaistrual cycles, and spontaneous
pregnancy (Table 1). Her sisters, Subjects 2, 8nd,5, presented at 13-15 y with primary
amenorrhea and received estrogen therapy to inskemndary sexual characteristics. Because of
the lack of spontaneous sexual maturation by agadrgal MRI, and low gonadotropins,
Subjects 2, 3, 4, and 5 all received a diagnosibklbf(Table 1). None of the sisters are anosmic.
Three of the four IHH sisters demonstrated revesktieir hypogonadotropism between 22-28 y
as evidenced by pregnancy without fertility medmag (Subjects 3 and 4) and regular
spontaneous menstrual cycles (Subject 5). Howeseersal was not permanent and at the time
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of the physiologic studies, subjects 3, 4, anddreaerted to a state of hypogonadotropic
hypogonadism (Table 1).

Genetics

Sequencing of candidate genes revealed3tigiect 1 (normal timing of puberty and normal
menstrual cycles) is heterozygous for a deletioa sifgle nucleotide in the gene encoding NHBC3)
(c.61_61delG p.A21LfsX44). This base pair deletiemds to a frameshift mutation and a premature stop
codon, in the pre-prohormone prior to the NKB sempee that would be predicted to result in nonsense-
mediated decayeven if the transcript were to escape nonsenseateetidecay, the frameshift
mutation would disrupt the portion of the pre-prohone that is processed to produce the
decapeptide known as NKB. Subjects 2, 3, 4, ard %jith hypogonadotropic hypogonadism,
are homozygous for this frameshift mutati®his mutation is novel and not found in gnomAD, a
normative database containing 123,136 exomes ad@@f5enomes (21). Notably, there are no
individuals homozygous for any protein-truncatingtations inTAC3in gnomAD. This family harbors

no other mutations in genes known to cause IHH.

Baseline Studies: Slow LH Pulse Frequency Characterizes IHH I ndividuals Without Neurokinin B

At the time of these baseline studies, the IHHesss(Subjects 2,3,4 and 5) were amenorrheic with o

but detectable serum estradiol levels and low @@gene levels off hormonal medications (Table 1,
Figure 1B). All subjects with IHH had evidence of enfeebled but organized GnRH pulse generator, as
evidenced by low-frequency LH secretory events ¢fmanparison in the physiologic early follicular glea
which is characterized by low estradiol, low pragesne LH frequency, 7.0 + 1.8 pulses/12 h; LH
amplitude, 2.3 + 1.0 IU/L [mean + 2 SD]) (37, 3B)Subjects 2, 4, and 5, one pulse was observed in
the sampling interval (7-8 hours; mean LH amplitadet0.8 mlU/mL) (Figure 1B). In Subject 3, no
pulses were observed during the study. In additiemH levels of Subjects 3, 4, and 5 demonstrated
slow decay at the beginning of the sampling intesaggesting that an LH secretory event had oedurr
before the start of the study. Thus, all subjeeta@hstrated an abnormally low frequency of LH
secretory events. Upon repeat testing in 2016ystutijects (Subjects 3, 4, 5) again were amenarrhei
with low but detectable estradiol levels off horrabmedications. All studies recapitulated the same
endogenous LH patterns observed in 2010, with legtfency LH secretory events and a mean LH
amplitude of 1.3 £ 1.1 mlU/mL (Figure 2B).

In contrast, Subject 1, the healthy sister witteterozygous protein truncating varianTiaC3
underwent blood sampling on Day 4 of the mensityele (early follicular phase; EFP). She exhibitdd
LH pulses in 12 hours with a mean LH pulse ampétoéi0.46 + 0.25 mIU/mL (Figure 1C) (healthy early
follicular phase women: frequency, 7.0 + 1.8 pulk24$; amplitude, 2.3 + 1.0 IU/L [mean = 2 SD]) (19
20).

Kisspeptin Boluses: IHH Individuals without NKB Respond to Kisspeptin

All subjects responded to kisspeptin with an LHspulFigure 2B). Two study subjects received three
kisspeptin boluses and demonstrated an LH pulssafivlg kisspeptin in 5 of the 6 boluses. The one
exception occurred when kisspeptin was administeneagediately following an endogenous LH peak
resulting in a prolonged single peak (Figure 2Bj8ct 5). Consistent with this responsiveness, all
subjects demonstrated adequate pituitary primirdjcating no pituitary defect that could impair
kisspeptin responsiveness (LH pulse amplitude fotig GnRH administration: Subject 3: 1.6 mlU/mL,
Subject 4: 5.1 mlU/mL, Subject 5: 3.0 mlU/mL).

Kisspeptin Infusion: No Pulsatile LH Secretion

Subject 3 received kp-10infusion (9.5 nmol/kg/hr) for 12 hours and no LElges were
detected. There was a modest increase in mean tikgdhe infusion (baseline: 0.46 + 0.24
mlU/mL; kp-10 infusion: 0.63 = 0.08 mIU/mL; p<0.000(Figure 2B & 3B). Mean FSH levels
also increased as compared to baseline (baselhe: .2 mIU/mL;kp-10infusion: 2.4+ 0.1
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mlU/mL; p<0.001). After thé&p-10infusion, Subject 3 received an IVB of GnRH resigjtin an
LH pulse of comparable amplitude to that observelaseline study the prior day (baseline, 1.6
mIU/mL; afterkp-10infusion, 2.5 miU/mL).

Naloxone Infusion: Blocking Dynorphin with Naloxonelncreases LH & FSH Secretion and LH

Pulse Frequency, but Does Not Amplify Kisspeptin-lduced LH Pulses

Subjects 4 and 5 received the non-selective opinidgonist, NLX, as well as escalating boluses of
kisspeptin (0.24, 0.72, 2.4 nmol/kg) to determime effect of blocking dynorphin signaling on
endogenous and kisspeptin-stimulated LH secretaitems. Both studies demonstrated increased mean
LH levels during NLX infusion as compared to basel{(Subject 4 — baseline: 1.44 + 0.76 mIU/mL,
NLX: 2.82 + 0.54 mlU/mL, p<0.00001; Subject 5 —élase: 0.6 + 0.25 mlU/mL, NLX: 1.1 £ 0.37
miU/mL, p<0.00001, across matched time points)fég2B, 4B). For the study subject in which a
complete LH sampling on and off NLX infusion allodveomparison, Subject 4, LH pulse frequency
increased from one pulse in 6 hours (Figure 2Byt pulses in 6 hours (Figure 4B). Mean FSH levels
also increased as compared to baseline (Subjebideline: 3.7 + 0.3 mIU/mL, NLX: 5.0+ 0.9
mIU/mL; p<0.01; Subject 5 baseline: 3.3 £ 0.3 mIU/mL, NLX: 5.1+ 0.1 mIU/mpx0.0001).
There was no consistent change in LH pulse amg@i{@dibject 4- baseline: 2.59 mIU/, NLX: 0.45
+ 0.29 mlU/mL; Subject 5 — baseline: 0.82 mIU/mLLN 1.22 and 1.39 mlU/mL). NLX infusions,

which block dynorphin by inhibiting opioid tone crease gonadotropin secretion and improve LH pulse
frequency in individuals with IHH due to loss of Bksignaling.

Subjects 4 and 5 also received escalating bolddgs 10 (0.24, 0.72, 2.4 nmol/kg) which were
followed by an LH pulse, recapitulating resultsrseéf NLX (Figure 2B, 4B). There was no significant
difference in the change in kisspeptin-induced Ebjponse on or off NLX and there was no clear dose-
response relationship; although the small numbéobfses at each dose limited the ability to assesk
a relationship.

Kisspeptin Boluses Stimulate LH Release in Peripubbal and Adult WT and NKB-deficient (Tac2

KO) Mice

To corroborate the findings in IHH patients, we docted experiments ihac2KO and WT

control female mice. Peripheral administration pf10 elicited a robust increase in LH in all
animal groups regardless of age and genotype ebtiagly, peripubertalac2KO female mice,
lacking NKB, displayed a higher magnitude of LHease (5.29 + 0.43 ng/ml, n=5) than control
females (2.67 = 0.48 ng/ml, n=5; p<0.01) (FigureHl)wever, LH returned to baseline faster in
Tac2KO mice (52 + 3.72 min after injection, n=5) tharWT control (68 £+ 3.72 min, n=5;
p<0.01). Adult WT mice displayed the expected LHspun response to kp-10, while thac2

KO mice that responded to kp-10 showed a bi-phasigonse, displaying two overlapping peaks
of LH (Figure 4). In both adult groups, the indoctiof LH release appeared more sustained than
in peripubertal mice (peripubertal WT: 68 + 3.74hym=5 vs adult WT142.5 + 4.78 min after
injection, n = 4, p < 0.0001; peripuberfac2KO: 52 + 3.742, n=5 vs aduliac2KO 156.7 +

3.33 min, n = 3, p=0.07).

Naloxone Increases Pulsatile LH Release in Adult OXWT and Tac2 KO Mice
To determine the role of the opiatergic (dynorphiriluence on kisspeptin signaling in the
absence of NKB, we examined the effects of NLX,alkHdlocks dynorphin, on LH secretion.
Peripheral administration of NLX 5 mg/kg inducediacrease in LH in both WT (Figure 6 A-C)
andTac2KO female mice (Figure 6 D-E) within 20 min of auhistration (WT: 20 min pre-
NLX, 2.37 £ 0.59, n=4 vs 20 min post NLX, 4.31 89, n=4; p<0.05Tac2KO: 20 min pre-
NLX, 0.31 £ 0.06, n=4 vs 20 min post NLX, 1.22 £9, n=4, p<0.05).

After NLX administration, WT mice responded with iacrease in the duration of the
following LH pulse post-NLX administration (pre-NLXVT 25+ 2.67 min, n = 3Tac2KO
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23.33 £2.10 min, n = 3, p= 0.13; post-NLX: WT: 83+12.02 min, n = 3Tac2KO: 30+5.77
min, n = 3; p<0.01) (Figure 6A). In addition, threiease in duration in the post-NLX LH pulse
was accompanied by a pronounced and longer infeeputerval in WT mice (WT inter-pulse
interval pre-NLX 25.38+1.83 min; WT inter-pulse éntal post-NLX 46.67+3.33 min,
p<0.0002).

Tac2KO animals displayed a markedly reduced LH basedimd number of pulses than in
OVX controls (0-1 LH pulses in 120 min pre-NLX). &ladministration of NLX induced a
robust LH pulse that occurred 20 min after treatnmemll cases, with a peak that reached a two-
fold increase compared to baseline (pre-NLX: 0.31G6 mIU/mL; post-NLX: 1.2 £ 0.28
mlU/mL, p<0.02). While the limited number of LH peals precluded an analysis of inter-pulse
intervals; data suggest that NLX did not incredseduration of the LH pulse (pre-NLKac2
KO 23.33 + 2.10 min, n = 3, post-NLXac2KO: 30+£5.77 min, n = 3, p>0.05) (Figure 6 D-E).

Discussion

In this study, 1) naturally occurring loss-of-fuiect mutations in the gene encoding NKB in a
consanguineous family, 2) biochemical phenotypamgl 3) provocative challenge testing were
all employed to explore the physiologic architeetunderlying GnRH pulse generation in the
hypothalamus of mice and humans. Although IHH pésiearrying mutations in the gene
encoding the NKB receptof ACR3 are not uncommon, only one family with a genetic
mutation leading to a complete loss of NKBAC3 has been reported in the literature to date
(39). In this series of genotype-driven physiologiestigations, the genetic loss of NKB
provided a key backdrop for baseline and provoeatetailed neuroendocrine phenotyping.

Most patients with IHH have a lack of GnRH-indudgd pulsations (2). In this study, four
sisters with IHH bearing homozygous loss of functiwutations inNTAC3demonstrated a unique
neuroendocrine pattern of well-articulated, buteqtient, LH pulses; this pattern showed
remarkable fidelity across all 4 sisters and isilsinto another published report (40). In parallel,
ovariectomizedrac2mutant mice demonstrated reduced LH pulse frequeompared to WT
controls. On the one hand, the slow frequency oplul$es speaks to the important role of NKB
as a driver of normal GnRH-induced LH pulse frequemNKB signaling has been specifically
associated with GnRH pulse frequency (39) and N&&:ptor antagonists have recently been
shown to reduce LH pulses in post-menopausal wandrpatients with polycystic ovarian
syndrome (41, 42). The endogenous opioid, dynorgiatentially “unrestrained” by the
pathophysiologic absence of NKB, may also haverdmrted to the lengthy LH inter-pulse
interval (43). However, the observation of any Lidges, even infrequent ones, clearly
demonstrates that NKB is not essential for GnRHedl LH pulse generation per se. The
identity of the drivers of these low-frequency Leteetory events, (kisspeptin, GnRH, other
tachykinins, or factors yet to be discovered) rezgifurther study (44-46).

Although loss-of-function mutations in both kisspemnd NKB signaling have been
associated with hypogonadotropic hypogonadismethppears to be greater complexity in the
phenotype associated with deficiency of NKB sigmglcompared to that of kisspeptin (47).
Subjects 3, 4, and 5 experienced reversal of thgiogonadotropic phenotype as evidenced by
their ability to have spontaneous menstrual cyatesfertility in the absence of any medications.
It is tempting to speculate that their low frequehél pulses observed in both 2010 and 2016
are related to their phenotypic reversal, i.e.rdadt GnRH pulse generator, even if slow, can be
sped up leading to reversal under the right circantes. Additional studies, perhaps using
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opioid antagonists such as in this study, woulddogiired to reach that conclusion with greater
certitude.

The most remarkable finding of this study was tiease in LH levels during the NLX
infusion in subjects with IHH. To date, the abilitystimulateendogenou§&snRH-induced LH
pulsations that mimic normal physiology in patiewith IHH has been non-existent. The
observation of a normal LH pulse frequency in theesmce of both a key driver for kisspeptin-
induced-GnRH-induced LH pulsations (NKB) and a k#ybitor (dynorphin) demonstrate that
both NKB and dynorphin are dispensable for GnRH@ugjeneration and termination. We have

previously postulated that the reproductive castedeseveral potential pulse generators that are

capable of “standing in” when upstream inputs aifuthctional. Possibilities include, but are
not limited to 1) pulsatile kisspeptin secretioonr KNDy neurons in the absence of
NKB/dynorphin autofeedback (48), 2) other tachyl@ihat substitute in for NKB (45), 3)
pulsatile kisspeptin secretion from non-KNDy new¢49), or 4) kisspeptin-independent
pulsatile GnRH secretion (50).

Considerations regarding LH pulses include the ofag®n that Subject 4 appeared to have a
more pronounced response to NLX than Subject 5jeSuh underwent pituitary priming with
exogenous GnRH and Subject 5 did not, which may lsemplified any effect of NLX on the LH
response in Subject 4. Subject 4 had also beeiviegéntermittent hormone replacement
therapy which may have enhanced endogenous kiss@epion on GnRH release. This
speculation is based on observations showing #vabgtic exposure to estradiol appears to be
essential for kisspeptin action in female non-humpamates (51). The ability to generalize these
findings beyond patients with NKB pathway mutatiemsinclear. Prior attempts to stimulate the
reproductive axis in IHH patients (of unknown gespaf) using NLX were not successful (52).

In synchrony with the human observations, LH lewetseased during NLX injection in
OVX WT andTac2mutant mice. LH pulse amplitude was clearly insegh an increase in LH
pulse frequency could not be assessed due tontiitedi duration of the NLX injection as well as
limitations of blood sampling. These findings aomsistent with previous observations that
NLX increases LH levels and/or pulse frequencyealthy humans and humans with
hypothalamic amenorrhea, an acquired form of hypadsm (15, 53, 54). Furthermore, these
findings extend the observations regarding thecesfef dynorphin on GnRH pulse termination
reported in sheep, demonstrating treatment witapp&-opioid receptor specific antagonist can
prolong NKB-stimulated LH pulses (55, 56). Takegdther, these studies suggest the need for
further dissection of cellular events that leatNto<’s impact on GnRH pulse generation in the
presence and absence of NKB.

In prior studies, the inability of the same dos&mfL0, which effects a robust GnRH-induced
LH response in healthy men and luteal-phase wotodirjng about any effect in IHH patients
across a range of genotypes suggested that thidinalccapacity of the GnRH neuronal
network is fundamentally impaired in patients wiH (28). In contrast to these previous
observations in IHH patients with genotypes othenTAC3or TACR3,Subjects 3, 4, and 5
responded to kp-10 IVB (28). Here, the low frequepulses and the ability to respond to
exogenousp-10administration suggest that the GnRH neuronaltmgnecessary for pulse
generation remains intact in patients lacking NKiBwever, the ability to respond kp-10with
LH pulses was observed only in the setting of I\dBnanistration, and not a continuous infusion,
as has been reported by others (40). Differing slo$kp-10, LH assays and LH pulse algorithms
may account for this discordance.
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Comparing NKB human “knock-outs” with the femalenAdmuman primate receiving
pharmacologic blockade of NKB receptor signalingeads parallels in the development of
hypothalamic brain circuitry. In rhesus monkeysjpeocal signaling mechanisms between
kisspeptin and NKB neurons appear to be establistiedthe course of sexual maturation. Thus,
kisspeptin-induced GnRH secretion is possible éenglresence of the NK3R antagonist,
SB222200, in the prepubertal state, but is blo¢ketle presence of SB222200 in the pubertal
state (57). Furthermore, female pubertal monkegsire the presence of circulating estradiol to
respond tkp-10, whereas pre-pubertal monkeys do not (51). Ircthreent study, the
observation that hypogonadal female patients witkaodogenous NKB are capable of
responding tdp-10 suggests that they too have intact hypothalamdwitry akin to that of a
prepubertal monkey.

As in the human model, the mice lacking NKB (enabfi® in mice byTac?), in both the
peripubertal and adult period, responde&d 0 with robust GnRH-induced LH pulses. Because
Tac2KO mice have an impaired reproductive axis inyekiie which then normalizes in
adulthood, both phases of reproductive life wer@n@red (34). In the current studies, the kp-10
stimulated GnRH-induced LH pulse amplitude was @igh Tac2KO mice than WT mice and
changed over time, appearing as a single pulsexmadly immature animals but biphasic in
adulthood. Substance P is known to stimulate LEas$ and, in female animals in the setting of
low sex steroids, does so during the upswing dftdpulse which could give the appearance of
a biphasic pulse (45, 58-60). It has been hypatkdgihat th&ac2KO mouse overcomes its
delay in sexual maturation and establishment ofm@bestrus cycles due to other tachykinin
inputs. As the substance P receptor is directlyesged on GnRH neurons, further research into
its effect on the morphology of the LH pulse mayea& ways in which kisspeptin’s action can
be augmented in mice lacking NKB.

In this series of studies, the use of a human getietock-out” for NKB reveals a robust
GnRH pulse generator in the absence of NKB and mghymio signaling. Furthermore, it
demonstrates the antagonistic relationship betwasmlatory NKB and inhibitory dynorphin in
modulation of endogenous GnRH pulse frequency.g€igsn is capable of stimulating GnRH-
induced LH release in humans and mice lacking NRiBther studies will be required to explore
the role of antagonism of endogenous opioids irogpmadotropic states. Nevertheless, the
finding in this study that endogenous kisspeptiymaiing alone is sufficient for GnRH pulse
generation in human patients, demonstrates the imuehevance of findings from Herbison and
his colleagues that optogenetic excitation of $sledisspeptin neurons induces GnRH pulses in
mice (17, 18, 61). Collectively, this knowledge gests that there may be a role for opioid
antagonism in the treatment of patients with repobigle disorders due to NKB deficiency and
that this may also extend to those reproductiverders characterized by slow GnRH pulse
frequency.
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Figure 1: Baseline Neuroendocrine Profiling. A.&tschema; B. Study subjects with IHH who
underwent 8 hr sampling between 2010-2011; C. Healister in early follicular phase (EFP).
E2 = estradiol, P= progesterone, LH = luteinizimgrhone.

Figure 2: Baseline Studies with Response to Kisap@nd GnRH. A. Study schema; B. Study
subjects. Arrows indicated luteinizing hormonesspsldetected by the algorithm. K =
kisspeptin-10 by intravenous boluses and subsicigitates the dose 1=0.24 nmol/kg, 2= 0.72
nmol/kg, 3 = 2.4 nmol/kg. G= GnRH IVB 75 ng/kg. E2stradiol, FSH = follicle stimulating
hormone, LH = luteinizing hormone.

Figure 3: Response to Kisspeptin Infusion and GnRFStudy schema; B. Study subject.
Arrows indicated luteinizing hormones pulses des@diy the algorithm. G= GnRH IVB 75
ng/kg. E2 = estradiol, FSH = follicle stimulatihgrmone, LH = luteinizing hormone.

Figure 4: Neuropeptide Administration with Respots&isspeptin and GnRH. A. Study
schema; B. Study subjects. Arrows indicated lusng hormones pulses detected by the
algorithm. K = kisspeptin-10 by intravenous boluaed subscript indicates the dose 1=0.24
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nmol/kg, 2= 0.72 nmol/kg, 3 = 2.4 nmol/kg. G= GnRHB 75 ng/kg. E2 = estradiol, FSH =
follicle stimulating hormone, LH = luteinizing hoone.

Figure 5: Kisspeptin administration to Tac2 Knoak-mice and littermate controls across sexual
development. Dashed line = kisspeptin administnatiateinizing hormone values are mean +
SEM for each timepoint.

Figure 6. LH pulse profile (A and D) and the efeof naloxone (NLX) ( B, C, E, and F) in adult
OVX WT and Tac2 Knock-out mice. A and D: LH pulge20 min before NLX injection, and
180 min after NLX injection; NLX injection indicatieby arrows. Arrowheads indicate the LH
pulses. B and E: Changes in LH secretion (meanM)3® min before and 120 min after NLX
in WT and OVX Tac2KO mice, respectively. C and FeHifects of NLX treatment on LH
release are also shown as mean + SEM from 20 nfaneb@re NLX) and 20 min after NLX
injection (Post NLX). * P < 0.05, Student t test.

Table 1: Study Subject Characteristics. FSH =dl@lstimulating hormone, LH = luteinizing
hormone, E2 = estradiol, IVB = intravenous bolussk= kisspeptin, GnRH = gonadotropin
stimulating hormone, US = transvaginal ultrasou#idl = hormone replacement therapy, MPA
= medroxyprogesterone acetate, CC = clomiphenatejtS AB = spontaneous abortion, OCPs =
oral contraceptive pills

Table 1: Study Subject Characteristics

Research Study 2016
FSH |LH E,

ID|Presentatigrnitial Treatment and Subsequent Course

Protocol auD)| (U] (pg/mL. Imaging
TAC3 c.61_61delG p.A21LfsX44 heterozygote
12.6y, 12.6y — 35y, regular monthly menses 1) Baseling 342.18 | 20.4 US: endometriun|
1 menarche 6mm, multiple
35y, pregnant 2) IVB Kiss, small follicles
GnRH

TAC3 c.61_61delG p.A21LfsX44 homozygote

15y, 1° 15-20y, HRT with breast development, growth spurt ot &bplicable

;Tﬁ:f;rh“ 20y, MPA X 10d +withdrawal bleed

thelarche [mid-20s, HRT x 6mo

N

mid-20s, herbal medication

31y- present, amenorrheic

14y, 1°  |16y8mo, FSH 2.1 IU/L (0.6-11), LH 1.1 IU/L (1-18; <40 pmol/l| 1) Baseline & |2.12 | 0.49] 20.3 | normal MRI

amenorrhe, IVB Kiss,
no thelachg GnRH
16-20y, HRT with breast development, growth spurflH 2) Kisspeptin US — endometriun
Infusion & IVB 4mm, all follicles
GnRH <2 mm, uterus

small adult size

22y, FSH 7.7 IU/L (0.6-11), LH 11.9 IU/L (1-11)
22y, MPA x1 +withdrawal bleed

22y, spontaneous conception of healthy son, 1 M&%

24y, superovulation x2 (MPA followed by CC), no gmancies
24- 37y, ~ g3 mo MPA, + intermittent withdrawal édks
37-40y, amenorrheic

40y - present, restarted on ~ g3 mo MPA

14y, 1°  [16y4mo, FSH 2.4 IU/L (0.6-11), LH <0.5 IU/L (1-18; 49 pmol/| 1) Baseline & [3.97 [ 0.94] 11.2 [ US - endometrim
amenorrhe IVB Kiss, 5mm, one follicle
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no thelachg GnRH 10mm, uterus sma
- adult size
16-22y, HRT with breast development 2) Naloxone
Infusion & IVB
Kiss, GnRH
22-24y, amenorrheic
24y,+ home pregnancy test followed by SAB
24y, FSH 5.5 IU/L (0.6-11), LH 5.4 IU/L (1-11)
25-27y, HRT
28y5mo, herbal medication, 2 spontaneous cycles @part
28y, FSH, LH “normal range”, Elow” at 52 pmol/L
29 -30y, HRT
30-31y, amenorrheic
31- present, intermittent HRT use
13y, 1° 17-18y, HRT 1) Baseline & |3.42 [ 0.86| 34 normal MRI
amenorrhe, IVB Kiss,
no thelarche GnRH
21y, OCPs for 6 mo 2) Naloxone US — endometriun
Infusion & IVB 9mm, cyst 3cm
Kiss, GnRH
5 25y, herbal medication +withdrawal bleed, repeatgtout effect

26-28y, amenorrheic

28-29y, regular monthly cycling (1.3 y)

29-31y, 2.5 mo cycles (2.5y)

31y-present, yearly spontaneous spotting

FSH = follicle stimulating hormone, LH = luteinizjrhormone, E= estradiol, IVB = intravenous bolus, kiss =

kisspeptin, GnRH = gonadotropin stimulating hormds8 = transvaginal ultrasound, HRT = hormone regraent
therapy, MPA = medroxyprogesterone acetate, CC miploene citrate, SAB = spontaneous abortion, OCe&sk
contraceptive pills
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