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Context: Kisspeptin-Neurokinin B-Dynorphin neurons are critical regulators of the 
hypothalamic-pituitary-gonadal axis. Neurokinin B (NKB) and dynorphin are hypothesized to 
influence the frequency of gonadotropin-releasing hormone (GnRH) pulses; whereas kisspeptin 
is hypothesized to be a generator of the GnRH pulse. How these neuropeptides interact remains 
unclear.  
Objective: To probe the role of NKB in GnRH pulse generation and to dissect the interactions 
between NKB, kisspeptin, and dynorphin in humans and mice with a complete absence of NKB.  
Design: Case/Control 
Setting: Academic medical centers 
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Patients or Participants: Members of a consanguineous family bearing biallelic loss-of-function 
mutations in the gene encoding NKB and NKB deficient mice 
Interventions: Frequent blood sampling to characterize neuroendocrine profile and 
administration of kisspeptin, GnRH, and naloxone, a non-specific opioid receptor antagonist 
used to block dynorphin.  
Main Outcome Measure(s): Luteinizing hormone (LH) pulse characteristics 
Results: Humans lacking NKB demonstrate slow LH pulse frequency which can be increased by 
opioid antagonism. Mice lacking NKB also demonstrate impaired LH secretion which can be 
augmented with an identical pharmacologic manipulation. Both mice and humans with NKB 
deficiency respond to exogenous kisspeptin. 
Conclusion: The preservation of LH pulses in the absence of NKB and dynorphin signaling 
suggest that both peptides are dispensable for GnRH pulse generation and kisspeptin 
responsiveness. However, NKB and dynorphin appear to have opposing roles in the modulation 
of GnRH pulse frequency.  

This study uses pharmacologic probes to demonstrate that endogenous GnRH-induced LH pulses can be 
generated in the absence of neurokinin B and dynorphin activity in humans and mice.  . 

Introduction 

Despite nearly 50 years since the discovery of GnRH (1), understanding the factors that trigger 
GnRH neurons to drive the onset of sexual maturation and subsequently maintain reproductive 
function remains a challenge. Patients with idiopathic hypogonadotropic hypogonadism (IHH) 
are a key population to uncover these signals, as they have abnormal GnRH secretion/action (2, 
3). Most IHH patients present as teens with delayed pubertal development and suffer life-long 
sexual infantilism and infertility if left untreated (2, 3). 

Identification of the afferent pathways through which endogenous factors (e.g. gonadal 
steroids, stress hormones, and nutrient signals) and external cues (e.g. social cues and day length) 
regulate GnRH release have recently focused on the kisspeptin/neurokinin B/dynorphin system 
(4). Inactivating mutations in kisspeptin, neurokinin B (NKB), and their respective receptors 
cause IHH in humans and mice, implicating these neuropeptides in the generation of GnRH 
pulses (5-12). Dynorphin is thought to oppose this stimulatory activity by providing critical 
slowing of GnRH pulse generator activity in response to progesterone during the luteal phase of 
the menstrual cycle (13-15). These three neuropeptides coalesce in a population of neurons in the 
arcuate nucleus, KNDy (K isspeptin-Neurokinin B-Dynorphin) neurons, and are postulated to 
work in a coordinated fashion to synchronize the secretory activity of GnRH neurons to generate 
the pulses of GnRH secretion that are necessary to drive reproductive endocrine function (16-
18).  

Because biallelic loss-of-function mutations disrupt both copies of a gene, patients carrying 
such mutations (i.e. “human knockouts”) provide novel insights into the phenotypic 
consequences of gene disruption or loss. In this study, four sisters carrying biallelic, complete 
loss-of-function mutations in the gene encoding NKB (one of the key neuropeptides in KNDy 
neurons) underwent genotype-driven phenotyping. Despite an initial diagnosis of IHH, several 
sisters spontaneously recovered reproductive endocrine function in adult life. Studies were 
performed in both normal and neurokinin B-deficient family members as well as normal and 
neurokinin B-deficient mice to investigate the role of NKB in GnRH pulse generation and to 
dissect the interactions between NKB, kisspeptin, and dynorphin. Use of a combination of 
specific neuroendocrine probes revealed that the hypothalamus is capable of generating GnRH-
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induced LH pulses despite genetic and pharmacologic antagonism of two of the three KNDy 
constituents, NKB and dynorphin.   

Methods 

Subjects and Eligibility Criteria 
Five women from a single consanguineous family were recruited on the basis of their genotype 
(Table 1). Subjects were either reproductively normal (Subject 1; genotype TAC3 c.61_61delG 
p.A21LfsX44 heterozygote) or carried a diagnosis of hypogonadotropic hypogonadism (Subjects 
2-5; genotype TAC3 c.61_61delG p.A21LfsX44 homozygote). The brothers and parents were not 
available for study participation. IHH was defined as hypogonadal sex steroid levels (estradiol 
<20 pg/mL in women) in the setting of low or normal gonadotropin levels at age ≥18 years and 
the absence of any identifiable medical condition that could cause hypogonadotropic 
hypogonadism. As in our previous report (19), reversal of IHH in women was defined as: 1) 
fertility without use of exogenous GnRH or gonadotropin therapy; 2) spontaneous menstrual 
cycling for at least 3 months in the absence of treatment; and/or 3) LH pulse frequency and 
amplitude within the normal range for women. Relapse after reversal was defined as again 
having hypogonadal sex-steroid levels (serum estradiol <20 pg/mL in women) and/or 
amenorrhea.  

Subjects also participated in a genetics study. Patient DNA was screened for rare sequence 
variants (RSVs), defined as having a minor allele frequency of less than 1% in The Genome 
Aggregation Database (gnomAD), in genes known to cause IHH, as described previously (20, 
21). Genes screened were CHD7 (MIM 608892), FGF8 (MIM 600483), FGFR1 (MIM 136350), 
GNRH1 (MIM 152760), GNRHR (MIM 138850), HS6ST1 (MIM 604846), ANOS1 (previously 
called KAL1, MIM 300836), KISS1 (MIM 603286), KISS1R (MIM 604161), NSMF (previously 
called NELF, MIM 60813), PROK2 (MIM 607002), PROKR2 (MIM 607123), TAC3 (MIM 
162330), and TACR3 (MIM 162332) by PCR amplification of exons followed by Sanger 
sequencing. RSVs were reported if they were predicted to be damaging by at least 2 out of 4 in 
silico prediction programs: PolyPhen-2 (22), SIFT (23), Mutation Taster (24), or Panther (25). 
The University of Pennsylvania Smell Identification Test (UPSIT) scores, from a 12-item smell 
test, were used to classify olfactory capabilities (26, 27). 

Study Design 
In 2010, the subjects with hypogonadotropic hypogonadism (Subjects 2, 3, 4, 5) underwent 
detailed neuroendocrine phenotyping in which blood sampling was performed every 10 minutes 
(q10 min) for 6-8 hours to map endogenous LH pulsations at the Wellcome Trust Clinical 
Research Facility, Cambridge, UK under the direction of Professor I. Sadaf Farooqi (Figure 1A).  

In 2016, Subjects 1, 3, 4, and 5 were invited to participate in a second series of daytime 
studies at Massachusetts General Hospital (MGH) Clinical Research Center (CRC) to determine 
whether their endogenous LH pulse patterns could be modified by administration of GnRH, 
kisspeptin 112-121 (kp-10) and the non-specific opioid antagonist which blocks dynorphin, 
naloxone (NLX) (Figure 2A, Figure 3A, Figure 4A). To ensure that the pituitary gonadotropes 
would be in a state of readiness, Subjects 3 and 4 received exogenous pulsatile GnRH 25 ng/kg 
every 2 hours (q2h) by a Crono F portable infusion pump (Canè S.p.A, Turin, Italy) for 3 days 
prior to admission to the MGH CRC (28). Subject 5 had recent evidence of some neuroendocrine 
activity (yearly spontaneous bleeding) so she was not primed with pulsatile GnRH (Table 1).  
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Baseline studies: All subjects underwent q10 min blood sampling for at least 6 hours to 
evaluate endogenous GnRH-induced LH secretion during one of their visit days to the MGH 
CRC (Figure 1A, Figure 2A). 

Kisspeptin boluses: After assessment of endogenous GnRH-induced LH secretion, subjects 
3,4, and 5, received the administration of kp-10 0.24 nmol/kg intravenous bolus (IVB) as prior 
work by our group demonstrated that this dose consistently elicits GnRH-induced LH pulses of 
physiologic amplitude in healthy men and healthy luteal-phase women (29, 30) (Figure 2A). 
Subjects 4, 5 received subsequent kp-10 IVBs of 0.72 and 2.4 nmol/kg. Subjects 3, 4, and 5 then 
received 75 ng/kg IVB of GnRH at the conclusion of these studies, as our group has previously 
shown that this dose results in robust GnRH-induced LH responses in individuals with intact 
gonadotrope function (31). 

Kisspeptin Infusion: In contrast to the IVB studies, Subject 3 returned to the CRC to 
participate in a second admission in which kp-10 was administered as a continuous infusion (9.5 
nmol/kg/hr) for 12 hours to determine its effect on endogenous GnRH-induced LH pulsations. 
Similar to the IVB studies, blood samples were drawn q10 min and GnRH 75 ng/kg IVB was 
administered at study conclusion (Figure 3A). 

Naloxone Infusion, Blocking Dynorphin: Subjects 4 and 5 returned to the CRC and received 
an NLX infusion (NLX 10 mg IVB, followed by infusion at 0.8 mg/hr) for 13 hours to determine 
the effect of blocking dynorphin signaling with opioid antagonism on endogenous LH pulses in 
the absence of NKB signaling. Midway through the infusion, kp-10 and GnRH boluses (kp-10 
dose range: 0.24 to 2.4 nmol/kg, GnRH: 75 ng/kg) were administered to determine whether NLX 
administration might enhance the response to these peptides (Figure 4A). Again, blood samples 
were drawn q10 min for hormone measurements. Due to nursing error, subject 5 had the NLX 
infusion terminated early at hour 9. 

Source of Peptides 
Kisspeptin 112–121, the 10-amino-acid isoform of kisspeptin (corresponding to amino acids 
112-121 of the pre-prohormone), and GnRH were synthesized using good manufacturing 
practices by NeoMPS (PolyPeptide Laboratories, San Diego, CA). NeoMPS provided kisspeptin 
112-121 under contract to the Eunice Kennedy Shriver National Institute of Child Health and 
Human Development. Naloxone was ordered from Hospira (Lake Forest, IL). 

Human Laboratory Assays 
LH for each sample and estradiol on 2-hour pools were measured by direct immunoassay using 
the automated Abbott ARCHITECT system (Abbott Laboratories, Inc., Abbott Park, IL) as 
previously described (28). Estradiol was measured by a 2nd generation immunoassay traceable 
to mass spectrometry-based assays for the 2010-2011 studies and by Elecsys (Roche 
Diagnostics, Indianapolis, IN) for 2016 studies (32, 33). 

Assessment of Pulsatile LH Release in Peripubertal and Adult Tac2 Knockout Mice 
Tac2+/- breeding pairs were generated by the Texas A&M Institute for Genomic Medicine 
(College Station, TX) and genotyped (34). All mice were generated and maintained on a 
Sv129/C57BL/6 hybrid background and group housed (three to five per cage) at the Brigham and 
Women’s Hospital in a temperature- and light-controlled environment with lights on from 0600–
1800 h and food and water provided ad libitum. Mice were handled daily for two to six weeks 
prior to the experiment to allow acclimation to sampling conditions.  

Changes in LH secretion was assessed in sexually maturing (6-week-old) and adult (16-
week-old) intact and ovariectomized (OVX) Tac2 knockout (KO) female mice and control (wild-
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type; WT) littermates (n=4-5 per group). Since Tac2 in mice encodes for NKB in humans, these 
mice are lacking NKB. Pulsatile measurements of LH secretion were assessed by repeated blood 
collection through a single incision at the tip of the tail. The tail was cleaned with saline then 
four ul blood was taken at each time point from the cut tail with a pipette. Whole blood was 
immediately diluted in 116 ul of 0.05% PBST, vortexed, and frozen on dry ice. Samples were 
stored at -80°C for a subsequent LH ELISA. For kp-10 administration studies, thirty-six 
sequential blood samples were collected over a 6-hour sampling period. At 170 min of sampling 
(or 180 min of sampling for peripubertal Tac2 knockout mice), mice were injected with mouse 
kp-10 intraperitoneally (7.5 nmol/100 ul saline; Phoenix Pharmaceuticals). For NLX 
administration studies, thirty sequential blood samples were collected over a 5-hour sampling 
period from WT and Tac2 KO mice. WT and Tac2 KO mice were OVX’d to increase the 
frequency and amplitude of LH pulses to better determine the action of dynorphin removal in the 
generation of LH pulses. At 120 min of sampling, mice were injected with NLX intraperitoneally 
(5 mg/kg/100 ul saline; Sigma Aldrich).  

Data Analysis 
Human Pulse Analysis: LH pulses were identified using a validated modification of the Santen 
and Bardin method (35, 36) augmented by a deconvolution algorithm (29). Pulse amplitude of 
kp-10-induced or GnRH- induced LH pulses was calculated as the difference between time 0 of 
kp-10 or GnRH administration and the peak of the pulse. 

Mouse Pulse Analysis: LH pulses were identified using a custom-made MATLAB code that 
reads the LH pulse data gathered by LH sandwich ELISA. The code includes a loop that 
determines a pulse based on if: a) the height of an LH value is 20% greater than the heights of 
either of the 2 previous values as well as 10% greater than the height of the following value; b) 
the peak at the second-time interval (i=2) is >20% greater than the single value that comes before 
it to be considered a pulse. 

Statistics: Paired two-way t-tests were used to assess changes in mean LH, LH amplitude 
(nadir to peak of an LH pulse) and FSH at baseline, as defined in methods above, as compared to 
responses to neuropeptide interventions. All values are reports as mean ± standard deviation, 
unless otherwise noted. 

Study Approval  
All human studies were approved by the Institutional Review Board of MGH/Partners 
Healthcare, or by the Local Regional Ethics Committee of Cambridge, United Kingdom. All 
subjects gave written informed consent prior to inclusion in the studies. For the mouse studies, 
the Brigham and Women’s Hospital Institutional Animal Care and Use Committee approved all 
procedures. 

Results 

Study Subjects Initial Clinical Presentation and Subsequent Course 
Subject 1 had a normal timing of menarche, normal menstrual cycles, and spontaneous 
pregnancy (Table 1). Her sisters, Subjects 2, 3, 4, and 5, presented at 13-15 y with primary 
amenorrhea and received estrogen therapy to induce secondary sexual characteristics. Because of 
the lack of spontaneous sexual maturation by age 18, normal MRI, and low gonadotropins, 
Subjects 2, 3, 4, and 5 all received a diagnosis of IHH (Table 1). None of the sisters are anosmic. 
Three of the four IHH sisters demonstrated reversal of their hypogonadotropism between 22-28 y 
as evidenced by pregnancy without fertility medications (Subjects 3 and 4) and regular 
spontaneous menstrual cycles (Subject 5). However, reversal was not permanent and at the time 
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of the physiologic studies, subjects 3, 4, and 5 had reverted to a state of hypogonadotropic 
hypogonadism (Table 1). 

Genetics 
Sequencing of candidate genes revealed that Subject 1 (normal timing of puberty and normal 
menstrual cycles) is heterozygous for a deletion of a single nucleotide in the gene encoding NKB (TAC3) 
(c.61_61delG p.A21LfsX44). This base pair deletion leads to a frameshift mutation and a premature stop 
codon, in the pre-prohormone prior to the NKB sequence, that would be predicted to result in nonsense-
mediated decay. Even if the transcript were to escape nonsense-mediated decay, the frameshift 
mutation would disrupt the portion of the pre-prohormone that is processed to produce the 
decapeptide known as NKB. Subjects 2, 3, 4, and 5, all with hypogonadotropic hypogonadism, 
are homozygous for this frameshift mutation. This mutation is novel and not found in gnomAD, a 
normative database containing 123,136 exomes and 15,496 genomes (21). Notably, there are no 
individuals homozygous for any protein-truncating mutations in TAC3 in gnomAD. This family harbors 
no other mutations in genes known to cause IHH.  

Baseline Studies: Slow LH Pulse Frequency Characterizes IHH Individuals Without Neurokinin B 
At the time of these baseline studies, the IHH sisters (Subjects 2,3,4 and 5) were amenorrheic with low 
but detectable serum estradiol levels and low progesterone levels off hormonal medications (Table 1, 
Figure 1B). All subjects with IHH had evidence of an enfeebled but organized GnRH pulse generator, as 
evidenced by low-frequency LH secretory events (for comparison in the physiologic early follicular phase 
which is characterized by low estradiol, low progesterone: LH frequency, 7.0 ± 1.8 pulses/12 h; LH 
amplitude, 2.3 ± 1.0 IU/L [mean ± 2 SD]) (37, 38). In Subjects 2, 4, and 5, one pulse was observed in 
the sampling interval (7-8 hours; mean LH amplitude 1.5±0.8 mIU/mL) (Figure 1B). In Subject 3, no 
pulses were observed during the study. In addition, the LH levels of Subjects 3, 4, and 5 demonstrated 
slow decay at the beginning of the sampling interval, suggesting that an LH secretory event had occurred 
before the start of the study. Thus, all subjects demonstrated an abnormally low frequency of LH 
secretory events. Upon repeat testing in 2016, study subjects (Subjects 3, 4, 5) again were amenorrheic 
with low but detectable estradiol levels off hormonal medications. All studies recapitulated the same 
endogenous LH patterns observed in 2010, with low-frequency LH secretory events and a mean LH 
amplitude of 1.3 ± 1.1 mIU/mL (Figure 2B). 

 In contrast, Subject 1, the healthy sister with a heterozygous protein truncating variant in TAC3, 
underwent blood sampling on Day 4 of the menstrual cycle (early follicular phase; EFP). She exhibited 11 
LH pulses in 12 hours with a mean LH pulse amplitude of 0.46 ± 0.25 mIU/mL (Figure 1C) (healthy early 
follicular phase women: frequency, 7.0 ± 1.8 pulses/12 h; amplitude, 2.3 ± 1.0 IU/L [mean ± 2 SD]) (19, 
20). 

Kisspeptin Boluses: IHH Individuals without NKB Respond to Kisspeptin 
All subjects responded to kisspeptin with an LH pulse (Figure 2B). Two study subjects received three 
kisspeptin boluses and demonstrated an LH pulse following kisspeptin in 5 of the 6 boluses. The one 
exception occurred when kisspeptin was administered immediately following an endogenous LH peak 
resulting in a prolonged single peak (Figure 2B, Subject 5). Consistent with this responsiveness, all 
subjects demonstrated adequate pituitary priming, indicating no pituitary defect that could impair 
kisspeptin responsiveness (LH pulse amplitude following GnRH administration: Subject 3: 1.6 mIU/mL, 
Subject 4: 5.1 mIU/mL, Subject 5: 3.0 mIU/mL).  

Kisspeptin Infusion: No Pulsatile LH Secretion 
Subject 3 received a kp-10 infusion (9.5 nmol/kg/hr) for 12 hours and no LH pulses were 
detected. There was a modest increase in mean LH during the infusion (baseline: 0.46 ± 0.24 
mIU/mL; kp-10 infusion: 0.63 ± 0.08 mIU/mL; p<0.0001) (Figure 2B & 3B). Mean FSH levels 
also increased as compared to baseline (baseline: 1.9 ± 0.2 mIU/mL; kp-10 infusion: 2.4± 0.1 
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mIU/mL; p<0.001). After the kp-10 infusion, Subject 3 received an IVB of GnRH resulting in an 
LH pulse of comparable amplitude to that observed in baseline study the prior day (baseline, 1.6 
mIU/mL; after kp-10 infusion, 2.5 mIU/mL). 

Naloxone Infusion: Blocking Dynorphin with Naloxone Increases LH & FSH Secretion and LH 
Pulse Frequency, but Does Not Amplify Kisspeptin-Induced LH Pulses 
Subjects 4 and 5 received the non-selective opioid antagonist, NLX, as well as escalating boluses of 
kisspeptin (0.24, 0.72, 2.4 nmol/kg) to determine the effect of blocking dynorphin signaling on 
endogenous and kisspeptin-stimulated LH secretory patterns. Both studies demonstrated increased mean 
LH levels during NLX infusion as compared to baseline (Subject 4 – baseline: 1.44 ± 0.76 mIU/mL, 
NLX: 2.82 ± 0.54 mIU/mL, p<0.00001; Subject 5 – baseline: 0.6 ± 0.25 mIU/mL, NLX: 1.1 ± 0.37 
mIU/mL, p<0.00001, across matched time points) (Figure 2B, 4B). For the study subject in which a 
complete LH sampling on and off NLX infusion allowed comparison, Subject 4, LH pulse frequency 
increased from one pulse in 6 hours (Figure 2B) to four pulses in 6 hours (Figure 4B). Mean FSH levels 
also increased as compared to baseline (Subject 4 – baseline: 3.7 ± 0.3 mIU/mL, NLX: 5.0± 0.9 
mIU/mL; p<0.01; Subject 5 – baseline: 3.3 ± 0.3 mIU/mL, NLX: 5.1± 0.1 mIU/mL; p<0.0001). 
There was no consistent change in LH pulse amplitude (Subject 4 – baseline: 2.59 mIU/, NLX: 0.45 
± 0.29 mIU/mL; Subject 5 – baseline: 0.82 mIU/mL, NLX: 1.22 and 1.39 mIU/mL). NLX infusions, 
which block dynorphin by inhibiting opioid tone, increase gonadotropin secretion and improve LH pulse 
frequency in individuals with IHH due to loss of NKB signaling. 

Subjects 4 and 5 also received escalating boluses of kp-10 (0.24, 0.72, 2.4 nmol/kg) which were 
followed by an LH pulse, recapitulating results seen off NLX (Figure 2B, 4B). There was no significant 
difference in the change in kisspeptin-induced LH response on or off NLX and there was no clear dose-
response relationship; although the small number of boluses at each dose limited the ability to assess such 
a relationship.  

Kisspeptin Boluses Stimulate LH Release in Peripubertal and Adult WT and NKB-deficient (Tac2 
KO) Mice 
To corroborate the findings in IHH patients, we conducted experiments in Tac2 KO and WT 
control female mice. Peripheral administration of kp-10 elicited a robust increase in LH in all 
animal groups regardless of age and genotype. Interestingly, peripubertal Tac2 KO female mice, 
lacking NKB, displayed a higher magnitude of LH release (5.29 ± 0.43 ng/ml, n=5) than control 
females (2.67 ± 0.48 ng/ml, n=5; p<0.01) (Figure 5). However, LH returned to baseline faster in 
Tac2 KO mice (52 ± 3.72 min after injection, n=5) than in WT control (68 ± 3.72 min, n=5; 
p<0.01). Adult WT mice displayed the expected LH pulse in response to kp-10, while the Tac2 
KO mice that responded to kp-10 showed a bi-phasic response, displaying two overlapping peaks 
of LH (Figure 4). In both adult groups, the induction of LH release appeared more sustained than 
in peripubertal mice (peripubertal WT: 68 ± 3.742 min, n=5 vs adult WT142.5 ± 4.78 min after 
injection, n = 4, p < 0.0001; peripubertal Tac2 KO: 52 ± 3.742, n=5 vs adult Tac2 KO 156.7 ± 
3.33 min, n = 3, p=0.07). 

Naloxone Increases Pulsatile LH Release in Adult OVX WT and Tac2 KO Mice 
To determine the role of the opiatergic (dynorphin) influence on kisspeptin signaling in the 
absence of NKB, we examined the effects of NLX, which blocks dynorphin, on LH secretion. 
Peripheral administration of NLX 5 mg/kg induced an increase in LH in both WT (Figure 6 A-C) 
and Tac2 KO female mice (Figure 6 D-E) within 20 min of administration (WT: 20 min pre-
NLX, 2.37 ± 0.59, n=4 vs 20 min post NLX, 4.31 ± 0.32, n=4; p<0.05. Tac2 KO: 20 min pre-
NLX, 0.31 ± 0.06, n=4 vs 20 min post NLX, 1.22 ± 0.29, n=4, p<0.05).  

After NLX administration, WT mice responded with an increase in the duration of the 
following LH pulse post-NLX administration (pre-NLX: WT 25± 2.67 min, n = 3; Tac2 KO 
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23.33 ± 2.10 min, n = 3, p= 0.13; post-NLX: WT: 83.33±12.02 min, n = 3; Tac2 KO: 30±5.77 
min, n = 3; p<0.01) (Figure 6A). In addition, the increase in duration in the post-NLX LH pulse 
was accompanied by a pronounced and longer inter-pulse interval in WT mice (WT inter-pulse 
interval pre-NLX 25.38±1.83 min; WT inter-pulse interval post-NLX 46.67±3.33 min, 
p<0.0002).   

Tac2 KO animals displayed a markedly reduced LH baseline and number of pulses than in 
OVX controls (0-1 LH pulses in 120 min pre-NLX). The administration of NLX induced a 
robust LH pulse that occurred 20 min after treatment in all cases, with a peak that reached a two-
fold increase compared to baseline (pre-NLX: 0.31 ± 0.06 mIU/mL; post-NLX: 1.2 ± 0.28 
mIU/mL, p<0.02). While the limited number of LH pulses precluded an analysis of inter-pulse 
intervals; data suggest that NLX did not increase the duration of the LH pulse (pre-NLX Tac2 
KO 23.33 ± 2.10 min, n = 3, post-NLX: Tac2 KO: 30±5.77 min, n = 3, p>0.05) (Figure 6 D-E).  

Discussion 

In this study, 1) naturally occurring loss-of-function mutations in the gene encoding NKB in a 
consanguineous family, 2) biochemical phenotyping, and 3) provocative challenge testing were 
all employed to explore the physiologic architecture underlying GnRH pulse generation in the 
hypothalamus of mice and humans. Although IHH patients carrying mutations in the gene 
encoding the NKB receptor (TACR3) are not uncommon, only one family with a genetic 
mutation leading to a complete loss of NKB (TAC3) has been reported in the literature to date 
(39). In this series of genotype-driven physiologic investigations, the genetic loss of NKB 
provided a key backdrop for baseline and provocative detailed neuroendocrine phenotyping.   

Most patients with IHH have a lack of GnRH-induced LH pulsations (2). In this study, four 
sisters with IHH bearing homozygous loss of function mutations in TAC3 demonstrated a unique 
neuroendocrine pattern of well-articulated, but infrequent, LH pulses; this pattern showed 
remarkable fidelity across all 4 sisters and is similar to another published report (40). In parallel, 
ovariectomized Tac2 mutant mice demonstrated reduced LH pulse frequency compared to WT 
controls. On the one hand, the slow frequency of LH pulses speaks to the important role of NKB 
as a driver of normal GnRH-induced LH pulse frequency. NKB signaling has been specifically 
associated with GnRH pulse frequency (39) and NKB receptor antagonists have recently been 
shown to reduce LH pulses in post-menopausal women and patients with polycystic ovarian 
syndrome (41, 42). The endogenous opioid, dynorphin, potentially “unrestrained” by the 
pathophysiologic absence of NKB, may also have contributed to the lengthy LH inter-pulse 
interval (43). However, the observation of any LH pulses, even infrequent ones, clearly 
demonstrates that NKB is not essential for GnRH-induced LH pulse generation per se. The 
identity of the drivers of these low-frequency LH secretory events, (kisspeptin, GnRH, other 
tachykinins, or factors yet to be discovered) requires further study (44-46). 

Although loss-of-function mutations in both kisspeptin and NKB signaling have been 
associated with hypogonadotropic hypogonadism, there appears to be greater complexity in the 
phenotype associated with deficiency of NKB signaling compared to that of kisspeptin (47). 
Subjects 3, 4, and 5 experienced reversal of their hypogonadotropic phenotype as evidenced by 
their ability to have spontaneous menstrual cycles and fertility in the absence of any medications. 
It is tempting to speculate that their low frequency LH pulses observed in both 2010 and 2016 
are related to their phenotypic reversal, i.e. an intact GnRH pulse generator, even if slow, can be 
sped up leading to reversal under the right circumstances. Additional studies, perhaps using 
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opioid antagonists such as in this study, would be required to reach that conclusion with greater 
certitude.   

The most remarkable finding of this study was the increase in LH levels during the NLX 
infusion in subjects with IHH. To date, the ability to stimulate endogenous GnRH-induced LH 
pulsations that mimic normal physiology in patients with IHH has been non-existent. The 
observation of a normal LH pulse frequency in the absence of both a key driver for kisspeptin-
induced-GnRH-induced LH pulsations (NKB) and a key inhibitor (dynorphin) demonstrate that 
both NKB and dynorphin are dispensable for GnRH pulse generation and termination. We have 
previously postulated that the reproductive cascade has several potential pulse generators that are 
capable of “standing in” when upstream inputs are dysfunctional. Possibilities include, but are 
not limited to 1) pulsatile kisspeptin secretion from KNDy neurons in the absence of 
NKB/dynorphin autofeedback (48), 2) other tachykinins that substitute in for NKB (45), 3) 
pulsatile kisspeptin secretion from non-KNDy neurons (49), or 4) kisspeptin-independent 
pulsatile GnRH secretion (50).   

Considerations regarding LH pulses include the observation that Subject 4 appeared to have a 
more pronounced response to NLX than Subject 5. Subject 4 underwent pituitary priming with 
exogenous GnRH and Subject 5 did not, which may have amplified any effect of NLX on the LH 
response in Subject 4. Subject 4 had also been receiving intermittent hormone replacement 
therapy which may have enhanced endogenous kisspeptin action on GnRH release. This 
speculation is based on observations showing that periodic exposure to estradiol appears to be 
essential for kisspeptin action in female non-human primates (51). The ability to generalize these 
findings beyond patients with NKB pathway mutations is unclear. Prior attempts to stimulate the 
reproductive axis in IHH patients (of unknown genotype) using NLX were not successful (52).  

In synchrony with the human observations, LH levels increased during NLX injection in 
OVX WT and Tac2 mutant mice. LH pulse amplitude was clearly increased; an increase in LH 
pulse frequency could not be assessed due to the limited duration of the NLX injection as well as 
limitations of blood sampling. These findings are consistent with previous observations that 
NLX increases LH levels and/or pulse frequency in healthy humans and humans with 
hypothalamic amenorrhea, an acquired form of hypogonadism (15, 53, 54). Furthermore, these 
findings extend the observations regarding the effects of dynorphin on GnRH pulse termination 
reported in sheep, demonstrating treatment with a kappa-opioid receptor specific antagonist can 
prolong NKB-stimulated LH pulses (55, 56). Taken together, these studies suggest the need for 
further dissection of cellular events that lead to NLX’s impact on GnRH pulse generation in the 
presence and absence of NKB.  

In prior studies, the inability of the same dose of kp-10, which effects a robust GnRH-induced 
LH response in healthy men and luteal-phase women, to bring about any effect in IHH patients 
across a range of genotypes suggested that the functional capacity of the GnRH neuronal 
network is fundamentally impaired in patients with IHH (28). In contrast to these previous 
observations in IHH patients with genotypes other than TAC3 or TACR3, Subjects 3, 4, and 5 
responded to kp-10 IVB (28). Here, the low frequency pulses and the ability to respond to 
exogenous kp-10 administration suggest that the GnRH neuronal circuitry necessary for pulse 
generation remains intact in patients lacking NKB. However, the ability to respond to kp-10 with 
LH pulses was observed only in the setting of IVB administration, and not a continuous infusion, 
as has been reported by others (40). Differing doses of kp-10, LH assays and LH pulse algorithms 
may account for this discordance.   
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Comparing NKB human “knock-outs” with the female non-human primate receiving 
pharmacologic blockade of NKB receptor signaling reveals parallels in the development of 
hypothalamic brain circuitry. In rhesus monkeys, reciprocal signaling mechanisms between 
kisspeptin and NKB neurons appear to be established over the course of sexual maturation. Thus, 
kisspeptin-induced GnRH secretion is possible in the presence of the NK3R antagonist, 
SB222200, in the prepubertal state, but is blocked in the presence of SB222200 in the pubertal 
state (57). Furthermore, female pubertal monkeys require the presence of circulating estradiol to 
respond to kp-10; whereas pre-pubertal monkeys do not (51). In the current study, the 
observation that hypogonadal female patients without endogenous NKB are capable of 
responding to kp-10 suggests that they too have intact hypothalamic circuitry akin to that of a 
prepubertal monkey. 

As in the human model, the mice lacking NKB (encoded for in mice by Tac2), in both the 
peripubertal and adult period, responded to kp-10 with robust GnRH-induced LH pulses. Because 
Tac2 KO mice have an impaired reproductive axis in early life which then normalizes in 
adulthood, both phases of reproductive life were examined (34). In the current studies, the kp-10 
stimulated GnRH-induced LH pulse amplitude was higher in Tac2 KO mice than WT mice and 
changed over time, appearing as a single pulse in sexually immature animals but biphasic in 
adulthood. Substance P is known to stimulate LH release and, in female animals in the setting of 
low sex steroids, does so during the upswing of an LH pulse which could give the appearance of 
a biphasic pulse (45, 58-60). It has been hypothesized that the Tac2 KO mouse overcomes its 
delay in sexual maturation and establishment of normal estrus cycles due to other tachykinin 
inputs. As the substance P receptor is directly expressed on GnRH neurons, further research into 
its effect on the morphology of the LH pulse may reveal ways in which kisspeptin’s action can 
be augmented in mice lacking NKB.  

In this series of studies, the use of a human genetic “knock-out” for NKB reveals a robust 
GnRH pulse generator in the absence of NKB and dynorphin signaling. Furthermore, it 
demonstrates the antagonistic relationship between stimulatory NKB and inhibitory dynorphin in 
modulation of endogenous GnRH pulse frequency. Kisspeptin is capable of stimulating GnRH-
induced LH release in humans and mice lacking NKB. Further studies will be required to explore 
the role of antagonism of endogenous opioids in hypogonadotropic states. Nevertheless, the 
finding in this study that endogenous kisspeptin signaling alone is sufficient for GnRH pulse 
generation in human patients, demonstrates the human relevance of findings from Herbison and 
his colleagues that optogenetic excitation of selective kisspeptin neurons induces GnRH pulses in 
mice (17, 18, 61). Collectively, this knowledge suggests that there may be a role for opioid 
antagonism in the treatment of patients with reproductive disorders due to NKB deficiency and 
that this may also extend to those reproductive disorders characterized by slow GnRH pulse 
frequency.  
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Figure 1: Baseline Neuroendocrine Profiling. A. Study schema; B. Study subjects with IHH who 
underwent 8 hr sampling between 2010-2011; C. Healthy sister in early follicular phase (EFP). 
E2 = estradiol, P= progesterone, LH = luteinizing hormone.  

Figure 2: Baseline Studies with Response to Kisspeptin and GnRH. A. Study schema; B. Study 
subjects. Arrows indicated luteinizing hormones pulses detected by the algorithm. K = 
kisspeptin-10 by intravenous boluses and subscript indicates the dose 1=0.24 nmol/kg, 2= 0.72 
nmol/kg, 3 = 2.4 nmol/kg. G= GnRH IVB 75 ng/kg. E2 = estradiol, FSH = follicle stimulating 
hormone, LH = luteinizing hormone. 

Figure 3: Response to Kisspeptin Infusion and GnRH. A. Study schema; B. Study subject. 
Arrows indicated luteinizing hormones pulses detected by the algorithm. G= GnRH IVB 75 
ng/kg.  E2 = estradiol, FSH = follicle stimulating hormone, LH = luteinizing hormone. 

Figure 4: Neuropeptide Administration with Response to Kisspeptin and GnRH. A. Study 
schema; B. Study subjects. Arrows indicated luteinizing hormones pulses detected by the 
algorithm. K = kisspeptin-10 by intravenous boluses and subscript indicates the dose 1=0.24 
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nmol/kg, 2= 0.72 nmol/kg, 3 = 2.4 nmol/kg. G= GnRH IVB 75 ng/kg. E2 = estradiol, FSH = 
follicle stimulating hormone, LH = luteinizing hormone. 

Figure 5: Kisspeptin administration to Tac2 Knock-out mice and littermate controls across sexual 
development. Dashed line = kisspeptin administration. Luteinizing hormone values are mean ± 
SEM for each timepoint. 

Figure 6. LH pulse profile (A and D) and the effects of naloxone (NLX) ( B, C, E, and F) in adult 
OVX WT and Tac2 Knock-out mice. A and D: LH pulses 120 min before NLX injection, and 
180 min after NLX injection; NLX injection indicated by arrows. Arrowheads indicate the LH 
pulses. B and E: Changes in LH secretion (mean ± SEM) 60 min before and 120 min after NLX 
in WT and OVX Tac2KO mice, respectively. C and F: The effects of NLX treatment on LH 
release are also shown as mean ± SEM from 20 min before (Pre NLX) and 20 min after NLX 
injection (Post NLX). * P < 0.05, Student t test. 

Table 1: Study Subject Characteristics. FSH = follicle stimulating hormone, LH = luteinizing 
hormone, E2 = estradiol, IVB = intravenous bolus, kiss = kisspeptin, GnRH = gonadotropin 
stimulating hormone, US = transvaginal ultrasound, HRT = hormone replacement therapy, MPA 
= medroxyprogesterone acetate, CC = clomiphene citrate, SAB = spontaneous abortion, OCPs = 
oral contraceptive pills 

Table 1: Study Subject Characteristics  

ID Presentation Initial Treatment and Subsequent Course 
Research Study 2016 

Protocol 
FSH 
(IU/L)  

LH 
(IU/L)

E2 

(pg/mL)
Imaging 

 TAC3 c.61_61delG p.A21LfsX44 heterozygote 

1 

12.6y, 
menarche  

12.6y – 35y, regular monthly menses 1) Baseline 4.23 2.18 20.4 US: endometrium 
6mm, multiple 
small follicles 35y, pregnant 2) IVB Kiss, 

GnRH 
TAC3 c.61_61delG p.A21LfsX44 homozygote 

2  

15y, 1° 
amenorrhea, 
minimal 
thelarche 

15-20y, HRT with breast development, growth spurt Not applicable 

20y, MPA X 10d +withdrawal bleed 

mid-20s, HRT x 6mo 

mid-20s, herbal medication  

31y- present, amenorrheic 

3  

14y, 1° 
amenorrhea, 
no thelache  

16y8mo, FSH 2.1 IU/L (0.6-11), LH 1.1 IU/L (1-11), E2 <40 pmol/L 1) Baseline & 
IVB Kiss, 
GnRH 

2.12 0.49 20.3 normal MRI 

16-20y, HRT with breast development, growth spurt HRT 2) Kisspeptin 
Infusion & IVB 
GnRH 

US – endometrium 
4mm, all follicles 
<2 mm, uterus 
small adult size 

22y, FSH 7.7 IU/L (0.6-11), LH 11.9 IU/L (1-11)    

22y, MPA x1 +withdrawal bleed   

22y, spontaneous conception of healthy son, 1 most MPA    

24y, superovulation x2 (MPA followed by CC), no pregnancies   

24- 37y, ~ q3 mo MPA, + intermittent withdrawal bleeds   

37-40y, amenorrheic   

40y - present, restarted on ~ q3 mo MPA   

4  
14y, 1° 
amenorrhea, 

16y4mo, FSH 2.4 IU/L (0.6-11), LH <0.5 IU/L (1-11), E2 49 pmol/L 1) Baseline & 
IVB Kiss, 

3.97 0.94 11.2 US – endometrium 
5mm, one follicle 
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no thelache  GnRH 10mm, uterus small 
adult size 16-22y, HRT with breast development 2)  Naloxone 

Infusion & IVB 
Kiss, GnRH 

22-24y, amenorrheic  

24y,+ home pregnancy test followed by SAB  

24y, FSH 5.5 IU/L (0.6-11), LH 5.4 IU/L (1-11)   

25-27y, HRT  

28y5mo, herbal medication, 2 spontaneous cycles 6 mo apart   

28y, FSH, LH “normal range”, E2 “low” at 52 pmol/L  

29 -30y, HRT  

30-31y, amenorrheic  

31- present, intermittent HRT use  

5 

13y, 1° 
amenorrhea, 
no thelarche 

17-18y, HRT 1) Baseline & 
IVB Kiss, 
GnRH 

3.42 0.86 34 normal MRI 

21y, OCPs for 6 mo 2)  Naloxone 
Infusion & IVB 
Kiss, GnRH 

US – endometrium 
9mm, cyst 3cm 

25y, herbal medication +withdrawal bleed, repeated without effect   

26-28y, amenorrheic   

28-29y, regular monthly cycling (1.3 y)   

29-31y, q2.5 mo cycles (2.5y)   

31y-present, yearly spontaneous spotting   

FSH = follicle stimulating hormone, LH = luteinizing hormone, E2 = estradiol, IVB = intravenous bolus, kiss = 
kisspeptin, GnRH = gonadotropin stimulating hormone, US = transvaginal ultrasound, HRT = hormone replacement 
therapy, MPA = medroxyprogesterone acetate, CC = clomiphene citrate, SAB = spontaneous abortion, OCPs = oral 
contraceptive pills 
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Neuropeptide Administration with Response to 
Kisspeptin (K) & GnRH (G)
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