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Abstract: 12 

A submarine channel network, named Abalama Channel System (ACS), has been 13 

recognised in the subsurface of the Niger Delta continental slope. It overlies a mass-transport 14 

complex (MTC) and consists of six channel segments, delimited by five avulsion points and 15 

one confluence point. High-resolution 3D seismic data are used to investigate the 16 

development of the ACS and to describe the interaction between the channels and the 17 

underlying MTC. The MTC mainly consists of highly disaggregated materials (MTC 18 

matrixes) and in plan-view has a very complex fingered geometry, characterised by the 19 

presence of erosional remnants (remnant blocks). The different character of the MTC 20 

matrixes compared to that of the remnant blocks likely resulted in a bathymetry characterised 21 

by negative and positive relief, which provided the initial confinement for the channels of the 22 

ACS. In areas where the MTC-induced confinement was weak or decreased abruptly, 23 

channels tended to develop higher sinuosity, increasing channels instability and ultimately 24 

causing avulsions. Three ideal categories of submarine channel avulsions are observed. Type 25 

1 is characterised by parent and avulsion channel having similar size and maturity; Type 2 is 26 

characterised by a large, high-maturity parent channel and a small, low-maturity avulsion 27 

channel; Type 3 emphasizes the larger scale and higher maturity of the avulsion channel 28 

compared to the parent channel. In the distal part of the study area, topography related to mud 29 

diapirs provided lateral confinement that captured flows avulsed at different times resulting in 30 

a channel confluence phenomenon. Submarine channel network evolution recorded by 31 

avulsion and confluence points represents an important research theme in deep-water 32 

sedimentology, as it controls the final distribution of sediments and the extension of sands in 33 

the whole deep-water depositional system; hence this study can be used to guide hydrocarbon 34 

exploration in analogue systems.  35 
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Keywords: Submarine channel network; Avulsion; Confluence; Mass-transport complex; 36 

Niger Delta slope 37 

 38 

1. Introduction 39 

Submarine channel networks have developed in many deep-water systems (Amazon Fan, 40 

Pirmez et al., 1997; Zaire Fan, Droz et al., 2003; Indus Fan, Kenyon et al., 1995; Bengal Fan, 41 

Curray et al., 2003) as a direct result of frequent submarine channel (including canyons, fan 42 

valleys and even distributaries) avulsion events (Damuth et al., 1983a; b; Kolla and Coumes, 43 

1987; Manley and Flood, 1988; Flood et al., 1991) and the occasional confluence 44 

phenomenons (e.g., Curray et al., 2003; Fildani et al., 2013; Maier et al., 2013). These 45 

networks of channels play an essential role in determining the sediment dispersal pattern and 46 

the growth of the whole fan (Piper and Normark, 1983; Manley and Flood, 1988; Primez and 47 

flood, 1995; Ortiz-Karpf et al., 2015) and therefore are with great research value and meaning 48 

in the hydrocarbon industry. 49 

Mass-transport deposits (MTDs) or complexes (MTCs), sets of strata specifically 50 

generated in submarine instability events (Moscardelli et al., 2006; Bull et al., 2009; Alves, 51 

2015), can extensively modify seafloor morphology, generate localised accommodation space, 52 

and ultimately change the drainage architectures on the continental slope to influence the 53 

submarine sediment routing (Joanne et al., 2010; Olafiranye et al., 2013; Kneller et al., 2016; 54 

Ward et al., 2018). In some extreme cases, they can even control the submarine channel 55 

avulsion or confluence; for example, Ortiz-Karpf et al. (2015) introduced the role of mass-56 

transport complexes in triggering the occurrence of channel avulsion and controlling the 57 

evolution of subsequent avulsion channels/lobes in Magdalena Fan, offshore Colombia. Qin 58 

et al. (2017), on the other hand, investigated the effect of mass-transport deposits in terms of 59 

capturing unconfined flows to merge distinct channels offshore Espirito Santo Basin, SE 60 
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Brazil. However, those works only concentrated on an individual avulsion or confluence 61 

event. The evolution of a complete and independent submarine channel network, with both 62 

avulsion and confluence events and overlying on an extensive mass-transport complex, has 63 

never been studied. 64 

The present study focuses on the evolution of a channel network in the subsurface of the 65 

Niger Delta continental slope, informally named the ‘Ablama Channel System’ (abbreviated 66 

as ACS), which overlies a large-scale mass-transport complex. The ACS consists of six 67 

channel segments, connected by five avulsion points (abbreviated as AP) and one confluence 68 

point (abbreviated as CP). Utilizing high-resolution seismic data, we (1) investigate the 69 

emplacement of a 120 km2 MTC and its effect on the overlying channels, (2) characterise the 70 

avulsion points using a more quantitative approach and summarised their basic types, and (3) 71 

analyse the significance of a channel confluence point, which occurred in the downstream 72 

reach. These new insights can be applied to hydrocarbon exploration in analogue deep-water 73 

deposits. 74 

 75 

2. Geological setting 76 

The study area is defined by a 225 km2 3D seismic volume located in the subsurface of 77 

the Niger Delta continental slope along the South Atlantic margin, with a water depth ranging 78 

from 1300 to 1700 m (Fig. 1A). The sediment is sourced from a large regressive delta, the 79 

Niger Delta, with an area of 12×104 km2 (Doust and Omatsola, 1989). Under the gravity-80 

driven tectonics, the Niger Delta sedimentary packages slips basinward, resulting in three 81 

sectors characterised by different tectonic regimes (Doust and Omatsola, 1989; Damuth, 1994; 82 

Morley and Guerin, 1996). These are an upper extensional zone, extending from the onshore 83 

to the outer shelf and characterised by listric normal faults, a translational zone, located on 84 

the upper continental slope and dominated by mud diapirs, and a lower compressional zone, 85 
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spanning the lower slope as well as the continental rise and including a series of linear toe 86 

thrusts (Damuth, 1994) (Fig. 1B). The study area is located in the most basinward part of the 87 

transitional zone (Fig. 1B). 88 

Three main sedimentary successions were developed in the Niger Delta Basin during the 89 

Cenozoic; in chronological order (from older to younger) they are the Akata, Agbada and 90 

Benin Formations (Short and Stäuble, 1967) (Fig. 1B). The precise age of the study interval is 91 

uncertain, but it is inferred to be part of the Agbada Formation, because of its shallow burial 92 

depth (less than 300 m) and the specific geographical location of the study interval (Fig. 1B). 93 

Also, according to the similar geographical location and water and burial depths of the study 94 

interval to the study subject of Deptuck et al. (2007), its time interval should roughly be less 95 

than 2 Ma. 96 

 97 

3. Methodology 98 

3.1 Dataset 99 

The primary dataset used in this work is a 3D seismic volume extending over an area of 100 

225 km2, acquired by China National Offshore Oil Corporation (CNOOC). All seismic-101 

reflection data were processed to zero phase and displayed in SEG reversed polarity, such 102 

that an increase in acoustic impedance corresponds to a high-amplitude trough (negative) 103 

reflection. The data have a sample rate of 3 ms and a bin size of 12.5 m×12.5 m. The seismic 104 

frequency bandwidth is 15̢90 Hz, with a dominant frequency of approximately 70 Hz in the 105 

study interval. Depth conversions are made assuming a seismic velocity of 1480 m/s for 106 

seawater and 1900 m/s for shallow sediments (Liu et al., 2013), yielding a vertical resolution 107 

of approximately 6 m, which enables the target channels of this study to be well characterised. 108 

 109 

3.2 Seismic analysis 110 
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This study is principally based on ‘classical’ 2D seismic facies analysis (Vail et al., 111 

1977), combined with a 3D seismic geomorphology approach (Posamentier et al., 2007). 112 

Seismic facies analysis was based on the continuity, amplitude, cross-sectional geometry and 113 

termination of seismic reflections. In seismic profiles located around the avulsion points, 114 

cross-cutting and onlapping relationships of reflectors belonging to channel fills and levee 115 

deposits of different channels can help us to determine the relative timing of avulsion eventsˈ 116 

which will be clarified in detail later in the paper. The 3D seismic geomorphology approach 117 

enabled enhanced visualization of seismic facies distribution in map view through coherence 118 

and root mean square amplitude extractions. In addition, two-way traveltime (TWT) 119 

structural maps of channel floors were made around each avulsion point to help understand 120 

the avulsion events and their chronological sequence. 121 

It is important to note that due to the absence of lithological calibration from wells, the 122 

interpretations of seismic facies as specific sedimentary packages was based on the 123 

comparison with published seismic-based studies on deep-water sedimentology (Table 1). 124 

 125 

3.3 Channel dimensions and morphology 126 

Dimensional and morphological parameters, including widths, heights, cross-sectional 127 

areas and sinuosities have been used, following common practice on quantitative descriptors 128 

of submarine channels (see Catterall et al., 2010; Mulder et al., 2012; Qin et al., 2017). In the 129 

present study, quantitative analyses were conducted along the main pathways of six channels, 130 

with their widths, heights and cross-sectional areas measured at 62.5 m intervals; due to 131 

levees are not uniformly developed in all these channels, for simplifying sake, such 132 

morphometrics take no account of the presence or absence of levees and refer to the 133 

maximum value of these three parameters (Fig. 2A). Furthermore, only one sinuosity value 134 
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was calculated for each channel, representing the ratio of the along-channel length to the 135 

straight-line distance between its end-points (Fig. 2B). 136 

 137 

4. Results 138 

4.1 Seismic stratigraphy and seismic facies 139 

4.1.1 Stratigraphic architecture 140 

Four regional surfaces, namely from the top to the bottom T0 (present-day seafloor), 141 

T110, T130 and T200, could be traced in the shallow subsurface of the study area (Figs. 3A 142 

and 4A). The top interval between the seafloor (T0) and T110 has a thickness of 80-100 m 143 

and is characterised by low-amplitude, high-continuity reflections (Figs. 3A and 4A), 144 

presumably representing hemipelagic sediments. T110 and T130 act as the top and bottom 145 

boundaries of the study interval, which has a thickness of 185-200 m and various seismic 146 

reflection characteristics (Figs. 3B and 4B). The bottom interval bounded by T200 and T130 147 

has a similar seismic expression to the top succession, but a rather smaller thickness of 15-20 148 

m (Figs. 3A and 4A); it can be interpreted to represent a condensed section occurred during a 149 

sea level highstand. 150 

 151 

4.1.2 Seismic facies and corresponding depositional elements 152 

Five major seismic facies were identified in the study interval (Figs. 3B and 4B). They 153 

are interpreted as representing different depositional elements, according to recognition 154 

criteria based on published seismic-reflection datasets (Table 1). 155 

Seismic facies 1 is characterised by variable-amplitude, discontinuous reflectors 156 

confined within a U- or V-shaped erosional surface and it is interpreted as submarine channel 157 

fill deposits (Abreu et al., 2003; Posamentier and Kolla, 2003; Gee et al., 2007). Facies 2, 158 

usually found on either side of facies 1 strata, is composed of low-amplitude, continuous 159 
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reflectors that form wedge-shaped packages and is interpreted as external (master) levee 160 

deposits (Deptuck et al., 2003; Nakajima and Kneller, 2013; Zhao et al., 2018a). Facies 3 161 

consists of variable-amplitude, chaotic reflection packages and is considered to represent 162 

MTC (Gong et al., 2014; Ortiz-Karpf et al., 2015). Moreover, Bull et al. (2009) and Gamboa 163 

et al. (2011) called such deposits as “MTC debrites/matrixes”. Facies 4 is characterised by 164 

parallel, high amplitude, continuous reflectors and is generally interpreted as indicating lobe 165 

deposits (Weimer and Slatt, 2007; Saller and Dharmasamadhi, 2012). Facies 5 shows 166 

variable-amplitude, continuous reflections packages with irregular external geometry. These 167 

packages appear truncated and surrounded by the Facies 3 (MTC matrixes) and thus they are 168 

interpreted as remnants of a stratigraphic interval otherwise mostly eroded by mass flows 169 

(Posamentier, 2004; Moscardelli et al., 2006; Bull et al., 2009; Ortiz-Karpf et al., 2015). 170 

Gamboa et al. (2011) and Ward et al. (2018), however, named these erosional remnants as 171 

“remnant blocks of strata”, different from the “rafted blocks” that are substantially translated 172 

during mass-wasting process, commonly embedded in MTC matrixes and present significant 173 

disruption of basal strata. Those remnant blocks are left in situ and are totally cohesive with 174 

the strata at their base. In addition, for the early stratigraphic interval, complete strata 175 

preservation is observed in the eastern-most and western-most parts of the study area near the 176 

lateral scarps of the large MTC (eastern scarp, Fig. 3B and western scarp, Fig. 4B). 177 

The top surface of the MTC was locally incised into by subsequent submarine channels 178 

and the resulting stratigraphy was onlapped by lobes that were deposited in the underfilled 179 

erosional depressions of MTC and submarine channels (Figs. 3B and 4B). 180 

 181 

4.2 MTC: the substrate of channel development  182 

4.2.1 General description of the MTC 183 
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The studied MTC is composed of seismic facies 3 (with facies 5 representing remnant 184 

blocks), covering an area of approximately 120 km2 (Fig. 5). Its basal surface is highly 185 

erosional, truncating pre-existing strata and resulting in many erosional troughs. The depth of 186 

these erosional depressions is variable, ranging from 70 to 105 m, showing a downslope 187 

decreasing trend (Fig. 6). 188 

The studied MTC has a lobe-like shape, and it is overall elongated in a downslope 189 

direction (Figs. 5 and 7). In the northernmost part, the basal surface of the MTC shows a U-190 

shaped morphology, implying a confined setting; however it looks that relatively close in the 191 

downstream direction the mass flows spread out southward (Figs. 7A and 7B). In the 192 

southernmost part, where mud diapirs developed, the MTC was confined by bathymetric 193 

highs and was deflected by them (Figs. 4 and 5A). This is shown by a change in the general 194 

elongation of the MTC from N-S to NE-SE in the southern extent of the study area (Fig. 7A). 195 

 196 

4.2.2 Component elements and the irregular top surface of the MTC 197 

In addition to the seismic expression in cross sections (see Table 1), the MTC matrixes 198 

(Facies 3) can be recognised thanks to a dark-colored coherent pattern (Figs. 5A and 7A). 199 

This facies infills the erosional troughs at the base of the MTC and it has a total area of 200 

approximately 80 km2 and a thickness of 62-93 m. Its thickness is smaller than the depth of 201 

the erosional troughs (Figs. 3B and 4B), suggesting that the MTC matrixes did not totally fill 202 

the erosional troughs. This must have resulted in negative relief left prior to the development 203 

of submarine channels (Fig. 7A). 204 

The remnant blocks (facies 5) represent the other significant component in the area of 205 

the MTC. They commonly show narrow ‘ridge’ geometries in cross sections (Figs. 3B and 206 

4B) and irregular shapes in map-view (Figs. 5A and 7A), with a total area of around 40 km2. 207 

Their main axes are diverging from each other and they can be traced back to a point in the 208 
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proximal domain of the study area, which seems to represent the location where the mass-209 

transport complex becomes spread (Fig. 7A). In addition, these preserved remnants of the 210 

older seafloor are higher than the top surface of the deposited MTC matrixes (Figs. 3B and 211 

4B) and therefore must have formed positive bathymetric anomalies, present at the onset of 212 

channel network development (Fig. 7A). 213 

 214 

4.3 ‘Ablama Channel System’ (ACS) 215 

4.3.1 General description 216 

In the study area, the ‘Ablama Channel System’ (ACS) consists of six channels, named 217 

C1a, C1b, C1c, C2a, C2b and C2c (from the oldest to the youngest) (Fig. 5). All of them were 218 

initiated by avulsion events that occurred somewhere along the length of the parent channel 219 

(the established one whose flow is diverted). Five avulsion points can be recognised, named 220 

AP1 through AP5 (Fig. 5). These channels have an apparent distributary pattern upslope 221 

where C1b and C2b have diverged from the confined area of the MTC trending parallel to the 222 

lateral scarps, and a tributary pattern downslope where the younger C2a have reoccupied the 223 

older C1b, giving the appearance of a channel merger or confluence (Figs. 5 and 6).  224 

These channels developed above the MTC matrixes and were confined by the positive-225 

relief remnant blocks and by the MTC’s lateral scarps (Figs. 5 and 6). In some cases, these 226 

channels are juxtaposed directly against the remnant blocks (e.g., channel C2b in Fig. 6A). 227 

Furthermore, each avulsion point originates from a bend of the parent channel (Figs. 5, 8 and 228 

9), though in some cases this configuration may be damaged and obscured by the continued 229 

development of the younger avulsion channel (Figs. 9A and 9B)̠ for example, at AP4 that 230 

bend of C2a is hardly recognised (Figures 5B and 9B). The vertexes of these bends are 231 

adjacent to the heads of the avulsion channels, implying that the avulsion events 232 

preferentially occurred on the outside of a sharp bend of the parent channel (Figs. 8 and 9). 233 
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 234 

4.3.2 Channels of the ACS 235 

The oldest channel documented in this study is C1a; it trends to the southeast, shows a 236 

sinuosity of 1.12 and lacks observed levee deposits (Fig. 5 and Table 2). Its widths, heights 237 

and cross-sectional areas at different locations in the study area vary slightly, with the 238 

amplitudes of 62 m, 14 m and 4601 m2 respectively. (Fig. 10 and Table 2). C1b, bounded by 239 

levee packages in the upstream reach, avulsed from C1a and initially took a course to the 240 

south before turning southwest, resulting in a higher sinuosity of 1.21 (Figs. 5 and 8A, Table 241 

2). The widths, heights and cross-sectional areas of C1b vary significantly along its length, 242 

with the amplitudes of 403 m, 55 m, and 27887 m2 respectively, and uniformly show a 243 

clearly decreasing trend downstream. Furthermore, around the two avulsion points (AP1 and 244 

AP2) it has flowed through, that decrease of scale parameters is extraordinarily marked (Figs. 245 

5B and 10, Table 2). C1c avulsed from and developed on the right levee of C1b and headed 246 

in a southerly direction with a very small sinuosity of 1.04 (Figs. 5 and 8B, Table 1). It has no 247 

observed overbank deposits and it is the smallest channel in the study area, with the widths, 248 

heights and cross-sectional areas of 123-180 m, 24-44 m and 1900-6234 m2 respectively 249 

(Figs. 8B and 10, Table 2). 250 

C2a also avulsed from the right levee of C1b; however, its proximal reach (i.e. the 251 

portion up-dip of AP4) has long been modified by the subsequent C2b and inherited the 252 

general characteristics of it. Therefore, the proximal reach of C2a is better considered as part 253 

of C2b (Figs. 5B and 9A). The C2a defined in the present study (Figs. 5B and 9B) lacks 254 

observed levees and trends in a southwesterly direction to flow outside the study area (Table 255 

2); it has a sinuosity of 1.09 and due to the abrupt morphological change around the 256 

confluence point (Fig. 12), its dimensional parameters have relatively large ranges, with the 257 

widths, heights and cross-sectional areas being 150-437 m, 32-72 m and 3117-14992 m2 258 
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respectively (Table 2). C2b originated from C2a and it is also trending toward the southwest, 259 

with a sinuosity of 1.17 (Fig. 5 and Table 2); it is bounded by well-developed levees and has 260 

the largest size compared with the other channels, with the widths, heights and cross-261 

sectional areas being 391-637 m, 58-108 m and 13656-38890 m2 respectively (Table 2). Just 262 

like C1b, scale parameters of C2b also show a downstream decreasing trend and that decline 263 

could roughly be divided into two sections delimited by AP4; upstream the AP4, scale 264 

parameters decrease rapidly, however, downstream the AP4 they change slightly and almost 265 

show a flat trend (Fig. 11 and Table 2). As for C2c, it is a non-leveed channel with the 266 

relatively small widths, heights and cross-sectional areas of 110-212 m, 24-50 m and 2565-267 

8460 m2 respectively (Fig. 11 and Table 2); it avulsed from the left levee of the parent 268 

channel C2b and headed to the south before turning southwest (sinuosity of 1.08; Figs. 5 and 269 

9C, Table 2). 270 

 271 

4.3.3 Channel confluence 272 

In the distal part of the study area, two mud diapirs developed and formed a bathymetric 273 

high prior or during the development of the ACS (Figs. 4 and 5A). For the east tributary C1b, 274 

that bathymetric high caused it to be diverted toward the southwest (Fig. 5B), resulting in a 275 

similar trend to the general orientation of the MTC in that area (Fig. 7A); for the west 276 

tributary C2a, it also reached the toe region of that bathymetric high and rejoined the 277 

abandoned C1b at the confluence point, hence creating a  channel merger or convergence. 278 

The part of C2a downstream of the CP shows much larger widths and cross-sectional 279 

areas than the parts of C1b and C2a upstream to it (Figs. 12A and 12C), however, the channel 280 

heights of the two tributaries don’t change significantly across the confluence point (Fig. 281 

12B).  282 

 283 
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5. Discussion 284 

5.1 Origin and emplacement of the MTC 285 

MTCs are generated as the result of a series of processes associated with sediments 286 

failures. They can be induced and ultimately triggered by a variety of processes alone or in 287 

combination, including increased sedimentation rate (Dugan and Stigall, 2010; Masson et al., 288 

2010; Gong et al., 2014), eustatic sea-level changes (Manley and Flood, 1988; Brami et al., 289 

2000; Masson et al., 2010), gas hydrate dissolution (Maslin et al., 2004; Grozic, 2010), and 290 

seismicity (Alfaro and Holz, 2014; Gong et al., 2014).  291 

The overall extent of the studied MTC could not be mapped due to the limited area 292 

covered by the 3D seismic survey, but it seems most likely that it was not sourced from the 293 

proximal part of the study area because no headwall escarpment/scar, the symbol of the 294 

occurrence of mass wasting process (Moscardelli et al., 2006; Bull et al., 2009; Gamboa and 295 

Alves, 2016; Qin et al., 2017), could be recognised (Figs. 5A and 7A). Furthermore, 296 

considering the fact that in the northernmost part of the study area MTC appears confined 297 

within a U-shaped erosive morphology and in a short distance expanded out southward, 298 

forming an elongated lobe-shaped deposit (Figs. 5A and 7A), we put forward two 299 

speculations. Firstly, the studied MTC (located in a mid-slope position; see Fig. 1) is more 300 

likely to have originated from the failures of upslope regions, such as upper slope, shelf-301 

margin or even the distal part of shelf-edge deltas though some MTCs oriented parallel to the 302 

continental slope do exist in some extreme cases (Ashabranner et al., 2010; Gamboa and 303 

Alves, 2016). These upslope failures may be associated with the rapid sedimentation rates 304 

and ‘escalator regression’ in the Niger Delta Basin since the Eocene (Doust and Omatsola, 305 

1989; Cohen and McClay, 1996; Deptuck et al., 2007). Although constraining the absolute 306 

age of the mass-wasting event or events that deposited the studied MTC is impracticable due 307 

to the lack of chronological calibration, it is possible to observe that part of T130, the basal 308 
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boundary of the study interval, was used as the basal shear surface of the MTC (Figs. 3, 4 and 309 

6). This suggests that T130 played a key role in delimiting the erosional depth of the MTC 310 

and that it is probably a mechanically weak layer acting as a detachment surface. 311 

Secondly, mass flows responsible for the formation of the studied MTC most likely have 312 

exploited a pre-existing channel conduit to move downslope from the source area and 313 

deposited at the unconfined channel termination. When focusing along that pre-existing 314 

channel, mass flows tended to have high sediment delivery rate and in turn, they would 315 

entrench the deposited channel fills, damage the geometric channel forms, and ultimately 316 

give raise to the formation of basal grooves and rafted blocks embedded within highly-317 

disaggregated debrites, which exactly concurs with the scenario within the proximal confined 318 

area of the studied MTC (Figs. 5A and 7B). Similar phenomena have also been observed 319 

offshore Trinidad (Moscardelli et al., 2006), offshore SE Brazil (Qin et al., 2017) and along 320 

the South China Sea margin (Gong et al., 2014), where basal grooves/linear striations and 321 

rafted blocks/megaclasts are also recognised in channel-confined MTCs. Further downstream, 322 

when lost the confinement of the early channel conduit those mass flows, on the contrary, 323 

tended to have relative low entrench rate for the substrate and hence resulted in the 324 

occurrence of large-volume remnant blocks (Figs. 5 B and 7A). At last, when mass flows 325 

encountering the bathymetric high imposed by mud diapirs, the emplacement direction of the 326 

MTC tended to be deflected toward the southwest, where many thrust-like feature are 327 

recognized (Fig. 7C). They could be caused by flow deceleration and internal contraction 328 

against bathymetric highs (Moscardelli et al., 2006; Ortiz-Karpf et al., 2017), a process which 329 

has been described from many deep-water basins around the world (Posamentier and Kolla, 330 

2003; Moscardelli et al., 2006; Bull et al., 2009; Gong et al., 2014). 331 

 332 

5.2 Role of MTC on channel evolution 333 
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The rugged seafloor caused by mass transport deposits have been documented in a 334 

number of studies based on outcrop analogues (Jackson and Johnson, 2009; Armitage et al., 335 

2009), seismic data (Ortiz-Karpf et al., 2015; Kneller et al., 2016), well and core data 336 

(Eggenhuisen et al., 2010; Corella et al., 2016), and numerical models (Stright et al., 2013). 337 

In the study area, the target MTC is characterised by underfilled erosional scars and 338 

protruding remnant blocks, which respectively generated negative and positive reliefs on its 339 

upper surface (Figs. 3, 4, 6, and 7A), constituting the substrate for the development of later 340 

submarine channels. These bathymetric highs and lows acted as physiographic ‘containers’ 341 

for the turbidity flows responsible for the formation of the ACS. This resulted in the six 342 

studied channels occupying the same axial trends of the residual depressions and being 343 

confined at the largest scale within the bathymetric lows (Figs. 5 and 6). The channels used 344 

the underfilled erosional depressions as their preferential pathway, with the channel floors 345 

incised into the remobilised materials and never overriding the remnant blocks (Figs. 5 and 6). 346 

That spatial association between channels and remobilised materials could be explained by 347 

two primary factors. Firstly, the irregularities on the MTC top surface, as stated above, 348 

provided bathymetrical confinement to focus and channelize the turbidity flows. When the 349 

flow direction is oblique to a remnant block, turbidity flows do not seem to be able to spill 350 

over the obstacle, but they are diverted back toward the topographic depressions. Turbidity 351 

flows being diverted by topographic highs on MTD top surfaces have been suggested in other 352 

systems (Hansen et al., 2013; Masalimova et al., 2015; Corella et al., 2016; Ward et al., 2018). 353 

Secondly, differences in mechanical properties between disaggregated remobilised materials 354 

and remnant blocks caused different channel erosional capacity, resulting in increased erosion 355 

in the areas with remobilised material, therefore focusing the turbidity flows in those 356 

locations. As no significant thickness of background hemipelagic sediment can be identified 357 

in seismic sections between the MTC and the ACS (Figs. 3, 4, and 6), the time interval 358 
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between the emplacement of the MTC and the initiation of the channels seems to have been 359 

short. It is possible to speculate that the remobilised material did not have time to consolidate 360 

completely before the onset of the channels.  361 

Although all the six documented channels are influenced by MTD-related topography, 362 

the type and degree of interaction varies between channels and along their studied length. In 363 

some places where channels were strongly confined by the remnant blocks, the avulsion 364 

channel (C1b) could directly use the block as the bank instead of aggradated levees. (Fig. 6A). 365 

In contrast, where the confinement was weak or decreased abruptly, channels tended to 366 

migrate laterally and develop meander bends (Fig. 5). Zhao et al. (2018b) described similar 367 

scenarios in the subsurface of the Niger Delta continental slope as well, where the up-dip 368 

segment of the Bukuma-minor channel has a sinuous course in the unconfined domain, but 369 

becomes straight where confined by a pre-existing channel-levee system. All the five 370 

avulsion events documented in the present study occurred on the outside of sharp bends in 371 

areas of relatively weak confinement (Figs. 5, 8 and 9). These sharp bends increase the local 372 

sinuosity leading to a more unstable channel course, which, when coupled with a triggering 373 

mechanism, can create the occurrence of an avulsion (Kolla, 2007). Avulsion occurring at the 374 

apex of a parent-channel sharp bend has been described in detail by Zhao et al. (2018a) and it 375 

is mainly associated with the flow stripping across the external levee and the resultant erosion. 376 

All in all, from aforementioned spatial association between channel distribution and MTC-377 

related topography, it is suggested that mass wasting process and resultant MTCs can 378 

significantly change the drainage architecture and hence influence the sediment routing on 379 

continental slopes. 380 

 381 

5.3 Basic types of submarine channel avulsion 382 
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After an erosional inception (Fildani et al., 2006; Kostic, 2011; Fildani et al., 2013), 383 

submarine channels tend to gradually develop levees and become more sinuous (Posamentier 384 

and Kolla, 2003; Gee et al., 2007; Maier et al., 2013). Such progressive evolution results 385 

from the cumulative impact of gravity flows that traversed a channel, shaping the channel 386 

morphology and, thus, reflects an increase of channel maturity (Maier et al., 2013). Using this 387 

definition of channel maturity, changes in sinuosity and levee development that occur as the 388 

parent channel ʽtransitions’ into the avulsion one at the avulsion point can be  interpreted as a 389 

result of difference in maturity of the avulsion channel with respect to its parent. According 390 

to such differences in maturity as well as to the variations in size (presented in Figs. 10 and 391 

11) between the parent channel and avulsion channel, three end-members of submarine 392 

channel avulsion can be recognised (Fig. 13). 393 

Type 1 is characterised by parent and avulsion channel having similar size and maturity 394 

(Fig. 13A). It is the most common and ʽclassical’ avulsion event and has long been observed 395 

in deepwater settings (Kenyon et al., 1995; Primez et al., 1997; Curray et al., 2003). Towards 396 

the base of the avulsion channel, an avulsion lobe or splay usually occurs (Fig. 13A). Such 397 

sand-rich sheet deposits, formed at the start of an avulsion cycle, are seismically expressed as 398 

high-amplitude units that consist of relatively continuous to somewhat discontinuous 399 

reflections and are referred to as high amplitude reflection packets or HARPs (Flood et al., 400 

1991; Primez et al., 1997). Considering the similarity of C1a, C1b and C2b around AP1 and 401 

AP3, as described in the results section (Figs. 8A, 9A, 10, 11 and Table 2), AP1 and AP3 are 402 

classified as avulsion type 1 (Table 3). However, no avulsion lobe is identified at the base of 403 

C1b or C2b. Drawing from the studies of HARPs by Prather (2000) and Posamentier and 404 

Kolla (2003), such absence of HARPs may be caused by the low gradient of C1a overbank 405 

slope or by the small sand-to-mud ratio of post-avulsion flows. During the initial phase of 406 
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avulsion these two factors might result in the establishment of a newly avulsed channel 407 

instead of an avulsion lobe or splay. 408 

Type 2 is characterised by a large, high-maturity parent channel and a small, low 409 

maturity avulsion channel (Fig. 13B). This type represents an incomplete or aborted avulsion, 410 

and the associated avulsion channel was named by Zhao et al. (2018a) ‘partially-avulsed 411 

channel’, because of its small scale and failure to develop levees and high sinuosity (Fig. 412 

13B). The preservation of such partial avulsion type relies on the abrupt stop of sediment 413 

supply to the avulsion channel, which in turn may be caused by the sudden shut-off of the 414 

whole deep-water system or by a successful and complete upstream avulsion of the parent 415 

channel (Fildani et al., 2006; Maier et al., 2013; Zhao et al., 2018a). Due to that sudden 416 

depositional quiescence of the avulsion channel, some characteristic signatures occurred prior 417 

to or in the initial period of avulsion process tend to be preserved, such as sediment waves 418 

and linear scours oriented perpendicular and parallel to the avulsed flows, respectively (Fig. 419 

13B). Similar scenarios have also been described in a number of other systems such as: 420 

Monterey East System (Fildani and Normark, 2004; Fildani et al., 2006), Lucia Channel 421 

System offshore Central California (Fildani et al., 2013; Maier et al., 2013) and a channel-422 

levee system on the Niger Delta continental margin (Armitage et al., 2012). This Type 2 423 

scenario in the study area is recognised at AP2 and AP5 (Table 3), where C1c and C2c have 424 

much smaller scales and sinuosities than their parent channels and are not bounded by levees 425 

(Figs. 8B, 9C, 10, 11 and Table 2). It is worth noting that the scale parameters of C1c and 426 

C2c have some high-value anomalies along the depositional dip direction and in turn show a 427 

bell-shaped trend (Fig. 10), indicating they are incipient channels and therefore do not have  428 

continuous or smooth thalwegs. In addition, near AP2 and AP5 no sediment waves or linear 429 

scours could be identified, which may be explained by their small scales that could not be 430 

resolved with the available seismic resolution. 431 
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In contrast to Type 2, Type 3 emphasizes the larger scale and higher maturity of the 432 

avulsion channel compared to the parent channel (Fig. 13C). This means the avulsion channel 433 

has gone through a significant evolution after avulsion. Due to the long development, the 434 

avulsion channel has totally eroded the avulsion lobe around the avulsion point and its levee 435 

overlies the head of the parent channel (Fig. 13C). In the study area, this type of avulsion is 436 

observed at AP4 (Table 3), where the avulsion channel C2b has much larger dimensions and 437 

sinuosity than C2a and is bounded by well-developed levees that downlap upon the most 438 

upstream part of C2a (Figs. 9B, 11 and Table 2). 439 

 440 

5.4 Channel confluence point 441 

A turbidity current escaping channel confinement due to an initial avulsion will seek 442 

pathways along the highest gradient to reach the base level. In the southern part of the study 443 

area, at the toe region of a bathymetric high created by mud diapirs (Figs. 4 and 5), is located 444 

a confluence point (CP). In this region, a topographic low and the presence of lateral 445 

confinement provide favourable conditions to capture the flows derived from different 446 

avulsion events and finally gave rise to the appearance of channel confluence. When C1b was 447 

active, turbidity flows tended to be deflected into the confluence region due to the presence of 448 

mud diapirs (Fig. 5); such diverting of submarine channels associated with structural forcing 449 

has been documented in many case studies (Clark et al., 2009; Gamboa et al., 2012; Jolly et 450 

al, 2016; Zucker et al., 2017). When C2a was active, the early C1b channel may still be 451 

underfilled because its downstream segment had just been abandoned, which could reinforced 452 

the ability of the confluence region to capture flows and again captured the turbidity flows 453 

derived from AP3 where C2a avulsed from. Such submarine channel confluences occurring 454 

adjacent to salt diapirs have also been identified in the southeast Brazilian Margin (Gamboa 455 

et al., 2012; Qin et al., 2017). 456 
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Gamboa et al. (2012) proposed that submarine confluences can be classified as 457 

symmetric or asymmetric based on the equality of the angles the tributaries bear to the post-458 

confluence channel. The confluence in the study area is characterised by a typical ‘Y’-shaped 459 

junction (Figs. 5 and 12) where two tributaries have identical sizes (Fig. 12) and hence it is 460 

classified as symmetric. This type of junctions have been observed in modern submarine 461 

canyons by Mitchell (2004) and are also considered in the general models for river-based 462 

studies (Bathurst, 1997; Best and Roy, 1991; Wang et al., 1996). In addition, the 463 

predominance of widening process over channel incision around the confluence point (Fig. 464 

12) indicate during C2b rejoining the C1b the interaction between MTD and turbidity flows 465 

responsible for the formation of C2b were dominated rather than the traditional cut-and-fill 466 

process within channels. Therefore, part of MTD was again removed downslope by C2b and 467 

replaced by channel-fill deposits. That MTD-turbidity flow interaction could be explained by 468 

the unconsolidated and friable MTD materials. MTD was weaker than the strata beneath 469 

T130, and, as a result, turbidity flows preferentially eroded the more friable MTD above 470 

T130, instead of incising downward into older deposits. This process resulted in a 471 

pronounced widening of the older channel with small change in its heights (Fig. 12). 472 

 473 

 474 

5.5 Temporal-spatial evolution of the Abalama Channel System (ACS) 475 

It has been suggested from studies of several deep-water fans that avulsion events result 476 

in the abandonment of parent channels down-dip of the avulsion sites, and that at any one 477 

time only one channel is largely active (Curray and Moore, 1971; Damuth et al., 1983a, b; 478 

Droz et al., 2003; Kolla, 2007). The same appears to be true for the ACS in the study area, i.e., 479 

the studied avulsion events and corresponding avulsion channels have occurred at different 480 
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times. Channels C1a, C1b, C1c, C2a, C2b and C2c were active sequentially, with C1a being 481 

the oldest and C2c the youngest.  482 

Based on the character and location of the avulsions, the channel network evolution can 483 

be broadly divided into two phases: Phase I and Phase II (Fig. 14F). Phase I was 484 

characterised by the avulsion points stepping landward (i.e. toward the shelf) with time (Fig. 485 

14F). In Phase I, C1b appears to have avulsed from C1a at AP1(Fig. 14A), after which C1b 486 

became an active channel and the parent channel C1a, down-dip of that avulsion, was 487 

eventually abandoned (Fig. 8A). The up-dip portion of C1a, however, was still an active 488 

conduit directly leading into C1b and hence worked as the upstream reach of it (Fig. 5A). As 489 

a result, the upstream reach of C1b was the active conduits for a longer time than its 490 

downstream counterpart, which can explain the observation that the dimensions of C1b 491 

decrease downstream and show an apparent slump around the avulsion points (Figs. 10 and 492 

14). Following this, an avulsion occurred at AP2 (Fig. 14B), up-dip of that of C1b, and led to 493 

the creation of C1c that truncated the right levee of C1b (Fig. 8B). As stated above, the 494 

avulsion of C1c belongs to Type 2, i.e., an aborted/incomplete avulsion (Table 3), and it is 495 

most likely that it was because of the successful and complete upstream avulsion of C2a at 496 

AP3 that sediment supply from C1b to C1c abruptly stopped. The avulsion of C2a at AP3 497 

(Fig. 14C) represents the end of Phase I and the start of Phase II. Phase II is characterised by 498 

avulsions successively stepping basinward and leading to the establishment of C2b and C2c 499 

at AP4 and AP5 (Figs. 9B, 9C and 14). When C2b avulsed and became active (Fig. 14D), all 500 

the up-dip channels segments formed a single conduit, with the result of the more up-dip 501 

portions having acted as active conduits for increasing longer periods. Therefore, C2b, just 502 

like C1b, shows significant variability in its dimension along its length and presents a stepped 503 

decreasing trend downstream, with the AP4 being the major break (Figs. 11 and 14D). As for 504 

the avulsion of C2c (Fig. 14E), it represent another example of aborted/incomplete avulsion 505 
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(Table 3); however, the difference with the C1c scenario is that the stop in sediment supply 506 

may have corresponded to the shut-off of the whole system, because C2c is the latest channel 507 

of the ACS. Such back-stepping and fore-stepping avulsion pattern documented in the ACS 508 

has analogues in the Amazon Fan (Pirmez and Flood, 1995; Pirmez et al., 1997) and the 509 

Northern Zaire Fan (Droz et al., 2003), and contrasts sharply with the distribution of avulsion 510 

points in Indus Fan (Kenyon et al., 1995) and Bengal Fan (Curray et al., 2003) where most 511 

avulsions have focused in a relatively restricted area forming a radial pattern. 512 

 513 

6. Conclusions 514 

(1) In the interval of interest, a MTC, six submarine channels and some lobe deposits 515 

developed in sequence. The MTC most likely originated from the failure of upslope regions 516 

and is mainly composed of remobilized material, interrupted by remnant blocks of the older 517 

stratigraphy.  518 

(2) Channels of the ACS developed directly on the MTC and were confined by the 519 

remnant blocks and by the MTC lateral scarps. The areal extension of the MTC as well as the 520 

character of the debrites controlled the pathways of the submarine channels. Where MTC-521 

related confinement was weak or decreased abruptly, the channels tended to develop higher 522 

sinuosity, increasing their instability and in turn resulting in the occurrence of avulsions. 523 

(3) Three types of channel avulsions have been observed in the present study. Type 1 is 524 

characterised by parent and avulsion channel having similar size and maturity; Type 2 is 525 

characterised by a large, high-maturity parent channel and a small, low maturity avulsion 526 

channel; Type 3 emphasizes the larger scale and higher maturity of the avulsion channel 527 

compared to the parent channel. The five documented avulsion events of the ACS are 528 

classified accordingly.  529 
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(4) The temporal-spatial evolution of the ACS was divided into two phases; Phase I is 530 

characterised by the location of successive avulsion points shifting toward the shelf, whereas 531 

Phase II shows the opposite pattern. 532 

(5) In the southern and distal part of the study area, mud diapirs created topography that 533 

captured turbidity flows which originated from two different avulsion points at different 534 

times, creating a channel confluence. 535 
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Table 1  

Descriptions and interpretations of the seismic facies defined in this study. 

Seismic facies Description Interpretation 

p 

Variable-amplitude, 

discontinuous 

reflectors 

Variable-amplitude, discontinuous 

reflectors are confined within a V-shaped or 

U-shaped surface. They are elongated and 

sinuous in map view, and are bounded on 

either side by facies 2. 

Channel fills (Abreu et 

al., 2003; Posamentier 

and Kolla, 2003; Gee 

et al., 2007) 

q 

Low-amplitude, 

continuous 

reflectors in 

wedge-shaped 

packages 

Low-amplitude, continuous reflectors in 

wedge-shaped packages that pinch out over 

a certain distance. The reflectors downlap 

or onlap older packages and are found on 

either side of facies 1. In map view, they are 

also elongated and trend parallel to facies 1. 

External levee deposits 

(Deptuck et al., 2003; 

Nakajima and Kneller, 

2013; Zhao et al., 

2018) 

r 

Low-amplitude, 

discontinuous, 

chaotic reflectors  

Chaotic, discontinuous reflectors; they dip 

in different directions and at different 

angles. They have erosional bases and 

irregular tops. 

MTC remobilized 

deposits (Gong et al., 

2014; Ortiz-Karpf et 

al., 2015). MTC 

debrites/matrixes (Bull 

et al., 2009; Gamboa et 

al., 2011) 

s 

Parallel, 

high-amplitude, 

continuous 

reflectors  

Parallel, high amplitude reflectors; they 

constitute a continuous package that 

extends across most of the study area. 

Lobe deposits (Weimer 

and Slatt, 2007; Saller 

and Dharmasamadhi, 

2012;) 

t 

Variable-amplitude, 

continuous, 

irregular-shaped 

reflectors 

Packages surrounded by facies 3 with 

irregular-shaped geometries; they are often 

north-south-trending blocks composed of 

parallel, variable-amplitude, continuous 

reflectors. 

Erosional shadow 

remnants of MTC 

(sensu Moscardelli et 

al., 2006). Remnant 

ridges of MTC (sensu 

Ortiz-Karpf et al., 

2015). Remnant blocks 

of MTC (Gamboa et 

al., 2011; Ward et al., 

2018) 
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Table 2 

Quantitative parameters of submarine channels discussed in the present study. 

Channel 
Width/AF 

(m) 

Height/AF 

(m) 

Cross-sectional 

area/AF (m2) 
Sinuosity Levees 

C1a 213-275/62 41-55/14 4750-9351/4601 1.12 No 

C1b 137-540/403 30-85/55 2227-30114/27887 1.21 
Yes in the upstream 

reach 

C1c 123-180/57 24-44/20 1900-6234//4334 1.04 No 

C2a 150-437/287 32-72/40 3117-14992/11875 1.09 No 

C2b 391-637/246 58-108/50 13656-38890/25234 1.17 Yes 

C2c 110-212/102 24-50/26 2565-8460/5895 1.08 No 

AF = amplitude of fluctuation = maximum value-minimum value 
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Table 3 

Characteristics of the five avulsion points (AP). 

Avulsion point Parent channel Avulsion channel Avulsion type 

Ap1 C1a C1b Type 1 

Ap2 C1b C1c Type 2 

Ap3 C1b C2a Type 1 

Ap4 C2a C2b Type 3 

Ap5 C2b C2c Type 2 
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Fig. 1. (A) Location map of the study area; white dashed lines represent water depth contours 

(modified after Adeogba et al. 2005). The study area (yellow box) is located in a middle 

continental slope, with a water depth range of 1300-1700 m. (B) Cross section of the Niger Delta 

Basin showing three structural zones (extensional, transitional, and compression zones) from north 

to south (modified after Zhang et al., 2015). The study area lies in the most basinward part of the 

transitional zone, 
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Fig. 2. Sketch diagram illustrating the geometrical parameters used to define (A) width, height, 

cross-sectional area (modified from Wiles et al., 2017) and (B) sinuosity. The width is the 

horizontal distance between levee crests (or the distance between two banks when there is no 

noticeable levee); the height is the vertical distance between the lower levee crest (or the lower 

bank of the erosional surface when there is no recognized levee) and the deepest point of the 

submarine channel. To concisely present the morphometrics of submarine channels, the above 

figure only shows the more complex scenario, i.e. leveed submarine channels. Note that when 

measuring these parameters, the seismic profile should be perpendicular to the flow direction. 

Only one sinuosity value was calculated for each channel, defined as the ratio of the along-channel 

length to the straight-line distance between its end points. 
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Fig. 3. (A) Uninterpreted and (B) interpreted strike-view seismic section (for line location see Fig. 

5) showing the stratigraphic architecture of the study area and the seismic facies documented in 

the interval of interest. Four surfaces (T0, T110, T130, and T200) were tracked in the shallow 

subsurface of the study area; the study interval is bounded by T110 and T130. 
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Fig. 4. (A) Uninterpreted and (B) interpreted dip-view seismic sections (for line location see Fig. 5) showing the stratigraphic architecture of the study area and the 

seismic facies documented in the interval of interest. Four seismic surfaces that are tracked in the strike-oriented profile (Fig. 3) are also shown in this section. Note 

that in the distal part of the study area there are well-developed mud diapirs and they are deduced to be antecedent or contemporary to the deposition of the studied 

interval because all considered intervals taper out toward them.  
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Fig. 5. (A) Combined display of the root mean square amplitude map and the coherence attribute 

map of the study area extracted from the interval of interest (T110-T130). (B) Interpretation of the 

study area, showing the extent of the MTC and the channel network of the ʽAblama Channel 

System’ (ACS). Note that the white patches enclosed by the MTC matrixes are interpreted as 

remnant blocks and the grey patch recognized in northernmost part is a rafted block. The ACS 

consists of six channel segments, C1a through C2c delimited by five avulsion points, AP1 to AP5. 

The channels directly overlie the MTC and are confined by the remnant blocks or by the lateral 

scarps of the MTC. In the down-dip portion of the studied area, C1b and C2a join at a confluence 

point (CP) and the resulting channel continues outside of the study area. AP = avulsion point; CP = 

confluence point. 
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Fig. 6. A series of strike-view seismic profiles showing the down-slope changes of MTC and 

submarine channels (see Fig. 5B for lines location). The upper and lower yellow solid lines denote 

the basal surface of the lobe deposits and that of the MTC, respectively; note that these two 

surfaces coincide on remnant blocks. Overlain by lobe deposits, the submarine channels incised 

into MTC matrixes and are confined by remnant blocks or lateral scarps. Os = Older stratigraphy; 

Rb = Remnant blocks. 
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Fig. 7. (A) Coherence map extracted from the study interval (scale of greys), overlain on the MTC 

basal surface (coloured by depth). In the northernmost and more proximal part, the MTC seems to 

be confined by a U-shaped surface. However, a short distance downstream it appears to spread out 

in an unconfined domain. The main axes of the three remnant blocks (black arrows) can be traced 

back to a point that might represent where confinement was reduced or lost. The red arrow refers 
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to the main axis of elongation of the MTC, which tends to be deflected toward the southwest due 

to the presence of mud diapirs. White arrows indicate direction of thrusting against the mud 

diapirs. (B) Seismic profile across the proximal confined area of the MTC. Only in this area, a 

basal groove and the corresponding rifted block can be recognized. (C) Seismic profile in the 

diversion area of MTC showing thrust-like feature against the bathymetric high imposed by mud 

diapirs. 
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Fig. 8. Two-way traveltime (TWT) structural maps of the channel bounding surfaces at AP1 (A) 

and AP2 (B) and associated seismic sections. (A) Near AP1, C1b originated from the outside of a 

sharp bend of C1a. (B) Near AP2, C1c originated from a sharp bend of C1b and directly 

developed on its right levee. Hence, we can get the conclusion that C1a, C1b, C1c and associated 

AP1 and AP2 came into existence in chronological order. 
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Fig. 9. Two-way traveltime (TWT) structural maps of the channel bounding surfaces at AP3 (A), 

AP4 (B) and AP5 (C) and associated seismic sections. (A) At AP3, C2b had partially eroded the 

right levee of C1b and its left levee directly overlie C1b channel head. (B) At AP4, the left levee 

of C2b had also overlain C2a channel head. (C) At AP5, C2c originated from the sharp bend of 

C2b and developed on its left levee, similar to the configuration at AP2 (Fig. 8B). Therefore, it 

could be deduced out that after the formation of C1a-C1c, C2a, C2b, C2c and associated AP3, AP4 

and AP5 successively showed up. 
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Fig. 10. Quantitative analyses of C1a, C1c, and part of C1b, showing their down-channel changes 

in widths (A), heights (B) and cross-sectional areas (C). The x-axis refers to the distance along the 

depositional dip direction (the North-South direction) of the ACS, with the origin representing the 

proximal end of C1b (AP3 in Figure 5). The position of avulsion points AP1 and AP2 is shown by 

vertical dashed lines. Compass circles for each avulsion point include triangles that show the 

direction and an indication of relative size of the parent and of the avulsed channel around the 

avulsion point. Note that C1a and C1b are comparable in size around AP1, however, C1c is rather 
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smaller than C1b near AP2, though it presents significant size variations along the depositional dip 

direction. 
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Fig. 11. Quantitative analyses of the C2b, C2c and part of C2a, showing their down-channel 

changes in widths (A), heights (B) and cross-sectional areas (C). The origin of the x-axis refers to 

the northernmost limit of the study area (note this is different in Fig. 10). Data from the headwall 

part of C1b are also shown (full data in Fig. 10), to help compare the parent channel and the 

avulsion channel around AP3. Note that C2b and C1b are comparable in scale around AP3, 

however, the scales of C2a as well as C2c are rather smaller than that of C2b around AP4 and AP5. 

For the meaning of the compass circles, see Figure 10.
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Fig. 12. Downstream changes in widths (A), heights (B) and cross-sectional areas (C) around the 

confluence point (CP) for C1b and C2a. The origin of the x-axis is about 2 km north of the 

confluence point. Note how the width and cross-sectional area of C2a increase abruptly down-dip 

of the confluence point, while the channel height does not show any significant change. For the 

meaning of the compass circles, see Figure 10. 
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Fig. 13. Three end-member types of submarine channel avulsion. (A) Type 1: the parent channel 

and the avulsion channel have similar degrees of maturity and size and an avulsion lobe is 

commonly recognized at the base of the avulsion channel.  (B) Type 2: large, high-maturity 

parent channel and small, low maturity avulsion channel; around the avulsion point sediment 

waves and linear scours (oriented perpendicular and parallel to the direction of the avulsed flows, 

respectively) are commonly observed. (C) Type 3: large and mature avulsion channel; around the 

avulsion point the head of the parent channel is overlain by the levee deposits of the avulsion 

channel. 
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Fig. 14. Temporal-spatial evolution model of the ACS. (A-E) Diagrams showing C1a, C1b, C1c, 

C2a, C2b and C2c and associated AP1-AP5 came into being successively. The differences 

between parent channel and avulsion channel and the specific type of avulsion events are also 

shown in each panel. (F) Relative position along depositional dip and relative age of the five 

channel avulsions documented in the present study. Note that the avulsion points first 

back-stepped (i.e. moved toward the shelf) in Phase I and then fore-stepped (i.e. moved toward the 

basin) in Phase II. Because available data do not allow constraining the absolute age of the 

avulsions, the plot shows time intervals between avulsions as equal, just for display.  
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� A channel system consisting of six avulsion channels is analysed offshore Nigeria. 

� MTC-related confinement controls the development of avulsion channels. 

� Three ideal categories of submarine channel avulsions are observed. 

� Topography related to mud diapirs provided lateral confinement to capture channel 

flows. 

 


