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Abstract

An appreciation of body size allometry is central for understanding insect pollination ecology.

A recent model utilises allometric coefficients for five of the seven extant bee families (Apoi-

dea: Anthophila) to include crucial but difficult-to-measure traits, such as proboscis length, in

ecological and evolutionary studies. Melittidae were not included although they are important

pollinators in South Africa where they comprise an especially rich and morphologically

diverse fauna. Wemeasured intertegular distance (correlated with body size) and proboscis

length of 179 specimens of 11 species from three genera of Melittidae. With the inclusion of

Melittidae, we tested the between family differences in the allometric scaling coefficients.

AIC model selection was used to establish which factors provide the best estimate of probos-

cis length. We explored a hypothesis that has been proposed in the literature, but which has

not been tested, whereby body and range sizes of bees are correlated with rainfall regions.

We tested this by using body size measurements of 2109 museum specimens from 56 spe-

cies of Melittidae and applied the model coefficients to estimate proboscis length and forag-

ing distance. Our results from testing differences across bee families show that with the

addition of Melittidae, we retained the overall pattern of significant differences in the scaling

coefficient among Apoidea, with our model explaining 98% of the variance in species-level

means for proboscis length. When testing the relationship between body size and rainfall

region we found no relationship for South African Melittidae. Overall, this study has added

allometric scaling coefficients for an important bee family and shown the applicability of

using these coefficients when linked with museum specimens to test ecological hypothesis.
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Introduction

Bees play a key functional role in almost all terrestrial ecosystems in pollinating both wild flow-

ering plants [1–3] and agricultural crops [4,5]. Bees have also been identified as a potent co-

evolutionary force in the diversification of plants [6–10] and in promoting gene flow (pollen

transfer) among plant populations [11]. Key to these crucial ecological interactions is an

understanding of their feeding preferences as determined in part by proboscis length and for-

aging distance, both of which have an allometric relationship with body size [12,13].

Proboscis length is an important ecological and evolutionary trait which influences bee

flower choice [14–16] and foraging behaviour (e.g. flower handling) [17–21]. Functionally, the

ability to take up nectar from a flower is dependent on the length of the labio-maxillary com-

plex of the mouthparts. This functional unit comprises the main part of the proboscis and its

length is crucial for nectar uptake from variously deep flowers [22]. The functional length of a

bee’s proboscis is determined by both the distal glossa and the elongated prementum, which

contains the musculature needed to move the glossa. When the labio-maxillary complex is

fully extended for nectar uptake the glossa and prementum are more or less aligned and the

sum of both lengths determines the functional length of the proboscis and the depth of the

flowers from which the bee can access nectar [20,22].

Two principle proboscis morphologies can be distinguished in Apoidea. In “short-tongued”

bees (i.e. Andrenidae, Colletidae, Melittidae and Halictidae) the glossa is shorter that the pre-

mentum whereas in “long-tongued” bees (i.e. Megachilidae and Apidae) (classification after

Michener [23]) the glossa is longer than the prementum and a distinct food canal is formed by

the elongated galeae and labial palpi that together surround the central glossa.

Cariveau et al. [12] highlight several challenges in measuring proboscis length of individual

bee specimens, particularly small, short-tongued bees, in which the proboscis is flexed back

under the head. To overcome these difficulties, they developed a predictive allometric equation

to estimate proboscis length for five of the seven extant bee families, using easy-to-measure

traits (e.g. body size) and taxonomic information (family). This approach has enabled probos-

cis length to be incorporated more readily into ecological studies [24–26] and its applicability

has been extended to other bee families—most studies examining proboscis length have

focused on the large-bodied Bombus (Apidae) [27–29].

Body size has also been found to be strongly correlated with foraging distance [13,30], and

intertegular distance is a strong predictor of dry body mass [31,32]. Foraging range has been

directly measured or estimated in only a few bee species [13,33–35]. Greenleaf et al. [13]

developed a method using a power function to predict the relationship between body size and

foraging distance. Cariveau et al. [12] incorporated Greenleaf et al.’s [13] equation into their

method to estimate different categories of foraging distance, using it to calculate both probos-

cis length and foraging distance for five of the seven extant bee families. This expands our abil-

ity to investigate such aspects as bee foraging behaviour [9,13], resource competition [36], trait

matching of pollinators with crops [37], and the structure of plant-pollinator networks [10].

Although Cariveau et al. [12] developed their method for application to the major bee fami-

lies, they were unable to assess the families Melittidae (and see [32]), with only one common

species in North America, and Stenotritidae, which are confined to Australia [38]. This is a sig-

nificant limitation in regions in which Melittidae and Stenotritidae are important elements of

the local bee fauna. Melittidae are widely distributed but absent from Australia and South

America [23,39], with body size varying between 4 and 22 mm [40–42]. South Africa is a cen-

tre of diversity for Melittidae [42], with over 60 species recorded [43], some species represent-

ing among the earliest diversifying of all extant bee lineages [44], and the family has been the

focus of several important pollination studies (e.g. [45–47]) and include a number of host-
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plant specialists [46,48] including morphological adaptations of forelegs for oil collection

[49,50]. Understanding the foraging distance and flower preferences of these bees would com-

plement these studies and add provide new insight.

Here, as part of a broader study assessing the patterns of functional diversity among South

African bees, we apply to Melittidae the method for estimating foraging distance from body

size measurements developed by Cariveau et al. [12] based on previously published equations

[13,31]. We demonstrate the applicability of the model coefficients on new morphological

data of South African Melittidae obtained from museum collections, by testing an intriguing

hypothesis put forward by Kuhlmann in [51] and expanded in [52–54]. The author(s) propose

that unfavourable climatic conditions (cold, windy, rainy) in the winter-rainfall region of

South Africa restricts the daily foraging activity of the bees and thereby results in the small

body size of bees emerging in winter and spring when floral resources are more abundant and

diverse. It has been suggested that this selection on body size is due to small bee species being

able to carry bigger pollen loads relative to their body size (i.e. increased foraging efficiency),

than larger species. Given that the winter-rainfall region has high bee species richness [55],

this hypothesis has also been used to explain bee alpha diversity by suggesting that the rate of

speciation is increased due to a reduction in gene flow across the landscape as a consequence

of the short flight ranges of the smaller bees and thereby the promotion of reproductive isola-

tion among lineages.

It is well known that climatic conditions (e.g. temperature, wind speed, luminosity) affect

the activity and flight of bees [56–59]. Contrary to the above hypothesis, generally larger bod-

ied bees are considered better equipped to withstand cold and wet periods due to the well-

developed ability to thermoregulate (pre-flight vibration of the wing muscles), in which there

is an adjustment in body temperature in response to a wide range of climatic conditions

[57,59,60]. Therefore, large bodied bees are partially able to overcome unfavourable climatic

conditions when foraging for suitable resources [61]. When climatic conditions are unfavour-

able, smaller bees tend to start foraging later compared to larger bees, due to their limited abil-

ity to thermoregulate [57,61,62].

We test this hypothesis by assessing if bee size differs between rainfall seasonality regions.

South African comprises distinct rainfall regions defined by rainfall seasonality [63] and this

seasonality has been used to differentiate biogeographic areas including for bees [55,64].

Material andmethods

Data collection and morphological measurements

To measure proboscis length on a range of species within the bee family Melittidae, we sam-

pled 10 sites in the winter and summer rainfall areas of South Africa from September 2015

to March 2018 (S1 Table). Specimens collected were identified using the most recent keys

[43,50,65,66] along with expert help. Voucher specimens have been deposited in the Iziko

Museums of South Africa. Dissection of all proboscis were done on fresh specimens, using a

Zeiss Stemi 305 stereo microscope. To measure the proboscis length and body size we used

Leica Application Suite software (Ver. 4.7.1) on a Leica Z16 APO stereoscope.

Here we employed the same definitions and techniques to measure proboscis length and

body size as in Cariveau et al. [12] for reasons of comparability. We summarise these as fol-

lows. Proboscis length is the combined length of the glossa and prementum. The prementum

was measured from the proximal base of the mentum to the tip of the basioglossal sclerite [23]

(Fig 1B and 1C). The length of the glossa was taken from the basiglossal sclerite to the distal

end of the labellum [67]. We took all measurements only when the glossae was fully extended

Proboscis length allometry in the bee family Melittidae
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Fig 1. Photographs of the intertegular distance (IT) and dissected proboscis (glossa + prementum). (A) Photograph of IT forMeganomia binghami
Cockerell (Melittidae) ♀(B)Glossa (depicted by dashed red lines) and prementum (depicted by solid red lines) length for short-tongued Melittidae bees
Meganomia binghami ♀ and (C) Redivivoides simulansMichener ♀.

https://doi.org/10.1371/journal.pone.0217839.g001
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from the prementum [67]. We measured the intertegular distance (IT), a standard measure of

body size [31,68,69]), between the tegulae at the wing bases (Fig 1A).

To estimate proboscis length and foraging distance for Melittidae, we measured the IT of

pinned specimens identified to species obtained from the three main bee collections in South

Africa: Iziko Museums of South Africa, Albany Museum, and the National Collection of

Insects [70]. We measured between 1 and 176 specimens per species (when the sex of the spec-

imen has been included on the determination label we endeavoured to measure both males

and females) across seven genera were measured depending on availability. If we encountered

a long series of specimens collected at the same place and same time, we measured the first ten

in the unit tray [71].

Data analysis

The purpose of this paper is to build-on the existing work by Cariveau et al. [12], we therefore

followed their data analysis protocol by using an allometric power function to test the interspe-

cific relationship between proboscis length, taxonomy (family) and intertegular distance. To

allow for direct comparison of results, we combined our dataset for Melittidae with the authors

([12]; S2 Table) dataset. We fitted OLS regression models with overall proboscis length as the

response variable with separate models run for prementum and glossa lengths, because these

measurements may also be functionally important for the type of flowers visited [18,67]. Both

the response and explanatory variables were log-transformed [12].

In contrast to Cariveau et al’s analyses, the majority of individuals collected in our sample

were composed of males. The OLS regression models were therefore run with only males ver-

sus with both females and males. Because there were small differences between males and male

and female models (S2 and S3 Tables), we fitted regression models to test whether the slope of

the relationship between IT and mouthpart differed between both sexes and species, or only by

sex. These models showed that both males and females have the same slope (S4 Table) and

therefore we also combined the sexes in further analyses.

We used the lowest Akaike Information Criterion (AIC) value to select which variables pro-

vided for the best supported model [72]. As with Cariveau et al., should the best-fitting model

include the family coefficient it suggests that the intercepts differ between families. If the best-

fitting model includes the scaling coefficient it suggests that proboscis, glossa or prementum

scales with IT. The presence of an interaction between family and IT suggests that the scaling

coefficient differs between families. Additional model selection was performed to ascertain if

tongue-type (long- or short-tongued) alone predicts proboscis length and if tongue-type, IT

and their interaction improves model fit. The model with only tongue-type does not account

for allometry. We parameterized the allometric power function using the estimate values from

the best fitting models.

Finally, we used the mean IT for each species of Melittidae obtained from museum speci-

mens to calculate the proboscis, prementum and glossa length and typical and maximum for-

aging distance. We incorporated the family coefficients for Melittidae from the OLS regression

models as in Cariveau et al. [12] based on previously published equations [13,31]. Using the

distributional data from the measured specimens and digitised specimens from the three main

bee collections in South Africa, we overlaid these georeferenced points with simplified rainfall

regions (winter, aseasonal, early summer, and late summer; S1 Fig) based on rainfall seasonal-

ity [63] following [55] to determine the number of species in each region (S1 Fig). We summa-

rise species trait data: body size (IT), proboscis (gloss + prementum) length and foraging

distance in terms of the four rainfall regions. The number of species per rainfall region are as

follows: winter = 44; aseasonal = 13; early summer = 12; and late summer = 20).

Proboscis length allometry in the bee family Melittidae
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To test if species body size is significantly different between rainfall regions and to control

for phylogenetic non-independence [73–76], we employed two approaches. For the first

approach, we reconstructed and updated the phylogeny for 77 species of Melittidae ([77]; S6

Table, S1 Methods & Results, S2 and S3 Figs) and used it as a backbone to construct an applica-

ble phylogeny for our trait dataset. We pruned the phylogeny to only those genera that occur

in South Africa (S6 Table) and added species tips to genera nodes as polytomies of equal

branch-length relative to the genera branch-length (similar in approach to [32]). We excluded

five South Africa species (Afrodasypoda plumipes, Capicola hantamensis,Melitta avontuuren-

sis,Melitta richtersveldensis, Samba spinosa) from the updated phylogeny because we did not

have trait data for these species. We make the assumption that most variation in body size

occurs at and above the genus level; however, this is not completely unwarranted [32]. We

then fitted a phylogenetic generalized least-squares (PGLS) linear model to the trees, with IT

(log-transformed) as the response variable, rainfall region as the explanatory variable, and with

a Brownian motion error structure. We used ANOVA to test the effect of rainfall region of

body size against a null model.

Because our phylogenetic analysis only contained meaningful branch length information at

genus and above, we complemented this analysis with a second method, using taxonomy

(genus, tribe and subfamily) to account for evolutionary history [32,78]. To this data, we fitted

linear mixed-effects models (LMM), with IT (log-transformed) as the response variable and

rainfall region as the explanatory variable. We considered taxonomy as a nested random effect

and performed a maximum likelihood test and used AIC against a null model to select for the

best supported model.

All analyses were carried out using the software R [79], using packages “nlme” [80] to run

the linear models and “lme4” [81] to run the LMMs, “ape”[82] to prune the phylogeny. To pro-

duce the accompanying figures we used the package “ggplot2” [83].

Results

Wemeasured 179 specimens from 11 species belonging to the three generaMeganomia, Redi-

viva and Redivivoides (Melittidae). Melittidae are well-represented in South Africa, with 67

species in eight genera [43] and we were able to obtain a representative sample for the region

(~ 40% of genera). We provide the mean IT, glossa, prementum and proboscis for each species

in supplementary information (S5 Table).

The inclusion of Melittidae in the OLS regression provides a better fit (Cariveau et al. [12],

Table 1) for the prementum (R2 = 0.93) and proboscis models (R2 = 0.98) but not for the glossa

model (R2 = 0.90). The best-fitting models, based on AIC scores (Table 1), include both family

and IT, which strongly predicts the mean length of proboscis, glossa and prementum. The

best-fitting models for proboscis and glossa were additive whereas the prementum model was

improved by an interaction between family and IT (Table 1).

In all best-fitting models (Table 1), the grouping variable family was retained with the inclu-

sion of Melittidae, strengthening the finding that the mean lengths of the glossa and premen-

tum differed among families (Fig 2). With the addition of the short-tongued family Melittidae,

the overall pattern was retained, whereby proboscis and glossa lengths differed among long-

and short-tongued families, and prementum length was more similar (Table 2, Fig 3). The

addition of Melittidae also resulted in low R2 values for models fit with family only

(glossa = 0.78, prementum = 0.66, proboscis = 0.91, Table 1) or only with long vs. short-ton-

gued family groups (glossa = 0.77, prementum = 0.61, proboscis = 0.90, Table 1), or IT only

(glossa = 0.22, prementum = 0.87, proboscis = 0.92, Table 1).

Proboscis length allometry in the bee family Melittidae

PLOSONE | https://doi.org/10.1371/journal.pone.0217839 June 7, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0217839


We parameterized the allometric power function given in Cariveau et al. ([12], Eq1) using

the estimates from the best-fitting models that include Melittidae. The best-fitting model for

the proboscis and glossa does not include an interaction term between family and IT (Table 1).

This indicates that the slopes do not differ across families and therefore the value for the IT

scaling coefficient is the same for each family. Whereas the best-fitting prementum model

includes an interaction term between IT and family, the IT scaling coefficient therefore differs

for each family. We provide a summary table of the model-estimated values for the family-spe-

cific coefficients and IT scaling coefficients in Table 2. Addition of Melittidae to the sampling

does not affect the finding that the allometric scaling relationship between IT and proboscis

length still differs among families. The relationship between IT and proboscis length is linear

based on the IT scaling coefficient being close to 1 (Table 2).

Estimating proboscis length and foraging range of Melittidae

Wemeasured 2109 specimens from 56 species belonging to seven genera, representing 89% of

the Melittidae species in South Africa. Using the mean IT for each species we estimated the

proboscis, glossa and prementum length and the typical and maximum foraging distance for

each of the four rainfall regions in the subcontinent distinguished by rainfall seasonality (Figs

4 and 5). Most species (~55%) were restricted to a single rainfall region, with only ~32% over-

lapping across two regions, and ~2% overlapping across all four regions. Body size (IT) for

Melittidae species ranges between 0.99 and 4.42 mm (mean = 2.58 mm). We found no signifi-

cant relationship between rainfall region and mean body size when controlling for phylogeny

(best parsimony tree: F(1, 3) = 0.10, p = 0.98; maximum likelihood tree: F(1, 3) = 0.05, p = 0.99).

Similarly, when using taxonomy, we found that rainfall region had no effect on mean body

Table 1. Summary of model selection statistics for interspecific OLS regression models. Models are listed in order of increasing AIC value with the best model (lowest
AIC) depicted in bold.

Response variable Model Adjusted R2 AIC

Proboscis Family + IT 0.98 -52.62

Family × IT 0.98 -50.40

Short- vs. Long-Tongued + IT 0.97 -22.68

Short- vs. Long-Tongued × IT 0.97 -23.05

IT Only 0.92 83.45

Family Only 0.91 103.65

Short- vs. Long-Tongued Only 0.90 105.84

Glossa Family + IT 0.90 66.48

Family × IT 0.90 70.13

Short- vs. Long-Tongued × IT 0.87 99.23

Short- vs. Long-Tongued + IT 0.86 103.10

Family Only 0.78 156.48

Short- vs. Long-Tongued Only 0.77 160.13

IT Only 0.22 296.72

Prementum Family × IT 0.93 -114.02

Family + IT 0.92 -105.32

Short- vs. Long-Tongued × IT 0.90 -71.18

Short- vs. Long-Tongued + IT 0.89 -71.19

IT Only 0.87 -50.23

Family Only 0.66 64.18

Short- vs. Long-Tongued Only 0.61 77.17

https://doi.org/10.1371/journal.pone.0217839.t001
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size; the null model was the best-fitting model based on the AIC score (S8 Table), with all rain-

fall regions showing bees with similar sized IT (Fig 4).

Discussion

This study established the body size allometric scaling relationship for the bee family Melitti-

dae, thereby expanding the work by Cariveau et al. [12] to include six of the seven extant bee

families. We then applied this family-specific allometric equation, with an estimation for the

scaling coefficient between IT and proboscis length, to body size measurements obtained from

museum specimens to estimate the proboscis length and foraging distance for Melittidae. In

addition, using body size measurements we estimated foraging distance following Greenleaf

et al. [13]. Using this trait information for South African species of Melittidae, we were able

to examine body size, proboscis length and foraging range patterns in relation to rainfall

seasonality.

Cariveau et al. [12] identified significant differences across bee families in their scaling

coefficients. The inclusion of Melittidae did not change this pattern but slightly improved the

variance (98%) associated with species-level means for proboscis length across families. The

allometric body size scaling relationship remains to be established for the endemic Australian

Stenotritidae. This family is closely allied to Colletidae, and it remains to be determined

whether it will have the same coefficient as that family or not [44,84,85].

In order to make their results accessible, Cariveau et al. [12] created an R package BeeIT

[86] which was recently reimplemented by Kendall et al. [32] in package Pollimetry [87], which

Fig 2. Allometric relationship between IT and proboscis length. The relationship between intergular distance (IT) and
proboscis length in 11 species fromMelittidae and 100 species (Cariveau et al. [12], S2 Table) from Apidae, Megachilidae,
Andrenidae, Collectidae and Halictidae. The mean IT and proboscis length for each species is depicted as a point. Each bee
family is represented by a colour. The fitted lines are based on regression coefficients frommodel outputs. Proboscis length
and IT are both ln transformed.

https://doi.org/10.1371/journal.pone.0217839.g002
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are simple to use, requiring only the input of family information and body size measurements

to obtain an estimate of proboscis length. We are able to contribute to these packages by pro-

viding the scaling coefficients for Melittidae, allowing for the estimation of proboscis length

for species of this family, an important component of the bee fauna in some regions. This will

complement many of the ecological and evolutionary studies in Melittidae, such as host-plant

associations and foraging range [48,88], competition [89], shifts in species range and host-

plants [90], co-evolution with host-plants [45–47,91–95], morphological adaptations for oil-

collecting [96], and location of nest sites [97,98]. Although there has been a particular focus on

the oil-collecting bees Rediviva and the co-evolution of their host plants [45,46,99], their func-

tional traits, including foraging range and behaviour (e.g. proboscis length), have not been

considered in these studies, nor for any other South African bee species. As we are currently

investigating patterns of foraging distance and behaviour at a regional scale for South African

bees, having the scaling coefficients for all six families that are regionally represented is an

important step for our analyses and for future studies that may require such data.

We demonstrate one component of this, by applying the allometric scaling coefficient for

Melittidae to measured museum specimens to estimate foraging distance and proboscis length

in order to relate these traits to an environmental variable (rainfall-seasonality) of putative

importance for bee diversity [55,100]. It has been hypothesised that rainfall-seasonality is

correlated with body size of bees and that this has important implications for their co-evolu-

tionary relationships and patterns of speciation with host plants [52]. Our data, which incorpo-

rated ~90% of South African Melittidae species, suggest that there is no apparent relationship

between rainfall-seasonality and bee body size even when controlling for evolutionary history

(see also [32]). Determinants of insect body size are complicated but general predictions sug-

gest that body size will correlate with temperature and larval resource availability, and that

Table 2. The parameter values for the allometric power function [12] using the estimates from the best fitting (lowest AIC) OLS regression models (Table 1). Logs
are in base e.

Response variable Family Family-specific coefficient IT scaling coefficient

Proboscis Andrenidae 1.06

Apidae 2.15

Colletidae 0.86

Halictidae 1.37

Megachilidae 1.87

Melittidae 1.10

— 0.96

Prementum Andrenidae 0.88 0.83

Apidae 0.91 0.75

Colletidae 0.56 1.14

Halictidae 0.89 1.05

Megachilidae 0.76 0.70

Melittidae 1.26 0.45

Glossa Andrenidae 0.23

Apidae 1.28

Colletidae 0.21

Halictidae 0.42

Megachilidae 1.17

Melittidae 0.29

— 1.04

https://doi.org/10.1371/journal.pone.0217839.t002
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relatively larger-sized bees should be more common in the cool season rainfall areas of South

Africa [101–103]. Although species of the summer-rainfall genusMeganomia (mean IT: ± SD

3.813 ± 0.267) are considered to be large-sized bees, species of winter-rainfall Rediviva (mean

IT: ± SD 2.948 ± 0.371) and Redivivoides (mean IT: ± SD: 2.650 ± 0.348) are also of impressive

size. In additional to the climate, body size in winter-rainfall Melittidae is possibly further

influenced by the abundant spring floral resources available for larval nutrition and develop-

ment, including nutrient-rich floral oils [50,104–106], allowing for larger-sized adults.

Whether the pattern we have retrieved for Melittidae holds across other bee families remains

to be tested. We are currently investigating correlates of bee body size across fine-scale envi-

ronmental and plant diversity gradients for all six South African bee families and hope to be

able to tease apart the role environmental and/or plant resources play in structuring bee

diversity.

Fig 3. Length of bee mouthparts (proboscis, glossa and prementum). Boxplots of proboscis, glossa and prementum length for six
bee families. Long-tongued families are depicted by grey boxplots whereas short-tongued families are depicted as white boxplots.
Outliers are shown as dots. Figures are drawn using raw data for Melittidae and data from (Cariveau et al. [12], S2 Table) for
Apidae, Megachilidae, Andrenidae, Collectidae and Halictidae.

https://doi.org/10.1371/journal.pone.0217839.g003
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Fig 4. Estimated length of mouthparts (proboscis, prementum and glossa) across rainfall regions. Each panel
represents the four rainfall regions: aseasonal, early summer, later summer and winter. Boxplots of measured IT and
estimated proboscis, prementum and glossa length for 56 species of Melittidae. Dots represent outliers. Proboscis,
prememtum and glossa length was estimated frommeasured IT using family-specific scaling coefficients.

https://doi.org/10.1371/journal.pone.0217839.g004

Fig 5. Estimated typical and maximum bee foraging distance across rainfall regions. Each panel represents the four
rainfall regions: aseasonal, early summer, later summer and winter. Boxplots of typical and maximum foraging distance
for 56 species of Melittidae. Dots represent outliers. Typical and maximum foraging distance were estimated form IT
using previously published equations [13].

https://doi.org/10.1371/journal.pone.0217839.g005
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In conclusion, investigating allometric relationships in body size has been shown to be key

for understanding components of species ecology and evolution [12,107,108]. The methodol-

ogy developed by Cariveau et al. [12] allows this important trait data to be easily determined

from specimens and therefore included in these kinds of studies. Our data could be incorpo-

rated into their tool and its reimplementation [32] by adding an important bee family. We

have demonstrated its applicability when linked with museum specimens to test environmen-

tal correlates of bee body size and diversity.
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