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Abstract�This research is examining the change in 

weight values of deep learning networks after learning.  

These research experiments require to make measurements 

and comparisons from a stable set of known weights and 

biases before and after learning is conducted, such that 

comparisons after learning are repeatable and the 

experiment is controlled.  As such the current accepted 

schemes of random number initialisations of the weight 

values may need to be deterministic rather than stochastic 

to have little run to run varying effects, so that the weight 

value initialisations are not a varying contributor.  This 

paper looks at the viability of non-random weight 

initialisation schemes, to be used in place of the random 

number weight initialisations of an established well 

understood test case.  The viability of non-random weight 

initialisation schemes in neural networks may make a 

network more deterministic in learning sessions which is a 

desirable property in mission and safety critical systems.  

The paper will use a variety of schemes over number ranges 

and gradients and will achieve a 97.97% accuracy figure 

just 0.18% less than the original random number scheme at 

98.05%. The paper may highlight that in this case it may be 

the number range and not the gradient that is effecting the 

achieved accuracy most dominantly, although there may be 

a coupling of number range with activation functions used.  

Unexpectedly in this paper, an effect of numerical instability 

will be discovered from run to run when run on a multi-core 

CPU.  The paper will also show the enforcement of 

consistent deterministic results on an multi-core CPU by 

defining atomic critical code  regions aiding repeatable 

Information Assurance (IA) in model fitting (or learning 

sessions).  

Keywords� Repeatable Deep Learning Networks, Real-

Time Single Processor Affinity, Non Random Weight 

Initialization, Security and Information Assurance, Safety-

Critical AI, Learning Session Determinism. 

I. INTRODUCTION 

Artificial Intelligence (AI) has the potential for growth 
in many areas, particularly the use of Deep Learning 
Networks and frameworks, but applications for Mission 
Critical and Safety critical software has additional 
challenges in security in terms of Information Assurance 
(IA).  It may be argued that the application of Artificial 
Intelligence and Deep Learning Networks in particular 
have goals for replicating or challenging human abilities 
against a human performance baseline. Although, Mission 
Critical and Safety Critical software has goals of 

completeness, correctness and repeatability making it 
rigorous both in the development and in the deployed 
application performance, arguably to reach a performance 
that is "more than human", in that it reduces human error.  
With this consideration the application of deep learning 
networks has challenges when applied to Mission Critical 
and Safety Critical software in terms of gaining 
understanding and confidence for verification and 
validation of the machine learnt generalisation model, and 
that is a challenge for Information Assurance both in the 
formed generalisation model but also in the processes that 
formed that model.  There has already been research in 
this area for a number of years with a number of papers, 
some of the most relevant to safety critical applications 
are in unmanned air vehicles [1], the automation of space 
missions [2] and also in space mission telecoms fault 
tolerance [3].  

An advantage of the deep learning network approach, 
is that it has the ability to form generalisation models that 
can perform tasks that may be considered intractable by 
traditional approaches. However, without controls can 
form a solution that is not compliant to known 
understanding or real world physics.  For mission critical 
and safety critical systems repeatability and determinism 
are desirable features for verification and validation, both 
for the processing to form the generalisation model, and 
when making a prediction with the model when deployed.  
As both repeatable and deterministic aspects are desirable 
attributes and also form an experimental control, one 
aspect that may make a disruption to this is the use of a 
random number initialisation state of weights before 
learning. This paper looks at different number ranges and 
gradients for a weight initialisation scheme to be used in 
place of a random number initialisation state.  Three main 
non-random initialisation weight schemes are 
experimented with: constant value, uniform linear ramp 
and sinusoid.  In each non-random scheme the number 
range and gradient are changed: the constant value scheme 
has no gradient and no number range, the linear ramp 
scheme has a constant gradient and controlled number 
range, and lastly the sinusoidal scheme has constant 
variations in the gradient with a controlled number range.  
The three schemes employed provide discriminations 
between number ranges used and the gradient slope of 
those values used in those schemes. 



The research contribution that this paper is seeking to 
provide is to answer a research question, that is: "Are 
random number initialisation weight values required as the 
initial state before learning to have high accuracy in 
predictions or can a non random scheme also have 
comparable performance in those predictions". 

This paper is a foundation environment for subsequent 
research experimental work that will examine changes and 
adaption to weight and bias matrixes before and after 
learning model fitting sessions.  The  foundation 
environment is using Anaconda Python, NumPy and 
Keras with TensorFlow deep machine learning framework 
accessed through the Jupyter Notebook web services 
environment.   

This work was required to establish a repeatable result 
with a defined known initial state that has comparable 
performance to the existing random initialisation schemes 
used currently.  The experiment's initial state before 
learning is to be defined, known and predictable such that 
it may be controlled and accounted for in results as a 
deterministic initial state that forms an experiment control.  
In the experiments a well understood problem that is 
published will be used. The MNIST dataset in TensorFlow 
with Keras and NumPy. This is an application of 
recognising hand written text characters and although in 
itself may not be a mission critical problem it is a mature 
reviewed solution. 

II. ORIGINAL BASELINE CODE EXAMPLE  

This example is familiar to researchers and is being 
used to demonstrate weight initialisations that are not using 
random number sequences.  

 
Figure 1.  Architectures of the Baseline Example. 

The code specimen in Appendix A (A.1) is used as an 
open source example [4], it is known as the hello world of 
Neural Networks.  When this code is run the output from 
the evaluate command provides both Loss and Accuracy 
figures, from five consecutive reset runs it is noted that the 
losses and accuracies vary from run to run in each 
learning session. 
[0.06606189897235017, 0.9805] [0.07090263138680603, 0.9788] 
[0.06552187514795223, 0.9815] [0.07510031864168705, 0.9769] 
[0.06914228669836302, 0.979] 
Figure 2: Hello World example results. 

 There is a variation in both the loss and the accuracy 
figures, which presumably means that there is some 
variation in the prediction performance depending on the 

model Fitting using Shuffles and the initialisation of 
weights.  From the five runs the mean average loss is 
0.069345802 and the mean average accuracy is 0.97934.  
The reasoning for this variation run to run may be 
considered to be due to the random number initialisation 
values present in the weight values and the shuffle 
ordering of the dataset before each learning session, 
Therefore setting the random number seed values before 
each learning session should make the random number 
sequence repeatable and therefore the accuracy and loss 
values results the same from each run to run. 

III. SEEDING THE RANDOM NUMBER GENERATOR 

Running the same model with the no shuffle added to 
the fit command, and again using the evaluate command's 
loss and accuracy figures the results are gathered.  At this 
point the number of epochs is reduced to one to reduce the 
runtime duration. Tensor Flow and NumPy random seeds 
have been set to form a baseline value from one epoch that 
should make the random number sequence defined.  The 
code for seeding the random number generators [5] and 
the modified fit command are shown in Appendix A 
(A.2):  The five run results are as follows: 
[0.09898285598997027, 0.971] [0.1022148139256984,   0.969] 
[0.09992996315583587, 0.9699] [0.09846471949797124, 0.9709] 
[0.10279747271370143, 0.9693] 
Figure 3: Single epoch random number seeded baseline results 

From these five results we can see that the variation is 
still present, although arguably the mean accuracy may 
have lowered by a 0.9% with mean values for loss and 
accuracy of 0.100477965 and 0.97002.  These values 
without the shuffle and with the single epoch form the 
comparison baseline for further measurement 
experiments. This might be an indicator that this variation 
run to run is not attributable to the initialisation of the 
weights alone.  But changing the model construction code 
so that the random initialize values can be substituted with 
fixed values is shown in Appendix A (A.3): 

Three initialisation schemes will be experimented with 
and these are: constant values, linear ramps and sinusoids, 
these will test different numerical aspects from values, 
gradients to number ranges. 

IV. CONSTANT VALUE SCHEME  

Now starting with a weight initialized array of 
28*28*512 in the second layer and 512*10 weight values 
in the fourth layer that are all containing a constant value 
1.0.  The code in Appendix A (A.4) was used to initialise 
those weights, and was run five times and provided these 
results. 

 {+1.0�+1.0} 
Figure 4: Constant Value (1.0) weight initialisation tensor 

The five run results are as follows: 



[14.490169499206543, 0.101] [14.490169499206543, 0.101] 
[14.490169499206543, 0.101] [14.490169499206543, 0.101] 
[14.490169499206543, 0.101] 
Figure 5: Constant Value (1.0) results 

 This time the accuracy and loss values are 
deterministic, but the accuracy is very much lower, about 
86% lower than the baseline perhaps indicating that 
learning is not occurring, also the loss is greater than the 
baseline values. But the values have no or very low 
variance run to run but perhaps are due to the loss in 
learning.  So using the code in Appendix A (A.5) the 
initialized weight values are set to zeros instead, and gains 
the following results from the five runs. 

 {0.0�0.0} 
Figure 6: Constant Value (0.0) weight initialisation tensor 

The five run results are as follows: 
[2.3011608791351317, 0.1135] [2.301160814285278,  0.1135] 
[2.30116091003418,     0.1135] [2.30116091003418,    0.1135] 
[2.3011607849121094, 0.1135]  
Figure 7: Constant Value (0.0) results 

Again the accuracy values have no variance but the 
loss has a small variance run to run but is stable.  Again 
the mean accuracy is much reduced and is about 86% 
lower than the baseline perhaps indicating that the loss in 
learning may be due to drop outs and saturations with 
those values.  Looking into the Keras code [6] it is noted 
that the random initialisation value would have been 
between -0.05 and +0.05.  So using a fixed constant value 
of +0.05 as an experiment  the code in Appendix A (A-6) 
is used: 

 {+0.05�+0.05} 
Figure 8: Constant Value (0.05) weight initialisation tensor 

The five run results are as follows: 
[1.8057675338745116, 0.2667] [1.7881868183135987, 0.2766] 
[1.7912575538635254, 0.2739] [1.7899974334716797, 0.2739] 
[1.7860924480438232, 0.2817] 
Figure 9: Constant Value (0.05) results 

 At the +0.05 value the variances of the loss and 
accuracy in the five runs has increased again and the mean 
accuracy is about 70% less than the baseline mean, 
however, when an initialisation value of 1.0 was used 
there was no variance, this appears to change if the final 
layer's SoftMax activation function is replaced with ReLU 
and using the code in Appendix A (A-7) the five runs are 
repeated using ReLU: 

The five run results are as follows: 
[2.3025851249694824, 0.0978] [2.3025851249694824, 0.0978] 
[2.3025851249694824, 0.0978] [2.3025851249694824, 0.0978] 
[2.3025851249694824, 0.0978] 

Figure 10: Constant Value (0.05) results with ReLU in place of SoftMax 

The variance in the loss and accuracy has diminished 
again.  Although the accuracy is now 86% lower than the 
baseline, it is possible that the SoftMax function that uses 
summations of exponential numbers is having significant 
bit representation issues but the ReLU may be less 
vulnerable to that and has a consistent result.  Possibly the 
run to run variations could be an effect of task scheduling 
and may be creating variations in the resultant numbers 
depending on if the CPU processor's internal 80bit 
extended precision floating point register [7] is 
interrupted.  Upon which it may truncate the calculation to 
32bits or 64bits when the value is stored by the task 
scheduler and cause a lower number of significant bits to 
be passed on to the next calculation when the task is next 
scheduled, However, this is not proven.  But it is also 
noted that the ReLU is not allowing the learning to occur 
and has broken the model, so the SoftMax is put back in 
and more experiments are conducted using the other 
extreme of the original random number range, the -0.05 
value is used as a constant value with the code in 
Appendix A (A-8) and the SoftMax put back into the final 
layer. 

 {-0.05�-0.05} 
Figure 11: Constant Value (-0.05) weight initialisation tensor 

The five run results are as follows: 
[2.301160791397095,   0.1135] [2.3011607082366945, 0.1135] 
[2.3011608280181886, 0.1135] [2.3011609703063964, 0.1135] 
[2.301160668563843,   0.1135] 
Figure 12: Constant Value (-0.05) results 

 Again the loss value has low variance run to run and 
the accuracy is deterministic but is a much lower 
accuracy.  This compares with the constant zero value 
experiment although the +0.05 constant has a higher mean 
accuracy.  This implies there is a sensitivity to the 
initialisation value and that the initial value as a potential 
to allow learning but also cause differences in the results 
depending on the value used.  A summary table follows of 
the experiments with the single epoch baseline and the 
constant value weight initialisation schemes: 
Experiment Loss and Accuracy Comment 

Constant 
1.0 values 

[14.490169499206543, 0.101] 
[14.490169499206543, 0.101] 
[14.490169499206543, 0.101] 
[14.490169499206543, 0.101] 
[14.490169499206543, 0.101] 

No Variances in Loss 
and Accuracy. also 
seen if the SoftMax 
was replaced with 
ReLU, 87% lower 
accuracy in this case. 

Constant 
0.0 values 

[2.3011608791351317,0.1135] 
[2.301160814285278,  0.1135] 
[2.30116091003418,    0.1135] 
[2.30116091003418,    0.1135] 
[2.3011607849121094,0.1135] 

Accuracy stable but  
Variances in Loss at 
the 7th significant 
place, 86% lower 
accuracy similar 
accuracy to the -0.05 
experiment. 

Constant + 
0.05 values 

[1.8057675338745116, 0.2667] 
[1.7881868183135987, 0.2766] 
[1.7912575538635254, 0.2739] 

Variances in Loss at 
the 2nd significant 
place and Accuracy 



[1.7899974334716797, 0.2739] 
[1.7860924480438232, 0.2817] 

unstable, 70% lower 
accuracy. But is the 
highest accuracy of 
the constant value 
experiments. 

Constant -
0.05 values 

[2.301160791397095,  0.1135] 
[2.3011607082366945,0.1135] 
[2.3011608280181886,0.1135] 
[2.3011609703063964,0.1135] 
[2.301160668563843,  0.1135] 

Accuracy stable and  
Variances in Loss at 
the 7th significant 
place, 86% lower 
accuracy like the zero 
number experiment. 

Figure 13: Constant Value summary table 

It may appear that although there is an unexplained 
variance run to run and given that the random number 
generator had been seeded there is still an unexplained 
variation in results.  It also may appear that using a 
constant number as an initialised value has a large impact 
on the resultant accuracy, and that some of that accuracy 
may be connected to the value used.  It may be that the 
value 1.0 may have caused some arithmetic problems with 
number representations, and values between -0.05 and 
+0.05 as per the current random number initialisation 
range showed variances in results but very much lower 
accuracy.  The values greater than zero had higher 
accuracy and lower loss but that may be because of the 
use of the ReLU in the second layer and a value 0.0 
perhaps coursing drop outs, and that variation may be and 
effect of SoftMax in the final layer.  These results may of 
course only pertain to this model and particularly if there 
explanation intuition is based on that models activation 
function architecture, but it shows a concern with 32bit 
number floating point significant bits, and noticing that 
the input data is positive image values in the scale 0 - 255 
which is rescaled to 0 - 1 and the weight initialisation 
value of +0.05 is two significant places different.  Where a 
five significant place difference is experienced in the 
computation this will begin to effect a 32bit calculation 
representation accuracy. Although the 32bit number 
accuracy is not conclusively proven, it is a concern and 
may be supported by the experiment that excluded the 
SoftMax activation function, as the SoftMax function 
divides a number by the sum of an exponential number.  
Alternatively this may be solved by using a 64bit number 
for the accumulator in the sum or the use of pre and post 
scaling of the number scales before and after the 
calculations.  It should also be noted that results show a 
lower mean accuracy are shown with constant weight 
initialisation values used. Perhaps the learning is more 
uniformly effecting adjacent neurons by a similar amount 
and it could be expected by initial weight values that have 
no gradient or number range variation at the outset of 
learning and the next set of experiments should have a 
number range as a linear ramp to have a number range and 
fixed gradient. 

V. LINEAR RAMP SCHEME 

Using a linear ramp between -0.05 and +0.05 as the 
initial values of the weights to provide areas of the neural 
network that will have different dominance towards an 
output from the outset of learning, and a gradient of values 

and number range in those initial weights may be higher 
performing.  The initialisation weight value code is in 
Appendix A (A-9):  

 {-0.05�+0.05} 
Figure 14: Linear Ramp (-0.05 to +0.05) weight initialisation tensor  

The five run results are as follows: 
[0.1565102383375168,  0.9523] [0.15511292833536863, 0.9546] 
[0.1435071627393365,  0.9561] [0.15252709869667888, 0.9552] 
[0.1440581636864692,  0.956] 
Figure 15: Linear Ramp (-0.05 to +0.05) results 

It seems that a gradient and number range of values 
may be helpful and the accuracy is just 2% less than the 
baseline results.  However, taking the -0.05 constant value 
case that was low performing and the higher performing 
+0.05 constant value the ramp will be modified from +/-
0.05 to be 0.0 to 0.1 to have a different number range but 
the same gradient.  The initialisation code is in Appendix 
A (A.10): 

 {0.0�+0.1} 
Figure 16: Linear Ramp (0.0 to 0.1) weight initialisation tensor  

The five run results are as follows: 
[0.24299218244701623, 0.9236] [0.2762062883064151,   0.9141] 
[0.2508674868822098,   0.9212] [0.23018671630620957, 0.9275] 
[0.2593486599966884,   0.9187] 
Figure 17: Linear Ramp (0.0 to 0.1) results  

It seems that the results are similar but a little reduced 
then the ramp over 0 and is 5% lower than the baseline in 
accuracy. The gradient was unchanged but the number 
range was slid to positive numbers only, but that number 
range reached a number range greater than the original 
initialisation codes value range of the +0.05 value.  In the 
next experiment the number range and gradient are 
changed to a ramp in the number range 0.0 to +0.05, and 
is using the initialisation code in Appendix A (A.11): 

 {0.0�+0.05} 
Figure 18: Linear Ramp (0.0 to 0.05) weight initialisation tensor  

The five run results are as follows: 
[0.2146800939079374,   0.934] [0.21725718629658222, 0.9339] 
[0.2175400296010077,   0.9317] [0.21510434658303856, 0.9319] 
[0.22056258716955782, 0.932] 
Figure 19: Linear Ramp (0.0 to 0.05) results 

 These results are very similar but it would be worth 
trying the negative value range -0.05 to 0.0 for 
completeness as there may be a difference between the 



SoftMax and ReLU layer's activations and the benefit of 
each activation function needs from the initialisation 
values. The initialisation code for this experiment is in 
Appendix A (A-12): 

 {-0.05�0.0} 
Figure 20: Linear Ramp (-0.05 to 0.0) weight initialisation tensor  

The five run results are as follows: 
[2.301160803604126,   0.1135] [2.301160865020752,  0.1135] 
[2.3011607265472414, 0.1135] [2.301160787200928,  0.1135] 
[2.301160820388794,   0.1135] 
Figure 21: Linear Ramp (-0.05 to 0.0) results  

 The results are very much lower almost like the 
negative values that were seen with the constant values 
perhaps suggesting that layer 2 ReLU activations may 
have drop outs.  A summary table of the results follows: 
Experiment Loss and Accuracy Comment 

Ramp -
0.05 to 
+0.05  

[0.1565102383375168,  0.9523] 
[0.15511292833536863,0.9546] 
[0.1435071627393365,  0.9561] 
[0.15252709869667888,0.9552] 
[0.1440581636864692,  0.956] 

Variance in numbers, 
but only 2% lower 
accuracy from the 
baseline in this case. 

Ramp 0.0 
to +0.1 

[0.24299218244701623,0.9236] 
[0.2762062883064151,  0.9141] 
[0.2508674868822098,  0.9212] 
[0.23018671630620957,0.9275] 
[0.2593486599966884,  0.9187] 

Variance in numbers, 
5% lower accuracy 
from the baseline in 
this case. 

Ramp 0.0 
to +0.05 

[0.2146800939079374,  0.934] 
[0.21725718629658222,0.9339] 
[0.2175400296010077,  0.9317] 
[0.21510434658303856,0.9319] 
[0.22056258716955782,0.932] 

Variance in numbers, 
4% lower accuracy 
from the baseline in 
this case. 

Ramp -
0.05 to 0.0 

[2.301160803604126,  0.1135] 
[2.301160865020752,  0.1135] 
[2.3011607265472414,0.1135] 
[2.301160787200928,  0.1135] 
[2.301160820388794,  0.1135] 

No variances in the 
accuracy and in Loss 
at the 7th significant 
place, the Accuracy 
stable. 86% lower 
accuracy to the 
baseline but similar 
accuracy to the zero 
number experiment, 
perhaps 0 or negative 
numbers don't match 
the layer 2 ReLU. 

Figure 22: Linear Ramp summary table 

From these results negative number ranges seem to be 
low performing and positive values higher performing 
although the range between -0.05 to +0.05 was the highest 
performing in terms of accuracy.   The gradient changed 
between the experiments with 0.0 to +0.05 and 0.0 to +0.1 
but had little difference in results, but the number range 
and gradient were changed together.  In the next set of 
experiments the gradient and number range are changed 
independently using a sinusoid. 

VI. SINUSOIDAL SCHEMES 

A moving gradient is used starting with the scale -0.05 
to +0.05 in a sinusoidal form such that the number range 
is the same but the gradient is changing with respect to the 
linear ramp experiment of the same range.  The 

initialisation code is in Appendix A (A-13). 

0.05 sin (x)  
Figure 23: Sinusoid (-0.05 to 0.05) weight initialisation tensor  

The five run results are as follows: 
[0.14248031044751405, 0.9575] [0.14802057081907988, 0.9561] 
[0.15482748659588397, 0.9546] [0.14560777206234635, 0.9565] 
[0.15966865147389472, 0.9535] 
Figure 24: Sinusoid (-0.05 to 0.05) results 

 The results are similar to the linear ramp over the 
same number range which was also only 2% lower than 
the baseline,  Using the positive figure experiment with 
the same sinusoidal pattern in the range 0 to 0.1 the 
initialisation code is in Appendix A (A-14): 

0.05 sin (x) + 0.05 
Figure 25: Sinusoid (0.0 to 0.1) weight initialisation tensor  

The five run results are as follows: 
[0.2765421679884195,  0.9159] [0.27466120897680524, 0.916] 
[0.274703558498621,    0.9164] [0.2757590222135186,   0.9156] 
[0.27346776156574487,0.9172] 
Figure 26: Sinusoid (0.0 to 0.1) results  

 The accuracy is 6% lower than the baseline.  The next 
experiment also uses positive values, but only in the range 
0.0 to +0.05 with the same sinusoidal form using the 
initialisation code in Appendix A (A-15). 

0.025 sin(x)+ 0.025 
Figure 27: Sinusoid (0.0 to 0.05) weight initialisation tensor  

The five run results are as follows: 
[0.18291570566408336, 0.9453] [0.19241121173687278, 0.942] 
[0.18905000345483422, 0.9418] [0.1834044139198959,   0.9446] 
[0.1803453653005883,   0.9448] 
Figure 28: Sinusoid (0.0 to 0.05) results 

 Slightly lower results at almost 3% less than the 
baseline, but for completeness the sinusoidal range of -
0.05 to 0.0 is provided below with the initialisation code 
in Appendix A (A-16). 

 0.025 sin (x) - 0.025 
Figure 29: Sinusoid (-0.05 to 0.0) weight initialisation tensor  



The five run results are as follows: 
[2.301160641479492,   0.1135] [2.301160855102539,   0.1135] 
[2.301160636138916,   0.1135] [2.3011608177185057, 0.1135] 
[2.3011608085632322, 0.1135] 
Figure 30: Sinusoid (-0.05 to 0.0) results 

 The summary of these experiments using sinusoidal 
patterns are shown below: 
Experiment Loss and Accuracy Comment 

sin -0.05 to 
+0.05  

[0.14248031044751405,0.9575] 
[0.14802057081907988,0.9561] 
[0.15482748659588397,0.9546] 
[0.14560777206234635,0.9565] 
[0.15966865147389472,0.9535] 

Same score as the 
same number range 
with the ramp 
experiment. 

sin 0.0 to 
+1.0 

[0.2765421679884195,  0.9159] 
[0.27466120897680524,0.916] 
[0.274703558498621,    0.9164] 
[0.2757590222135186,  0.9156] 
[0.27346776156574487,0.9172] 

Almost the same 
score as the same 
number range with 
the ramp experiment 
but 1% lower at 6% 
lower than the 
baseline. 

sin 0.0 to 
+0.05 

[0.18291570566408336,0.9453] 
[0.19241121173687278,0.942] 
[0.18905000345483422,0.9418] 
[0.1834044139198959,  0.9446] 
[0.1803453653005883,  0.9448] 

Almost the same 
score as the same 
number range with 
the ramp experiment 
but 1% higher at 3% 
lower than the 
baseline. 

sin -0.05 to 
0.0 

[2.301160641479492,   0.1135] 
[2.301160855102539,   0.1135] 
[2.301160636138916,   0.1135] 
[2.3011608177185057, 0.1135] 
[2.3011608085632322, 0.1135] 

This result also 
coincides with the 
ramp of the same 
number range. 

Figure 31: Sinusoid summary table 

Taking the highest score of the sinusoid number range 
of -0.05 to +0.05 and re-running with the five epochs and 
enabling the shuffle provides the following results as a 
comparison to the original code: 
[0.06944945766797755, 0.9792] [0.07057002582962159, 0.9793] 
[0.0718287119449582,   0.9803] [0.07078138581812382, 0.9809] 
[0.07259123737227055, 0.9789] 
Figure 32: 5 epoch and shuffle with high score sinusoid 

In comparison with the original untouched code, the 
results are shown below and the variance run to run is 
similar and the accuracy is about the same as the baseline 
but is not using random weight initialisations: 
[0.06606189897235017, 0.9805] [0.07090263138680603, 0.9788] 
[0.06552187514795223, 0.9815] [0.07510031864168705, 0.9769] 
[0.06914228669836302, 0.979] 
Figure 33: Original code 5 epoch and shuffle with random init weights 

However, although these results seam to show that an 
non-random initialisation state can be just as high 
performing in prediction accuracy as the random 
initialisation state, the run to run variation in results is 
masking the accuracy measurements and needs to be 
tackled to improve the measurement accuracies made for 
both the experiment and the baseline values. 

VII. TACKLING THE REPEATABILITY RUN TO RUN 

There is still a variance run to run in the results even 
using the seeded random numbers with non random 
weight value initialisations but taking into account the 
possibility of the scheduling causing variations in number 
representations.  An experiment to try an invoke the real-
time priority of the windows scheduler [8] with an affinity 
to one processor [9] as an attempt to deny or reduce 

interruption of the task thread and uses the code in 
Appendix A (A-17).  However, the variation in the five 
runs is still present, and under investigation it seems to 
show that real-time priority is not being set and it is 
being set to high priority instead. It turns out that you 

need to run Jupyter notebook in a cmd console as 

administrator such that the real-time priority can be 
selected and then it becomes completely repeatable in 
each of the five runs.  This supports the theory that task 
scheduling is interrupting and truncating calculations in 
the internal CPU 80bit extended precision floating point 
register [7], as now the python task is running on one 
processor uninterrupted.  This provides an accurate 
repeatable figure for the highest scoring sinusoid scheme. 
[0.07358874179359991, 0.9772] [0.07358874179359991, 0.9772] 
[0.07358874179359991, 0.9772] [0.07358874179359991, 0.9772] 
[0.07358874179359991, 0.9772] 
Figure 34: high score sinusoid, on a single processor 

Now that the runs are consistent the highest score 
number ramp scheme with a range of -0.05 to 0.05 is re-
run with no variance in the results and they are similar 
suggesting that the initialisation is providing repeatability: 
[0.0668453144104511, 0.9784] [0.0668453144104511, 0.9784] 
[0.0668453144104511, 0.9784] [0.0668453144104511, 0.9784] 
[0.0668453144104511, 0.9784] 
Figure 35: high score linear ramp, on a single processor 

It appears that the ramp is a very slightly better 
initialisation scheme then the sinusoid of the same number 
range dismissing the effect of initial varying gradients 
being of a benefit to the resultant accuracy and loss, at 
least in this case.  Although repeatable results that a 
comparable score to the baseline is achieved the earlier 
concern of numerical stability of the SoftMax activation 
function is investigated. 

VIII. CUSTOM NUMBER SCALED SOFTMAX FUNCTION 

However, also an experiment of the SoftMax 
activation function used in the final layer, the code in 
Appendix A (A-18) is used to define a SoftMax with a 
rescaling for numerical stability [10] as was suggested as a 
possible concern earlier.  But there is still no variance in 
the results and they are similar suggesting that the 
numerical stability is having a minor effect although this 
is the highest accuracy score yet, except for the original 
baseline, see below for the five results: 
[0.06786308663240634, 0.9787] [0.06786308663240634, 0.9787] 
[0.06786308663240634, 0.9787] [0.06786308663240634, 0.9787] 
[0.06786308663240634, 0.9787] 
Figure 36: high score sinusoid, on a single processor replaced SoftMax 

A very marginal increase in accuracy, but now that the 
model can be run repeatedly, the original code is run in 
real-time priority with a single processor affinity and with 
the random number initialisation of the weights  but 
seeded.  
[0.061059941675240405, 0.9805] [0.061059941675240405, 0.9805] 
[0.061059941675240405, 0.9805] [0.061059941675240405, 0.9805] 
[0.061059941675240405, 0.9805] 
Figure 37: Baseline, on a single processor 

The baseline perfected value is 98.05% which is only 
0.18% better than using the best linear ramp with a 
modified SoftMax, or just 0.21% better then the best 



linear ramp initialisation with the original SoftMax 
function and also just 0.33% better than using the best 
sinusoidal ramp weight initialisation. 

IX. CONCLUSION 

In summary the initial original code has a accuracy of 
about 98.05% and using random numbers, conventional 
thoughts might be that the weight values and random 
numbers were responsible alone for the variations in 
successive results run to run. However, when the random 
seeds are set to a defined seed value the variation in the 
results continues run to run.  The paper was able to 
establish a stable result making the processing 
deterministic but the exact cause of the variations in 
successive runs is not proven, but could be a numerical 
stability given calculations using 32bit or 64bit floating 
point maths but would need to be combined with another 
effect like task scheduling truncating the stored values 
between schedules.  The solution to the variation run to 
run suggests that it may be task scheduling truncating a 
CPU internal 80bit extended precision register used for 
floating point maths used even with 32bit or 64bit 
calculations and will truncate a calculations result to 
32bits or 64bits if interrupted by the task scheduler.  It 
may be that this variation is only seem on multi core 
CPUs and GPUs may be immune.   

The paper also tested a variety of initialisation 
schemes and they were experimented with and 0.18% less 
accuracy than the original code was achieved with a non-
random number weight initialization pattern and in that 
case was a linear ramp in the numerical range -0.05 to 
+0.05 with a modified SoftMax function.  But it should be 
noted that more optimal non-random schemes may exist 
but the paper has shown that random number initialisation 
is not an imperative requirement.  It also may be that the 
number range could be optimised but we may expect that 
these may also couple with the activation function used in 
that layer.  It is also possible that the 32bit or 64bit 
number representation may be contributing to a 
regularisation effect to help to not over fit a model by 
reducing significant bit resolution.  It may follow that 
initialisation schemes could be set depending on the layer 
type, the activation function and the regularisation scheme 
used.  The 80bit floating point representation could 
conceivably have benefits to achieved accuracy with an 
optimal number range but also has benefits to determinism 
in successive run results and that may have benefits to 
make a Deep Learning network capability accessible to 
mission and safety critical systems.  However, the paper 
has demonstrated deterministic repeatable results in 
successive runs without random initialisations meaning 
that mission and safety critical applications may have the 
test and qualification determinism required by those 
applications and the test environment is viable for further 
experimentation control. 

It has not been experimented with in this paper, but it 
is also possible that re-compiling the tensor flow backend 

with strict IEEE compliance could provide all cores hyper 
threading with run to run repeatability determinism. But 
this might not provide the 80bit extended precision 
benefits to accuracy in learning sessions and the SoftMax 
experiment might indicate that number representation is a 
feature that could affect regularisation.  Thus the current 
implementation with the real-time single processor 
affinity provides the flexibility to define critical regions 
during learning and evaluation.  But it was the research 
question of "Are random number initialisation weight 
values required as the initial state before learning to have 
high accuracy in predictions or can a non random scheme 
also have comparable performance in predictions" and the 
answer is that it is possible to use non random sequences 
and random numbers in this case it may not be an 
imperative requirement for accuracy performance. 
Although, it is also possible that coupling in those 
schemes may connect with: the deep learning architecture, 
the layer type and the activation function used.  Also the 
absence of random numbers with the use of alternative 
non-random number schemes can be used to provide 
repeatable deterministic results from learning session to 
learning session, and that might be a support to mission 
and safety critical system's verification and validation 
obligations going forward. 
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XI. APPENDIX A 

The code has been included for repeatability and to allow 
other researchers to overcome the numerical instability of 
task scheduling. 
A.1 Original Code specimen [4] Experiment 1 
import tensorflow as tf 
 
mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = 
mnist.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0 
 
model = tf.keras.models.Sequential ([ 
  tf.keras.layers.Flatten(), 
  tf.keras.layers.Dense(512, activation=tf.nn.relu), 
  tf.keras.layers.Dropout(0.2), 
  tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) 
 
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 
metrics=['accuracy']) 
 
model.fit(x_train, y_train, epochs=5) 
model.evaluate(x_test, y_test) 
A.2 Random Number Seeding code change [5] Experiment 2 
from numpy.random import seed 

from tensorflow import set_random_seed 

seed(1) 

set_random_seed(2) 

... 

model.fit(x_train, y_train, epochs=1 , shuffle=False) 
A.3 Modification for Init code insertion Experiments 2-20 
model = tf.keras.models.Sequential ([ 
 tf.keras.layers.Flatten(), 
 tf.keras.layers.Dense(512, 
kernel_initializer=tf.constant_initializer (initval1), bias_initializer = 

'zeros', activation = tf.nn.relu), 
 tf.keras.layers.Dropout(0.2), 
 tf.keras.layers.Dense(10, kernel_initializer=tf.constant_initializer 

(initval2), bias_initializer = 'zeros', activation = tf.nn.softmax) ]) 
A.4 Constant value Initialisation code Experiment 3 
initval1 = np.ones(28*28*512) 
initval2 = np.ones(512*10) 
A.5 Constant value Initialisation code Experiment 4 
initval1 = np.zeros(28*28*512) 
initval2 = np.zeros(512*10) 
A.6 Constant value Initialisation code Experiment 5 
initval1 = np.zeros(28*28*512) + 0.05 
initval2 = np.zeros(512*10) + 0.05 
A.7 Code change for ReLU Experiment 6 
model = tf.keras.models.Sequential([ 
  tf.keras.layers.Flatten(), 
  tf.keras.layers.Dense(512, kernel_initializer = tf.constant_initializer 
(initval1), bias_initializer = 'zeros', activation=tf.nn.relu), 
  tf.keras.layers.Dropout(0.2), 
  tf.keras.layers.Dense(10, kernel_initializer = tf.constant_initializer 
(initval2), bias_initializer = 'zeros', activation=tf.nn.relu)  ]) 
A.8 Constant value Initialisation code Experiment 7 
initval1=np.zeros(28*28*512) - 0.05 

initval2=np.zeros(512*10) - 0.05 
A.9 Ramp Initialisation code Experiment 8 
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.1-0.05 
initval2=np.arange(0,512*10,1)/(512*10-1)*0.1-0.05 
A.10 Ramp Initialisation code Experiment 9 
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.1 
initval2=np.arange(0,512*10,1)/(512*10-1)*0.1 
A.11 Ramp Initialisation code Experiment 10 
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.05 
initval2=np.arange(0,512*10,1)/(512*10-1)*0.05 
A.12 Ramp Initialisation code Experiment 11 
initval1=np.arange(0,28*28*512,1) /(28*28*512-1)*0.05-0.05 
initval2=np.arange(0,512*10,1)/(512*10-1)*0.05-0.05 
A.13 Sinusoid Initialisation code Experiment 12 
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)*0.05 
initval2=np.sin(np.arange(0,512*10,1) /(512*10-1)*np.pi*2)*0.05 
A.14 Sinusoid Initialisation code Experiment 13 
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)*0.05 
+0.05 
initval2=np.sin(np.arange(0,512*10,1)/(512*10-1)*np.pi*2)*0.05+0.05 
A.15 Sinusoid Initialisation code Experiment 14 
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-
1)*np.pi*2)*0.025+0.025 
initval2=np.sin(np.arange(0,512*10,1)/(512*10-
1)*np.pi*2)*0.025+0.025 
A.16 Sinusoid Initialisation code Experiment 15 
initval1=np.sin(np.arange(0,28*28*512,1)/(28*28*512-1)*np.pi*2)* 
0.025-0.025 
initval2=np.sin(np.arange(0,512*10,1)/(512*10-1)*np.pi*2)*0.025-0.025 
A.17 Real-Time single Core Affinity code [8] [9] Experiments 17 - 20 
import psutil 

psutil.Process().cpu_affinity([0,0,0,0]) 

 

def setpriority(pid=None,priority=1):        

import win32api,win32process,win32con 

priorityclasses = [win32process.IDLE_PRIORITY_CLASS, 

           win32process.BELOW_NORMAL_PRIORITY_CLASS, 

           win32process.NORMAL_PRIORITY_CLASS, 

           win32process.ABOVE_NORMAL_PRIORITY_CLASS, 

           win32process.HIGH_PRIORITY_CLASS, 

           win32process.REALTIME_PRIORITY_CLASS] 

if pid == None: 

   pid = win32api.GetCurrentProcessId() 

 handle =  win32api.OpenProcess( 

win32con.PROCESS_ALL_ACCESS, True, pid) 

win32process.SetPriorityClass(handle, priorityclasses[priority]) 

     

setpriority(None, priority=5) 

model.fit(x_train, y_train, epochs=5, verbose=1, shuffle=True) 
setpriority(None,priority=2) 

 

setpriority(None, priority=5) 
model.evaluate(x_test, y_test, verbose=1) 
setpriority(None,priority=2) 
A.18 Modified SoftMax function change [10] Experiment 19 
from keras.layers import Activation 
from keras import backend as K 
from keras.utils.generic_utils import get_custom_objects 
 
def custom_activation(x): 
    exps = K.exp(x - K.max(x)) 
    return exps / K.sum(exps) 
 
get_custom_objects().update({'custom_activation': 
Activation(custom_activation)}) 
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