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The reconstruction of the timewise conductivity in the heat equation from an observation consisting of a
linear combination of heat flux measurement data is considered. This inverse formulation results in a
local uniquely solvable problem. The two-dimensional inverse problem is discretized using an alternating
direction explicit method. The resulting constrained optimization problem is minimized iteratively by
employing a MATLAB toolbox subroutine.
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1. Introduction 2. Inverse formulations
The determination of coefficients from nonlocal boundary infor-
mation has received significant attention frommany researchers in
recent years, see Cannon et al. (1990), Cannon and Matheson
(1993) and Cannon and Yin (1989) to mention only a few. Nonlocal
problems arise naturally in modeling various phenomena such as
groundwater transport in porous media (Dagan, 1994), nuclear
radioactive decay (Shelukhin, 1993), viscoelasticity (Renardy
et al., 1987) and semiconductor devices (Allegretto et al., 1999).

One-dimensional inverse problems concerning the reconstruc-
tion of timewise conductivity coefficient from various nonlocal
conditions were investigated in Hussein et al. (2016) and Huntul
and Lesnic (2017). The inverse problems investigated in this paper
have already been proved to be locally uniquely solvable in
Ivanchov and Sahaidak (2004) and Kinash (2018), but no numerical
reconstruction has been attempted so far, and it is the objective of
the current research to undertake the numerical realization of
these problems.
Let QT ¼ X� 0; Tð Þ, where X is the rectangle 0;hð Þ � 0; lð Þ, and
consider the determination of the coefficient a tð Þ > 0 in

ut ¼ a tð Þr2uþ b x; y; tð Þ � ruþ c x; y; tð Þuþ f x; y; tð Þ; x; y; tð Þ 2 QT ;

ð1Þ
where b ¼ b1; b2ð Þ is a known velocity representing convective flow,
c is a known absorption coefficient and f is a known source, with
unknown u x; y; tð Þ, subject to
ujt¼0 ¼ u; in 0;h½ � � 0; l½ � ¼ X; ð2Þ

ujx¼0 ¼ l11; ujx¼h ¼ l12; in 0; l½ � � 0; T½ �; ð3Þ

ujy¼0 ¼ l21; ujy¼l ¼ l22; in 0;h½ � � 0; T½ �; ð4Þ
together with the non-local over-determination

a tð Þ v1 tð Þux 0;Y0; tð Þ þ v2 tð Þux h;Y0; tð Þ½ � ¼ j tð Þ; t 2 0; T½ �; ð5Þ
where Y0 is a fixed point within the interval 0; lð Þ, and u;l1i;l2i;v i

for i ¼ 1;2 and j are given functions. Physical situations in which
the diffusivity a tð Þ depends on time (and is unknown) occur in dam-
age and radioactive decay applications, (Cannon, 1984). In case
v1 ¼ 1; v2 ¼ 0, Eq. (5) becomes

a tð Þux 0;Y0; tð Þ ¼ j tð Þ; t 2 0; T½ � ð6Þ
and the local unique solvability of the problem given by (1)–(4) and
(6) reads as stated below (Ivanchov and Sahaidak, 2004).
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Theorem 1. Assume that:

(A1) u 2 C2 X
� �

; l1i 2C2;1 0; l½ �� 0;T½ �ð Þ; l2i 2C2;1 0;h½ �� 0;T½ �ð Þ;
i¼1;2, j 2 C 0;T½ �; f 2 C1;0 QT

� �
; bi 2 C QT

� �
; i¼ 1;2; c 2 C QT

� �
;

and b1;b2 and c are Hölder continuous in space;
A2ð Þ j > 0; ux > 0;
A3ð Þ The Dirichlet and initial data (2)–(4) are consistent

at t ¼ 0 on the boundary @X;
A4ð Þ Eq. (1) holds at t ¼ 0 for x; yð Þ 2 @X.

Then, there exists T0 2 0; Tð �, for which the solution 0 < a tð Þ;ð
u x; y; tð ÞÞ 2 C 0; T0½ � � C2;1 QT0

� �
of the problem (1)–(4) and (6)

exists.
Theorem 2. Assume:

A5ð Þ b1; b2 and c 2 C QT

� �
are Hölder continuous in space

A6ð Þ j > 0.
Table 1
The exact solution ((14) and (18)) and numerical results for j tð Þ, for the direct probelm (E

Example 1 t 0.1 0.2 0
j tð Þ 4.4033 4.8044 5.2
Exact 4.4000 4.8000 5.2

Example 2 t 0.1 0.2 0
j tð Þ 8.4000 7.8000 7.2
Exact 4.4000 7.8000 7.2

Table 2
Computational details.

Example 1 p ¼ 0

Minimum value of (10) 1.0E�25
rmse að Þ 2.4E�3

Example 2 p ¼ 0

Minimum value of (10) 6.3E�26
rmse að Þ 5.3E�15

Fig. 1. (a) The objective function (10), and (b) the solutio
Then, the problem (1)–(4) and (6) has at most one solution in the

class 0 < a tð Þ;u x; y; tð Þð Þ 2 C 0; T½ � � C2;1 QT

� �
.

We finally remark that in Ivanchov and Sahaidak (2004) it is
stated that the local existence and uniqueness also hold in case
the local heat flux measurement (6) is replaced by the non-local
condition

a tð Þ ux 0;Y0; tð Þ þ uy X0;0; tð Þ� � ¼ m tð Þ; t 2 0; T½ �;
where X0 is a fixed point in the interval 0;hð Þ.

2.1. Statement of a related inverse problem

Assume, for simplicity, that b1 ¼ b2 ¼ c ¼ 0, such that (1)
becomes

ut ¼ a tð Þr2uþ f x; y; tð Þ; x; y; tð Þ 2 QT : ð7Þ
If instead of the nonlocal heat flux condition (5) we prescribe the
nonlocal-derivative combination

v1 tð Þux 0;Y0; tð Þ þ v2 tð Þux h;Y0; tð Þ ¼ v tð Þ; t 2 0; T½ �; ð8Þ
xamples1 and 2).

.3 . . . 0.8 0.9 rmse jð Þ
052 . . . 7.2075 7.6080 6.2E�3
000 . . . 7.2000 7.6000 0

.3 . . . 0.8 0.9 rmse jð Þ
000 . . . 7.8000 8.7000 2.5E�14
000 . . . 7.8000 8.7000 0

p ¼ 1% p ¼ 2% p ¼ 3%

9.4E�26 5.1E�26 1.4E�25
0.0301 0.0605 0.0911

p ¼ 1% p ¼ 2% p ¼ 3%

6.3E�26 7.4E�26 8.4E�26
0.0209 0.0419 0.0628

ns for a tð Þ, for p 2 0;1%;2%;3%f g noise (Example1).



Fig. 2. The solutions for u x; y;1ð Þ, for: (a) p ¼ 0, (b) p ¼ 1%, (c) p ¼ 2%, and (d) p ¼ 3% (Example1).
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then the local unique solvability of the problem given (2)–(4), (7)
and (8) read as stated in the following two theorems (Kinash,
2018).

Theorem 3. Assume that (A3) is satisfied and that:

A7ð Þ f 2C QT

� �
; u2C2 X

� �
; W2C2;1 QT

� �
; ~v;v1;v2 2C1 0;T½ �ð Þ;

and f ;r2u,

r2W and Wt are Hölder continuous with exponent a 2 0;1ð Þin
space, where
~v tð Þ :¼ v tð Þ � v1 tð Þ ux 0;Y0ð Þ þWx 0;Y0; tð Þð Þ � v2 tð Þ ux h;Y0ð Þð

þWx h;Y0; tð ÞÞ;W x; y; tð Þ :¼ l11 y; tð Þ � l11 y;0ð Þ
þ x

h l12 y; tð Þ � l12 y;0ð Þ � l11 y; tð Þ þ l11 y;0ð Þ� �
þl21 x; tð Þ � l21 x;0ð Þ � l11 0; tð Þ � l11 0;0ð Þ�
þ x

h l12 0; tð Þ � l12 0;0ð Þ � l11 0; tð Þ þ l11 0;0ð Þ� ��
þ y

l l22 x; tð Þ � l22 x;0ð Þ � l11 l; tð Þ þ l11 l;0ð Þ�
� x

h l12 l; tð Þ � l12 l;0ð Þ � l11 l; tð Þ þ l11 l;0ð Þ� �� l21 x; tð Þ
þl21 x;0ð Þ þ l11 0; tð Þ � l11 0;0ð Þ þ x

h l12 0; tð Þ � l12 0;0ð Þ�
�l11 0; tð Þþ l11 0; 0ð ÞÞ�;

A8ð Þ � v1 tð Þ r2u 0; Y0ð Þ þ r2W 0; Y0; tð Þ
� �

þ v2 tð Þ r2u h; Y0ð Þ
�

þr2W h; Y0; tð ÞÞ > 0, �v2 tð Þ f h; Y0; tð Þ � Wt h; Y0; tð Þð Þ þ v1 tð Þ
f 0; Y0; tð Þ � Wt 0; Y0; tð Þð Þ > 0; t 2 0; T½ �;
A9ð Þ v1 0ð Þu0 0;Y0ð Þ þ v2 0ð Þu0 h;Y0ð Þ ¼ ~v 0ð Þ:

Then, there exists T0 2 0; Tð �, for which the solution

0 < a tð Þ;u x; y; tð Þð Þ 2 C 0; T0½ � � C2;1 QT0

� �
of the problem given

(2)–(4), (7) and (8) exists.
Theorem 4. Let the assumption (A7) and

U tð Þ :¼ v2 tð Þ r2u h;Y0ð Þ þ r2W h; Y0; tð Þ
� �

�v1 tð Þ r2u 0;Y0ð Þ þ r2W 0; Y0; tð Þ
� �

– 0; t 2 0; T½ �; ð9Þ

be satisfied. Then, there exists T0 2 0; Tð �, for which the solution of the
problem (2)–(4), (7) and (8) is unique in the class 0 < a tð Þ;ð
u x; y; tð ÞÞ 2 C 0; T½ � � C2;1 QT

� �
, and r2u is Hölder continuous in space.

The numerical realisation of the inverse problem (2)–(4), (7) has
been undertaken elsewhere, (Huntul, 2018), and therefore
it is not considered further herein.
Fig. 3. (a) The objective function (10), and (b) the solutio
3. Inverse problem

The numerical solution of (1)–(5) is obtained by minimizing

F að Þ¼
XN
n¼1

an v1 tnð Þux 0;Y0;tnð Þþv2 tnð Þux h;Y0;tnð Þð Þ�j tnð Þ½ �2; ð10Þ

where tn ¼ nDt;Dt ¼ T=N, N is the number of time steps and
an :¼ a tnð Þ, and u solves numerically using the alternating direction
explicit (ADE) method (Barakat and Clark, 1966; Campbell and Yin,
2007; Ozisik, 1994) the direct problem (1)–(4) for given a tð Þ. The
minimization of (10) is accomplished using the lsqnonlin subroutine
in MATLAB. Simple bounds on the variable a > 0 are specified as
10�5 6 a 6 102.

The data (5) is subject to random noise as

j� tnð Þ ¼ j tnð Þ þ �n; n ¼ 1;N; ð11Þ
where �nð Þn¼1;N ¼ normrnd 0;r;Nð Þ;r ¼ p�maxt2 0;T½ �jj tð Þj, and p is
the percentage of noise.
4. Results

Define

rmse að Þ ¼ T
N

XN
n¼1

aNumerical tnð Þ � aExact tnð Þ� �2" #1=2

ð12Þ

and take h ¼ l ¼ T ¼ 1 and Y0 ¼ 1=2.

Example 1. Input data v1 tð Þ ¼ 1;v2 tð Þ ¼ 0,

u x;yð Þ¼� x�2ð Þ2� y�2ð Þ2;
b1 x;y;tð Þ¼xþyþ t;
b2 x;y;tð Þ¼�x�y� t;
c x;y;tð Þ¼xþyþ t;

l11 y;tð Þ¼�4þ t� y�2ð Þ2;
l12 y;tð Þ¼�1þ t� y�2ð Þ2;
l21 x;tð Þ¼�4þ t� x�2ð Þ2;
l22 x;tð Þ¼�1þ t� x�2ð Þ2;
f x;y;tð Þ¼1þ4 1þ tð Þ
� t� x�2ð Þ2� y�2ð Þ2þ2y�2x
h i

tþxþyð Þ; ð13Þ

j tð Þ ¼ a tð Þux 0;Y0; tð Þ ¼ 4 1þ tð Þ: ð14Þ
ns for a tð Þ, for p 2 0;1%;2%;3%f g noise (Example2).



Fig. 4. The solutions for u x; y;1ð Þ, for: (a) p ¼ 0, (b) p ¼ 1%, (c) p ¼ 2%, and (d) p ¼ 3% noise (Example2).

932 M.J. Huntul, D. Lesnic / Journal of King Saud University – Science 32 (2020) 928–933



M.J. Huntul, D. Lesnic / Journal of King Saud University – Science 32 (2020) 928–933 933
First, it can easily be checked that with this data, the conditions
A1ð Þ– A6ð Þ are satisfied, hence the local unique solvability of the
inverse problem (1)–(4) and (6) is guaranteed. The analytical solu-
tion is

u x; y; tð Þ ¼ t � x� 2ð Þ2 � y� 2ð Þ2; ð15Þ

a tð Þ ¼ 1þ t: ð16Þ
First, we solve numerically the direct problem (1)–(4), when

a tð Þ is known and given by (16), using the ADE with the mesh sizes
Dx ¼ Dy ¼ 1=10 and Dt ¼ 0:025. The exact solution (13) for the
heat flux over-specification j tð Þ compared with the numerical
solutions in Table 1, shows on an excellent agreement.

Next, we solve the inverse problem (1)–(4) and (6) with the
input (13) and (14) using the lsqnonlin minimization of the func-
tional (10) with the initial guess for the vector a ¼ a tnð Þð Þn¼1;N given
by

a0 tnð Þ ¼ a 0ð Þ ¼ 1; n ¼ 1;N: ð17Þ
We take the same mesh size as in the direct problem above, but we
add noise in the input data (14), as in Eq. (11). The objective func-
tion (10), is plotted in Fig. 1(a), where a monotonic decreasing con-
vergence is obtained in 5 iterations in about 8 min CPU time. The
related results for a tð Þ are shown in Fig. 1(a), and in Table 2, and
it can be observed that as the percentage of noise p decreases, the
numerical solutions become more stable and accurate. Fig. 2 com-
pares the exact and numerical solutions for u x; y;1ð Þ showing good
agreement and stability. No regularization was found necessary to
penalise the nonlinear least-squares objective functional (10) for
amounts of noise up to p ¼ 3%, hinting towards the conclusion that
the inverse problem under investigation is not severely ill-posed.
Nevertheless, for higher amounts of noise the instability in retriev-
ing the coefficient a tð Þ will become apparent and regularization
would need to be employed.

Example 2. We test the inverse problem given by (7) (i.e. we take
b ¼ 0 and c ¼ 0 in (1)) and (2)–(4) with the same initial and
Dirichlet data as in (13) and the more general non-local over-
specification (5) given by

j tð Þ ¼ a tð Þ v1 tð Þux 0;Y0; tð Þ þ v2 tð Þux h;Y0; tð Þ½ � ¼ 6 jt � 0:5j þ 1ð Þ;
v1 tð Þ ¼ v2 tð Þ ¼ 1: ð18Þ

We also take the source f x; y; tð Þ ¼ 5þ 4jt � 0:5j. The previous
example has reconstructed the smooth timewise thermal conduc-
tivity a tð Þ given by (15). In this example, we assess the numerical
reconstruction of a non-differentiable conductivity given by

a tð Þ ¼ jt � 0:5j þ 1: ð19Þ
We also have the same analytical solution for the temperature

u x; y; tð Þ given by (15). The initial guesses for the vector a for this
example has been taken as

a0 tnð Þ ¼ a 0ð Þ ¼ 1:5; n ¼ 1;N: ð20Þ
Note that the value of a 0ð Þ is available from (2) and (5) as
a 0ð Þ ¼ j 0ð Þ
v1 0ð Þux 0;Y0ð Þ þ v2 0ð Þux h;Y0ð Þ : ð21Þ

As in Example1, for the numerical discretisation we employ the
ADE with the mesh sizes Dx ¼ Dy ¼ 0:1 and Dt ¼ 0:025. Fig. 3(a)
shows the rapidly decreasing functional (10) with the number of
iterations. The results shown in Figs. 3(b) and 4, and in Table 2,
yield the same conclusions as those obtained for Example1.

5. Conclusions

The reconstruction of conductivity and temperature from the
non-local linear combination of heat flux over-determination (5)
has been achieved numerically by employing the ADE, as a direct
solver, implemented in a constrained minimization procedure. Fur-
ther work will consist in retrieving multiple coefficients.
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