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Probabilistic Rank-One Tensor Analysis with

Concurrent Regularizations
Yang Zhou, Haiping Lu, Member, IEEE, and Yiu-ming Cheung, Fellow, IEEE

Abstract—Subspace learning for tensors attracts increasing
interest in recent years, leading to the development of multilinear
extensions of Principal Component Analysis (PCA) and Proba-
bilistic PCA (PPCA). Existing multilinear PPCAs are based on
the Tucker or CANDECOMP/PARAFAC (CP) models. Although
both kinds of multilinear PPCAs have shown their effectiveness
in dealing with tensors, they also have their own limitations.
Tucker-based multilinear PPCAs have a restrictive subspace
representation and suffer from rotational ambiguity, while CP-
based ones are more prone to overfitting. To address these
problems, we propose Probabilistic Rank-One Tensor Analysis
(PROTA), a CP-based multilinear PPCA. PROTA has a more
flexible subspace representation than Tucker-based PPCAs, and
avoids rotational ambiguity. To alleviate overfitting for CP-
based PPCAs, we propose two simple and effective regularization
strategies, named as concurrent regularizations. By adjusting the
noise variance or the moments of latent features, our strategies
concurrently and coherently penalize the whole subspace. This
relaxes unnecessary scale restrictions and gains more flexibility
in regularizing CP-based PPCAs. To take full advantage of
the probabilistic framework, we further propose a Bayesian
treatment of PROTA, which achieves both automatic feature
determination and robustness against overfitting. Experiments
on synthetic and real-world datasets demonstrate the superiority
of PROTA in subspace estimation and classification, as well
as the effectiveness of concurrent regularizations in alleviating
overfitting.

I. INTRODUCTION

Multiway or multidimensional arrays, a.k.a. tensors, are

abundant in real-world applications, such as signal processing,

computer vision, social network analysis, etc. [1]–[3]. The

order of a tensor is the number of dimensions of the array,

and a mode is one dimension of it. For example, a gray-level

image can be represented by a second-order tensor (matrix)

with the dimensions of height × width, and a gait silhouette

sequence can be organized as a third-order tensor of height ×
width × time. By preserving the structural information in each

mode, tensors can naturally characterize data from multiple

aspects, providing compact and meaningful representations.

Tensorial data are typically high-dimensional, and difficult

to be directly handled in their original space. In addition,

interesting latent information or interactions among multiple

modes often lie in a low-dimensional subspace [4]. Therefore,

subspace learning, as a useful technique for dimensionality

reduction, is frequently used to represent high-dimensional
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tensors in a low-dimensional subspace without losing much

useful underlying information or structures.

Principal Component Analysis (PCA) [5] is one of the

most popular subspace learning techniques. It aims to find

a subspace that preserves maximum data variance. In the

past few decades, many PCA extensions have been proposed.

Among them, one important and fundamental representative

is Probabilistic PCA (PPCA) [6]. PPCA reformulates PCA

under the probabilistic framework by learning a generative

model that relates low-dimensional latent features with high-

dimensional observations. In this way, PPCA obtains two

main advantages over PCA: 1) It can capture data uncertainty

and handle missing values; 2) It enables automatic model

selection or incorporation of certain desirable properties such

as robustness [7], sparsity [8], and large-margin separability

[9].

Although PCA and PPCA have wide applications, they have

limitations in dealing with tensors. Since PCA and PPCA

can only take vectors as inputs, they have to vectorize or

reshape tensors into vectors first. This breaks the meaningful

tensor structures, and leads to larger parameter sizes and

higher memory demands [10]. To address these problems,

two kinds of multilinear PCA extensions have been proposed,

which learn subspaces directly from tensorial inputs for pre-

serving structural information. One is based on the Tucker

model [11] that projects high-dimensional tensors into low-

dimensional tensors [12]–[16]. The other is based on the

CANDECOMP/PARAFAC (CP) model [17], [18] that projects

high-dimensional tensors into low-dimensional vectors [19]–

[21].

Along this line, several multilinear PPCA extensions have

been proposed to take advantages of both probabilistic models

and tensor representations. Most of them are based on the

Tucker model. For example, Matrix-Variate Factor Analysis

(MVFA) [22] attempts to extend PPCA for matrix inputs. It

constructs a bilinear Tucker model to relate each matrix obser-

vation to a low-dimensional latent matrix via column and row

factor matrices. Probabilistic Second-Order PCA (PSOPCA)

[23] provides a probabilistic interpretation of bilinear PCAs

by employing matrix-variate normal distributions [24] and

variational approximation techniques. Bilinear Probabilistic

PCA (BPPCA) [25] further adds two extra noise terms into

the PSOPCA model. This leads to tractable probability density

functions and closed-form updates for maximum likelihood

estimation (MLE).

Compared with Tucker-based approaches, CP-based PPCAs

are relatively under-developed. To the best of our knowledge,

Tensor Bayesian Vectorial Dimension Reduction (TBVDR)
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[26] is the only existing CP-based multilinear PPCA. It

introduces an additional linear projection into the CP model,

so that the model complexity and the number of extracted

features can be controlled separately. There are also several

related works on probabilistic/Bayesian CP decomposition

(CPD), which were developed for tensor completion but can

be applied to subspace learning. Bayesian Probabilistic Tensor

Factorization (BPTF) [27] formalizes the collaborative filtering

problem as a CPD with time factors and smooth constraints

for capturing temporal correlations. It is further extended to a

parameter-free Bayesian version to automatically control the

model complexity. Bayesian CP Factorization (BCPF) [28]

applies automatic relevance determination (ARD) [29], [30]

for CPD, so that the CP rank can be determined automatically.

Variational Bayesian Tensor CP decomposition (VBTCP) [31]

extends BCPF to deal with noisy complex-valued tensors, and

imposes orthogonal constraints on one or more dimensions.

Although both Tucker- and CP-based multilinear PPCAs

have shown their effectiveness in dealing with tensors, they

have their own limitations. Tucker-based approaches suffer

from rotational ambiguity [6], [32], in the sense that their

solutions with and without rotation transformations are equally

good, and have a compact yet restrictive subspace representa-

tion. On the other hand, CP-based ones are more flexible in

representing subspaces without rotational ambiguity, whereas

they are more prone to overfitting, leading to poor gener-

alization abilities. A few regularization strategies have been

studied in Bayesian CPD methods for alleviating overfitting.

However, they are designed for tensor completion, taking

no prior knowledge of subspace learning into account and

introducing strong restrictions into the CP model.

To address the above problems, we propose Probabilistic

Rank-One Tensor Analysis (PROTA) with concurrent regu-

larizations. Our contributions are three-fold:

• We propose PROTA, a new CP-based multilinear PPCA,

which represents each observation as a linear combina-

tion of rank-one tensors. Compared with Tucker-based

PPCAs, PROTA is more flexible in capturing data char-

acteristics, and avoids rotational ambiguity. Its advantages

over existing CP-based PPCAs are described in the next

contribution.

• To alleviate overfitting for CP-based PPCAs, we pro-

pose two simple and effective regularization strategies

in PROTA, named as concurrent regularizations, where

we control the model complexity by adjusting the noise

variance or the moments of latent features. Different

from existing Bayesian CPDs that penalize each factor

independently, we make use of the group-wise scale in-

variance of the CP model to concurrently and coherently

regularize the whole subspace, while keeping the latent

features unconstrained. As a result, our new regulariza-

tions avoid imposing unnecessary restrictions, leading to

a more flexible and effective way of regularizing CP-

based PPCAs.

• To fully utilize the probabilistic framework, we recast

the idea of whole subspace regularization as prior dis-

tributions, and further propose a Bayesian treatment of

PROTA, along with model estimation schemes via vari-

TABLE I
CONVENTION OF NOTATIONS.

Notation Description

zm the mth latent vector

Xm the mth observed tensor

In the mode-n dimension of observed tensors

Xm(n) the mode-n unfolding of Xm

U
(n) the mode-n factor matrix

U
(n−) the mode-n complement factor matrix with U

(n−) =

U
(N) ⊙ . . .⊙U

(n+1) ⊙U
(n−1) ⊙ . . .⊙U

(1)

vec(Xm) the vector stacked by the columns of Xm

diag(Xm) the vector formed by the diagonal elements of Xm

diagN (zm) the N th order diagonal tensor formed by zm

◦ the outer product

⊗ the Kronecker product

⊛ the Hadamard (entrywise) product

⊙ the Khatri-Rao (column-wise Kronecker) product

ational inference. It inherits both the ability of Bayesian

CPD methods in automatically pruning irrelevant features

and the robustness of concurrent regularizations against

overfitting.

We presented a preliminary work called Probabilistic Rank-

One Matrix Analysis (PROMA) only for second-order tensors

in [33]. This paper differs from [33] in three aspects:

1) Generalized model: We generalize PROMA to PROTA

for dealing with higher-order tensors.

2) New regularization strategy: We propose a new concur-

rent regularization strategy, which is more effective in

alleviating overfitting than the one proposed in [33].

3) Bayesian extension: We recast the new regularization

into a prior distribution, and further propose a Bayesian

extension of PROTA for both robustness against overfit-

ting and automatic feature determination.

4) Additional experiments: We conduct additional experi-

ments on both 2D and 3D real-world datasets.

II. PRELIMINARIES

This section introduces basic multilinear notations and op-

erations used in this paper, and provides a brief review on

PPCA and its multilinear extensions.

A. Notations and Multilinear Operations

Vectors are denoted by bold lowercase letters (x). Matrices

are denoted by bold uppercase letters (X). Tensors are denoted

by calligraphic letters (X ). The transpose of a vector or matrix

is denoted by ·⊤. Symbols ◦, ⊗, ⊛, and ⊙ denote the outer,

Kronecker, Hadamard (entrywise), and Khatri-Rao (column-

wise Kronecker) products, respectively1. 〈·〉 denotes the ex-

pectation w.r.t. a certain distribution. vec(·) is the vectorization

operator that turns a tensor into a column vector. For a vector

x, diagN (x) is the N th order diagonal tensor formed by x.

For a matrix X ∈ R
I1×I2 , tr(X) is its matrix trace. Ga(x|a, b)

1Please refer to Sec. 12.3 in [34] and Sec. 2.6 in [35] for the formal
definitions and their relationships.



IEEE TRANSACTIONS ON CYBERNETICS 3

denotes the Gamma distribution with the hyper-parameters a
and b. Table I summarizes the notations used in this paper.

Matrix-Variate Normal Distribution [24]: A random matrix

X ∈ R
I1×I2 that follows the matrix-variate normal distribu-

tion NI1,I2(X|Ξ,Σ1,Σ2) with the mean matrix Ξ, column

covariance matrix Σ1 ∈ R
I1×I1 , and row covariance matrix

Σ2 ∈ R
I2×I2 , has the following probability density function:

p(X) = (2π)−
1
2 I1I2 |Σ1|

− 1
2 I2 |Σ2|

− 1
2 I1

exp

{

−
1

2
tr
(
Σ

−1
1 (X−Ξ)Σ−1

2 (X−Ξ)⊤
)
}

.

The matrix-variate normal distribution is related to the

multivariate normal distribution in the following way:

p(X) = NI1,I2(X|Ξ,Σ1,Σ2) if and only if p(vec(X)) =
N (vec(X)|vec(Ξ),Σ2 ⊗ Σ1). N (vec(X)|vec(Ξ),Σ2 ⊗ Σ1)
denotes a multivariate normal distribution, whose mean and

covariance matrix are given by vec(Ξ) and Σ2 ⊗Σ1, respec-

tively.

For an N th-order tensor X ∈ R
I1×...×IN , it is addressed by

N indices {in}
N
n=1. Each in addresses the mode-n of X .

Mode-n unfolding: X(n) ∈ R
In×(I1×...×In−1×In+1×...×IN )

denotes the mode-n unfolding matrix of X , where each

column of X(n) is a In-dimensional mode-n vector of X .

Mode-n product: Y = X ×n U
(n) ∈ R

I1×...×Pn×...×In

denotes the mode-n product of X by a matrix U
(n) ∈ R

Jn×In ,

whose entries are given by:

Y(i1, . . . , jn, . . . , iN ) =

In∑

in=1

X (i1, . . . , iN ) ·U(n)(jn, in).

Multilinear product: The multilinear product of X by N
matrices {U(n) ∈ R

Jn×In}Nn=1 is denoted by

Y = X ×1 U
(1) × . . .×N U

(N) = X ×N
n=1 U

(n).

B. Probabilistic PCA

Classical PPCA method is designed only for vector inputs.

It learns a subspace from high-dimensional observed vectors

by estimating the following latent variable model:

x = Wz+ µ+ ǫ, (1)

where x ∈ R
I is the observation, z ∈ R

P with p(z) =
N (z|0, I) is the latent variable that serves as the low-

dimensional representation of x, I is the identity matrix with

an appropriate size, W ∈ R
I×P is the factor loading matrix

that spans the P -dimensional latent subspace, ǫ ∈ R
P with

p(ǫ) = N (ǫ|0, σ2
I) is the random noise with the variance σ2,

and µ is the mean vector.

With the above model, PPCA generalizes PCA to take

advantage of the probabilistic framework. It also lays the

foundations of probabilistic interpretations for other subspace

learning techniques such as Linear Discriminant Analysis

and Canonical Component Analysis [36]. Despite its success,

PPCA still has some limitations. When the observations are

tensors, PPCA has to first reshape them into vectors, which

breaks the tensor structures and discards some useful data

information.

C. Tucker-Based Multilinear PPCAs

To overcome the above limitation, several Tucker-based

multilinear PPCAs [22], [23], [25] have been proposed. These

methods directly formulate tensorial observations in the Tucker

model without vectorization, so that the tensor structures

can be preserved. Typically, they represent each N th-order

observed tensor X ∈ R
I1×...×IN as follows:

X = Z ×N
n=1 V

(n)⊤ + Ξ + E , (2)

where Z ∈ R
P1×...×PN is the N th-order low-dimensional la-

tent tensor with Pn ≤ In, V(n) ∈ R
In×Pn = (v

(n)
1 , . . . ,v

(n)
Pn

)
is the mode-n factor matrix, Ξ is the mean tensor, and E is the

random noise following p(vec(E)) = N (vec(E)|0, σ2
I) with

the noise variance σ2.

Compared with PPCA, Tucker-based multilinear PPCAs

have lower model complexity and a smaller parameter size.

Specifically, to learn a P =
∏N

n=1 Pn-dimensional subspace

from N-th order tensors X ∈ R
I1×...×IN , they only need to

estimate
∑N

n=1 InPn parameters for {V(n)}Nn=1 rather than

P ·
∏N

n=1 In ones for W as in PPCA. However, as will be

shown in the next section, such compact subspace represen-

tation is relatively restrictive and may limit the flexibility of

Tucker-based PPCAs in capturing data characteristics.

D. CP-Based Multilinear PPCAs

CP-based multilinear PPCAs such as TBVDR [26] use the

CP model for preserving the tensor structures. They have

a more flexible subspace representation, whereas are more

prone to overfitting than Tucker-based PPCAs. To alleviate

overfitting, existing Bayesian CPD methods have studied sev-

eral regularization strategies. However, these strategies are

designed in the context of tensor completion. They bring

strong restrictions into the CP model and can exclude good

solutions for CP-based PPCAs. These issues (points) will be

analyzed in detail when presenting PROTA in Sections III-B

and III-E.

III. PROBABILISTIC RANK-ONE TENSOR ANALYSIS

This section proposes PROTA with concurrent regulariza-

tions to address the problems of existing multilinear PPCAs.

PROTA has both the flexible CP-based subspace representation

and robustness against overfitting.

A. The PROTA Model

PROTA is based on the CP model. It relates each N th-order

observed tensor X ∈ R
I1×...×IN to a latent vector z ∈ R

P by

representing X as a linear combination of P rank-one tensors

as follows [34], [35]:

X =

P∑

p=1

zpu
(1)
p ◦ u(2)

p ◦ . . . ◦ u(N)
p + E

=diagN (z)×N
n=1 U

(n)⊤ + E ,

(3)

where we have assumed that data are centered with zero

mean, diagN (z) ∈ R
P×...×P is the N th-order diagonal tensor

whose super-diagonal elements are given by z with p(z) =
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N (z|0, I), U(n) ∈ R
In×P = (u

(n)
1 , . . . ,u

(n)
P ) is the mode-n

factor matrix, and E is the N th-order noise tensor following

p(vec(E)) = N (vec(E)|0, σ2
I) with the variance σ2.

Conditional distributions: Let I =
∏N

n=1 In be the num-

ber of features in X . By vectorizing the both sides of (3) with

vec(u
(1)
p ◦u

(2)
p ◦ . . .◦u

(N)
p ) = u

(N)
p ⊗u

(N−1)
p ⊗ . . .⊗u

(1)
p , we

have vec(X ) =
∑P

p=1 zpu
(N)
p ⊗u

(N−1)
p ⊗ . . .⊗u

(1)
p +vec(E),

and obtain the conditional distribution p(X|z) in a vectorized

form as follows:

p(vec(X )|z) = N (vec(X )|Wz, σ2
I), (4)

where W ∈ R
I×P = (w1, . . . ,wP ) = U

(N) ⊙ . . . ⊙ U
(1)

is the joint factor matrix, and wp ∈ R
I with wp = u

(N)
p ⊗

u
(N−1)
p ⊗ . . .⊗ u

(1)
p is the pth column of W.

Let X(n) be the mode-n unfolding of X and I(n
−) =

∏

k 6=n Ik. The CP model (3) can also be expanded along the

nth mode (see Sec. 12.5.4 in [34] for more details). This leads

to p(X|z) in a unfolded form as follows:

p(X(n)|z) = N
In,I(n−)(X(n)|U

(n)diag(z)U(n−)
⊤
, σI, σI),

(5)

where U
(n−) ∈ R

I(n−)×P = (u
(n−)
1 , . . . ,u

(n−)
P ) = U

(N) ⊙
. . .⊙U

(n+1)⊙U
(n−1)⊙ . . .⊙U

(1) is the mode-n complement

factor matrix.

Log-likelihood function: Combining (3) with the above

probabilistic model specifications, we complete the PROTA

model. Given the dataset of M tensorial examples

{Xm}Mm=1, we can obtain the “complete-data” log-likelihood

L =
∑M

m=1 ln p(Xm(n), zm) =
∑M

m=1(ln p(Xm(n)|zm) +
ln p(zm)) from (5), where Xm(n) is the mode-n unfolding of

Xm, and zm with p(zm) = N (zm|0, I) is an example of the

latent variable z. Then, the MLE of the PROTA parameters

θ = {{U(n)}Nn=1, σ
2} can be obtained by maximizing the

posterior expectation of L (see the supplementary materials

for detailed derivations):

L(θ) =
M∑

m=1

〈ln p(Xm(n)|zm) + ln p(zm)〉

= −
M∑

m=1

[
I

2
lnσ2 +

1

2
〈z⊤mzm〉

+
1

2σ2
〈||Xm(n) −U

(n)diag(zm)U(n−)
⊤
||2F 〉

]

+ const.

(6)

B. Connections with Existing PPCAs

After formally presenting the PROTA model for general

tensors, this section studies the connections between PROTA

with other PPCAs. In what follows, different PPCA models are

compared in a typical scenario of subspace learning, where

the subspace dimensionality P is predetermined.

Connections with PPCA: Firstly, we explore the connec-

tions between PPCA and its multilinear extensions.

Proposition 1. Given P =
∏N

n=1 Pn, the Tucker and CP

models, (2) and (3), are equivalent to the PPCA model (1)

with the factor matrices W
Tucker = V

(N) ⊗ . . . ⊗ V
(1) and

W
CP = U

(N) ⊙ . . .⊙U
(1), respectively.

Proof. The above conclusion can be drawn by vectorizing the

Tucker and CP models, (2) and (3), and applying vec(Z×N
n=1

V
(n)⊤) = (V(N) ⊗ . . . ⊗ V

(1))z and vec(diagN (z) ×N
n=1

U
(n)⊤) = (U(N) ⊙ . . .⊙U

(1))z, respectively.

Proposition 1 implies that the PPCA model can be viewed as

the Tucker and CP ones with specific parameterizations of the

factor matrix W. It also indicates that the subspaces learned

by Tucker and CP-based multilinear PPCAs are spanned by

the columns of WTucker and W
CP, respectively.

Connections with Tucker-based PPCAs: The CP model

is commonly considered as a special case of the Tucker one,

where the core tensor Z in (2) is super-diagonal with P =
P1 = . . . = PN . However, we can view their relationships

from an opposite perspective, when the CP and Tucker models

are used to extract the same number of features with P =
∏N

n=1 Pn.

Theorem 1. Given P =
∏N

n=1 Pn, the Tucker model (2) can

be written as a special case of the CP model (3).

Proof. By expanding the tensor multiplication, the Tucker

model (2) can be rewritten in the following summation form:

X =

N∑

n=1

(
Pn∑

in=1

Z(i1, . . . , iN )v
(1)
i1

◦ . . . ◦ v
(N)
iN

)

+ E

= diagN (z)×N
n=1 V̂

(n)⊤ + E ,

where V̂
(n) ∈ R

In×P is constructed by P
Pn

repeated factors

v
(n)
in

(in = 1, . . . , Pn). Therefore, the Tucker model can be

written as a CP model with the parameterized factor matrices

{V̂(n)}Nn=1.

Generalized subspace representation: Theorem 1 implies

that the CP model is in fact more general than the Tucker

one in the scenario of subspace learning. To make this clear,

we discuss the Tucker and CP models with N = 2 in detail,

while similar conclusions can be drawn for higher-order cases.

Given N = 2 and P = P1+P2, the Tucker model (2) becomes

X =

P1,P2∑

i1,i2=1

Zi1i2v
(1)
i1

v
(2)⊤
i2

+E = V̂
(1) diag(z)V̂(2)⊤ +E,

(7)

where V̂
(1) = (

P2
︷ ︸︸ ︷

v
(1)
1 , . . . ,v

(1)
1 , . . . ,

P2
︷ ︸︸ ︷

v
(1)
P1

, . . . ,v
(1)
P1

and V̂
(2) =

(

P1
︷ ︸︸ ︷

U
r, . . . ,Ur).

We can view (7) as a specific CP model (3) whose factor

matrices U
(1) and U

(2) are given by P2 and P1 repeated

v
(1)
i1

(i1 = 1, . . . , P1) and v
(2)
i2

(i2 = 1, . . . , P2), respectively.

Combining (7) with Proposition 1, we have W
Tucker = V

(2)⊗
V

(1) = V̂
(2) ⊙ V̂

(1) = (v
(2)
1 ⊗ v

(1)
1 ,v

(2)
2 ⊗ v

(1)
1 , . . . ,v

(2)
P2

⊗

v
(1)
1 ,v

(2)
1 ⊗v

(1)
2 , . . . ,v

(2)
P2

⊗v
(1)
P1

). This is a relatively restrictive

subspace representation, since each column of V(n) is reused

to construct multiple subspace bases. For example, the first

P2 columns of W
Tucker can only capture some common

information, since they are constructed by the same factor v
(1)
1

and different v
(2)
i2

s.
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In contrast, the CP model (3) represents the latent subspace

by W
CP = U

(2)⊙U
(1) = (u

(2)
1 ⊗u

(1)
1 , · · · ,u

(2)
P ⊗u

(1)
P ). Such

subspace representation is much more flexible than its Tucker-

based counterpart, since each subspace basis u
(2)
p ⊗ u

(1)
p

(p = 1, · · · , P ) is allowed to be constructed by distinct pair of

factors. Therefore, PROTA generalizes Tucker-based PPCAs

and has more flexibility in capturing data characteristics.

However, the generalized subspace representation also makes

the CP model more prone to overfitting than the Tucker one,

since it has more parameters to be estimated.

Avoided rotational ambiguity: Apart form the more flexi-

ble subspace representation, PROTA also puts an edge over

Tucker-based PPCAs in learning subspaces without rotational

ambiguity. It is well known that the Tucker model suffers from

rotational ambiguity, whose solutions with and without rota-

tion transformations are equally good in the sense of yielding

the maximum likelihood [25]. This implies that Tucker-based

PPCAs can only find arbitrary bases of the latent subspace. In

contrast, PROTA is based on the CP model, whose solutions

are unique up to rotation transformations. Formally, let Û(n) ∈
R

In×P be the maximum likelihood solution in terms of L(θ)
(6). For an arbitrary orthogonal matrix R ∈ R

P×P , the

rotation transformation Û
(n)

R yields L(Û(n)
R) < L(Û(n))2,

and thus is not the maximum likelihood solution anymore.

This means that PROTA can find the exact coordinate axes

rather than just the subspace bases, which facilitates certain

applications such as data interpretation and visualization.

Connections with CP-based PPCAs: To the best of our

knowledge, TBVDR [26] is the only existing CP-based PPCA.

It introduces an additional linear projection Wh ∈ R
P×Q into

the CP model (3) and defines z = Whh, where h ∈ R
Q ∼

N (0, I) serves as the latent features. In this way, TBVDR

can control the complexity of the CP model (reflected by

P ) and the number of the latent features Q separately. Such

modification can be viewed as specifying z ∼ N (0,WhW
⊤
h ),

which is restrictive in capturing general data characteristics.

Different from TBVDR, we simply model the latent features

z as i.i.d. Gaussian without additional constraints. Instead, we

impose proper regularizations on the factor matrices U
(n) to

alleviate overfitting (see Section III-D). In addition, we further

propose a Bayesian treatment of PROTA in Section III-E to

achieve both automatic feature determination and robustness

against overfitting.

C. ECM Algorithm for PROTA

This section develops an EM-type algorithm for estimating

the PROTA parameters. Although it is intractable to maximize

(6) w.r.t. all the factor matrices {U(n)}Nn=1 simultaneously, it

is easy to solve U
(n) of each mode sequentially provided that

the others are fixed. We achieve this by using the expectation-

conditional maximization (ECM) approach [37], which leads

to both closed-form solutions and good convergence proper-

ties. The ECM algorithm consists of the Expectation (E-step)

and the Conditional Maximization (CM-step).

2For clarity, we omit the parameters other than U
(n), i.e., {U(k)}k 6=n

and σ2, in θ.

E-step: In this step, we calculate the expectations 〈zm〉 and

〈zmz
⊤
m〉 w.r.t. the posterior distribution p(zm|vec(Xm)). Using

Bayes’s rule for Gaussian variables (see Sec. 2.3.3 of [38]

for more details), we can derive p(zm|vec(Xm)) from (4) as

follows:

p(zm|vec(Xm)) = N (zm|M−1
W

⊤vec(Xm), σ2
M

−1), (8)

where M = W
⊤
W+σ2

I is a P ×P matrix. Then given the

model parameters at the kth iteration θ(k), the expectations

〈zm〉 and 〈zmz
⊤
m〉 can be computed by:

〈zm〉 = M
−1

W
⊤vec(Xm), (9)

〈zmz
⊤
m〉 = σ2

M
−1 + 〈zm〉〈zm〉⊤. (10)

CM-step: In this step, we partition the model parameters θ

into three groups: U(n), U(n−), and σ2. Then we alternately

maximize L(θ) (6) w.r.t. each group of the parameters with

the others fixed. With fixed U
(n−) and σ2, we can estimate

U
(n) by solving

∂L(θ)
∂U(n) = 0 and obtain

Ũ
(n) =

[
M∑

m=1

Xm(n)U
(n−)diag(〈zm〉)

]

[
M∑

m=1

〈zmz
⊤
m〉⊛U

(n−)
⊤
U

(n−)

]−1

.

(11)

After estimating all the factor matrices (n = 1, . . . , N ), the

noise variance σ2 can be estimated by solving
∂L(θ)
∂σ2 = 0 with

{Ũ(n)}Nn=1 fixed, leading to

σ̃2 =
1

MI

M∑

m=1

{

tr
(

X
⊤
m(n)Xm(n)

)

−tr
(

Xm(n)U
(n−) diag(〈zm〉)Ũ(n)⊤

)}

.

(12)

By alternating between the E-step and CM-step, we can find

the MLE solutions for {U(n)}Nn=1 and σ2. Besides the closed-

form updates, the ECM algorithm monotonically increases the

log-likelihood (6) at each iteration, and achieves a provable

convergence guarantee [37]. The detailed derivations for (11)

and (12) can be found in the supplementary materials.

D. Concurrent Regularizations for CP-Based PPCAs

Next, we develop regularization strategies for PROTA to

achieve robustness against overfitting.

1) L2 regularization: A conventional way of regulariza-

tions is introducing certain regularization terms into the log-

likelihood function (6). This leads to a regularized CM-step

that gives preference to solutions with desirable properties.

The most popular representative of this approach is L2 regular-

ization, which penalizes larger norms and enforces smoothness

on the factor matrices. Specifically, it regularizes the log-

likelihood function (6) as follows:

LL2(θ) = L(θ)− γ
N∑

n=1

tr(U(n)
U

(n)⊤)

= L(θ)− γ
P∑

p=1

N∑

n=1

‖u(n)
p ‖2,

(13)
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Algorithm 1 PROTA with variance-based CR

1: Input: Dataset {Xm}Mm=1, the number of extracted features P ,
and the regularization parameter γ.

2: Initialize {U(n)}Nn=1 and σ2 randomly, and normalize each

column of U(n) to have unit norm.
3: Set the noise variance σ2

= γ.
4: repeat
5: Compute 〈zm〉 and 〈zmz

⊤
m〉 via (9) and (10), respectively.

6: for n = 1 to N do
7: Update the mode-n factor matrices U

(n) via (11).
8: end for
9: until convergence.

10: Output: The factor matrices {U(n)}Nn=1.

where γ is the regularization parameter. By maximizing (13)

w.r.t. U(n), we can obtain the following regularized CM-step

for each factor matrix:

Ũ
(n) =

[
M∑

m=1

Xm(n)U
(n−)diag(〈zm〉)

]

[
M∑

m=1

〈zmz
⊤
m〉⊛U

(n−)
⊤
U

(n−) + γI

]−1

,

(14)

where the L2 regularization term γI improves the conditioning

of the inverse, and leads to more stable and robust solutions

against overfitting.

2) Scale restriction: Although L2 regularization has been

widely used, it introduces strong scale restrictions into the

CP model and is not flexible enough for regularizing PROTA.

Recall that the subspace learned by PROTA is spanned by the

columns of W = U
(N)⊙. . .⊙U

(1). For better generalization,

we eventually pursuit robust/smoothed estimations for the

whole subspace W rather than the individual factor matrices

U
(n). L2 regularization gives preference to a smoothed W

by independently restricting the norms of all the factors to be

small. However, we could still obtain a smoothed W for the

CP model even if certain factors u
(n)
p have large norms, since

the log-likelihood (6) is invariant to the scale transformations

u
(n)
p 7→ su

(n)
p , u

(n−)
p 7→ s−1

u
(n−)
p (s 6= 0). Therefore, L2

regularization introduces strong scale restrictions into the CP

model, and may exclude some good solutions in terms of (6).

Can we relax such scale restrictions in regularizing PROTA?

3) Concurrent regularizations: To address the above prob-

lem, we propose two strategies, named as variance-based and

moment-based concurrent regularizations (CRs), respectively.

Our aim is to regularize the whole subspace in a concurrent

and coherent way, so that the strong scale restrictions of L2

regularization can be avoided.

Variance-based CR: PROTA can be implicitly regularized

by adjusting the noise level of the CP model (3). Specifically,

we replace the noise variance σ2 by a fixed regularization

parameter γ without further updating. Adjusting σ2 to an

appropriate level makes the bias-variance tradeoff for the

CP model, and thus improves the generalization ability of

PROTA. In more detail, variance-based CR regularizes the E-

step for more robust expectation estimations. It solves the ill-

conditioned problems of M
−1 involved in computing 〈zm〉

via (9), and 〈zmz
⊤
m〉 via (10), as follows:

M = W
⊤
W + γI. (15)

In this way, we avoid directly restricting the scale of each

factor u
(n)
p , and regularize the whole subspace and the CP

model concurrently. Algorithm 1 gives the pseudocode of

PROTA with variance-based CR.

Moment-based CR: Besides variance-based CR that intro-

duces implicit regularization via adjusting the noise variance

σ2, we propose moment-based CR to explicitly regularize the

second-order moment 〈zmz
⊤
m〉 (10) as follows:

〈zmz
⊤
m〉MCR = σ2

M
−1 + 〈zm〉〈zm〉⊤ +

γ

M
I, (16)

where the noise variance σ2 still serves a model parameter

to be estimated rather than the regularization parameter as in

variance-based CR. Moment-based CR improves the condi-

tioning of 〈zmz
⊤
m〉, and solves the possibly ill-posed inverse

in the U
(n) update (11). To make this clear, substituting (16)

into (11) leads to:

Ũ
(n) =

[
M∑

m=1

Xm(n)U
(n−)diag(〈zm〉)

]

[
M∑

m=1

〈zmz
⊤
m〉⊛U

(n−)
⊤
U

(n−) + γΛ(n−)

]−1

,

(17)

where Λ
(n−) = I ⊛ (U(n−)

⊤
U

(n−)) is a P × P diagonal

matrix whose pth diagonal element is the norm of the pth

complement factor ||u
(n−)
p ||2.

Similar to L2 regularization, moment-based CR regularizes

the log-likelihood function as follows:

LMCR(θ) = L(θ)− γ

N∑

n=1

tr(U(n)
Λ

(n−)
U

(n)⊤)

= L(θ)− γN tr(WW
⊤) = L(θ)− γN

P∑

p=1

N∏

n=1

‖u(n)
p ‖2.

(18)

Compared (18) with (13), moment-based CR essentially pe-

nalizes the whole subspace W rather than each factor matrix

U
(n). It also generalizes L2 regularization by adopting Λ

(n−)

instead of an identity matrix to penalize each mode-n factor in

a weighted manner. Moment-based CR not only favors individ-

ual factors u
(n)
p with smaller norms, but also those leading to

smaller norms ||wp||
2 =

∏N
n=1 ||u

(n)
p ||2 = ||u

(n)
p ||2||u

(n−)
p ||2

for each subspace basis wp. In this way, a mode-n factor u
(n)
p

is allowed to have a relatively large norm as long as the norm

of the corresponding subspace basis wp is small.

In this way, moment-based CR relaxes the scale restrictions

of L2 regularization, allows PROTA to search larger solution

space, and thus has potential to learn better subspaces. It is

also worth noting that with the update of each factor matrix,

the elements of Λ
(n−) in (18) are also updated accordingly.

This indicates that MCR adaptively adjusts its regularization

strength to coherently regularize all the factor matrices in

the sense of penalizing large ||wp||
2. Because of the above
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Algorithm 2 PROTA with moment-based CR

1: Input: Dataset {Xm}Mm=1, the number of extracted features P ,
and the regularization parameter γ.

2: Initialize {U(n)}Nn=1 and σ2 randomly, and normalize each

column of U(n) to have unit norm.
3: repeat
4: Compute 〈zm〉 and 〈zmz

⊤
m〉 via (9) and (10), respectively.

5: for n = 1 to N do
6: Update the mode-n factor matrices U

(n) via (17).
7: end for
8: Update the noise variance σ2 via (12).
9: until convergence.

10: Output: The factor matrices {U(n)}Nn=1 and the noise variance
σ2.

mentioned benefits, MCR has an edge over L2 regularization

in alleviating overfitting for CP-based PPCAs.

Remarks: Different from variance-based CR that can be ap-

plicable for both Tucker-based and CP-based PPCAs, moment-

based CR can only be applied to PROTA or other CP-based

PPCAs, because its capability of whole subspace regulariza-

tion relies on the group-wise scale invariance of the CP model.

We provide the detailed derivations of (14) and (17) in the

supplementary materials. Algorithm 2 gives the pseudocode

of PROTA with moment-based CR.

E. PROTA with Bayesian CR

To fully utilize the probabilistic framework, we further

propose a Bayesian treatment of PROTA, along with the

model estimation schemes via variational inference. It is

based on a probabilistic implementation of moment-based CR,

and achieves automatic feature determination and robustness

against overfitting.

1) Model Specification: Prior distributions: To regularize

the whole subspace W in a Bayesian treatment, we recast

moment-based CR as prior distributions, and specify them over

each factor matrix U
(n) as follows:

U
(n) ∼

P∏

p=1

N (u(n)
p |0, (γ〈τ〉〈||u(n−)

p ||2〉)−1
I), (19)

where γ is the regularization parameter, τ ≡ 1/σ2 is the

precision (inverse of the noise variance), and 〈τ〉 is the

expectation obtained from the variational posterior q(τ) shown

in (26).

The above prior distribution provides a probabilistic imple-

mentation of moment-based CR, which essentially leads to a

similar likelihood function as (18). If 〈||u
(n−)
p ||2〉 becomes

large, u
(n)
p tends to be small. When the inverse variance

γ〈τ〉〈||u
(n−)
p ||2〉 concentrates at large values, u

(n)
p is con-

strained to be zero. In this case, u
(n)
p and the corresponding

latent feature have no effect on explaining the training data,

and thus can be pruned from the PROTA model.

Recall that we have specified the latent feature zm ∼
N (0, I) without further constraints. To complete the Bayesian

specification of the PROTA model, we introduce a conjugate

(Gamma) prior over τ . Thus,

τ ∼ Ga(τ |a0, b0), (20)

where we follow the convention and set a0 = b0 = 10−6 to

obtain a broad and non-informative prior for τ .

Remarks: As in the ARD framework [30], a conjugate

prior can also be specified over the regularization parameter

γ so that γ can be optimized like other random variables.

However, we find such optimization leads to overfitting in our

empirical studies, as it only reflects which factors are relevant

to fitting the training set. Therefore, we still leave γ as a

hyper-parameter for improving the generalization ability.

Joint distribution: Let the dataset be D = {Xm}Mm=1,

and the variable set be Θ =
{
{zm}Mm=1, {U

(n)}Nn=1, τ
}

.

Combining the conditional distribution (4) and the above

priors, the complete PROTA model can be obtained by:

p(D,Θ) =
∏

m

{p(Xm|zm, {U(n)}, τ)p(zm)}
∏

n

p(U(n))p(τ).

(21)

2) Variational Inference: Armed with the above results,

the PROTA model can be learned by estimating the posterior

distribution p(Θ|D) = p(D,Θ)∫
p(D,Θ)dΘ

. Since p(Θ|D) is generally

intractable, we apply Variational Bayesian (VB) methods [39]

for the model estimation. VB methods seek a variational distri-

bution q(Θ) to approximate the true posterior by minimizing

the KL divergence KL(q(Θ)||p(Θ|D)) = ln p(D) − L(q) or

equivalently maximizing the variational lower bound L(q) =
∫
q(Θ) ln{p(D,Θ)

q(Θ) }dΘ.

To achieve this, we assume that q(Θ) is factorized as:

q(Θ) =
∏

m

q(zm)
∏

n

q(U(n))q(τ). (22)

Then, the optimal distribution of the jth parameter set in terms

of maxqj(Θj) L(q) takes the following form:

ln qj(Θj) ∝ 〈ln p(D,Θ)〉Θ\Θj
, (23)

where 〈·〉Θ\Θj
denotes the expectation w.r.t. the variational

distributions of all random variables in Θ except Θj .

Variational posterior distributions: Substituting the joint

distribution (21) into the explicit forms (23), we can obtain

the desirable variational posterior distributions for each set of

random variables in Θ as follows:

q(zm) = N (zm|z̄m,Σz), (24)

q(U(n)) = NIn,Pn
(U(n)|Ū(n), I,Σ(n)), (25)

q(τ) = Ga(τ |aτ , bτ ), (26)

where the posterior parameters can be updated by

z̄m =〈τ〉Σz〈W〉⊤vec(Xm), (27)

Σz =
(
〈τ〉〈W⊤

W〉+ I
)−1

, (28)
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Algorithm 3 PROTA with Bayesian CR

1: Input: Dataset {Xm}Mm=1, and the regularization parameter γ.

2: Initialize {U(n)}Nn=1 and σ2 randomly.
3: repeat
4: Update the latent features zm via (24).
5: for n = 1 to N do
6: Update the mode-n factor matrices U

(n) via (25).
7: end for
8: Update the precision τ via (26).
9: until convergence.

10: Output: The variational distributions (24), (25), (26).

Ū
(n) =

M∑

m=1

Xm(n)〈U
(n−)〉diag(〈zm〉)Σ(n), (29)

Σ
(n) ={〈τ〉(

M∑

m=1

〈zmz
⊤
m〉+ γI)⊛ 〈U(n−)

⊤
U

(n−)〉}−1,

(30)

aτ =a0 +
1

2
M

N∏

n=1

In, (31)

bτ =b0 +
1

2

M∑

m=1

〈||vec(Xm)−Wzm||2〉. (32)

The derivations of the joint distribution (21) and the expecta-

tions involved in the above variational updates can be found in

the supplementary materials. Algorithm 3 shows the pseudo-

code for PROTA with Bayesian CR.

Connections with Bayesian CPDs: PROTA also has close

connections with Bayesian CPD methods [27], [28], [31],

[40]. They are all based on the CP model and incorporate

regularizations. However, PROTA tailors the CP model for

multilinear subspace learning, and utilizes very distinct reg-

ularization strategies. Bayesian CPD methods adapt the CP

model for tensor completion. They commonly assume that the

latent features z and the factor matrices U
(n) play the same

role in explaining tensor inputs, and regularize them equally

and independently. Such assumption is reasonable for tensor

completion, whereas could be too restrictive for other appli-

cations. For instance, many Bayesian CPD methods employ

ARD for automatic CP rank determination. This in fact can be

viewed as imposing L2 regularization on both the factors and

latent features with data-dependent regularization parameters.

As discussed in Section III-E, such L2 regularization brings

strong scale restrictions into the CP model. In contrast, PROTA

advocates that U
(n) needs proper regularizations while z

should remain unconstrained. This motivates our concurrent

regularizations to concurrently and coherently regularize the

whole subspace, leading to a more flexible and effective way

of regularizing CP-based PPCAs.

F. Algorithmic Issues

Initialization: For PROTA with variance- and moment-

based CRs, the factor matrices {U(n)}Nn=1 are randomly

initialized by sampling from the standard uniform distribution.

Then they are normalized to have unit column norms, which

leads to good performance empirically. For PROTA with

Bayesian CR, we randomly initialize U
(n) by sampling from

N (0, 1). The noise variance σ2 (1/τ ) is initialized to be data

variance for all the regularized PROTAs.

Prediction: With the learned PROTA model, we can project

a high-dimensional tensor X into the low-dimensional latent

subspace. This is achieved by computing the expectation of z

w.r.t. p(z|X ) (8) and (27) for the ECM-based and Bayesian

PROTA, respectively.

Time complexity: Suppose the input dataset consists of M
tensors {Xm ∈ R

I1×...×IN }Mm=1. Let I =
∏N

n=1 In be the

number of input features, and P be the number of extracted

features. ECM-based and Bayesian PROTA have comparable

time complexity. At each iteration, they take O(MIP 2) for ex-

pectation computations, O(MIP ) for (variational) parameter

updates, and O(P 3) for matrix inverse. Therefore, the overall

time complexity of PROTA at each iteration is dominated by

O(MIP 2 + P 3), which is comparable with that of existing

EM-based and Bayesian PPCAs.

IV. EXPERIMENTS

This section evaluates the performance of PROTA in sub-

space estimation and classification on synthetic and real-world

datasets.

A. Subspace Estimation on Synthetic Data

We first validate the capability of the PROTA model in sub-

space estimation without regularization on synthetic datasets.

The synthetic tensors are generated from the CP model (3)

as follows: M latent vectors {z∗m ∈ R
P∗

}Mm=1 are drawn

from a standard Gaussian distribution N (0, IP∗), and N
factor matrices {U(n)∗ ∈ R

In×P∗

}Nn=1 are constructed by

drawing each row from N (0, IP∗). Then the observed tensors

are generated by Xm = diagN (zm) ×N
n=1 U

(n)∗⊤ + E for

m = 1, . . . ,M , where E(i1, . . . , iN ) ∼ N (0, σ2
ε) is the i.i.d.

random noise with the variance σ2
ε .

In this experiment, we generate multiple 3D synthetic

datasets under varying noise levels. Each dataset consists of

M = 1000 examples of third-order (N = 3) tensors with the

size of 10×10×10 and the true dimensionality P ∗ = 8. Based

on Proposition 1, such synthetic tensors lie in the subspace

spanned by the columns of W∗ = U
(N)∗⊙. . .⊙U

(1)∗. We use

the arc length distance ||β||2 between the estimated subspace

W and the ground truth W
∗ as the criterion to measure the

accuracy of subspace estimation. The pth element of β is given

by arccos(λp), where λp is the pth largest singular value of

W
⊤
W

∗ [25].

Given the true dimensionality P ∗, PROTA is compared

with the competing multilinear PCAs and PPCAs: MPCA,

TRDO, and TBVDR, as well as Bayesian CPDs: BCPF and

VBTCP. Results of all the methods are averaged over 10

repetitions of the above data generations. To estimate the

P ∗-dimensional latent subspace, the reduced dimensions of

each mode are set to (P ∗)
1
N for MPCA, and P ∗ for TROD,

BCPF, TBTCP, TBVDR, and PROTA. In addition, to reduce

the variability caused by random initializations, BCPF and

PROTA are randomly initialized 10 times, and the subspace

yielding the largest log-likelihood (or variational lower bound)

is used for test.
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TABLE II
AVERAGE ARC LENGTH DISTANCES AND RUNNING TIME ON 3D SYNTHETIC DATASETS UNDER VARYING NOISE LEVELS (BEST; SECOND BEST).

SNR 0 dB 10 dB 20 dB 50 dB 100 dB Time (s)

MPCA 3.57±0.10 3.58±0.10 3.58±0.10 3.58± 0.10 3.58±0.10 2.76
TROD 1.78±0.15 1.60±0.44 1.60±0.43 1.61±0.43 1.61±0.43 1.52
BCPF 0.23±0.20 0.13±0.16 0.11±0.16 0.06±0.12 0.06±0.12 2.84

VBTCP 0.77±1.04 0.52±1.04 0.87±1.16 1.14±1.12 1.14±1.12 9.83
TBVDR 0.89±0.86 1.92±0.41 1.10±0.76 1.34±0.76 1.38±0.80 0.52
PROTA 0.69±0.76 0.04±0.01 1.17e-2±0.42e-2 3.58e-4±1.15e-4 1.16e-6±0.38e-6 1.82

TABLE III
CLASSIFICATION ACCURACIES (MEAN±STD.%) ON THE CMU PIE DATASET (BEST; SECOND BEST; COMPARABLE∗ BASED ON t-TEST WITH p = 0.05).

L 2 3 4 5 6 8 10 20

PCA 26.41±3.35 37.25±1.50 43.04±2.51 49.50±2.14 52.08±2.58 60.68±1.74 66.26±0.87 82.40±0.64

PPCA 24.41±2.14 38.00±0.94 45.48±1.82 51.24±0.93 55.54±0.99 64.25±1.25 69.82±0.48 86.66±0.92

MPCA 35.27±2.97 46.25±2.56 51.74±1.79 56.61±1.63 59.60±0.58 66.75±0.66 71.48±0.78 84.35±0.88

UMPCA 29.08±3.06 38.11±2.11 42.52±3.42 48.34±3.03 51.04±3.05 58.12±3.31 61.61±3.24 76.38±2.39

TROD 34.52±1.84 42.92±2.75 47.90±2.52 52.92±1.87 56.33±1.52 63.30±0.93 67.70±1.21 81.07±1.54

PSOPCA 31.09±2.27 39.21±1.91 45.79±1.76 52.38±1.14 56.60±1.28 63.99±1.09 68.76±1.22 84.37±0.97

PSOPCAVCR 35.15±1.23 44.92±1.23 50.61±2.05 56.02±1.16 60.32±1.02 67.77±0.81 71.71±1.16 85.72±0.65

BPPCA 36.07±1.88 47.41±1.93 53.23±2.39 59.25±2.27 63.84±1.81 71.14±1.13 74.83±2.00 88.06±0.51

BPPCAVCR 37.23±2.71 47.67±1.91 54.03±2.37 60.21±1.70 63.91±1.88 71.02±1.97 75.09±0.83 87.78±0.94

BCPF 32.21±1.30 43.30±2.07 50.70±1.87 57.74±1.64 61.83±0.91 69.77±0.67 74.83±0.61 81.27±1.10

VBTCP 35.50±2.25 47.46±2.30 54.20±2.64 59.75±2.38 61.96±1.82 61.42±3.08 65.05±4.97 77.52±4.54

TBVDR 36.45±1.29 45.33±1.00 50.88±1.44 55.23±0.99 59.20±1.06 66.63±1.07 71.51±0.84 87.78±0.90

TBVDRMCR 35.53±1.10 44.28±0.97 51.26±1.45 56.26±1.02 60.09±0.70 67.34±1.04 72.21±0.82 87.87±0.86

PROTAL2 35.15±1.89 47.17±1.15 56.40±2.16 62.13±1.74 65.77±1.43 73.62±1.42 77.97±0.76 89.72±0.51

PROTAVCR 42.23±1.73 53.70±1.71∗ 59.99±1.68 65.72±1.65∗ 69.07±1.23∗ 75.30±1.27∗ 79.12±0.92 89.38±0.61

PROTAMCR 44.28±1.94∗ 54.67±1.76∗ 61.07±1.40∗ 66.03±0.93∗ 69.55±1.40∗ 76.16±1.02∗ 80.18±0.87∗ 90.54±0.68∗

PROTABCR 40.61±1.84 51.78±1.71 58.48±1.21 64.07±1.17 68.16±1.04 74.85±1.32 78.51±1.01 90.02±0.69

Table II shows the average arc length distances and running

time on the 3D synthetic datasets under varying noise levels.

As can be seen, PROTA is as efficient as other tensor-based

PPCAs. Moreover, it can accurately estimate the ground truth

subspace when the noise level is low, and outperforms other

methods in the noisy cases except SNR = 0dB. This confirms

the ability of PROTA in fitting the ideal data. Since MPCA is

based on the Tucker model, it fails to perform well in learning

the subspace generated from the CP model. On the other hand,

BCPF, VBTCP, and TBVDR have the CP-based subspace

representation and thus obtain better results. However, they

tend to be trapped into local optimums when SNR becomes

larger, and thus fail to accurately recovery the true subspace.

B. Classification on 2D Images

This section evaluates the classification performance of

PROTA on two image datasets. The first one is a subset from

the CMU PIE database [41]. It consists of 9,987 face images

from 68 subjects, with seven poses (C05, C07, C09, C27, C29,

C37, C11) of at most 45 degrees of pose variations, and under

21 illumination conditions (02 to 22). The second one is the

COIL20 dataset [42]. It includes 1,440 images of 20 objects

taken from 72 views varying at every five degrees of rotations.

All face images are normalized to 32× 32 graylevel pixels.

Algorithms and their settings: PROTA is compared

against linear baselines: PCA, PPCA; Tucker-based PCA:

MPCA [16]; CP-based PCAs: TROD [19], UMPCA [20];

Tucker-based PPCAs: PSOPCA, BPPCA; Bayesian CPDs:

BCPF [28] and VBTCP [31]; and CP-based PPCA: TBVDR

[26]. BPPCA has both MLE and MAP implementations. Here,

we follow the settings in [25] that apply the MLE-based

one for classification. We test PROTA equipped with four

regularization strategies including L2 regularization, variance-

based CR, moment-based CR, and Bayesian CR, which are

denoted by the superscripts L2 , VCR, MCR, and BCR, respectively.

PROTAVCR for 2D tensors is the PROMA algorithm in [33].

For fair comparisons, we also test PSOPCA and BPPCA with

variance-based CR, and TBVDR with moment-based CR.

Extracted feature numbers: We set PCA and MPCA to

preserve 97% energy, after verifying that preserving more

energy just leads to similar results. Up to 1023, 32, 961,

and 961 features are tested for PPCA, UMPCA, PSOPCA,

and BPPCA, respectively. They are the maximum numbers

of features that can be extracted by these methods. TROD,

BCPF, VBTCP, TBVDR, and PROTA are tested up to P = 600
features, since their maximum numbers of extracted features

are not bounded by the input dimensionality.

Regularization parameters: For all the regularized meth-

ods except PROTAVCR, we select the regularization param-
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TABLE IV
CLASSIFICATION ACCURACIES (MEAN±STD.%) ON THE COIL20 DATASET (BEST; SECOND BEST; COMPARABLE∗ BASED ON t-TEST WITH p = 0.05).

L 2 3 4 5 6 7 8 10

PCA 73.84±1.68 78.22±2.46 81.30±1.94 85.16±1.55 86.98±1.79 88.32±1.46 89.60±1.84 92.13±1.12

PPCA 40.41±21.01 57.45±23.51 78.96±2.33 83.34±2.98 85.27±2.52 87.65±1.91 88.85±0.99 91.03±1.67

MPCA 73.86±2.06 77.56±1.90 80.37±1.94 83.63±1.12 86.44±1.59 87.07±1.44 88.64±1.77 90.69±1.21

UMPCA 77.22±2.44∗ 81.22±2.55∗ 83.91±3.12 86.05±2.09 87.74±1.40 88.73±1.52 90.11±1.72 91.56±1.65

TROD 76.69±4.23∗ 81.65±4.11∗ 85.03±2.39 88.90±2.60 90.88±1.67 92.06±1.56 92.63±1.45 94.31±1.46

PSOPCA 42.41±1.84 47.16±2.02 50.30±1.42 53.40±1.57 56.05±0.92 57.35±0.57 58.98±1.75 62.31±1.44

PSOPCAVCR 50.06±3.19 56.96±3.49 58.58±3.58 62.45±2.33 65.57±2.74 66.53±1.90 69.05±1.90 72.99±1.72

BPPCA 72.36±6.40∗ 81.65±3.56∗ 85.32±3.44∗ 88.67±2.24 90.30±1.59 90.79±2.90 92.25±1.94 93.39±1.30

BPPCAVCR 72.49±6.39∗ 81.25±3.39∗ 85.33±3.79∗ 88.67±2.23 90.30±1.58 90.82±1.58 92.28±1.92 93.37±1.32

BCPF 68.38±2.91 72.75±2.82 75.01±2.82 77.97±1.10 80.59±2.69 82.25±2.09 83.59±0.71 85.01±1.93

VBTCP 67.04±5.16 72.64±3.18 74.65±2.16 79.19±3.08 81.58±3.33 83.04±2.48 85.54±1.38 87.75±1.68

TBVDR 65.16±2.05 69.92±3.67 70.90±1.99 73.61±2.73 75.40±1.98 75.62±1.83 77.54±0.82 79.97±0.98

TBVDRMCR 65.96±2.23 72.25±2.87 75.16±1.91 78.76±0.81 80.28±2.29 81.51±1.63 83.39±1.14 85.28±1.31

PROTAL2 73.87±4.04 80.43±2.22 85.12±3.50∗ 88.04±2.17 91.91±1.61∗ 92.94±1.86∗ 95.07±1.59∗ 95.62±1.59∗

PROTAVCR 76.64±3.70∗ 82.25±3.17∗ 86.60±2.10∗ 89.92±2.00∗ 91.70±1.57∗ 92.52±1.18 93.59±1.05 94.74±1.38∗

PROTAMCR 77.11±2.65∗ 82.50±2.62∗ 86.52±2.40∗ 90.66±1.34∗ 92.42±1.91∗ 93.71±1.39∗ 94.79±1.16∗ 95.61±1.53∗

PROTABCR 76.54±2.79∗ 82.14±2.36∗ 87.00±2.57∗ 90.07±1.60∗ 92.14±1.39∗ 92.67±1.19 93.97±1.18∗ 95.30±1.43∗

eters from {10−5, 10−4, . . . , 105}, and then report the best

results. For PROTAVCR, we select the best parameter from

{0.1σ̃2, 0.5σ̃2, σ̃2, 2σ̃2, 10σ̃2}, where σ̃2 is the noise variance

learned by PROTA with P = 1 [33].

Iteration number and convergence criterion: The maxi-

mum iteration numbers for MPCA, TROD, and UMPCA are

set to their default settings with up to 1, 10, and 10 itera-

tions, respectively. For probabilistic methods such as PPCA,

PSOPCA, BPPCA, BCPF, VBTCP, TBVDR, and PROTA, we

iterate them until convergence or 500 iterations, where we

define a method converges if the relative change of the log-

likelihood or the variational lower bound is smaller than 10−5.

Experimental setup: Each dataset is randomly split into

training and test sets so that each class has L images for

training, and the rest for test. After subspace learning, we

sort the extracted features based on their corresponding Fisher

scores [43] in descending order. Then, different numbers of

the extracted features (up to the maximums) are fed into the

nearest neighbor classifier to obtain classification results. For

each method and L, we report the best averaged classification

accuracies over ten such random splits. The best and the

second best results are highlighted to be bold and underlined,

respectively. The comparable results in terms of t-test with a

p-value of 0.05 are marked by ∗.

Results and analysis: Table III shows the classification ac-

curacies on the CMU PIE dataset. As can be seen, PROTAMCR

consistently achieves the best performance with statistical

significance in all the cases. PROTAVCR is the second best

method, and PROTABCR obtains the third best overall results.

BPPCA with variance-based CR (BPPCAVCR) also performs

reasonably well, whereas it is much worse than PROTAMCR by

5.69% on average. This could be attributed to not only the CP

model in capturing data characteristics with more flexibility

but also moment-based CR in alleviating overfitting. Although

BCPF and VBTCP are also based on the CP model and impose

regularizations, they perform much worse than PROTA. A

possible reason could be that Bayesian CPD methods are

not aware of the prior knowledge of subspace learning and

introduce unnecessary restrictions into the CP model.

Table IV shows the classification results on the COIL20

dataset. Again, regularized PROTAs perform much better than

the competing methods in most cases, while only PROTAMCR

consistently obtains the top two results except L = 4. Among

the competing methods, TROD obtains better results except

L = 2, 4, while it is still worse than PROTAMCR by 1.4% on

average. In addition, the best Tucker-based PPCAs, BPPCA

and BPPCAVCR, perform worse than CP-based methods such

as TROD and PROTA on the whole, especially when L is

large. This indicates that the Tucker model may not be flexible

enough in learning subspaces on the COIL20 dataset.

In summary, PROTA outperforms the competing methods

in most cases by taking advantages of both the CP model

and concurrent regularizations. Among all the regulariza-

tion strategies, moment-based CR is the best one, which

achieves the top two performance in most cases. PROTAVCR

and PROTABCR are generally better than or at least compa-

rable with PROTAL2 . Specifically, PROTAMCR outperforms

PROTAL2 and PROTAVCR by 6.47% and 2.53% on average for

all the 2D datasets, respectively. This demonstrates that by pe-

nalizing the whole subspace in a concurrent and coherent way,

the moment-based CR relaxes unnecessary scale restrictions

for the CP model, and could further improve the performance

of PROTA.

Although PROTABCR is a Bayesian extension of

PROTAMCR, it has to employ variational inference to

approximate the true posterior for analytical tractability. This

may lead to the degenerated performance of PROTABCR on

the CMU PIE dataset. Nevertheless, PROTABCR still achieves

similar performance with PROTAMCR on the COIL20 dataset.

More importantly, as will be shown in Section IV-D, it can
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TABLE V
GAIT RECOGNITION RESULTS (%) ON THE USF GAIT DATASET (BEST; SECOND BEST).

Recognition Type Individual gait examples Gait sequences

Probe A B C D E A B C D E
PCA 49.79 44.68 27.38 18.18 16.78 76.06 70.73 53.66 26.87 25.58

PPCA 55.85 49.41 30.48 18.91 16.78 80.28 80.49 53.66 29.85 27.91
MPCA 54.75 50.35 34.29 18.91 18.16 84.51 80.49 60.98 28.36 23.26

UMPCA 26.82 23.17 14.29 4.99 5.06 57.75 58.54 31.71 10.45 11.63
TROD 57.77 48.94 33.57 18.18 17.24 90.14 75.61 63.41 28.36 25.58

PSOPCA 15.27 12.06 9.29 8.21 6.67 28.17 21.95 17.07 19.40 11.63

PSOPCAVCR 37.55 22.46 15.71 10.85 9.89 66.20 36.59 24.39 20.90 20.93
BPPCA 62.04 54.14 37.14 20.38 19.54 84.51 78.05 58.54 35.82 27.91

BPPCAVCR 60.94 53.19 36.67 19.94 18.16 91.55 80.49 68.29 29.85 23.26
BCPF 60.11 49.65 36.19 19.94 16.78 90.14 78.05 60.98 34.33 25.58

VBTCP 53.37 44.44 32.38 19.35 17.01 81.69 75.61 53.66 28.36 25.58
TBVDR 40.99 39.48 19.52 13.93 11.49 61.97 58.54 34.15 20.90 16.28

TBVDRMCR 56.95 52.01 30.71 20.53 19.54 78.87 78.05 51.22 32.84 27.91

PROTAL2 55.16 45.15 32.38 17.89 17.70 84.51 73.17 51.22 34.33 32.56

PROTAVCR 63.14 52.96 39.05 21.99 18.62 90.14 75.61 63.41 35.82 27.91

PROTAMCR 64.37 56.26 37.62 20.82 21.61 91.55 78.05 58.54 35.82 30.23

PROTABCR 62.59 55.56 39.29 21.70 19.54 87.32 78.05 63.41 34.33 30.23

automatically determine the number of extracted features

P , which is more convenient to use in practice than other

regularized PROTAs.

C. Classification on 3D Sequences

This section evaluates PROTA on two 3D Sequences (third-

order tensors) datasets. The first one is a subset of the USF

gait challenge dataset [44]. Following the standard settings

of gait recognition, we use the same gallery set with 731

examples of 71 subjects (classes) for training as in [20], and

select the probes A (727 examples), B (423 examples), C (420

examples), D (682 examples), and E (435 examples) for test.

So there is no random partitioning of the training and test sets

for this dataset. All the gait examples are 32×22×10 (binary)

silhouette sequences.

The second one is the Cambridge-Gesture database [45],

which consists of 900 image sequences of 9 hand gestures

(classes). Each gesture class includes 100 examples from

two subjects, under five illumination conditions, and with 10

motions. Following the same preprocessing steps in [46], we

select the middle 32 frames from each sequence, and resize

each image frame to 20 × 20, resulting in 20 × 20 × 32
tensorial examples. For each gesture class, we randomly select

L examples for training, and the rest for test. We report the

best averaged results over ten such training/test partitions.

We apply the similar algorithmic settings in Section IV-B

for PROTA and the competing methods. Since PSOPCA

and BPCCA are bilinear approaches and cannot be directly

applied to higher-order tensors, the tensorial examples are first

unfolded along the third mode into matrices, so that they

can be fed into PSOPCA and BPCCA. In addition to the

recognition results of individual gait examples, we also report

those of gait sequences for the USF gait dataset, following

[44].

Results and analysis: Table V shows the gait recognition

results on the USF gait dataset. For classifying individual

gait examples, CR-based PROTAs achieve good overall perfor-

mance, which demonstrates again the effectiveness of PROTA

and concurrent regularizations. In contrast, PROTAL2 obtains

much worse results than other regularized PROTAs. This

indicates that L2 regularization could be too restrictive, and

may exclude good solutions for PROTA. For classifying gait

sequences, PROTAMCR obtains good overall results except on

Probe C, and PROTABCR is the second best method except

on Probe A. BPPCAVCR outperforms others on Probes B and

C. PSOPCAVCR and TBVDRMCR perform significantly better

than their plain versions. These indicate that besides PROTA,

concurrent regularizations are also effective in alleviating

overfitting for other multilinear PPCAs.

Table VI shows the classification results on the Cambridge-

Gesture dataset. Similar to the experiments on other datasets,

PROTAVCR and PROTAMCR obtain the top two results with sta-

tistical significance in most cases. In more detail, PROTAMCR

outperforms PROTAVCR and the best competing method by

0.9% and 3.14% on average, respectively. Among the com-

peting methods, PPCA and MPCA achieve better overall

performance, while the best Tucker-based PPCA, BPPCA,

obtains poor results. This can be attributed to the limited

flexibility of the Tucker model in capturing data characteristics

as well as the broken tensor structures due to unfolding.

It is also worth noting that the performance of PSOPCA and

BPPCA greatly depends on which mode is selected as the base

dimension for unfolding. In our experiments, the third mode,

the dimension of time, is the best choice for PSOPCA and

BPPCA. However, if the input tensors are unfolded along other

modes, PSOPCA and BPPCA can only obtain much worse

results (about 10∼20% lower than their best).

D. Parameter Sensitivity and Convergence Study

This section studies the parameter sensitivity and the conver-

gence property of PROTA. We follow the same experimental

settings in Section IV-B, and conduct experiments on both 2D
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TABLE VI
CLASSIFICATION ACCURACIES (MEAN±STD.%) ON THE CAMBRIDGE-GESTURE DATASET (BEST; SECOND BEST; COMPARABLE∗ BASED ON t-TEST

WITH p = 0.05).

L 5 10 15 20 25 30

PCA 29.53±2.31 39.75±3.62 46.60±2.45 51.36±3.00 56.58±2.99 58.38±3.31

PPCA 43.86±2.75∗ 56.73±2.01 62.05±3.35 66.06±2.10 68.27±2.26 67.87±3.14

MPCA 41.38±6.14∗ 54.68±4.49 61.11±3.04 68.74±1.93 70.04±2.88 69.87±2.10

UMPCA 22.84±3.34 28.10±2.23 30.31±1.86 31.07±2.24 34.18±1.53 36.86±2.27

TROD 34.41±4.78 49.95±2.81 56.76±4.25 61.82±3.13 66.01±3.72 68.35±1.12

PSOPCA 29.08±3.15 40.16±2.41 44.63±3.41 50.04±3.42 55.56±2.05 55.81±3.21

PSOPCAVCR 33.82±5.37 43.42±7.96 46.90±1.47 50.76±2.04 55.97±2.31 57.62±1.67

BPPCA 33.80±5.32 46.44±3.62 52.43±2.87 59.35±2.53 62.77±1.68 61.84±3.10

BPPCAVCR 35.53±4.17 46.79±2.31 54.43±1.21 58.85±1.83 61.11±2.58 60.79±2.42

BCPF 31.35±3.55 40.60±2.75 46.63±2.28 52.13±2.60 55.51±3.05 58.68±1.44

VBTCP 31.27±2.98 42.15±4.67 35.92±5.63 40.85±5.20 37.11±13.53 38.44±5.84

TBVDR 32.83±3.02 46.28±3.53 52.93±2.71 58.29±3.29 62.50±1.80 63.19±2.24

TBVDRMCR 37.31±2.29 49.49±2.76 55.24±3.35 60.22±1.67 63.85±1.84 64.21±2.22

PROTAL2 39.71±5.13 54.93±3.51 62.76±3.31 69.67±2.39∗ 70.40±1.58 72.90±2.10

PROTAVCR 42.64±4.86∗ 59.07±3.37∗ 65.10±2.95∗ 69.74±3.13∗ 72.83±3.16∗ 75.35±2.38∗

PROTAMCR 43.77±5.47∗ 59.85±3.82∗ 65.32±2.54∗ 71.32±1.82∗ 73.63±1.40∗ 76.24±1.92∗

PROTABCR 39.85±4.78 56.80±2.39 62.97±3.09 69.38±2.07 73.48±1.53∗ 75.17±1.52∗
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Fig. 1. Classification results of regularized PROTAs with different parameter settings on 2D and 3D datasets.

(CMU PIE, COIL20) and 3D (Cambridge-Gesture) datasets.

Since the USF gait dataset is constructed by fixed training

and test sets without repeated random partitions, it is not

included in this study for fair comparisons, while we have

verified that the behavior of PROTA on the USF gait dataset is

not much different from that on the other datasets. We report

experimental results with moderate training sizes by setting

L = 5 and L = 15 for the 2D and 3D datasets, respectively.

Parameter sensitivity: Firstly, we study how different

values of the regularization parameters affect the performance

of regularized PROTAs. Figure 1 illustrates the classification

accuracies obtained by regularized PROTAs. At the begin-

ning, the performance of PROTA consistently improves as

the regularization parameters increase for all the datasets.

This demonstrates that imposing regularization on PROTA is

effective in alleviating overfitting.

Among the four regularized PROTAs, PROTAMCR and

PROTABCR consistently achieve good performance on all the

datasets when γ is around 100 ∼ 1000, and thus are less

sensitive in terms of different parameter configurations and

datasets. On the other hand, PROTAL2 and PROTAVCR are

more sensitive to the regularization parameters. Although the
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Fig. 2. The number of features extracted by PROTABCR at each iteration
with different parameter settings on the CMU PIE and Cambridge-Gesture
datasets.

best value of γVCR varies a lot on different datasets, it is often

close to σ̃2, the noise variance learned by performing PROTA

with P = 1. This suggests that plain PROTA (without regular-

ization) could be used to roughly determine the regularization

parameter for variance-based CR.

Number of extracted features: We investigate the behavior

of PROTABCR in pruning irrelevant features. Figure 2 shows

how the feature number P of PROTABCR varies at each
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Fig. 3. Log-likelihood of regularized PROTAs at each iteration on the CMU
PIE and Cambridge-Gesture datasets.

iteration given different values of γBCR on the CMU PIE

and Cambridge-Gesture datasets. As can be seen, PROTABCR

prunes a large number of features after several iterations,

indicating its ability of automatic feature determination. Since

γBCR controls the range of variation that each subspace basis

wp can take, a larger γBCR will eliminate more features.

Considering PROTABCR is not sensitive to γBCR as shown in ,

it is relatively easy for PROTABCR to determine an appropriate

feature number with good performance.

Convergence: Finally, we study the convergence properties

of regularized PROTAs by fixing γL2 = 100, γVCR/σ̃2 = 1,

γMCR = 100, and γBCR = 100 respectively. From Figure 1,

such parameter settings yield reasonably good performance

for all the datasets. Figure 3 shows the log-likelihood (or vari-

ational lower bound) of regularized PROTAs at each iteration

on the CMU PIE and Cambridge-Gesture datasets. As can

be seen, all PROTAs monotonically increase their objective

functions and converge properly.

In addition, the behavior of PROTA is affected by the

imposed regularization strategies. Moment-based CR leads

to higher log-likelihood than the variance-based one, which

suggests that PROTAMCR fits the PROTA model better and is

less restrictive than PROTAVCR. On the other hand, PROTAVCR

converges faster than PROTAMCR. This is because PROTAVCR

has no need to estimate the noise variance σ2 while fixing

it to a relatively large value instead. By making the bias-

variance tradeoff, a larger σ2 improves the convergence speed

of PROTA though at the expense of goodness-of-fit. For

PROTABCR, the values of its objective function are smaller

than those of other regularized PROTAs. This is expected

because PROTABCR aims at maximizing the variational lower

bound rather than the log-likelihood.

V. CONCLUDING REMARKS

We have proposed PROTA, a new CP-based multilinear

PPCA. Compared with Tucker-based PPCAs, PROTA has a

more flexible subspace representation, and does not suffer

from rotational ambiguity. Compared with existing CP-based

PPCAs, our new concurrent regularizations penalize the whole

subspace and avoid introducing unnecessary restrictions into

the CP model, making PROTA more robust against overfitting.

To fully utilize the probabilistic framework, we have further

proposed a Bayesian treatment of PROTA, which achieves

both automatic feature determination and robustness against

overfitting. Experiments on both synthetic and real-world data

have demonstrated the superiority of PROTA in subspace

estimation and classification, as well as the effectiveness of

concurrent regularizations in alleviating overfitting for PROTA

and other multilinear PPCAs.

Besides the classical Tucker and CP models, recently some

t-product based tensor decomposition models have been pro-

posed [47]–[50], providing a new way of tensor analysis. By

utilizing the new tensor multiplication, i.e., t-product, along

with a newly defined tensor rank, they have obtained the state-

of-the-art performance in many computer vision applications

such as image denoising and background modeling. Despite of

their success in image and video processing, we did not find

any work for incorporating t-product based PCA models into

the probabilistic framework yet, which could be an interesting

future work.
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