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Abstract—I nfluenza and influenza-like illnesses are one of
theleading causes of death in theworld, resulting in heavy losses
toindividual familiesand nations. Accurateand timely forecasts
of seasonal influenza would therefore crucially important to
inform and facilitate public health decision-making for
presenting and intervening influenza epidemics. System
identification and data-driven modelling approaches play an
indispensable role in analyzing and understanding complex
processesincluding medical, healthcar e and environmental time
series. Thispaper aimsto present atype of sparse, interpretable
and transparent (SIT) model, which cannot only be used for
future behavior prediction but more importantly for
under standing the dependent relationship between the response
variables of a system on potential independent variables (also
known asinput variables or predictors). An ideal candidate for
such a SIT representation is the well-known NARMAX
(nonlinear autoregressive moving average with exogenous
inputs) model, which can be established based on input and
output data of the system of interest, and thefinal refined model
is usually simple, parsimonious and easy to interpret. The
gener al framework of theNARMAX moddl is presented, and the
state-of-the-art algorithms for such a SIT model estimation are
described. Two case studies are provided to illustrate how well
the SIT-NARM AX model can work for medical, healthcare and
related data.

Keywords—machine learning, system identification, data-
driven model, time series, forecasting, NARMAX model

|I. INTRODUCTION

diabetes) are between 290,000 868,000 [6]. Our ability to
effectively respond to major influenza outbreaks heavily relies
on the accurate and timely prediction of their occurrences and
activities However, presentlyour ability to forecast the
timing, magnitude and duration of influenza outbreaks, based
on existing approaches, is still quite limited [7],[8]. In 2008,
Google launched its breakthrough service called Google Flu
Trends (GFT), aiming at using Google search queries to do
accurate prediction for influenza activity [9]. GFT is perhaps
the first ever and most successful example of making use big
data for public services. Although the internet-based
surveillance GFT was shut down in 2015, it stimulated the
development of new tools for public healthcare through big
data mining (see e.g. [10]-[12]

Once the query information collected from millions of
users is properly aggregated, the resulting data can then be
used to build high-level models that make sense of the original
scattered information. A variety of methods have been
proposed for internet-based forecasting, including regularized
regression [10], [13]multivariatetime series modellinflL4],

[15], support vector machine [16heural networks [17],
random forest [18], dynamic Bayesian model [£8d deep
learning [20].

More broadly, data-driven modelling approaches have
well served as a powerful tool for medical, healthcare and
environments, and related fields. The list of available methods
in the literature is quite long, such as wavelet neural networks,

Nowadays big data ubiquitously exists everywhere such
in space weather, airport and airline management, internet
things (IoT), medicine and healthcare. It is an inexorable trend
that individual organizations will have more and more large This study presents a type of sparse, interpretable and
scale data collected from the services, applications andansparent (SIT) model for medical, healthcare and related
platforms they providgl], and the growth of data volume will data analysis. We propose to use the NARMAX (honlinear
be exponentially growing [2]. Big data offers the chance tautoregressive moving average with exogenous inputs)
better understand the underlying basis and nature of thmodel, which possesses a numberatfactive ‘SMART’
subject of interest. For example, big data enables improveauatoperties (namely, simple and simulatable, meaningful,
information processing and knowledge discovery fromaacountable, reproducible, and transparent) [28]. Several
medical and health records [3],[4] and promises betteexamples are presented to show how well the proposed SIT-
healthcare [5]. NARMAX model works for medical, healthcare and related
data analysis problems.

4]-[25], and system identification techniqu@$], [27], just

ﬁl], [22], support vector machines [23], deep neural networks
ention a few.

Influenza is a major worldwide public health problem.
According to the new estimates by the United States Gentre The remainder of the paper is as follows. In Section Il, a
for Disease Control and Prevention (US-CDC), the Worldorief introduction to data-driven modelling is presented. In
Health Organization and global health partners, the annu8ection Ill, the NARMAX model structured is described in
influenza-related deaths (including cardiovascular disease adgtail. In Section IV, two case studies are provided, one
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concerning theelation between mortality and influenza-like py defining the functionf (-) to be a polynomial of degree
illness incidence rate, and another focusing on influenz% ives the representation
forecasting. The work is briefly summarized in Section V. 9 P

ll. DATA-DRIVEN MODELLING — A SYSTEM | DENTIFICATION K) =0 C 0 x (k ahn 0 x (0% (K) ..
PERSIPECTIVE y(k) 0+Zl: %, ( )+ZZ 1%, (KX (K) +

i1 =Li,=,
Many practical data modelling problems can be described n n
as follows. There is a response variable y (also known as +Z Z 0,1 %, (Mx (K- x (K +&K (2)
output or dependent variable) that depends on a set of =l i

independent variablex ={x, X,...,X,} (also known as Where@ilizmi

, . are parameters. The degree of a multivariate
input or explanatory variables). Usually, a number of 27 m i ,
observations of both the output and input variables arBolynomial is defined as the highest order among the terms.

available, which are denoted By,, x,} (k=1,2,...,N). The For example, the degree of the polynomial

true quantitative representation of the relationship between the h(x,, X, , X ):aix“ +aX X, 4+ axXAx.x?

. .. 11722173 1 273273 37 M273
output y and the inpwt is in general not known. The central
task of data modelling is to establish quantitativejs ¢ = 2+1+2=5, which is determined by the last term,
representation®.g. mathematical models suchyasf(x) + e 2002 . . o
(where e is model error), to approximate the irguiput 23X XoX3 - Similarly, a polynomial model with degr
relationship as close as possible. means that the order of each term in the model is not higher

A variety of methods and algorithms are available in th han . Note that the polynomial representation (2) belongs

literature for dealing with different types of nonlinear data'® the class of linean-the-parameters models.
based modelling problems, including system identificatiorB. NARX Model
[28]-[30], data mining [31],[3R pattern recognition and _ ) )
classification B3], supervised statistical learning4,[35]. Taking the case of a one input (designated by u) and one
Among these methods, system identification techniqueSUtPut (designated by y) problem as an example, the NARX
provide a tool for deducing mathematical models frommodel thatlinks the outputy to the input u is written as
measured input and output data for dynamic processes. | _
general, the output signal y at time instant t depends on the y(t) = Ft-1), y(t-2),-- y(t—n,),u(t-d),
past output values and exogenous input signais,u.., ur in ut-d- 1), ut-d-n )} e()
a form of y(=F[y(t-1), ..., y(t-ny), w(t-d), w(t-d-1), ..., ua(t-
n, ..., U(t-d), u(t-d-1), ..., u(t- ny)] +e(t), where F isrma  where y(t), u(t) and e(t) are the measured system output, in
unknown function that needs to be estimated from thand noise sequences respectively at time instant t (here we use
measurements, r is the number of exogenous input variabl ;
dis atime delay (usually d = 1),is the time lag in the output, To repr_esent dynamical systenoass), nyf M, and N, gre
nu is the time lag in the inputs, and e(t) is noise or modet.err the maximum lags for the system output, input and noisg; F[
o is some non-linear function to be determined, and d is a time
_There are a d|v¢rS|ty of me;hods and approaches fQIeIay (typically d = 0 or d = 1). The noise siget) is
building a good function to approximate the function f orf fo ble but b timated th dicti .
a given problem, such as polynomiad€]f[38], radial basis unmeasurable but can be estimated as the prediction errors.
functions B9I-[41], and wavelet functions4pl-[46]. The  &(1) = Y(t)—¥(t), where y(t) is the predicted value at
polynomial based representation, due to its attractivdme instant kgenerated by an estimated model. The noise
properties [28], is the most commonly used basis functions. terms are included to accommodate the effects of
measurement noise, modelling errors, and/or unmeasured
. NARMAX MODEL disturbances. Note that in models (1) and (3), two different
. . indices ‘k’ and ‘t’” are respectively indicate that model (1) is
A Stanc_ Regressmn.Monel ) ) static while model (2) is dynamic, but in the following the two
Consider a multivariate regression problem, with Nipdices will be unified to ‘t’ for convenience of description.

predictor variablest,, X;,- -+, X, , and one response variable 4\ define a group of new variables (lagged versions of
y. The modelling task is to investigate if there exits a functionhe original input and output variables) as

fthat can map the predictor variables to the response variable
such that

y(k) = f(x,(K), %, (K), -, x, k))+e(k) 1)

where X () (=1,2,....n) andy(-) represent the sequence of The NARX model (3) can then be written in the same form as

the observed predictor and response variables, respective J). and it can further expressed as the linedhe-

e(-) represents the model errof(-) represents some linear arameters representation (2). For example, for a simple case
P . ) Tep where d = 1, p=2, n,=1, £ =2, the full NARX model is
or nonlinear functions.

®)

y(t—m), Km<n

X"‘(t):{u(t—m+ n/), n+l<m< n= p+ | @

In most cases the functiofi (-) is unknown, but can be y(O) =0 +Oy(t-1)+ 0,y (t = 2)+ o (t-1)

approximated by different models. In this study, a polynomial  +6,y” ¢~ D+ 6y € - 1y (- 2)+ ey (- Wi (- 1 ©)
based regression model is considered. Expanding model (1) +6’7y2 t— 20+ 6,y €— 2) ¢— Dt ngz - Dret



with power-form polynomials as basis functions,ifand r
are large, the number of candidate model terms included in the
C. NARMAX Model initial full model can be very large. However, numerous
For NARX model (3), it is assumed that the noise signapractical applications show that in almost all real-data cases,
e(t) is an i.i.d. process or a white sequence. Such agenerally only a small number candidate model terms are
assumption, however, may not always be true, since the noiggportant for characterizing the underlying dynamics and all
e(t) may be a correlated or coloured sequence for many retile other candidate terms are either not important or irrelevant
applications. For cases where the signal e(t) is not a whi@nd thus can be ignored.
sequence, an established NARX model may be biased. A
solution to obtain an unbiased model is to introduce IaggegIg
noise variables e(t-1), e(t-2),., e(t-n) to the model to
construct a NARMAX model [47]

The forward regression orthogonal least squares (FROLS)
orithms [28][53]-[54] provides an efficient, powerful tool

for nonlinear model term selection and model structure
detection. A detailed discussion of the FROLS algorithm and

y(t) = F[W(t=12),-, y(t— ny), u(t=1);-,u(t-n), ERR inde?( can be found in [28], [53]-_[54—Iere, ve only give
a very brief summary of the algorithm. FROLS searches
u(t—n,), t=1), -, &t Q)+ €} (6)  through all the possible candidate model terms to select the

. most significant terms one by one. The significance of each of
Model (8 include the NARX model (3) and several othery,o model terms is measured by an index, called the error

linear and nonlinear representations e.g. AR, ARX, Volterragq ,ction ratio (ERR]}53] which evaluate how much of the
series lmodels as special casr?s |[48] ;t?e NARMAX m]?del (&)ariance change in the system response can be accounted for
is easily accommodated in the lingarthe-parameters form iy cjyding the relevant model term. There exist such cases

(2) by defining x, (t) in Eq. (4 as where some model terms only make a very small contribution
(measured by ERR values) but they may be statistically
y(t—m), Xm< n significant and are therefore also included in the models.
_ P ) Some statistical criteria, e.g. AIC, BIC, PESR (penalized
Xy (1) =qu(t=m+n), n+lkm =g+ errorto-signal ratio) [55], APRESS (adjusted (PRediction
e(t-m 1+ 1), N+ n+1< nE n error sum of squaresyf, [57], can be used to monitor the
y model selection procedure and determine the model
where n=n, +n, +n,. Note that the noise signal e{h complexity.
model (7) is unmeasurable; in model identification procedure IV. CASE STUDIES
I h I I foll
itis often replaced by the model residual sequence as fo OWR The Relation Between Influenza-like lliness Incidence
Let F[] be an estimator for the function +[the model Rate and Deaths
errorse(t) can be estimated as The weekly influenza-like illness (ILI) incidence rate and
N deaths data were acquired from the Office for National
&(t) = y(t) - ¥(t) Statistics (ONS), The Royal College of General Practitioners
=y(t) - f(y(t=2),--, y(t - ny),u(t —1),-, Research and Surveillance Centre and Public Health Wales

The dataset contains a total of 991 weekly records starting in
ut-n,),et-12,---,e(t—n,)) (8)  week 31 of 1999 and ending in wekof 2018. The raw data
) ) ) are plotted in Fig. 1.
The variable e(t) in (7) can then be replaced ty . Detailed
discussions on how to iteratively calculate model paramete~
and update the model errors, and on how to verify and test t
validity of a model can be found in [49]-[51].

D. NARMAX Model Estimation

It is known that for a linear model, the model terms an
the variables are exactly the same. For a typical generaliz %
linear model or a nonlinear model, however, variables an o
terms are generally distinct, and the distinction can b
illustrated using the simple nonlinear model below [52]

ILI incidence rate

2

1]
y=0(X,%) =8+ ax+ ax% } ©) 5
[a]
+aX +a,%+ ax€+ gl x| 1AWV
. o o o &3\1
Here there are only two variableg;, X, , but there are seven 01\@\“ ,Lg\Q%\'L @ g 6\0‘2’\1 \%\”L a\@\l Rl

. 2 2 Xy
terms, that is, the const;, X, X, X3, %€, XX, |- Fig. 1 Weekly influenza-like illness (ILI) incidence raged deaths

. . England and Wales, between week 31 of 1999 and 8@ek2018.
It is easy to know that the total number of potential mode

terms in the power-form polynomial model (2) is  The objective here is twofold. One is to reveal how the
M=(n+)/[dA], where again/ is the degree of week mortality relates to the ILI incidence rate through data-
driven modelling approach, and another is to do one-week-

nonlinearity. For example, if =3, =2, n =1, n=3, then ahead prediction of the death mortality. The 991 data points

M = (6+3)!/(6!3!") = 84. For the dynamic regression mode| (3)



are split into two parts: the first 600 samples are used fdarge and complex. Through a comprehensive processing
model training and the remaining 391 are used for modgirocedure, workable and easy to use datasets GFT datasets
testing The NARMAX method is applied to the training data, became available. For example, 100 sub-datasets extracted

and the best NARMAX model is: from GFT datasets, containing the influenza information of
the United States of America during the period from 1 June
y(t) =616.435144 0.927840t{ 1) (10) 2003 to 11 May 2008, were available and 45 of wihiere
-0.114878t- Rt 3} 10.535455 |- used for influenza forecasting [9]

o 2) Models
where x(t) represents the weekly ILI incidence rate and y(t |n this study, we consider the first sub-dataset used in [9].
represents the number of weekly deaths. Note that all thene dataset contains digital information of the general
model terms involving noise variables such asl}tt-1) are  jnfluenza symptoms of the USA of during the period from 1
omitted and not included in the final model, because all thesgine 2003 to 11 May 2008he sub-dataset contains values
noise terms are not useful for model prediction but are onlgine variables, representing the nine census divisions of the
used to reduce bias in model estimation. USA, which are geographically shown in Fig. 4. For

A comparison of the model predicted deaths and thgonvenience, the general influenza symptoms of the nine

corresponding true values, on the training and test data sef€nSus divisions are represented by following variat¥es
are shown in Fig. 2 and Fig. 3, respectively. NE), Yz (MA), Y5 (ENC), Y (WNC), ¥ (SA), ¥% (ESC), ¥

(WSC), ¥(Mountain), ¥ (Pacific).
The sub-dataset used comprises 259 weekly data points in

20000 ‘ total. The first 135 data points of the period from 1 ROGES
==True value .
—Model prediction to 25 December 2005 are used for model training and the
15000 - Model error | remaining 124 for model performance test. The 135 training
% data for the nine census divisions are plotted in Fig. 5.
< 10000 |
ey
© U.S. Census Divisions
[0
Q 5000 1 [N
e LT
0- ‘ ‘ ‘ ; AT Y\
S N a0l O P ® P O
92° Q0% Q0" Q0¥ a0 aQ0° A0 AQO° N0 N
RN R L) Ui L SN R N N Vi
Q'T/\Q »\6\0 o® »\\\'\ rL'b\grL Q’\\Q »\9\)\ Q'L\Q '\6\0 r)/‘b\\q/
Fig. 2. A comparison of the model prediction witle ttorresponding true ¢ -
number of deaths, on the training dataset of thimgp&retween week 31 of 9 N |
1993 and week 47 of 2010. SOz -
15000
4
> )
£10000 -
£
§ Fig. 4. The nine census divisions of the America.
- ==True value https://www.ncdc.noaa.gov/monitoring-references/mes
% 5000 —Model prediction [divisions.phi
8 Model error . ) .
The NARMAX method, together with an iterative
ol | orthogonal forward regression algorithm (iOFBJJ[[59], is
‘ ‘ | | applied to the 135 weekly training data points of the period

from from 1 June 2003 to 25 December 2005 (shown in Fig
5). Our objective is to estimate nine predictive models for
each of the census divisions of USA; these models will be
Fig. 3. A comparison of the model prediction witk torresponding true  used for oneveek ahead forecasting for influenza trends. The
number of deaths, on the test dataset of the pbebdeen week 48 of 201C  jnjtial target models are of the form:
and week 30 of 2018.

Model (10) shows that the death mortality is correlated to Y, () =F[Yi(t -1),...Y; € = 3),..Yo (= 1),. Yt (- 3)
the influenza-like iliness (ILI) incidence rate of one and three )
weeks ago. From Fig. 2 and Fig. 3, it can be seen that téhere the functions=[] (i=1,2,..., 9) are chosen to be
simple NARMAX model shows an excellent prediction o, nomials of nonlinear degrée=2. Note that initially each
performance. of the nine models in (11) involves a total of 406 candidate
model terms, but the NARMAX estimation procedure will
identify the most important model terms and produce a sparse

1) Data . model for each of the nine cases
Google Flu Trends (GFT) provides a successful example ’

of making use big data to predict the future and to significantly The predictive model identified for each of the nine census
improve forecasting performance. GFT involves a massivdivisions are presented as follows.
volume of structured or unstructured datasets which are very

) Q 2 ¢l ) © { 9
N N 0’\ o\ Q) oV Bl\ o\
»\6\9 r),%\'\q’ »\'\\06 rib\g Q‘.‘)\Q(L »\9\6 Q\\\ »\Q)\Q

(11)

B. Influnza Forecasting
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divisions are closely associated to the influenza epidemics of
a week ago in the Mountain region.

3) Model performance

We use two statistics, namely, root mean squared error
(RMSE) and mean absolute error (MAE), to evaluate the
performance of the identified models. The values of the two
statistics for each of the models (12)-(20), over the test Hlata (
January 2006 to 11 May 2008) are given in Table I.

TABLE I. THE TwoO STATISTICS RMSE (ROOT MEAN SQUARED
ERROR) AND MAE (MEAN ABASOLUTE ERROR), BOTHARE THETESTDATA.
RAw 2: RMSE;RAwW 3: MAE.

Y]_ Yz Y3 Y4 Y5 Ye Y7 YB Y9
o> N N N o ) ) ) . . ) : ) )
1\0%\10 \0’?’\10 Q\Qg\(LQ \0(5\10 6\'\0\10 1.3429| 1.5851| 1.5818| 2.0799| 1.9912| 4.3526| 1.4697| 1.9036| 1.3154
o 2 A 2 A 0.8596| 0.9896| 0.8532| 1.0472| 1.1037| 2.0421| 0.8076| 0.9416| 0.7093

Fig. 5. The influenza information of the nine censlivisions of the
United States of America during the period from ©eJ2003 to 31 Dec
2006.

Y,(t)=0.757%, (- 1) 0.6646,tC B 0.41V4t { |1
~0.118% t(— 1} 1.2207t¢ 1) 0.6408 { |2

~ 00248 (- Wt B 007vgt4 wp{ 1 2
- 0.152%, t(- M,t( 1)} 0.0480t £ Wt £ 1
~0.4354

Y,(t) = 0.479%, (~ 1y 0.7708,t }) (13)
~ 0.0158, t(- ¥t 1)

Y,(t) =-0.3450/, (- 1) 0.0584,t¢ )t ¢ 1)

~ 0.0068 t- MtE B 1.30¥2t £ 4 (14)
~ 0.0458, t M tE 1)

Y,(t)=0.757%, (- 1) 0.5256,t¢ 3) (15)
+0.313Y, t(- 3)+0.223t {

Y,(t) =0.259%, (— 1) 0.041%,t ¢ Wt ¢ 1) (16)
+0.1278, t(- 2) 0.0845t ¢ Wt ¢

Y,(t) =1.410%, (- 1) 0.4476,t ( }) a”)
+0.0298, t(— ¥ t(- 3)

Y,(t)=1.163%, (- 1} 0.0128,t( )t 1)
+0.030%, t- Mt 2} 0.0018t{ Wt 2 (18)
~ 0.644Y t(- 2} 0.008%t{ Wt{ 1)

Y,(t) =1.672Y, (- 1) 0.0278t¢ Wt ¢ 1 (19)
~ 0.485%, t- 3)+0.01%t { W)t {

Y,(t) =0.9814, (- 1)- 0.0094Lt( L)t ¢ (20)

Note that model terms in each of the models are arrang
in order of their significance for explaining the changin(
trend of the output variables (influenza symptoms). The CF
time used for generating each of these models is about 0
seconds on average. It is very interesting to notice that all 1
output variables (except;Yor West South Central) are
closely related to the lagged variablgt¥), this probably
implies that the outbreaks of influenza in other censt

A comparison between the model prediction and the
corresponding observations for the nine census divisions are
illustrated in Fig.6 (for New England, Mid-Atlantic and East
North Central regions) , Fig. 7 (for West North Central, South
Atlantic and East South Central regions ) and Fig. 8 (West
South Central, Mountain and Pacific regions), respectively.

=== Observation il
==Model prediction
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Fig. 6. A comparison between the model predictiod #re observed
influenza symptoms for the three census divisions: NMegland, Mid-

Atlantic and East North Central regions, during pleeiod from 1 January
2006 to 11 May 2008.

=—CQObservation
===Model prediction
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Fig. 7. A comparison between the model predictioth g observed
influenza symptoms for the three census divisions: WesthNCentral,
South Atlantic and East South Central regions, duttie period from 1
January 2006 to 11 May 2008.



=== Qbservation
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Fig. 8. A comparison between the model predictiod the observed
influenza symptoms for the three census divisions: WaghSoentral,
Mountain and Pacific regions, during the periodrfrb January 2006 to
11 May 2008.

V. CONCLUSION

The study focuses on a class‘8MART’ (simple and
simulatable, meaningful, accountable, reproducitéeq

(4]

(5]

(6]

P.Y. Wu,C.W. Cheng, C. Kaddi]. VenugopalanR. Hoffman, M. D.
Wang, “Omic and electronic health record Big Data analyfims
precision medicing |EEE Trans. Biomed. Eng., 64, pp. 2833
2017.

A. F. Simpao, L. M. Ahumadand M. A. Rehman, “Big data and
visual analytics in anaesthesia and health t8mitish J. Anaesth. Vol.
115, pp.350-356, 2015.

World Health Organization (2014) Influenza (seasof\@rid Health
Org, Geneva) [Access on 28 January s://www.who.int/newq

room/detail/1412-201 7-up-to-650-000-people-diesf-respiratory-

diseases—linkedb—seasonal—ﬂu—each—ye|ar

(7]

(8]

(9]

(10]

(11]

(12]

transparent) representations, called SIT-NARMAX model[13]
which has a number of attractive properties for big medical
and heathcare data-driven modelling problems. The main

contributions of this study are as follows. Firstly, a simple but!

effective model was established to represent the relationship

between weekly mortality and the influenza-like iliness (ILI) [15

incidence rate of England and Wales; as shown in the first case
study, the model provides a perfect representation of the

relation between the wegklinfluenza-like illness (ILI)

(16]

incidence rate and death mortality. Secondly, nine transparent
models have been built from Google flu trends data; the

models reveal how the general influenza symptoms of each
the census divisions of the America are closely associated wi

that in the other regions. These promising results suggest that
the NARMAX model and the associated methodology provide

a powerful tool for medical and healthcare data modellingis]
problems, especially for cases where the interest is not only in
prediction and forecasting but also strongly in interpreting and
explaining the dependent relation of the output (responsé}®l
variables on a few important candidate input (explanatory)

features.
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