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Abstract—Influenza and influenza-like illnesses are one of 
the leading causes of death in the world, resulting in heavy losses 
to individual families and nations. Accurate and timely forecasts 
of seasonal influenza would therefore crucially important to 
inform and facilitate public health decision-making for 
presenting and intervening influenza epidemics. System 
identification and data-driven modelling approaches play an 
indispensable role in analyzing and understanding complex 
processes including medical, healthcare and environmental time 
series. This paper aims to present a type of sparse, interpretable 
and transparent (SIT) model, which cannot only be used for 
future behavior prediction but more importantly for 
understanding the dependent relationship between the response 
variables of a system on potential independent variables (also 
known as input variables or predictors). An ideal candidate for 
such a SIT representation is the well-known NARMAX 
(nonlinear autoregressive moving average with exogenous 
inputs) model, which can be established based on input and 
output data of the system of interest, and the final refined model 
is usually simple, parsimonious and easy to interpret. The 
general framework of the NARMAX model is presented, and the 
state-of-the-art algorithms for such a SIT model estimation are 
described. Two case studies are provided to illustrate how well 
the SIT-NARMAX model can work for medical, healthcare and 
related data.  

Keywords—machine learning, system identification, data-
driven model, time series, forecasting, NARMAX model 

I. INTRODUCTION 

Nowadays big data ubiquitously exists everywhere such as 
in space weather, airport and airline management, internet of 
things (IoT), medicine and healthcare. It is an inexorable trend 
that individual organizations will have more and more large 
scale data collected from the services, applications and 
platforms they provide [1], and the growth of data volume will 
be exponentially growing [2]. Big data offers the chance to 
better understand the underlying basis and nature of the 
subject of interest. For example, big data enables improved 
information processing and knowledge discovery from 
medical and health records [3],[4] and promises better 
healthcare [5].   

Influenza is a major worldwide public health problem. 
According to the new estimates by the United States Centres 
for Disease Control and Prevention (US-CDC), the World 
Health Organization and global health partners, the annual 
influenza-related deaths (including cardiovascular disease and 

diabetes) are between 290,000 and 650,000 [6]. Our ability to 
effectively respond to major influenza outbreaks heavily relies 
on the accurate and timely prediction of their occurrences and 
activities. However, presently, our ability to forecast the 
timing, magnitude and duration of influenza outbreaks, based 
on existing approaches, is still quite limited [7],[8]. In 2008, 
Google launched its breakthrough service called Google Flu 
Trends (GFT), aiming at using Google search queries to do 
accurate prediction for influenza activity [9]. GFT is perhaps 
the first ever and most successful example of making use big 
data for public services. Although the internet-based 
surveillance GFT was shut down in 2015, it stimulated the 
development of new tools for public healthcare through big 
data mining (see e.g. [10]-[12]).  

Once the query information collected from millions of 
users is properly aggregated, the resulting data can then be 
used to build high-level models that make sense of the original 
scattered information. A variety of methods have been 
proposed for internet-based forecasting, including regularized 
regression [10], [13], multivariate time series modelling [14], 
[15], support vector machine [16], neural networks [17], 
random forest [18], dynamic Bayesian model [19], and deep 
learning [20].  

More broadly, data-driven modelling approaches have 
well served as a powerful tool for medical, healthcare and 
environments, and related fields. The list of available methods 
in the literature is quite long, such as wavelet neural networks, 
[21], [22], support vector machines [23], deep neural networks 
[24]-[25], and system identification techniques [26], [27], just 
mention a few.  

This study presents a type of sparse, interpretable and 
transparent (SIT) model for medical, healthcare and related 
data analysis. We propose to use the NARMAX (nonlinear 
autoregressive moving average with exogenous inputs) 
model, which possesses a number of attractive ‘SMART’ 
properties (namely, simple and simulatable, meaningful, 
accountable, reproducible, and transparent) [28]. Several 
examples are presented to show how well the proposed SIT-
NARMAX model works for medical, healthcare and related 
data analysis problems. 

The remainder of the paper is as follows. In Section II, a 
brief introduction to data-driven modelling is presented. In 
Section III, the NARMAX model structured is described in 
detail.  In Section IV, two case studies are provided, one 
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concerning the relation between mortality and influenza-like 
illness incidence rate, and another focusing on influenza 
forecasting. The work is briefly summarized in Section V.    

II. DATA-DRIVEN MODELLING – A SYSTEM IDENTIFICATION 

PERSIPECTIVE  

Many practical data modelling problems can be described 
as follows. There is a response variable y (also known as 
output or dependent variable) that depends on a set of 
independent variables 1 2{ , ,..., }nx x xx  (also known as 

input or explanatory variables). Usually, a number of 
observations of both the output and input variables are 
available, which are denoted by { , }k ky x (k =1, 2,…,N). The 

true quantitative representation of the relationship between the 
output y and the input x is in general not known. The central 
task of data modelling is to establish quantitative 
representations, e.g. mathematical models such as y = f(x) + e 
(where e is model error), to approximate the input-output 
relationship as close as possible. 

A variety of methods and algorithms are available in the 
literature for dealing with different types of nonlinear data 
based modelling problems, including system identification 
[28]-[30], data mining [31],[32], pattern recognition and 
classification [33], supervised statistical learning [34],[35]. 
Among these methods, system identification techniques 
provide a tool for deducing mathematical models from 
measured input and output data for dynamic processes. In 
general, the output signal y at time instant t depends on the 
past output values and exogenous input signals u1, u2, …, ur in 
a form of y(t)=F[y(t-1), …, y(t-ny), u1(t-d), u1(t-d-1), …, u1(t-
nu), …, ur(t-d), ur(t-d-1), …, ur(t- nu)] +e(t), where F is an 
unknown function that needs to be estimated from the 
measurements, r is the number of exogenous input variables, 
d is a time delay (usually d = 1), ny is the time lag in the output, 
nu is the time lag in the inputs, and e(t) is noise or model error. 

There are a diversity of methods and approaches for 
building a good function to approximate the function f or F for 
a given problem, such as polynomials [36]-[38], radial basis 
functions [39]-[41], and wavelet functions [42]-[46]. The 
polynomial based representation, due to its attractive 
properties [28], is the most commonly used basis functions.     

III.  NARMAX  MODEL 

A. Static Regression Model 

Consider a multivariate regression problem, with n 

predictor variables,1 2, , , nx x x , and one response variable 

y. The modelling task is to investigate if there exits a function 
f that can map the predictor variables to the response variable 
such that 

1 2( ) ( ( ), ( ), , ( )) ( )ny k f x k x k x k e k               (1) 

where ( )ix   (i=1,2, …, n) and ( )y   represent the sequence of 

the observed predictor and response variables, respectively, 
( )e   represents the model error; ( )f   represents some linear 

or nonlinear functions. 

In most cases the function )(f  is unknown, but can be 
approximated by different models. In this study, a polynomial 
based regression model is considered. Expanding model (1) 

by defining the function )(f  to be a polynomial of degree 

 gives the representation 
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where
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 are parameters. The degree of a multivariate 

polynomial is defined as the highest order among the terms. 
For example, the degree of the polynomial 
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13 xxxa . Similarly, a polynomial model with degree 

means that the order of each term in the model is not higher 
than  . Note that the polynomial representation (2) belongs 
to the class of linear-in-the-parameters models.  

B. NARX Model  

Taking the case of a one input (designated by u) and one 
output (designated by y) problem as an example, the NARX 
model that links the output y to the input u is written as 

( ) [ ( 1), ( 2), , ( ), ( ),

               ( 1), , ( )] ( )

y

u

y t F y t y t y t n u t d

u t d u t d n e t

    

    
  (3) 

where y(t), u(t) and e(t) are the measured system output, input 
and noise sequences respectively at time instant t (here we use 

t to represent dynamical system models), yn , un and en  are 

the maximum lags for the system output, input and noise; F[•] 
is some non-linear function to be determined, and d is a time 
delay (typically d = 0 or d = 1).  The noise signal ( )e t is 
unmeasurable but can be estimated as the prediction errors: 

ˆ( ) ( ) ( )t y t y t   , where ˆ( )y t  is the predicted value at 
time instant k generated by an estimated model. The noise 
terms are included to accommodate the effects of 
measurement noise, modelling errors, and/or unmeasured 
disturbances. Note that in models (1) and (3), two different 
indices ‘k’ and ‘t’ are respectively indicate that model (1) is 
static while model (2) is dynamic, but in the following the two 
indices will be unified to ‘t’ for convenience of description. 

Now define a group of new variables (lagged versions of 
the original input and output variables) as 
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( )

( ),   1
y

m
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The NARX model (3) can then be written in the same form as 
(1), and it can further expressed as the linear-in-the-
parameters representation (2). For example, for a simple case 
where d = 1, ny =2, nu =1, =2, the full NARX model is 
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C. NARMAX Model  

For NARX model (3), it is assumed that the noise signal 
e(t) is an i.i.d. process or a white sequence. Such an 
assumption, however, may not always be true, since the noise 
e(t) may be a correlated or coloured sequence for many real 
applications. For cases where the signal e(t) is not a white 
sequence, an established NARX model may be biased. A 
solution to obtain an unbiased model is to introduce lagged 
noise variables e(t-1), e(t-2), …, e(t-ne) to the model to 
construct a NARMAX model [47] 

 ( ) [ ( 1), , ( ), ( 1), , ( ),y uy t F y t y t n u t u t n      

( ), ( 1), , ( )] ( )u eu t n e t e t n e t                  (6) 

Model (6) include the NARX model (3) and several other 
linear and nonlinear representations e.g. AR, ARX, Volterra 
series models as special cases [48]. The NARMAX model (6) 
is easily accommodated in the linear-in-the-parameters form 
(2) by defining )(txk  in Eq. (4) as 
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where euy nnnn  . Note that the noise signal e(t) in 

model (7) is unmeasurable; in model identification procedure 
it is often replaced by the model residual sequence as follows. 

Let ˆ[ ]F  be an estimator for the function F[•], the model 

errors )(t can be estimated as 

 )(ˆ)()( tytyt   

         ,),1(),(,),1((ˆ)(   tuntytyfty y  

))(,),1(),( eu nttntu             (8) 

The variable e(t) in (7) can then be replaced by)(t . Detailed 
discussions on how to iteratively calculate model parameters 
and update the model errors, and on how to verify and test the 
validity of a model can be found in [49]-[51].   

D. NARMAX Model Estimation  

It is known that for a linear model, the model terms and 
the variables are exactly the same. For a typical generalized 
linear model or a nonlinear model, however, variables and 
terms are generally distinct, and the distinction can be 
illustrated using the simple nonlinear model below [52] 
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Here there are only two variables:1x , 2x , but there are seven 

terms, that is, the const,1x , 2x , 
2
1x , 

2
2x , 2

1
xex , 1 2| |x x . 

It is easy to know that the total number of potential model 
terms in the power-form polynomial model (2) is 

]!!/[)!(  nnM  , where again is the degree of 

nonlinearity. For example, if  =3, ny  = 2,  nu  = 1, ne = 3, then 
M = (6+3)!/(6!3!) = 84. For the dynamic regression model (3), 

with power-form polynomials as basis functions, if ny and nu 
are large, the number of candidate model terms included in the 
initial full model can be very large. However, numerous 
practical applications show that in almost all real-data cases, 
generally only a small number candidate model terms are 
important for characterizing the underlying dynamics and all 
the other candidate terms are either not important or irrelevant 
and thus can be ignored.  

The forward regression orthogonal least squares (FROLS) 
algorithms [28], [53]-[54] provides an efficient, powerful tool 
for nonlinear model term selection and model structure 
detection. A detailed discussion of the FROLS algorithm and 
ERR index can be found in [28], [53]-[54]. Here, we only give 
a very brief summary of the algorithm. FROLS searches 
through all the possible candidate model terms to select the 
most significant terms one by one. The significance of each of 
the model terms is measured by an index, called the error 
reduction ratio (ERR) [53], which evaluate how much of the 
variance change in the system response can be accounted for 
by including the relevant model term. There exist such cases 
where some model terms only make a very small contribution 
(measured by ERR values) but they may be statistically 
significant and are therefore also included in the models. 
Some statistical criteria, e.g. AIC, BIC, PESR (penalized 
error-to-signal ratio) [55], APRESS (adjusted (PRediction 
error sum of squares) [56], [57], can be used to monitor the 
model selection procedure and determine the model 
complexity. 

IV.  CASE STUDIES 

A. The Relation Between Influenza-like Illness Incidence 
Rate and Deaths 

The weekly influenza-like illness (ILI) incidence rate and 
deaths data were acquired from the Office for National 
Statistics (ONS), The Royal College of General Practitioners 
Research and Surveillance Centre and Public Health Wales. 
The dataset contains a total of 991 weekly records starting in 
week 31 of 1999 and ending in week 30 of 2018. The raw data 
are plotted in Fig. 1.   

 

The objective here is twofold. One is to reveal how the 
week mortality relates to the ILI incidence rate through data-
driven modelling approach, and another is to do one-week-
ahead prediction of the death mortality. The 991 data points 

 

Fig. 1.  Weekly influenza-like illness (ILI) incidence rate and deaths, 
England and Wales, between week 31 of 1999 and week 30 of 2018. 



are split into two parts: the first 600 samples are used for 
model training and the remaining 391 are used for model 
testing. The NARMAX method is applied to the training data, 
and the best NARMAX model is: 

( ) 616.435147 0.927840 ( 1)

      0.114871 ( 1) ( 3) 10.535455 ( 1)

y t y t

x t x t x t

   
     
    (10) 

where x(t) represents the weekly ILI incidence rate and y(t) 
represents the number of weekly deaths. Note that all the 
model terms involving noise variables such as x(t-1)e(t-1) are 
omitted and not included in the final model, because all these 
noise terms are not useful for model prediction but are only 
used to reduce bias in model estimation.  

A comparison of the model predicted deaths and the 
corresponding true values, on the training and test data sets, 
are shown in Fig. 2 and Fig. 3, respectively.  

Model (10) shows that the death mortality is correlated to 
the influenza-like illness (ILI) incidence rate of one and three 
weeks ago. From Fig. 2 and Fig. 3, it can be seen that the 
simple NARMAX model shows an excellent prediction 
performance.  

B. Influnza Forecasting 

1)  Data   
Google Flu Trends (GFT) provides a successful example 

of making use big data to predict the future and to significantly 
improve forecasting performance. GFT involves a massive 
volume of structured or unstructured datasets which are very 

large and complex. Through a comprehensive processing 
procedure, workable and easy to use datasets GFT datasets 
became available. For example, 100 sub-datasets extracted 
from GFT datasets, containing the influenza information of 
the United States of America during the period from 1 June 
2003 to 11 May 2008, were available and 45 of which were 
used for influenza forecasting [9].  

2)  Models   
In this study, we consider the first sub-dataset used in [9]. 

The dataset contains digital information of the general 
influenza symptoms of the USA of during the period from 1 
June 2003 to 11 May 2008. The sub-dataset contains values 
nine variables, representing the nine census divisions of the 
USA, which are geographically shown in Fig. 4. For 
convenience, the general influenza symptoms of the nine 
census divisions are represented by following variables: Y1 
(NE), Y2 (MA), Y3 (ENC), Y4 (WNC), Y5 (SA), Y6 (ESC), Y7 

(WSC), Y8 (Mountain), Y9 (Pacific).      
The sub-dataset used comprises 259 weekly data points in 

total. The first 135 data points of the period from 1 June 2003 
to 25 December 2005 are used for model training and the 
remaining 124 for model performance test. The 135 training 
data for the nine census divisions are plotted in Fig. 5. 

 
  

The NARMAX method, together with an iterative 
orthogonal forward regression algorithm (iOFR) [58],[59], is 
applied to the 135 weekly training data points of the period 
from from 1 June 2003 to 25 December 2005 (shown in Fig. 
5).  Our objective is to estimate nine predictive models for 
each of the census divisions of USA; these models will be 
used for one-week ahead forecasting for influenza trends. The 
initial target models are of the form: 

1 1 9 9( ) [ ( 1),..., ( 3),..., ( 1),..., ( 3)]i iY t F Y t Y t Y t Y t          (11) 

where the functions [ ]iF   (i=1,2,…, 9) are chosen to be 

polynomials of nonlinear degree =2. Note that initially each 
of the nine models in (11) involves a total of 406 candidate 
model terms, but the NARMAX estimation procedure will 
identify the most important model terms and produce a sparse 
model for each of the nine cases.  

    The predictive model identified for each of the nine census 
divisions are presented as follows. 

 

Fig. 2.  A comparison of the model prediction with the corresponding true 
number of deaths, on the training dataset of the period between week 31 of 
1993 and week 47 of 2010.  

 
Fig. 4.  The nine census divisions of the America. 
https://www.ncdc.noaa.gov/monitoring-references/maps/us-census-
divisions.php 

 

Fig. 3.  A comparison of the model prediction with the corresponding true 
number of deaths, on the test dataset of the period between week 48 of 2010 
and week 30 of 2018.   

https://www.ncdc.noaa.gov/monitoring-references/maps/us-census-divisions.php
https://www.ncdc.noaa.gov/monitoring-references/maps/us-census-divisions.php
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3 8 7 8

6 8 4

4 7
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5 8 8 8

7 7 9

( ) 0.2593 ( 1) 0.0415 ( 1) ( 1)

       0.1275 ( 2) 0.0845 ( 1) ( 1)
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Y t Y t Y t
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Y t Y t Y t

Y t Y t
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7 8 5 7
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       0.0302 ( 2) ( 2) 0.0018 ( 1) ( 2)
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( ) 1.6721 ( 1) 0.0279 ( 1) ( 1)

        0.4851 ( 3)+0.0192 ( 3) ( 2)
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               (19) 

9 8 2 7( ) 0.9814 ( 1) 0.0091 ( 2) ( 1)Y t Y t Y t Y t                     (20) 

Note that model terms in each of the models are arranged 
in order of their significance for explaining the changing 
trend of the output variables (influenza symptoms). The CPU 
time used for generating each of these models is about 0.42 
seconds on average. It is very interesting to notice that all the 
output variables (except Y7 for West South Central) are 
closely related to the lagged variable Y8(t-1), this probably 
implies that the outbreaks of influenza in other census 

divisions are closely associated to the influenza epidemics of 
a week ago in the Mountain region.    

3)  Model performance   
We use two statistics, namely, root mean squared error 

(RMSE) and mean absolute error (MAE), to evaluate the 
performance of the identified models. The values of the two 
statistics for each of the models (12)-(20), over the test data (1 
January 2006 to 11 May 2008) are given in Table I.      

TABLE I.  THE TWO STATISTICS RMSE (ROOT MEAN SQUARED 
ERROR) AND MAE (MEAN ABASOLUTE ERROR), BOTH ARE THE TEST DATA. 
RAW 2: RMSE; RAW 3: MAE. 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 

1.3429 1.5851 1.5818 2.0799 1.9912 4.3526 1.4697 1.9036 1.3154 

0.8596 0.9896 0.8532 1.0472 1.1037 2.0421 0.8076 0.9416 0.7093 

 
A comparison between the model prediction and the 

corresponding observations for the nine census divisions are 
illustrated in Fig.6 (for New England, Mid-Atlantic and East 
North Central regions) , Fig. 7 (for West North Central, South 
Atlantic and East South Central regions ) and Fig. 8 (West 
South Central, Mountain and Pacific regions), respectively.    

 

 

Fig. 5.  The influenza information of the nine census divisions of the 
United States of America during the period from 1 June 2003 to 31 Dec 
2006.   

 

Fig. 6.  A comparison between the model prediction and the observed 
influenza symptoms for the three census divisions: New England, Mid-
Atlantic and East North Central regions, during the period from 1 January 
2006 to 11 May 2008.   

 

Fig. 7.  A comparison between the model prediction and the observed 
influenza symptoms for the three census divisions: West North Central, 
South Atlantic and East South Central regions, during the period from 1 
January 2006 to 11 May 2008. 



V. CONCLUSION 

The study focuses on a class of ‘SMART’ (simple and 
simulatable, meaningful, accountable, reproducible, and 
transparent) representations, called SIT-NARMAX model, 
which has a number of attractive properties for big medical 
and heathcare data-driven modelling problems. The main 
contributions of this study are as follows. Firstly, a simple but 
effective model was established to represent the relationship 
between weekly mortality and the influenza-like illness (ILI) 
incidence rate of England and Wales; as shown in the first case 
study, the model provides a perfect representation of the 
relation between the weekly influenza-like illness (ILI) 
incidence rate and death mortality. Secondly, nine transparent 
models have been built from Google flu trends data; the 
models reveal how the general influenza symptoms of each of 
the census divisions of the America are closely associated with 
that in the other regions. These promising results suggest that 
the NARMAX model and the associated methodology provide 
a powerful tool for medical and healthcare data modelling 
problems, especially for cases where the interest is not only in 
prediction and forecasting but also strongly in interpreting and 
explaining the dependent relation of the output (response) 
variables on a few important candidate input (explanatory) 
features.       
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