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Abstract

Bayesian inference is proposed for volatility models, targeting fi-
nancial returns, which exhibit high kurtosis and slight skewness. Ro-
tated GARCH models are considered which can accommodate the
multivariate standard normal, Student t, generalised error distribu-
tions and their skewed versions. Inference on the model parame-
ters and prediction of future volatilities and cross-correlations are ad-
dressed by Markov chain Monte Carlo inference. Bivariate simulated
data is used to assess the performance of the method, while two sets
of real data are used for illustration: the first is a trivariate data set
of financial stock indices and the second is a higher dimensional data
set for which a portfolio allocation is performed.
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1 Introduction

The time-varying dynamics of conditional covariances of asset returns play a

crucial role for asset pricing, portfolio allocation and risk management and

hence their modelling and forecasting has gained considerable attention for

the past three decades. Multivariate generalised autoregressive conditional

heteroscedastic (MGARCH) models have been routinely used to study and

examine the relationship between the volatilities and co-volatilities of multi-

variate financial time series.

A wide range of MGARCH models have been proposed in the literature to

accommodate time-varying multivariate volatility but the number of parame-

ters increases rapidly as the the dimension of the returns grows; this is widely

known as the curse of dimensionality, see e.g. Bauwens et al. (2006) and Sil-

vennoinen and Teräsvirta (2009), among others. Bollerslev et al. (1988) first

introduced the half-vec (vech) form for the conditional covariance matrices

and its special case is the popular Baba-Engle-Kraft-Kroner (BEKK) model

of Engle and Kroner (1995). Though the BEKK model provides rich dynam-

ics of conditional covariances, the estimation of this model demands heavy

computations. The diagonal BEKK model, where parameter-matrices are

assumed diagonal, provides some simplification over the full BEKK model.

Several models have been proposed in the literature based on transforma-

tions of the returns (van der Weide, 2002; Fan et al., 2008; Boswijk and

van der Weide, 2011). Noureldin et al. (2014) proposed the rotated BEKK
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(RBEKK) model that utilises the BEKK parametrisation using covariance

targeting and aiming at higher dimensional data by exploiting returns rota-

tion. With respect to estimation, maximum likelihood is usually adopted to

carry out inference of multivariate GARCH-type models. On the other hand,

the Bayesian paradigm is well suited for MGARCH models and provides cer-

tain advantages in comparison to the llikelihood-based inference. Several

papers have adopted Bayesian estimation, in particular Markov chain Monte

Carlo (MCMC) inference, see e.g. Vrontos et al. (2003), Osiewalski and

Pipien (2004) and the review of Virbickaite et al. (2015).

The main contribution of the article is to develop a Bayesian approach

for the estimation of the parameters of the RBEKK models allowing for

heavy-tailedness and asymmetry in the distribution of the returns. Under a

Bayesian framework, a block-sampling MCMC scheme is proposed for the es-

timation of the rotated volatility covariance matrix. Results of Monte Carlo

simulations show that the method accurately estimates the volatilities and

correlations of multivariate returns. The model is first evaluated via a bi-

variate simulated data set; for this data set the true simulated volatilities,

correlations and model parameters are always within the in-sample credible

intervals, which are remarkably narrow. Consequently, an empirical study

is considered for a trivariate data set consisting of Frankfurt (Dax), Paris

(Cac40) and Tokyo (Nikkei) stock indices. Finally, a higher dimensional data

set is analysed consisting of eight shares from Dow Jones industrial average

index, for which an asset allocation is performed and its evaluation is con-
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ducted using cumulative portfolio returns. The assessment and performance

of the model suggest very accurate in-sample and volatility forecasting pro-

viding clearly improved performance in comparison to maximum likelihood

estimation. The utility of this paper is to offer MCMC inference for the

volatility of financial returns, which exhibit heavy tails and asymmetry; the

covariance targeting approach allows the estimation of higher dimensional

data sets.

The structure of the remainder of the article is as follows. In Section 2,

we discuss the specification of the MGARCH model and the rotated BEKK

models. Section 3 describes in detail the proposed Bayesian inference and

forecasting for the RBEKK model. Results of simulation studies are pre-

sented in Section 4 and application to the real data sets are discussed in

Section 5. Finally, the paper concludes with closing comments.

2 Multivariate GARCH models

Consider a general multivariate GARCH model

rt = H
1/2
t εt, (1)

where rt = (r1t, · · · , rKt)
′, t = 1, 2, . . . , T, is a K-dimensional daily asset

returns, εt is a K-dimensional i.i.d process with mean zero and identity

covariance matrix. This model assumes a zero-mean E[rt|Ωt−1] = 0 and
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conditional covariance matrix E[rtr
′

t|Ωt−1] = Ht, with elements Hij,t, i =

j = 1, . . . , K, where Ωt−1 denotes the information set at time t − 1 and

E[·] denotes expectation. A parametrisation for the conditional covariance

matrix Ht completes the multivariate GARCH model.

One of the most widely used models for the conditional covariances adopts

the BEKK specification

Ht = CC′ +Art−1r
′

t−1A
′ +BHt−1B

′, (2)

where C,A and B are K ×K square matrices with C being a positive def-

inite symmetric parameter matrix. The fully parameterised model includes

2.5K2 + 0.5K parameters and only feasible for small value of K.

Noureldin et al. (2014) propose a rotated version of the above model,

the rotated BEKK (RBEKK) model that utilises the BEKK parametrisation

using covariance targeting. More specifically, the model is fitted using the

rotated returns

r̃t = H∗−1/2rt = PΛ−1/2P′rt, (3)

where H∗ = PΛP′ is the unconditional covariance of rt and the matrices of

eigenvectors P and eigenvalue Λ are obtained using spectral decomposition.

Now, the unconditional covariance matrix of rotated returns r̃t is Var[r̃t] =

IK , where IK denotes theK-dimensional identity matrix. Using a covariance-
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targeting the conditional covariance matrix of r̃t is defined as

Gt = (IK − ÃÃ′ − B̃B̃′) + Ãr̃t−1r̃
′

t−1Ã
′ + B̃Gt−1B̃

′, (4)

with G0 = IK and assume (IK − ÃÃ′ − B̃B̃′) ≥ 0 on the sense of being

positive semidefinite. The RBEKK model is the restricted BEKK model with

parameters A∗ = H∗1/2ÃH∗−1/2, B∗ = H∗1/2B̃H∗−1/2 and C∗ = H∗1/2(IK −

ÃÃ′ − B̃B̃′)H∗1/2. A high-order lag structure or asymmetric term can also

be introduced in (4).

Noureldin et al. (2014) study three different specifications of RBEKK

models called scalar RBEKK (S-RBEKK), diagonal RBEKK (D-RBEKK)

and common persistence RBEKK (CP-RBEKK). Here, we discuss the scalar

and diagonal specifications. The scalar specification assumes Ã = α1/2IK

and B̃ = β1/2IK . The (i, j)th element of Gt is given by

gij,t = (1− α− β)I(i=j) + αr̃i,t−1r̃j,t−1 + βgij,t−1, i, j = 1, . . . , K,

where I(·) is the indicator function. Note that in this specification, all the

elements of Gt have the same dynamic parameters. It is assumed that α, β ≥

0 and α+ β < 1 is required for covariance stationarity. The total number of

parameters is 2 in the scalar specification.

In the diagonal specification, Ã and B̃ are diagonal with elements α
1/2
ii

and β
1/2
ii , i = 1 . . . , K, i.e., Ã = diag{α1/2

ii } and B̃ = diag{β1/2
ii }. This
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specification implies

gij,t =(1− α
1/2
ii α

1/2
jj − β

1/2
ii β

1/2
jj )I(i=j) + α

1/2
ii α

1/2
jj r̃i,t−1r̃j,t−1

+ β
1/2
ii β

1/2
jj gij,t−1, i, j = 1, . . . , K.

Assuming α
1/2
ii > 0 and β

1/2
ii > 0 along with αii + βii < 1 ensure that

(IK − ÃÃ′ − B̃B̃′) is positive definite. The total number of parameters to

be estimated in the D-RBEKK model is 2K.

It is noted that the BEKK and REBEKK models have the same num-

ber of parameters. The diagonal RBEKK model implies a full BEKK model

for returns. Besides, fitting a diagonal RBEKK model implies rather rich

dynamics for the unrotated returns (Noureldin et al. 2014, p. 18). The

transformation of the raw returns enables the fitting of flexible multivariate

models to the rotated returns using covariance targeting (Noureldin et al.,

2014). Since the diagonal BEKK model implies a full BEKK model for unro-

tated returns, fitting this model provides rich dynamics with smaller number

of parameters. This may be attractive for modelling both the volatilities and

correlations in large dimensions as only 2K dynamic parameters need to be

estimated in the diagonal specification.
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3 Bayesian inference for RBEKK Models

3.1 Preliminaries

Estimation of the RBEKK models involves a two-step estimation procedure.

In the first step, a method of moment estimator is used to obtain an estimate

of the rotated volatility matrix H∗:

Ĥ∗ = T−1

T∑

t=1

rtr
′

t.

By noting that H∗ = PΛP′ (see equation (3)), this estimator can be de-

composed into P̂ and Λ̂ to obtain the rotated returns r̃t = P̂Λ̂
−1/2

P̂′rt, t =

1, 2, . . . , T.

In the second step, we adopt a Bayesian approach to estimate the pa-

rameters of RBEKK models with skewed and heavy-tailed distributions for

the errors by constructing MCMC algorithms. The conditional likelihood

function for model (1) can be written as

L(θ; r) =
T∏

t=1

|Ht|−1/2pε(H
−1/2
t rt), (5)

where r = (r′1, . . . , r
′

T )
′ is the sample of returns and pε is the joint density

function for εt, and θ is the vector of unknown parameters in the model.

The likelihood function for (3) can be defined in a similar manner.

It is noted that MCMC is proposed only in the second step (estimation
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on the rotated conditional covariance matrix). This enables the study of un-

certainty around the volatility of the rotated returns, but it does not provide

uncertainty around the the matrix transformation in order to obtain the ro-

tated returns. Joint Bayesian estimation of the conditional returns and the

unconditional returns might be possible, but it is not explored in this paper

any further. Markov chain Monte Carlo estimation of the unconditional re-

turns in Step 1 would negate the advantage of the reduction of parameters

in the model. One possibility to move forward this idea is to estimate the

unconditional covariance volatility matrix in the first step by employing par-

ticle filters (Creal, 2012) and then to adopt the proposed MCMC approach

for the estimation of the conditional returns in the second step.

3.2 Asymmetric error distribution

The standardised multivariate normal or Student t distributions are often

used for the error distribution; the latter being capable to describe heavy

tailed returns, which are typically observed in finance. However, as it is

common for financial returns to exhibit asymmetry a suitable asymmetric

error distribution may be considered. Bauwens and Laurent (2005) describe

a method of constructing a multivariate skew distribution from a symmetric

one. They show that the multivariate skew densities can be written as

s(x|γ) = 2K

(
K∏

i=1

γi
1 + γ2

i

)
f(x∗),
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where f(·) is a symmetric multivariate density, x∗ = (x∗

1, . . . , x
∗

K)
′, γi > 0

is the shape parameter, x∗

i = xiγ
Ii
i , i = 1, . . . , K, with Ii = −1, if xi ≥ 0,

and 1 otherwise, being the indicator function. Note that γi = 1 yields the

symmetric distribution, γi > 1(< 1) indicates right (left) skewness and γ2
i =

Pr(xi ≥ 0)/Pr(xi < 0) (Fernandez and Steel, 1998). The first two moments

of x∗

i are given by

mi = Mi,1

(
γi −

1

γi

)
, (6)

si =
(
Mi,2 −M2

i,1

)(
γ2
i +

1

γ2
i

)
+ 2M2

i,1 −Mi,2, (7)

with

Mi,r =

∫
∞

0

2urfi(u)du.

The log-likelihood function for multivariate skew-normal distribution is

L(θ) =− 1

2

T∑

t=1

[
log |Ht|+

K∑

i=1

(
si

K∑

j=1

pij,trj,t +mi

)2

γ2Ii
i

]

+ T

[ K∑

i=1

(log γi + log si)− log(1 + γ2
i )

]
+

TK

2
[log(2)− log(π)],

(8)

where pij,t corresponds to the j
th element of the ith row of the inverse Cholesky

factor of the matrix Ht.

The multivariate generalised error distribution (GED) can also be used

as an alternative heavy tailed distribution. For the GED, the tail parame-

ter δ needs to be estimated along with other parameters. The multivariate
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standard normal is obtained for δ = 2 and the value δ < 2(> 2) leads to

thicker (thinner) tails than the standard normal (see Fioruci et al., 2014 for

further discussion on univariate and multivariate skew distributions). For

expressions of the likelihood function of models with skew t and GED return

distributions the reader is referred to Braione and Scholtes (2016) and to

references therein.

3.3 Markov chain Monte Carlo estimation

Let θ denote the set of all unknown parameters which includes the param-

eters of RBEKK models, (α1/2, β1/2) in case of the scalar specification and

(α
1/2
11 , . . . , α

1/2
KK , β

1/2
11 , . . . , β

1/2
KK) in case of the diagonal, the shape parameters

for each returns (γ1, . . . , γK) and the tail parameter ν or δ when using the

multivariate Student t or GED, respectively.

In a Bayesian framework (Chib and Greenberg, 1995) prior distributions

for all parameters of interest need to be specified. These are assumed to

be a priori independent and normally distributed truncated to the intervals

they are defined. We focus our attention on the diagonal specification as this

provides rich dynamics compared to the scalar specification. For α
1/2
ii and

β
1/2
ii , i = 1, . . . , K, we assume α

1/2
ii ∼ N(µ

α
1/2
ii

, σ2

α
1/2
ii

)I
(0<α

1/2
ii <1)

and β
1/2
ii ∼

N(µ
β
1/2
ii

, σ2

β
1/2
ii

)I
(0<β

1/2
ii <1)

. A prior distribution for the tail parameter (the

degrees of freedom) is ν ∼ N(µν , σ
2
ν)I(ν>2), for the multivariate Student t or

δ ∼ N(µδ, σ
2
δ )I(δ>0), for multivariate GED. The choice of prior distribution

for skewness parameter is adopted from Fioruci et al. (2014), that is γi ∼
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N(0, 0.64−1)I(γi>0). The values for hyper parameters are specified as µαii
=

µβii
= µν = µδ = 0 and σ2

αii
= σ2

βii
= σ2

ν = σ2
δ = 100. The relatively large

variances reflect on a weakly informative prior specification; it is possible to

set up a hierarchical prior structure by specifying an inverse prior distribution

for each variance, but there was little benefit in the estimation and this

approach was not adopted to avoid extra computation cost.

A block Metropolis-Hastings algorithm is constructed to sample from the

posterior distribution p(θ|rt) where all the parameters are updated as a block.

More specifically, a random walk Metropolis algorithm is used where at each

iteration a new vector from a multivariate normal distribution centred around

the current vector with a variance-covariance proposal matrix is generated.

The proposal matrix is calculated from a pilot tuning that is carried out by

running one-dimensional random walk Metropolis updates with univariate

normal candidate distributions whose variances are calibrated to obtain good

acceptance rates. The main steps of the algorithm are:

1. Initialize the parameter vector θ0 and set n = 0.

2. Draw a sample θ(n+1) from the distribution of θ|rt.

3. Set n = n+ 1 and go to step 2, until n = N , for a large N .

In step 2 we sample from the conditional posterior distribution of θ whose

kernel is given by

κ(θ|rt) = p(θ)L(θ|rt), (9)
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where p(θ) is the prior probability of θ. The random walk Metropolis-

Hastings method is used for this purpose as described in the following two

steps:

First, we generate a candidate vector θ̃ from the multivariate normal

distribution N(θ(n), cΣ̂θ), where c is a constant and Σ̂θ is the covariance

matrix calculated from a pilot tuning. Let

τ
(n)

θ
= min{1, (κ(θ̃|rt))/(κ(θ(n)|rt))},

where κ(θ̃|rt) is given in eq. (9).

Then, define

θ(n+1) =





θ̃, with probability τ
(n)

θ

θ(n) with probability 1− τ
(n)

θ

The constant c is used to tune the acceptance rate (usually lying between 0.2

and 0.5) to achieve fast convergence. This builds an irreducible and aperiodic

Markov chain in the parameter space θ(0),θ(1), . . . ,θ(N). For large N , θ(n)

tends in distribution to a random variable with density p(θ|rt).

4 Simulation studies

In this section, we study the performance of the proposed MCMC sampler

for the RBEKK model through Monte Carlo simulations. We performed
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two simulation studies on the bivariate diagonal RBEKK model. Samples

of sizes T = 2000 and T = 5000 were simulated from this model. The true

parameter vector for the bivariate RBEKK model (equations (3) and (4))

with diagonal specification is set to θ = (α
1/2
11 =

√
0.05, α

1/2
22 =

√
0.10, β

1/2
11 =

√
0.90, β

1/2
22 =

√
0.80). Note that the diagonal specification assumes that

Ã = diag{α1/2
ii } and B̃ = diag{β1/2

ii }, for i = 1, 2. For the sake of brevity,

results for errors from the multivariate skew t distribution, ST (ν,γ), with

ν = 8 are only reported. For the shape parameter, we selected negatively

skewed errors with γ = (0.8, 0.8)′. Such a setting generates heavy tailed and

skewed returns that are commonly observed in financial time series.

The proposed MCMC algorithm is then used to estimate the parame-

ters of the diagonal RBEKK model for each simulated series. The MCMC

algorithm is run using N = 20000 iterations discarding the initial 10000 it-

erations as burn-in samples. Geweke convergence diagnostic (Geweke, 1992)

were used to check the convergence of the Markov chains. The MCMC chains

provide good mixing performance and fast convergence.

Table 1 shows posterior means, standard deviations and 95% credible

intervals of the model parameters for the two simulated series. Observe

the accuracy of the estimation and note that the 95% credible intervals al-

ways include the true parameters. The posterior standard deviations become

smaller as the sample size increases and the length of the credible intervals

decrease reflecting upon precision. Besides the availability of point estimates,

Bayesian estimation routinely provides parameter uncertainty, e.g. via the
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Figure 1: Histograms and density of the posterior MCMC samples of model pa-
rameters of the first simulated series with T = 2000. Vertical line represents the
true value of the parameter.

empirical posterior densities. This parameter uncertainty may be introduced

in the estimation of volatilities, correlations, value-at-risk (VaR), portfolio

selection, and so on. The histograms and densities of the posterior samples

of each parameter for the first simulated series with sample size T = 2000 is

shown in Figure 1. The histograms for large sample size T = 5000 (not re-

ported) exhibit higher degree of symmetry and smaller variance as compared

to those of size T = 2000.

The in-sample volatilities and correlations are also estimated and pre-
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Table 1: Estimates of the model parameters with multivariate skew t errors.

T = 2000 T = 5000

Parameter Mean SD 95% CI Mean SD 95% CI

γ1 = 0.8000 0.8006 0.0203 [0.7607, 0.8412] 0.8112 0.0160 [0.7808, 0.8432]√
α11 = 0.2236 0.2410 0.0196 [0.2041, 0.2808] 0.2280 0.0145 [0.1998, 0.2573]√
β11 = 0.9487 0.9354 0.0122 [0.9072, 0.9557] 0.9402 0.0090 [0.9207, 0.9559]

γ2 = 0.8000 0.8367 0.0203 [0.7984, 0.8775] 0.8320 0.0171 [0.7917, 0.8749]√
α22 = 0.3162 0.2980 0.0202 [0.2582, 0.3384] 0.3055 0.0182 [0.2704, 0.3417]√
β22 = 0.8944 0.8961 0.0157 [0.8626, 0.9238] 0.8843 0.0159 [0.8498, 0.9129]

ν = 8 7.1044 0.3994 [6.5762, 8.2296] 8.0223 0.4212 [7.2345, 8.8977]

sented in Figure 2. The estimated in-sample volatilities, Ĥii,t, for i = 1, 2,

and the in-sample correlations, R̂12,t, for last 1000 observations, t = 4901, . . . ,

5000 for the simulated series with T = 5000 are presented. True values for

volatilities and correlations along with 95% credible intervals are plotted and

it can be seen that MCMC provides accurate estimates of volatilities and

correlations. It can also be noted that the true values for volatilities and

correlations are always included in the credible intervals. The point esti-

mates and credible intervals for the one-step-ahead volatilities Ĥii,T+1 and

correlations R̂12,T+1 can easily be obtained. These one-step-ahead point pre-

dictions (using mean) along with the corresponding predictive intervals and

true values are also shown in Figure 2.

Finally, Figure 3 shows plots of volatilities and co-volatilities estimated

under the assumption of skew student-t and standard normal errors against

true values for a random sample of 100 observations when errors are gener-

ated from skew student-t distribution. The plots show that using the skew
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Figure 2: True (solid) and Bayesian (dashed-dot) estimates and 95% intervals
(dotted) for volatilities Hii,t, for i = 1, 2, and correlations R12,t, for the last 1000
observations for the simulated series of sample size T= 5000.

t model provides an improved performance from the normal model. The

skew t model provides estimates remarkably close to the simulated volatili-

ties, while at some points of time the difference between the two estimates

is quite pronounced, e.g. H11,t at t = 20. In-sample maximum likelihood

estimates (MLEs) provided similar results, and hence they were not reported

here. However, we favour here the MCMC approach as it provides more

information of uncertainty quantification of the parameters subject to esti-

mation.

Simulations with higher-dimensional systems in which K = 10 and K =
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Figure 3: Plots of Bayesian estimates of volatilities and co-volatilities estimated
using skew student-t (dotted) and standard normal (dashed) errors against true
(solid) values for a random 100 observations from the simulated series of sample
size T= 2000 when errors are generated from skew student-t distribution.

20 were also performed; for each simulated data set we have used 20000 it-

erations for the MCMC. The accuracy of the estimates was not significantly

affected by large dimensions, though greater computational cost was required

to obtain the estimates, in particular regarding K = 20. Table 2 represents

the computational time taken by an Intel Core i7 laptop with 16GB RAM

for the estimation of RBEKK models. The code is written in the program-

ming language R (https://www.r-project.org) with few routines in C++

language. Use of cluster and parallel computing are expected to improve

computational time.
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Table 2: Computational time (in minutes) taken by various RBEKK
models for T = 1000.

Normal Student-t GED skew-Normal skew-t skew-GED

K = 2 0.66 0.29 0.51 1.30 0.40 0.39
K = 5 1.71 1.21 2.36 2.86 0.68 1.00
K = 10 6.53 6.83 12.76 18.67 11.94 19.13
K = 20 50.61 52.11 58.78 88.76 82.23 94.98

5 Empirical studies

In this section, we illustrate the proposed Bayesian approach using two real

data sets.

5.1 DAX, CAC40 and NIKKEI indices

The first data set consists of the daily closing prices of the stock market

indices in Frankfurt (DAX), Paris (CAC40), and Tokyo (NIKKEI) from Jan-

uary 04, 2007 to October 31, 2018, a total of 2828 observations. This time

period includes the global financial crisis of 2007-2008. The multivariate time

series of de-meaned returns ri,t are defined as 100×{logPi,t−logPi,t−1}, where

Pi,t is the daily closing price for stock i on day t. The skewness coefficients

for log-return series of DAX, CAC and NIKKEI are (0.1181, 0.1111,−0.4940)

whereas kurtosis are (10.3499, 10.6778, 10.8184). As we can see, all three log-

return series have heavy-tails than the normal. The DAX and CAC40 log-

returns are slightly positively skewed whereas the NIKKEI log-returns are

found highly negatively skewed. Hence, we fit the diagonal RBEKK model
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with heavy-tailed and skewed distributions for this data set.

A Metropolis-Hastings algorithm with all the parameters updated as a

block is adopted for the MCMC updates. A total of 20000 iterations are

conducted with initial 10000 discarded in the burn-in stage. The simulated

Markov chains were then checked for convergence and good mixing. Visual

inspection of the marginal trace plots, density estimates and autocorrelation

plots along with formal tests showed good convergence of the Markov chains.

The autocorrelation and trace plots for the skewness parameter is shown in

Figure 4. The trace plots seem to be stationary; this is evidenced visually by

both the trace plots and the ACF plots. However, there seems to be some

autocorrelation present. To minimise the effect of autocorrelation, thinning

of 5 iterations is applied. Furthermore, we have initiated several chains and

all had a similar effect. In addition to that running the chain for longer than

20000 iterations did not seem to have an effect and hence we do not report on

longer chains. For this type of data we consider convergence as reasonable,

although we do note some autocorrelation effect.

The deviance information criterion (DIC) and log marginal likelihood

(LogML) are used to compare various models for the error terms (see e.g.

Spiegelhalter et al., 2002, for a discussion). These include normal, skew

normal, Student t, skew t, GED and skew GED. Note that smaller values of

DIC and LogML are desired for a favourable model. The DIC is given by

DIC = 2E[D(θM)]−D(E[θM ]) where D(·) is the deviance function defined as

minus twice the log-likelihood function and θM is the vector of parameters in
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Figure 4: Autocorrelation and trace plots for the skewness parameter.

model M . To check whether the inclusion of skewness substantially improves

the model fit, we calculate the weights associated with each DIC. The DIC

weights are obtained as

wM ∝ exp

(
− DICM −DICB

2

)
,

where DICB is the value associated with the ‘best’ model. The DIC weights

are then normalised to sum to 1. When the difference of DICM from DICB

is large (i.e. model M does poorly compared to the full model B) then the

weight wM is small, while when DICM ≈ DICB, then the weight gets close

to 1. We also compute the log marginal likelihood (LogML) from the poste-
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rior distribution using non-parametric self-normalised importance sampling

(Neddermeyer, 2009).

Table 3 below shows the DIC and LogML values for the diagonal RBEKK

model, with six different innovation distributions, along with their weights. It

can be seen that models with heavier tails exhibit a better behaviour than the

normal distribution. Also note that skew distributions provide lower DIC and

LogML values as compared to their symmetric versions. Moreover, the mul-

tivariate skew t model is found to provide the best fit among the competing

models. The DIC weight of this model is also found very large and far from

all other models. The log marginal likelihoods of the RBEKK model with

Student t and skew t distributions are, respectively, -11127.84 and -11115.34.

This implies a Bayes factor of 2.7× 105 in favor of the RBEKK model with

skew t distribution, indicating overwhelming evidence of the latter. These

findings indicate that incorporating the heavy tails with asymmetry in the

error distribution provides a better fit for RBEKK model and consequently

more precise volatilities and correlation estimates. Hence, in the sequel we

report results for the multivariate skew t model only.

Table 4 presents the summary of the MCMC estimates of the diago-

nal RBEKK model using a multivariate skew t distribution for the returns.

Posterior means and standard deviations along with 95% credible intervals

are displayed. The p-values of the convergence diagnostic (CD) of Geweke

(1992) are also presented. For the Dax and NIKKEI log-returns, 95% credi-

ble intervals for the skewness parameter do not include 1 and hence confirms
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Table 3: DIC and LogML values and weights for various Diagonal RBEKK
models.

model DIC weight LogML

Normal 22754.05 0.0000 -11393.97
Student t 22219.65 0.0001 -11127.84
GED 22322.69 0.0000 -11184.51
skew Normal 22708.01 0.0000 -11374.83
skew t 22196.37 0.9999 -11115.34
skew GED 22306.35 0.0000 -11177.78

asymmetry in these series whereas estimates for skewness for CAC40 series

are not found significant. The estimate of the tail parameter (ν) indicates

the appropriateness of heavy tail of the distribution of the returns.

5.2 Portfolio allocation

In this section we discuss asset allocation, which is one of the main utili-

ties and target applications of volatility estimation, in particularly regarding

medium to high dimensional financial time series. Since parameter uncer-

tainty largely affects the optimal asset allocation (Jorion, 1986), the Bayesian

paradigm can offer an ideal estimation approach (see Kang, 2011, and Jacquier

and Polson, 2013). We consider the global minimum variance (GMV) port-

folio, with time-varying covariance matrices, which minimises the portfolio

variance. Multivariate GARCH models were first used by Cecchetti et al.

(1988) for optimal portfolio allocation and since then many studies have

shown that using GARCH-type models reduce the portfolio risk (see Rossi

and Zucca, 2002 and Yang and Allen, 2005, among others).
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Table 4: MCMC estimates of the Diagonal RBEKK model with multivariate
Skew t errors.

Mean SD 95% interval CD

DAX γ1 0.9011 0.0214 [0.8595, 0.9441] 0.6841
α11 0.0525 0.0061 [0.0412, 0.0657] 0.6518
β11 0.9328 0.0084 [0.9145, 0.9476] 0.9749

CAC40 γ2 0.9647 0.0254 [0.9175, 1.0157] 0.7397
α22 0.1108 0.0184 [0.0774, 0.1490] 0.9490
β22 0.8574 0.0252 [0.8034, 0.9025] 0.7353

NIKKEI γ3 0.9441 0.0223 [0.8988, 0.9862] 0.5103
α33 0.0594 0.0088 [0.0438, 0.0790] 0.5515
β33 0.9226 0.0123 [0.8947, 0.9432] 0.5809

ν 6.2094 0.3277 [5.6353, 6.8884] 0.9953

The posterior means are computed by averaging the simulated draws. SD is the
standard deviation. The 95% intervals are calculated using the 2.5th and 97.5th
percentiles of the simulated draws. The p-values of convergence diagnostic statistic
proposed by Geweke (1992) are reported under CD.

The one-step-ahead conditional covariance matrix ĤT+1 is used to solve

the portfolio allocation problem (see Yilmaz, 2011). The optimal portfolio

weights for time T + 1 are obtained by solving the following optimization

problem:

w∗ = arg min
w:w′1K=1

Var[r∗T ],

where w = (w1, . . . , wK)
′ is the weight vector, 1K is a K-vector of ones, r∗T =

w′rT is the portfolio return at time T and rT is the vector of observed returns.

Without imposing short-scale constraint, i.e., wi ≥ 0, ∀i = 1, 2, . . . , K, the

problem has the following analytical solution
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w∗

T+1 =
Ĥ−1

T+11K

1′

KĤ
−1
T+11K

. (10)

The proposed MCMC estimation enables us to approximate the posterior

mean of the optimal portfolio weights as

E[w∗

T+1|rT ] ≈
1

N

N∑

n=1

w
∗(n)
T+1,

where

{
w

∗(n)
T+1

}N

n=1

is a posterior sample of the vector of optimal portfo-

lio weights for each value of one-step-ahead conditional covariance matrix{
Ĥ

(n)
T+1

}N

n=1

in the MCMC sample. In this way, we solve the allocation

problem at every MCMC iteration and obtain the approximate posterior

mean of the optimal portfolio weights. The approximate posterior credible

intervals for w∗

T+1 can also be obtained in by using the quantiles of the sam-

ple of optimal portfolio weights. Similarly, the optimal portfolio variance

σ2
w,T+1 = w∗

′

T+1ĤT+1w
∗

T+1 can also be calculated and samples can be drawn

from its posterior distribution using MCMC.

In our approach uncertainty around the conditional volatility covariance

matrix

{
Ĥ

(n)
T+1

}N

n=1

is passed onto uncertainty around the portfolio weights

and hence one can obtain a predictive sample σ
2(n)
w,T+1 (n = 1, . . . , N) of the

portfolio returns σ2
w,T+1. Following a more traditional approach, an investor

may obtain a point estimate of ĤT+1 (e.g. the mode of Ĥ
(n)
T+1, n = 1, . . . , N)

and then solve the minimum portfolio problem once, hence obtain a single
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forecast value of σ2
w,T+1. The two approaches should be equivalent for large

N , but our approach benefits by providing uncertainty around the volatility

of the portfolio returns, which may be vital information for the investor. The

mode of the forecast sample σ
2(n)
w,T+1 (n = 1, . . . , N) should provide a point

forecast of σ2
w,T+1, if this is needed.

Bayesian estimates of conditional correlations when estimated with both

skew t and Normal distributions for DAX, CAC40 and NIKKEI are presented

in Figure 5. We observe that the correlation estimates of DAX and CAC40

largely agree over the two models: skew t and normal. However, for the

correlation of DAX and NIKKEI and CAC40 and NIKKEI there appear to

be some notable differences between the two models. We do not know the

true correlations in the empirical studies, but the correlation estimates using

the normal model appear to be more variable and less consistent for certain

periods of time.

The first 2700 observations of DAX, CAC40 and NIKKEI data set are

used for the estimation of the parameters of the RBEKK model with the

skew t distribution and the remaining 128 observations (roughly six months

data) are left for the out-of-sample forecasts. The forecast returns are ob-

tained using a rolling window of size 2700 and the model is re-estimated each

time a new observation vector is obtained (for the last 128 time points).

This approach is appealing to practitioners and manages to capture the

returns-dynamics better than in studies which the returns are estimated

once from historical data, see e.g. Aguilar and West (2000). Figure 6
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Figure 5: Bayesian estimates of conditional correlations for DAX, CAX40 and
NIKKEI index; Skew-t (solid) and Normal (dashed).
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shows the log-returns of three stock indices for the out-of-sample period of

t = 2701, . . . , 2828.

The optimal portfolio weights for the out-of-sample period are estimated.

Figure 7 depicts the dynamics of the estimated portfolio weights and vari-

ances along with their corresponding 95% credible intervals. The results of

the first two portfolio weights w∗

i,T+1, i = 1, 2 are reported as the third weight

can be obtained from these two.

Finally, to illustrate the proposed MCMC inference on a higher-dimensional

data set, we use daily closing prices of eight stocks from the Dow Jones in-

dustrial average (DJIA) index. The data set of 2242 observations is obtained

from Yahoo!Finance for a sample period from January 02, 2001 to December

31, 2009. Noureldin et al. (2014) used the same data with ten stocks for

the maximum likelihood estimation of RBEKK models assuming Gaussian

distributions for the returns. In parallel to the earlier analysis, we split the

data into two parts; the first 2100 observations are used for the estimation

of the parameters of the model while the remaining 142 observation are used

for out-of-sample forecasting. The diagonal RBEKK model is estimated us-

ing both Bayesian and MLE methods assuming a skew t distribution for

the returns. The skew t distribution is chosen as its DIC value was found

the lowest among other competing distributions. One-day-ahead forecasts of

conditional covariance matrices are obtained and the GMV optimal portfolio

without the short-scale constraint is constructed using both methods.

Figure 8 shows the cumulative portfolio returns estimated using the MCMC

28



and MLE methods. For comparison purposes, cumulative portfolio returns

using equal weights are also plotted in that figure. We remark that both cu-

mulative returns (under the Bayesian and MLE estimation) outperform the

equal weight allocation, which is very volatile and has a poor performance

in the beginning and in the end of the sampling period. MCMC provides

consistently better cumulative returns in comparison to the MLE, which is

struggling to provide positive portfolio returns for about the first 60 trading

days. If the assumed model is the true model, then the MLE is expected to

at least as good as MCMC. We remark that the MLE algorithm took shorter

time to run than MCMC, due to the large number of iterations required

for the chains to reach convergence. The difference is more pronounced in

higher dimensions. However, it is well known that maximum likelihood esti-

mation for medium to high dimensional data can suffer from local maxima;

the simulation study in Section 4 shows that the MCMC has the edge in pre-

cision. Moreover, MCMC benefits by its capability of uncertainty analysis

around the volatility estimates, the portfolio wights, the cumulative returns

and associated expected risk and value-at-risk.

Figure 9 shows Bayesian and maximum likelihood estimates of portfolio

variances for eight stocks of DJIA index. We remark that the variance perfor-

mance of the portfolio between MCMC and MLE is similar (as both methods

minimise the variance of the GMV portfolio). However, there are periods of

time in which the portfolio variance under the skew t model is systematically

smaller than the variance using the normal model, see e.g. t = 40 − 60 in
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Figure 9.

6 Conclusions

In this article we have proposed Markov chain Monte Carlo estimation for

a class of multivariate GARCH models for the estimation of volatility of fi-

nancial returns. The proposed model benefits from covariance targeting and

allows a parsimonious yet flexible treatment of asymmetry and heavy tails

of the returns. In the core of the methodology there is a blocked Metropolis

algorithm, which is shown to be efficient for small and medium dimensions

in a simulation study. Volatility estimation on several assets and a port-

folio study demonstrate the capabilities of the methodology. The proposed

Bayesian estimation offers parameter uncertainty quantification, for exam-

ple posterior summaries of volatilities, co-valatilities and dynamic correlation

are provided. This is a useful consideration in assessing the uncertainty on

portfolio returns, risk management and value-at-risk. As one referee has

pointed out the model specification (1) proposed in Noureldin et al. (2014)

can be generalised by replacing H
1/2
t by a more general invertible matrix Z.

Depending upon the structure of Z, the MCMC inference proposed in this

paper may be extended to this interesting case.

The approach of covariance targeting may be applied to other GARCH-

type models, such as the dynamic conditional correlation of Engle (2002),

although further research should be conducted towards this direction. The
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combination of covariance targeting and MCMC inference is a promising ap-

proach, which we aim to explore in the near future for other multivariate

volatility models.
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2701, . . . , 2828.
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