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Abstract: The forming limit curve (FLC) is used to model the onset of sheet metal instability during
forming processes e.g., in the area of finite element analysis, and is usually determined by evaluation
of strain distributions, derived with optical measurement systems during Nakajima tests. Current
methods comprise of the standardized DIN EN ISO 12004-2 or time-dependent approaches that
heuristically limit the evaluation area to a fraction of the available information and show weaknesses
in the context of brittle materials without a pronounced necking phase. To address these limitations,
supervised and unsupervised pattern recognition methods were introduced recently. However, these
approaches are still dependent on prior knowledge, time, and localization information. This study
overcomes these limitations by adopting a Siamese convolutional neural network (CNN), as a feature
extractor. Suitable features are automatically learned using the extreme cases of the homogeneous
and inhomogeneous forming phase in a supervised setup. Using robust Student’s t mixture models,
the learned features are clustered into three distributions in an unsupervised manner that cover the
complete forming process. Due to the location and time independency of the method, the knowledge
learned from formed specimen up until fracture can be transferred on to other forming processes that
were prematurely stopped and assessed using metallographic examinations, enabling probabilistic
cluster membership assignments for each frame of the forming sequence. The generalization of the
method to unseen materials is evaluated in multiple experiments, and additionally tested on an
aluminum alloy AA5182, which is characterized by Portevin-LE Chatlier effects.

Keywords: pattern recognition; machine learning; deep learning; forming limit curve; sheet
metal forming

1. Introduction

The forming range of sheet metal is evaluated using the forming limit curve (FLC), whose
limits are defined by the major and minor strain pairs at the onset of localized necking. In Europe,
the procedure used for the generation of the FLC is summarized in DIN EN ISO 12004-2 [1]. The FLC
is generated by means of Nakajima [2] and Marciniak [3] setups. The sheet metal is mounted into
a clamping unit and then deformed to fracture by using a flat shaped or a hemispherical punch.
The evaluation method proposed in the ISO standard is based on the Bragard study of 1972 [4], which
evaluates the strain distribution of the material prior to failure and is referred to as the “cross-sectional
method”. To determine the limiting strains, sections perpendicular to crack initiation are defined and
the strain propagation is approximated with a second order polynomial. However, such an approach
only allows evaluation of the last stage of the strain distribution without considering strain progression.
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Presently, the forming behavior is evaluated using digital image correlation techniques (DIC) and
employed to determine the FLC [5]. For this purpose, a stereo camera system measures strains on
the material surface during Nakajima or Marciniak tests and thus enables the evaluation of strain
progression. Despite technological progress, the standard is still based on the “cross-section method”.
An added complexity in determining the forming limits is related to the intrinsic properties of the
materials, for example, modern lightweight materials such as high-strength steels and aluminum alloys
tend to develop multiple local strain maxima or spontaneous crack initiation without a necking phase.
Consequently, second order functions are unsuitable to approximate the limit strains. To overcome
the disadvantages of the “cross-section method”, several techniques have been developed which
take into account the forming history during the Nakajima tests. These time-dependent methods
include the “line-fit” approach proposed by Volk et al. [6] as well as the correlation coefficient
method [7]. Both approaches are based on observing the reduction in thickness within a predefined
instability zone and determining the initiation of necking as a response to a sudden decrease in the
thickness of the specimen. One disadvantage of these time-dependent methods is their dependence
on a predefined instability zone and thus limited area of evaluation. In 2015, an approach based on
machine learning was considered to provide new insights to forming development [8]. Conventional
pattern recognition [9] involves the automatic processing and evaluation of data, whereby a physical
signal, e.g., images or speech, is first converted into suitable, more compact characteristic features
that are commonly defined by experts of the respective field. To enable an automated separation
into subspaces/classes, the data is first assigned to different classes by experts. Using a classification
algorithm and a representative subset of the data, decision boundaries are learned based on the feature
representation/label pairs, such that the hypothesis of the learned class boundaries can be verified
with the remaining disjoint data. In [8], such a pattern recognition technique was used to predict the
crack class for a DX54D steel with a prediction accuracy of 90% before the actual crack formation
was observed.

Metallographic investigations have shown that both conventional deep drawing steels [10]
and dual phase steels [11] have superficial patterns associated with local necking, which enables
the application of automated pattern recognition methods using the strain distributions for the
determination of forming limits [12]. In [13] (henceforth referred to as Part 1) this idea was extended
by the assessment of several evaluation areas and by comparing the obtained classification results
with expert annotations for several failure classes (diffuse, local necking, and crack). This study
demonstrated that a consistent determination of local necking is possible with the use of expert
knowledge. Additionally, it was shown that the accuracy and efficacy of the results are affected by
subjective expert annotations as well as external factors such as sampling frequency, which have a
particularly negative effect on the classification results of the diffuse necking class.

To address these problems and to remove the dependence on expert annotations, an unsupervised
classification approach was developed (henceforth referred to as Part 2) in [14]. Several rectangular
areas close to the strain maximum were evaluated and Histogram of Oriented Gradients (HoG) were
used as characteristic features [15], to classify the local necking using One-Class Support Vector
Machines (SVM) [16]. It was shown that the results are within the range of the “line-fit” method,
while incorporating image information and ameliorating the need for defining a specific evaluation
area. Additionally, advantages of this approach include independence from expert annotations,
transferability to new materials, and the introduction of a probabilistic FLC.

On the other hand, the conditional location dependence, i.e., the choice of the evaluation areas is
still dependent on the strain maxima, which can be a disadvantage. Furthermore, the criteria used to
determine the local necking are constrained by expert a priori knowledge, namely, the evaluation of
HoG features, which are not necessarily applicable to other materials. Additionally, the assumption
and partitioning of the forming process into a homogeneous and an inhomogeneous forming area can
influence the outcome of the probabilistic FLC, if using another split criterion then approximately 50%
of the sequence length.
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In recent years, convolutional neural networks (CNN) have found widespread use in the field of
pattern recognition, and can process a large amount of data in finite time due to the computing capacity
that is now available, e.g., due to powerful graphics cards. The main advantage of these approaches is
the automated, data-driven learning of representative features that are adapted to the problem, such
that the design of handcrafted features is no longer necessary for the evaluation and assessment
of classification problems. Different CNN approaches have outperformed conventional pattern
recognition methods in various challenges (e.g., ILSVRC [17]) and are being successfully applied in the
medical field, e.g., computer aided diagnosis [18], non-rigid registration [19], reconstruction [20,21],
landmark detection [22], and in mechanical engineering for example in the field of event detection [23]
or defect detection for photo-voltaic module cells [24].

In contrast to Part 1 and 2, this study uses a CNN for the automatic extraction of characteristic
features, for the task of FLC estimation. Here, the extreme cases of the forming process (beginning of
the homogeneous and end of the inhomogeneous forming phase) are used to train a Siamese CNN [25]
to optimally separate the respective forming phases from each other. This allows the characteristic
features to be adapted to the respective material properties, to enable a more precise description of
the failure states and by extension, the estimation of a more accurate FLC. As a further advantage,
time independency is introduced by clustering the feature representations of images using Students t
Mixture Models [26], so that video sequences of incomplete forming processes may also be investigated,
for e.g., prior to the occurrence of fracture. This not only allows a determination of forming limits
independent of strain paths, which use the mean value of a heuristically defined region, but also the
generation of the probabilistic FLC as introduced in Part 2, and theoretically a real-time monitoring of
forming processes. To enable comparisons with previous studies, the data set of Part 1 is used, and the
temporal derivative according to Part 2 is evaluated, which emphasizes the strain development over
a sequence of successive images, as suggested by Vacher et al. [27]. In addition, the generalizability
and transferability of the methodology to other materials that remain unseen during learning will
be investigated. The data set consists of a deep drawing steel DX54D of two different thicknesses, a
dual phase steel DP800, an aluminum alloy AA6014 (in previous studies referred to as AC170) and
additionally another aluminum alloy AA5182 with Portevin-LE Chatlier effects (PLC) [28]. The results
of the CNN approach are compared with the results of the method proposed in Part 2 and with
the results of the time-dependent FLC of the “line-fit” method. Additionally, the transferability of
the approach to unseen data is demonstrated by assessing forming tests which were stopped before
fracture occurrence and for which metallographic examination results are available.

2. Experimental Procedure and Materials

The FLC is usually determined experimentally with a Nakajima test setup, coupled with a
measurement system that consists of a stereo camera, a clamping unit with an inner die diameter of
110 mm and a hemispherical punch with a diameter of 100 mm (cf. Figure 1). To calculate the strain
distributions, a forming process is recorded by means of an optical measuring system (ARAMIS gom
GmbH) and further processed using block matching (DIC) approaches. These methods require the
specimens to be prepared with a white primer and a speckle pattern of black graphite to enable image
correlation. A lubrication system according to DIN EN ISO-12004-2 is used to minimize the friction
between the punch and the specimen to initiate a rupture at the top of the specimen. With a variation
of the sample geometry to be investigated, starting from an uncut sample geometry up to conical
blanks with parallel connections, induce different loading conditions and strain paths. The remaining
conjunction width determines the name of the geometry, e.g., 50 mm corresponds to S050. For each
sample geometry, three forming experiments are carried out and recorded. The test parameters are
varied across the investigated materials (cf. Table 1), e.g., punching speed (1 to 2 mm/s) and sampling
rate (15, 20, 40 Hz), in order to evaluate different boundary conditions to provide varying combinations
of strain paths, and to test the generalization of the method to multiple loading conditions as uniaxial,
plane-strain, or biaxial.
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Figure 1. Schematic of the Nakajima experimental setup.

In this study, the three known materials from Part 1 and 2 are reused, while a challenging
aluminum alloy is also evaluated: (1) DX54D, a deep drawing steel, with ductile necking behavior
and observable localization on the surface; (2) DP800, a dual phase steel, high-strength material with a
matrix of ferrite and martensite precipitations and hence multiple observable local maxima during
Nakajima tests; (3) AA6014, a lightweight aluminum alloy of the 6xxx series with multiple maxima
during Nakajima tests under plain strain conditions and (4) AA5182, an aluminum alloy of the 5xxx
series with several local maxima in the form of shear bands (PLC effect). The principal material
properties are summarized in Table 1. For a comprehensive description of the forming behavior of the
evaluated materials please refer to Part 1.

Table 1. Material properties of the investigated materials [13] including AA5182.

Material t0 (mm) n YS (MPa) TS (MPa) UE (%) r0 r90
Frequency

(Hz)
Punch Velo-
City (mm/s)

DX54D 0.75/2.00 0.23 164–170 297–322 22–23 1.80 2.22 40/20 1.0/1.5
DP800 1.00 0.16 465 775–797 14–16 0.76 0.90 40 1.0
AA6014 1.00 0.24 140–143 244–239 21–23 0.69 0.67 15 1.0
AA5182 1.00 0.32 130–132 265–275 20–21 0.72 0.67 40 1.0

3. Method

The proposed classification approach mainly follows the typical processing pipeline used in
pattern recognition solutions, even though it uses a CNN. The conventional pattern recognition
pipeline consists of four steps: data acquisition, preprocessing, feature extraction, and classification.
The main difference, introduced with the advent of deep learning techniques, is the data-driven feature
extraction and combination with the classification step. Instead of predefining the extracted features
and employing these to train and test a classifier as in conventional pattern recognition systems,
the feature extraction and classification steps are combined and formulated as optimization problem.
Solving this optimization problem enables estimation of a problem-specific optimal solution, e.g.,
by minimizing a suitable problem-specific loss function. Comparable to the conventional pattern
recognition approaches, the data set is subdivided into multiple disjoint data sets. During training of
the network, the training data set is used to minimize the loss function, by adjusting the weights of
the layers of the CNN using a gradient descent optimizer. After the network has seen all the training
data, the separation hypothesis is evaluated using the validation data set to assess if the hypothesis
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generalizes to unseen data or if it over-fits to the training data. This procedure is repeated until
convergence or until the error in the validation data set increases, and subsequently, the performance
of the network is assessed using the remaining unseen test data set. There exist supervised and
unsupervised deep learning-based techniques, similar to conventional pattern recognition approaches
that either require expert annotations or solve the optimization problem without the use of data
(class-) labels. The framework proposed in this study employs both types of learning techniques. In the
supervised part, the extreme cases of the homogeneous and inhomogeneous forming phase, are used as
labels for the data set. The number of images used per material for training are found in Table 2, where
# images depicts the total number of images per sequence for the individual material and geometry, #
homog. The number of images of the homogeneous forming phase and # neck. The number of images
of the inhomogeneous forming phase. Only these extreme cases e.g., beginning 20 from the clear
homogeneous and last 3 images from the inhomogeneous phase, close to fracture, are used to train
two identical CNN’s that share the same weights and hence assess the similarity of the images. Such
a setup was designed to account for the difficulty in assigning labels in a reliable manner to images
in a sequence. Consequently, we adopt a Siamese CNN to extract features from images which are
guaranteed to belong to either the homogeneous or inhomogeneous class. This setup enables pairwise
comparisons between the two types of images using a similarity metric in a low-dimensional feature
space. As a result, of the similarity metric, the two instances either belong to the same or different
class. This supervised classification setup is used to separate the two classes in an optimal manner, by
simultaneously learning compact representations of both classes.

Table 2. Database per material with process parameters.

Material
(Thickness mm)

# Images /
# Homog. / # Neck.

Frequency
(Hz)

Punch Velo-
City (mm/s)

Available
Geometries

DX54D (2.00) 80/20/5 20 1.5 S030, S060, S080, S100, S125, S245
AA6014 (1.00) 55/15/3 15 1.0 S050, S060, S080, S100, S110, S125, S245
DP800 (1.00) 160/20/3 40 1.0 S050, S060, S110, S125, S245

DX54D (0.75) 160/20/5 40 1.0 S050, S060, S070, S080, S090,
S100, S110, S125, S125, S245

AA5182 (1.00) 160/30/3 40 1.0 S050, S060, S110, S125, S245

In the unsupervised part, the unused data between the beginning of the homogeneous and the
end of the inhomogeneous forming phase, as well as the extreme cases are assessed using the trained
network to create low-dimensional representations. Using an unsupervised clustering approach,
the low-dimensional instances of each forming sequence are then assigned to one of the three clusters:
homogeneous, transition, necking. For clarification, the data sets are disjoint, meaning that e.g.,
the extreme cases of all but one material are used for training, and validation as well as to learn
an optimal separation between the two classes and a low-dimensional representation of the data.
The actual evaluation and clustering is performed using the held-out material.

3.1. Preprocessing

The study uses the data set of Part 1 & 2 and was acquired using the ARAMIS optical measuring
system (v6.3.0-7), and consists of three-channel video sequences comprising of major and minor strain
as well as thinning. The difference between two successive images were used as input to remove the
correlation with the punch displacement and to emphasize the incremental changes. Since the necking
and in general the material instabilities are localized changes in the strain distribution, the incremental
changes allow a better evaluation of this phenomenon. The sequences were adjusted by removing
the frames that contain the fracture information, identified at the end of the forming process with an
increasing amount of defect pixels due to specimen cancellation.
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Single defect pixels or missing values that occurred occasionally were interpolated linearly using
the temporal information, e.g., the strain progression. Other defect pixels, such as static defect pixels
that contain no information during the whole forming process were replaced by the average value
of a 3× 3 neighborhood. To reduce the influence of outliers that usually occur at border regions of
the specimen and are off by a large magnitude when compared to the rest of the image, the data was
normalized using the 0.5% and 99.5% percentile of the image intensities and standardized afterwards.
Furthermore, to be able to train the network without special restrictions due to the specimen geometries
and to facilitate the experiments’ procedure and support interchangeability of materials, the data
was center cropped by a rectangle with a side length of 72 px. This size was determined based on
the S245 geometry of the DX54D material, and the largest possible inner rectangle. Since the aim of
the study is to identify the localized necking based on the material changes, the dark homogeneous
border regions must be avoided, to prevent the network from learning features based on these curved
border regions, rather than the intensities that are included within each patch. The changing image
size and the amount of the curved region included within the evaluation area would bias the network,
as visualized in Figure 2.

(a) (b) (c)

Figure 2. Varying images sizes depending on forming progression. Center cropped evaluation areas of
DX54D and DP800 showing the extreme cases of the forming process: (a) DX54D-S245 homogeneous.
(b) DX54D-S245 localization. (c) DP800-S245 localization.

3.2. Network Architecture

The Siamese network comprises two identical sub-networks, where each consists of the first 3
convolutional blocks of a VGG16 network [29] that was pretrained on a large-scale image database [30],
rather than training the network from scratch with a limited amount of data. Additionally, to
adapt to the new data, one dropout layer (0.5 dropout rate) between the two fully connected layers
(512, 256 neurons) followed by one L2 normalization layer. The two CNN’s form a Siamese CNN
architecture [25] as visualized in Figure 3 and depicted by feature learning, which is used for learning
low-dimensional representations of the data, and to assess the images in a pairwise manner. Two inputs
(X1, X2) are evaluated simultaneously using an identical network structure (Gw) with shared weights
(W). This setup allows a pairwise comparison between the two, L2 normalized, low-dimensional
outputs of the network (Gw(X1), Gw(X2)), as different input images are assessed identically, based on
a suitable distance measure.
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Figure 3. Supervised feature learning and unsupervised clustering, adopted from [25].

3.3. Supervised Siamese Optimization

While other loss functions usually sum over individual samples, this loss function evaluates the
input samples X1, X2 in a pairwise manner, while learning the parameterized distance function DW
using the Euclidean distance between the low-dimensional outputs of GW .

DW(X1, X2) = ||GW(X1)− GW(X2)||2 (1)

The general loss function is described as,

L(W(Y, X1, X2)) = (1−Y)LS(DW(X1, X2)) + YLD(DW(X1, X2)) (2)

where (Y, X1, X2) denotes a labeled input sample pair. The label Y refers to the extreme cases of the
input sequence, where Y = 0 if the samples are from the same class and Y = 1 if the samples are from
different forming phases. LS denotes the loss for samples of the similar phase while LD denotes the
loss for dissimilar samples. These losses are designed such that minimizing L with respect to W leads
to low values of DW if the samples are similar and high values otherwise.

The final loss function, the contrastive loss [31] is denoted as,

L(W, Y, X1, X2) = (1−Y)
1
2
(DW(X1, X2))

2 + (Y)
1
2

max(0, m− DW(X1, X2))
2 (3)

where m is a margin parameter that defines a radius around GW(X), the threshold distance for
dissimilar pairs. Due to the incomplete nature of the data, as only the extreme cases are used for
training, this parameter cannot be optimized and is naively set to 1.0.

3.4. Unsupervised Clustering

So far the network is trained and optimized to create low-dimensional manifolds that support the
optimal separation of the extreme cases of forming sequences. Even though, the network never saw a
complete forming sequence, leads to the extraction of discriminative features from complete forming
sequences. Hence, it may be used to assess and cluster the individual frames of video sequences using
the low-dimensional feature representations. Principal component analysis (PCA) is applied to further
reduce the dimensionality of the manifolds to two dimensions, facilitating the unsupervised clustering.
The first two components were chosen, across all different geometries and materials, as they cover
more than 95% of the variance of the data. In contrast to the training process of the network, where
geometries and loading conditions of different materials were combined to increase the amount and
variance of the data, to enable the network to learn generalized feature representations that describe
necking, the individual geometries and materials are not combined during the assessment of the
held-out data. This reduces the available information and number of data points that may be used to



Materials 2019, 12, 1051 8 of 17

cluster the data. An increase in the density of the distributions is achieved by artificially augmenting
the data, e.g., by cropping randomly, flipping, translating (by 5 px) and rotating (by 15 deg.) each
image. The effect of such transformations is well described and visualized in [31]. For evaluation
of each geometry of the held-out material, the three complete sequences of this geometry, depicted
by XT are used by the network to create the manifolds, while after PCA dimensionality reduction,
the components are clustered and described by distributions (cf. Figure 3 depicted by clustering),
using Student’s t Mixture Models (SMM) [26]. These models are more robust to outliers compared
to Gaussian Mixture models as shown in medical image segmentation [32] or registration [33]. This
procedure enables the forming sequences to be described as probabilities, wherein, the probabilities
represent the membership likelihood of the center cropped unaltered images at each time point, to the
clusters of the mixture model. The clusters in turn represent distinct phases of the forming process,
thereby enabling the frames of sequences to be classified into the same. The complete “unsupervised”
pipeline is visualized in Figure 4. Figure 4a shows the unclustered PCA reduced features of the center
cropped and augmented data of three trials of AA6014-S070. Figure 4b depicts the same data after
being clustered with SMM, whereas Figure 4c visualizes the individual probability progression (with
respect to mixture component membership) of each of the three sequences.
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Figure 4. Exemplary procedure of the detection pipeline based on AA6014-S070: (a) Combined first
two PCA components of the three forming sequences of AA6014-S070. (b) Same data as color coded
cluster membership. (c) Cluster membership progression over time for each of the three sequences and
their average.
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4. Experiments

Multiple experiments are conducted to analyze generalization of the method from one material to
another, and to evaluate the possibility of validating metallographic examination results by categorizing
individual images of video sequences without defined localization regions.

4.1. Leave One Material Out Cross Validation (lomocv)

AA5182 was not considered in this experiment, as its behavior and the appearance of its images
are significantly different compared to the other materials and hence would deteriorate learning.
During forming AA5182 develops shear bands at random locations that seem comparable to the
necking behavior of the remaining materials, as visualized by the examples of the homogeneous and
inhomogeneous forming phase of DP800-S050 and AA5182-S050, shown in Figure 5. The generalization
and transferability of knowledge to unseen data is assessed with this experiment. One held-out material
is evaluated after training the network with all geometries, of all materials, except the held-out one.
Two thirds of the sequences are used as the training set, while the remaining sequences are used
as the validation set. To generate an FLC for the held-out material, its sequences are processed by
the network to generate low-dimensional representations. The determination of the actual strain
values is carried out geometry wise. Three processed sequences per geometry are clustered using the
described unsupervised framework, while the cross sections of the probability progression curves of
the individual clusters (50% probability) are used as look up time points for the actual strain values.

(a) (b)

(c) (d)

Figure 5. Comparison of homogeneous and localization phase cases of DP800-S050 and AA5182-S050:
(a) DP800 homogeneous. (b) DP800 localization. (c) AA1582 homogeneous. (d) AA1582 localization.

4.2. Leave One Sequence Out Cross Validation (losocv)

The data used to train the network is restricted to one geometry and material. Two thirds of the
data per geometry are used as training and validation set, while the remaining sequence serves as test
set. This way it is possible to assess the loading conditions separately and at the same time assess the
generalization to unseen, comparable data.

4.3. Overfit

All three video sequences per geometry are included in the training set and hence define a
theoretical upper bound of the FLC. Of course, no generalization is assessed following this set up.
In general, an overfit to the training data is invalid in pattern recognition approaches as it would not
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generalize to unseen data, but seems valid in the application of defining a forming limit based on three
sequences for the generation of the FLC.

4.4. Metallography

This experiment assesses the location independence, as it evaluates multiple video sequences
of forming processes of sheet metals that have not been deformed until fracture. The aim of this
procedure was to stop the forming process close to the onset of localized necking, and hence to
investigate the presence of material fatigue, based on metallographic examinations. The proposed
method is used to validate these examination results and to ascertain if it is possible to assign frames
to failure clusters without a well-defined localization region. Such an evaluation is not afforded by
existing techniques, as they all require a priori definition of a localization area. As a result, of this
procedure, strain path evaluations would be rendered unnecessary. Again, the evaluation is conducted
using the held-out material.

Within all experiments, the 50% intersection of the homogeneous forming phase and transition
phase as described in Figure 4, and subsequent the intersection between the transition phase and
localization phase, serve as look up time points for the strain values to create the FLC. The network
is implemented in Keras [34] a high-level API of the TensorFlow framework [35]. The network was
trained with a learning rate of 0.0001 in case of the losocv experiment, whereas in case of lomocv
and overfit experiment a learning rate of 0.00001 was used. All experiments employed the Adam
optimizer [36] for contrastive loss minimization. The Adam optimizer was chosen due to its ability to
estimate adaptive learning rates based on the observed data, which has been demonstrated to improve
convergence when training deep neural networks.

5. Results and Discussion

5.1. Comparison of Experimental Results

A graphical representation of the localization and transition FLC candidates of DP800 are
visualized in Figure 6. The different evaluation approaches investigated are consistent when comparing
the localized FLC candidate, independent of the strategy being used for training the network. This is
reasonable, as the necking behavior is comparable throughout all materials except AA5182 and
especially true when training the network using information from just one material and one geometry
as in losocv and the overfit experiment. However, in the case of lomocv, the network never saw
any sequence of this material, but is still able to determine the onset of localized necking, inferred
from the learned necking behavior of the remaining materials (AA6014, DX54D). A slightly different
picture arises when comparing the transition FLC candidates. The losocv and overfit experiment still
show high correlation, whereas the candidate of the lomocv experiment is less conservative. One
explanation for this rather large difference is the limited amount of data that is available in case of the
losocv and overfit experiment. Additionally, if one of the three sequences is not comparable to the
remaining ones, the proposed approach will not generalize to this sequence and hence the determined
distributions may not be suitable for the held-out sequence. One example for this behavior is visualized
in Figure 7 for DX54D-S060 (0.75mm), where Figure 7a depicts the result of the lomocv experiment.
Here, the curves for the transition phase for all held-out sequences are closer to each other, while
in Figure 7b the solution is biased towards the training sequences, as the held-out sequence seems
displaced in comparison to the average of the training sequences.
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Figure 6. Different FLC candidates of DP800 (1.00 mm). (a) localization. (b) transition.
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Figure 7. Differences between the lomocv and losocv experiment for DX54D-S060 (0.75 mm).
(a) Probability progression for all three hold-sequences (losocv). (b) Probability progression for one
hold-out sequence vs. The training sequences (losocv).

This especially occurs, when artifacts as visualized in Figure 5 are not consistently present in all
data sets, as these affect the standardization procedure, or if the localization behavior is very different
from the training data set. However, this effect may be reduced by increasing the number of forming
sequences per geometry that are used to train the network. In the case of the lomocv experiment, a lot
more data is used to train the network, which leads extraction of more generalized features, and hence
a less conservative transition candidate. However, the negative effect of artifacts may also deteriorate
the result of the lomocv approach, when the sequences of the held-out material contain artifacts that
are a lot different from the ones in the training set. Overall it seems beneficial to pursue a leave one
material out approach rather than performing a leave one sequences out setup.

Despite the availability of a limited amount of data, the proposed method generalizes to more
complex materials such as AA5182, as visualized in Figure 8. Here, it additionally may be beneficial
to increase the size of the squared evaluation area and change its shape to a rectangle (cf. Figure 5c),
to cover the available image information close to the border of the specimen. In general, a geometry
dependent evaluation size would be preferable, but would render the training process of the network
more difficult, and would require more thought into designing the network architecture appropriately.
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Furthermore, it would decrease the amount of available data per evaluation area and hence would
negatively affect training of the network.
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Figure 8. FLC candidates of AA5182.

5.2. Comparison with State of the Art

The “line-fit” method (LF) as well as the unsupervised one-class SVM approach of Part 2 are
compared to the method proposed in this study. The first approach focuses on a small heuristically
defined evaluation area, and uses the reduction of material thickness to define the onset of necking.
The second approach exploits more information, as it analyzes all principal strains simultaneously in
multiple square evaluation areas in the vicinity of the maximum strain. Edge orientation information
based on HoG features is extracted and classified using the one-class SVM coupled with a Gaussian
mixture models (GMM) approach. As a result, the FLC can be expressed in terms of failure quantiles
and hence leads to a probabilistic FLC, allowing a comparison of the proposed FLC candidates with
different certainty levels. As this method expects a stable necking zone, the comparison is only
made for DP800. The probabilistic FLC candidate of the unsupervised one-class SVM approach is
depicted by the probability quantiles in Figure 9a. To facilitate the comparison, the lomocv loc. curve
representatively substitutes the other two experiments as they share comparable results. It is in
line with the 0.99% and 0.6% quantile, and additionally corresponds to the results of the “line-fit”
method. The depicted lomocv FLC candidates are rather conservative, since the intersections between
the homogeneous/transition and transition/necking class are used as lookup time points for the
strain values and correspond to 50% probability. However, quantile profiles as presented in part 2
would also be possible, but were omitted for reasons of visualization. The lomocv trans. candidate
is comparable to the 0.01% quantile candidate, while both are well below the results of the “line-fit”
method. In general, the width of the transition distribution depends on the material and evaluated
geometry, e.g., a broader transition phase is expected for DX54D-S060 (cf. Figure 7a), compared to the
transition phase of AA6014-S070 (cf. Figure 4c).
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Figure 9. Comparison with state of the art for DP800 (a) and AA5182 (b).

The homogeneous/transition intersection lookup for S245 was omitted in all experiments, since
it tends to not occur within this geometry, or is very close to the necking lookup time point or even
superimposed by the other two phases (cf. Figure 10). For the AA5182 material, the localized necking
candidates are above the “line-fit” candidates in all but the S245 geometry (cf. Figure 9b), while the
transition candidates are found slightly below the “line-fit” method, at least in near plane-strain conditions.
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Figure 10. Probability progression of DP800-S245.

5.3. Metallography–Strain Path Quantification

Metallographic investigations are used to describe the micro-structure of materials qualitatively
and quantitatively. Therefore, if forming processes are stopped early, it is possible to investigate
the progress and status of formed specimen. Hence, if the forming process was recorded with a
measurement system, macroscopic descriptions using the strain distributions of the last frame of
the sequence correspond to the microscopic characteristics of the metallographic examination. With
a multitude of experiments and small enough steps regarding punch progression it is possible to
describe material behavior and ultimately the onset of localized necking in more detail (cf. [10] for
DC04 and [11] for DP800). However, if the forming process was stopped before the localized necking
occurred, a direct comparison with specimen that have been deformed until fracture may not be
possible, as the absence of localization effects makes it impossible to find a well-defined evaluation
area to create valid strain paths or image regions that can be used for comparison. The method
proposed in Part 2 can evaluate image regions but the time-dependence in the cluster step limits the
transferability due the requirement of sequences to have a fixed length. Using the proposed method,
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distributions are estimated based on the trials that have been deformed until fracture. This allows to
infer the current cluster membership for a frame of an incomplete formed specimen to be inferred,
based on the center cropped image information. This approach is location independent and enables
comparisons in a manner independent of the presence/absence of localization effects, and could be
used in on-line forming processes, to stop the forming procedure. Two sequences of prematurely
stopped forming trials of DP800-S110 are visualized in Figure 11a,b with individual probabilistic
cluster memberships per frame. The first sequence reaches the localized necking phase, whereas the
second forming process was stopped within transition phase. The strain paths (cf. Figure 11c) are
created based on the strain distribution using the top 90% of thinning as threshold and color coded
using a 50% threshold for each class. Additionally, the determined onset of localized necking according
to the proposed classification method (CL) and the “line-fit” method are highlighted.
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Figure 11. Color coded probability progressions and strain paths of two sequences of DP800-S110 that
have not been deformed until fracture in comparison to the strain paths of the training sequences:
(a) Probability progression of the first trial. All three classes are assigned to the individual frames of
the forming sequence. (b) Forming of the trial was stopped within transition phase. (c) Color coded
strain paths of prematurely stopped forming sequences and training sequences. The classified avg.
limit strain (CL) is variable depending on the selected probability threshold.
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6. Discussion

Nakajima-based forming processes induce patterns on the surface of sheet metal materials and
within the strain distributions when using a measurement device. In part 1 a supervised classification
algorithm with expert knowledge/annotations was introduced, leading to good agreement between
experts and classification results. Part 2 introduced an unsupervised classification algorithm, without
expert annotations, based on conventional pattern recognition that evaluates edge information within
small rectangular patches near maximum strain values using a one-class SVM with HoG features.
In general, it led to consistent results throughout the experiments conducted, and introduced a
probabilistic FLC. The main idea of this procedure was to introduce well-established pattern recognition
methods and specific features that evaluate edge responses to support the hypothesis that localized
necking correlates with a sudden increase/decrease of principal strains within strain distributions.
As long as the hypothesis is correct, the method seems suitable as a base line approach that enables the
estimation of multiple degrees of necking certainty using the FLC quantiles.

However, it has four disadvantages: (1) location dependency, due to evaluation only in the
vicinity of the maximum strain area; (2) time-dependency, as it requires specimen to be formed until
fracture and hence renders a comparison with prematurely stopped forming processes impossible;
(3) predefined features limited to edge information; (4) transfer of knowledge to other materials or
forming processes is not possible (i.e., it does not permit generalization to new materials/processes).

The proposed method overcomes these limitations in a two-step approach. First a Siamese
CNN is trained in a supervised manner, where only the extreme cases of the homogeneous and
inhomogeneous forming phase (begin/end of forming process) are used to train the network. These
images are separated optimally by minimizing the contrastive loss function, while augmentation
is used to increase the data amount throughout several experiments. In the second step, complete
forming sequences, not only the extreme cases, are assessed by the network and transformed into
low-dimensional representative manifolds. Using PCA and SMM, these manifolds are clustered in
an unsupervised manner into three distributions corresponding to the three phases, homogeneous,
transition and localized necking. This procedure overcomes the mentioned limitations: (1) location
dependency is reduced as a consequence of using the maximum possible square evaluation area
of all materials; (2) the overall framework is now independent of time, by replacing the one-class
SVM with SMM, allowing assessment of individual frames of incomplete forming sequences coupled
with strain paths; (3) optimal features are learned by the Siamese CNN, and are not limited to edge
information; (4) transfer of knowledge from one material to another is possible as shown with the
lomocv experiment, enabling on-line supervision of unknown materials during forming processes; and
(5) generalization of the method to materials with complex forming behavior such as AA5182, with
limited data is possible as shown within the overfit and losocv experiment. However, accommodating
measurement artifacts and defect pixels remains challenging, as their presence or absence may bias
training of the network or negatively affect clustering of the data.

7. Conclusions

In this study, a semi-supervised classification approach for the detection of the onset of localized
necking was proposed. It comprises two steps: (1) a supervised, data-driven, feature learning part
using a Siamese CNN, where only the extreme cases of the forming sequences were employed; and
(2) an unsupervised clustering part, used to group the remaining frames of the sequence as belonging
to the homogeneous, transition, or inhomogeneous forming phase. The results achieved using the
proposed approach are consistent with previous approaches. However, while the latter required
design and selection of suitable handcrafted features and a priori definition of the evaluation area,
the main advantages of the proposed approach are its location and time independency. Consequently,
the proposed method enables on-line identification of a distinct time point for the onset of localized
necking, and could be used to stop forming processes, using the acquired image information.
The question of what exactly is localized necking in terms of the strain distribution remains unanswered.
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So far, the top 90% of thinning or other heuristics are used to define the region regarded as localized
necking. Future work could investigate a data-driven approach to learn segmentations of regions
representative of localized necking.
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