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Alternative prioritization strategies have been proposed to safeguard biodiver-

sity over macroevolutionary time scales. The first prioritizes the most distantly

related species—maximizing phylogenetic diversity (PD)—in the hopes of cap-

turing at least some lineages that will successfully diversify into the future. The

second prioritizes lineages that are currentlyspeciating, in the hopes that success-

ful lineages will continue to generate species into the future. These contrasting

schemes also map onto contrasting predictions about the role of slow diversifiers

in the production of biodiversity over palaeontological time scales. We consider

the performance of the two schemes across 10 dated species-level palaeo-

phylogenetic trees ranging from Foraminifera to dinosaurs. We find that

prioritizing PD for conservation generally led to fewer subsequent lineages,

while prioritizing diversifiers led to modestly more subsequent diversity, com-

pared with random sets of lineages. Importantly for conservation, the tree

shape when decisions are made cannot predict which scheme will be most suc-

cessful. These patterns are inconsistent with the notion that long-lived lineages

are the source of new species. While there may be sound reasons for prioritizing

PD for conservation, long-term species production might not be one of them.
1. Introduction
Given our limited resources for preserving biodiversity during the current

extinction crisis [1,2], arguments have been made for protecting sets of more

distantly related species from extinction as one principle for triage. The belief

is that sets of distantly related species will have a wider variety of traits, and

as a result will (i) produce higher-functioning ecosystems [3,4], (ii) have a

greater ability to contribute to benefits to humans under changing and uncer-

tain future environments in the medium term [5–7], and (iii) harbour greater
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evolutionary potential for future lineage-specific adaptation

[8,9] and diversification over longer time scales [10], ensuring

that biodiversity and the benefits from (i) and (ii) exist into

the future. If one considers lineage accumulation as one

measure of such diversification, this third argument for

preserving sets of distantly related lineages can be tested.

All these arguments above have been used to support con-

servation strategies that prioritize total evolutionary history,

which is achieved by focusing on sets of species that are dis-

tantly related [8] and typically select for slow diversifiers. In

the context of argument (iii), there is, however, an alternative

strategy, which is to conserve the ongoing diversification pro-

cess per se [11–16]. This scheme would prioritize sets of

rapidly speciating clades, such that sets of closely related

taxa would be protected instead of distantly related ones.

These alternative strategies also map onto a longstanding

question in palaeobiology, namely whether long-lasting lineages

are statistically unremarkable (e.g. due to the age-independence

of macroevolutionary processes) [17,18], are phenotypically

average and repeatedly act as ‘biodiversity begetters’ [19,20],

or are dead ends [21]. Because species on long terminal branches

contribute more to phylogenetic diversity (PD) on average [22],

the PD-maximizing strategy is predicated on the expectation

that such lineages are more likely to speciate in the future than

the average lineage; the speciation rate-maximizing strategy is

predicated on the diversification potential of long-lived lineages

being lower than average.

Predicting the future is difficult, and so it is unclear which

approach is more likely to ensure more biodiversity in the

future [15]. The time-horizons over which we expect such

actions to have effects are so long that it is difficult to com-

pare the two scenarios experimentally. As an alternative,

we can look to the past [23] and ask a simple question:

which conservation strategy implemented millions of years

ago would have resulted in greater species richness over

subsequent geological time scales? We perform this ‘palaeo-

conservation’ experiment by (i) mimicking conservation

choices at different time points in history using dated,

species-level fossil phylogenetic trees that include many

extinct taxa and then by (ii) replaying the tape of life to ask

whether targeted conservation decisions based on phylogeny

at those past time points would have led to more species over

the subsequent course of evolution compared to randomly

selecting taxa, where random choice captures the many prior-

itization decisions that do not consider past diversification.

We query our palaeo-phylogenies at an arbitrary time (a

time slice) and model the sorts of decisions we face now by

retaining sets of distantly related lineages (using Faith’s

measure of PD as our metric) [8,10], sets of rapidly speciating

lineages (using Jetz et al.’s ‘species-level diversification rate’,

or DR, as our metric) [24,25] and random sets of lineages, dis-

carding unchosen lineages as victims of external extinction

drivers. We then ask whether the conserved set leads to

more or less subsequent biodiversity than the random set,

measured as the total number of lineages through time. We

repeat this procedure over many sequential time slices

(either every million years or every 5 million years; see

Material and methods) to ask which of the two strategies

(PD-maximizing or speciation-rate-maximizing), if either, is

on average better than the random approach. Our workflow

is presented in figure 1, and our dataset of 10 dated phylo-

genies is presented in figure 2 and electronic supplementary

material, table S1.
This experimental test of the effects of palaeo-conservation

requires three linked assumptions. Almost all our palaeo-

phylogenies are incomplete, and we assume that their

shapes capture general macroevolutionary processes rather

than biased sampling [26]. Because we are pruning lineages

in the past and then looking at subsequent species richness,

we also assume that lineage interactions are not overriding

drivers of realized diversification. Finally, we assume that

the shapes of these palaeo-phylogenies are representative of

the unknown complexities of future long-term macroevolu-

tion (e.g. that past processes such as changing

biogeographic theatres, changing productivities and the

appearance of future key innovations that have led to

the tree shapes we sample represent these processes into the

future). Overall, we hope that the shapes of these real

palaeo-phylogenies capture actual process better than would

simulated phylogenies.

Given these assumptions, the simple exercise we present

should help us evaluate arguments for considering macro-

evolution as a driver of conservation prioritization. As we

show below, maximizing PD offers no diversification returns

across our 10 trees, while maximizing speciation rate could.

And, while overall tree shape did predict when sets of dis-

tantly related lineages would have led to more biodiversity,

tree shape measured at any focal time slice when decisions

are made does not.

2. Results and discussion
Figure 3 presents the performance through time of the two

prioritization strategies across each of the 10 trees at 30% con-

servation (electronic supplementary material, figures S6 and

S7 also present 15 and 60%); figure 4 presents the overall rela-

tive performance across all three conservation intensities. We

highlight three major patterns. First, while the two conserva-

tion strategies are not directly contrasting, their performance

is generally negatively correlated. Second, sets created to

maximize PD consistently led to lower total biodiversity

over the long term than did sets of random lineages

(figure 4a,c,e). Conversely, the speciation-rate-maximizing

conservation strategy performed as well or even slightly

better than random lineage selection (figure 4b,d,f ). Third,

there is marked variation among trees both in the relative per-

formance of the schemes and the effect of conservation

intensity. Though our sample size is small, several correlated

measures of overall tree shape are good predictors of the per-

formance of the PD-maximizing strategy, especially when

fewer lineages are conserved. Figure 4 presents the results

for one measure, phylo-temporal clustering, which captures

the extent to which members of entire clades either diversify

in concert or are quiescent. We consider other measures in

electronic supplementary material, figure S4 and table S1,

and find increased performance of the PD-maximizing strat-

egy associated with the smaller trees and with the trees with

relatively short internal branches in our dataset.

Our main result—that if we conserve lineages that maxi-

mize PD, we generally get less subsequent biodiversity across

our trees—is troubling. The logic underpinning why we

should prioritize evolutionary diversity is best described by

the sampling effect: given the vagaries of future diversifica-

tion, choosing distantly related lineages in the present

increases the chances of sampling some that will sub-

sequently diversify. The logic is also robust—maximizing
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PD is achieved by choosing lineages from each sister clade at

each split as one moves from the root to the tips [28]. On

reasonable trees, such a PD-maximizing strategy is likely to

capture some tips from clades that have diversified in the

recent past as well as some that are part of early-diverging

lineages; at the limit on a perfectly balanced tree, PD chooses

tips non-randomly, but all chosen species have the same DR.

However, the poor performance of the PD-maximizing

scheme coupled with the better performance of the

speciation-rate-maximizing scheme suggests that sampling

species-poor lineages is actually a bad bet: slow diversifiers

appear to remain small [21,28], while lineages that are currently

speciating are more likely to grow into the macroevolutionary

future. It is well known that the shape of phylogenies of extant

species is consistent with variation in DRs among entire sub-

clades [29], and so this interpretation for our results extends

this latter mechanism to palaeo-phylogenies more generally.

As we increase sampling, the sets of conserved species

under the three strategies will tend to be more similar because

sampled sets will include more overlapping sets of taxa, and

the performance of all conservation strategies should converge

on the performance of random samples, as they do

(figure 4e,f ). The interpretation of the relative performance at

different conservation intensities depends on how severe one

thinks future extinction is going to be. Regardless, there is no

indication that milder anthropogenic extinction would support

either conservation strategy: the performance of the speciation

rate-maximizing strategy also deteriorates as sampling

increases, suggesting it should not be advocated at this stage.

Considering among-tree variation, it is clear that the per-

formance of each of our conservation algorithms shifts

among trees and over time (figure 3; electronic supplementary

material, figures S6 and S7). Though several measures of over-

all tree shape do show promise as predictors of the

performance of the two strategies (see electronic supplemen-

tary material, figure S4 and table S1), such measures offer

little practical use because conservation decisions are made at

a single time slice (figure 1)—for us, in the present. We there-

fore asked the following more practical question: is there

information in the tree shape at the time a conservation
strategy is implemented that predicts subsequent performance?

We can measure tree shape of the reconstructed tree at every

time slice (i.e. the tree connecting the extant lineages at that

slice) and ask if this shape predicts the performance of either

conservation strategy. However, none of our measures (tree

balance, g and two measures of speciation rates) reliably pre-

dicted the performance of either conservation scheme across

trees (electronic supplementary material, figures S8 and S9).

Generally, our results are consistent with a model where

idiosyncratic macroevolutionary events [30] determine the

result of conservation algorithms over long time scales. For

real trees, random or idiosyncratic behaviour can, of course,

be described in retrospect, tree by tree and era by era. The

PD-maximizing approach conserves species sitting on long

branches and will succeed if such quiescent lineages sub-

sequently diversify. For example, 13 million years ago, a

conservationist applying this approach would probably

have saved a lineage of American hipparionine horses with-

out any remarkable ecomorphological adaptation [31] that 2

million years later underwent a substantial diversification

pulse as it dispersed into Eurasia and Africa. However,

none of these Old World hipparionine horses survived after

the Pleistocene, highlighting that even the outcome of suc-

cessful conservation decisions might be fleeting over

macroevolutionary time scales. Likewise, a prehistoric con-

servation biologist focused on fast-diversifying lineages

among the ruminants around 24 Ma would have chosen

lineages that subsequently evolved into a variety of pheno-

types and that made up most of subsequent ungulate

diversity. If she had, on the other hand, chosen sets to maxi-

mize PD, several mouse deer lineages that subsequently

diversified very little would always have been retained, and

in this case, random sets would have produced more lineages

subsequently.

The patterns we report also speak to what, if anything,

defines long-lasting, slow-diversifying lineages, or the long

edges in our fossil phylogenies. Limited palaeontological evi-

dence suggests that lineages with long durations in the fossil

record might be phenotypically average, and there are argu-

ments that they are generally more prone to persist, and,
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critically, to produce new forms [20]. In some microbes, gen-

eralist taxa tend to predominate diversification dynamics

[32]. However, others have argued that while long-lasting

lineages have higher climatic tolerances, they show slower

speciation and extinction rates [28,33–36]. Our primary

result, that the PD-maximizing scheme applied to the fossil

phylogenies analysed leads to less subsequent biodiversity

than random choice, seems most consistent with the notion

that lineages on long branches are statistically unremarkable

[17], or even dead ends [21,37]. Thus, whether or not such

lineages might have average ecomorphologies that help

them endure [19], these lineages may not beget future bio-

diversity [21]. Indeed, in the electronic supplementary

material, we document no strong pattern in our trees of

persistence for lineages chosen to maximize PD (electronic

supplementary material, figure S2).
As with almost all palaeontological data, the trees we

have used represent only a subset of their total evolutionary

histories (see [38], for example), and so we must assume that

their shapes are unbiased with respect to our test. Under

simulated random sampling, we find no overall bias, with

DR being less sensitive to sampling than PD (electronic sup-

plementary material, figure S3). This could be interpreted as

supporting the suggestion that the DR conservation strategy

can produce moderate gains in total subsequent biodiversity.

Non-random sampling of our palaeo-trees (e.g. due to geo-

graphical and temporal patterns of fossil discovery) might

also lead to biases [39], and demonstrably have for at least

one of the trees included here (all trees include most of the

known species of each group, except Mesozoic Avetherapoda

[40]). This is an important area for any future work looking at

the shapes of palaeo-trees generally.
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It is important to highlight that our preferred metric of

conservation success (figure 1) (i) is based on the total

number of lineages, (ii) integrates this total subsequent diver-

sity following a conservation decision at a particular time

slice, and (iii) further sums up this measure across all possible

time slices for each group. All three decisions merit comment.

The third step, integration over all time slices, should be least

controversial—conservation decisions are to be made in the

present, and the present time slice is likely to be arbitrary

with reference to the past history of any particular clade of

interest, meaning we should consider the average effect

over many possible time slices.

It is important to highlight that our biodiversity metric

only counts lineages, and does not, perforce, include any con-

cept of disparity, making it an incomplete measure of

biodiversity. Indeed, the study that helped motivate this

work [10] was focused on using PD as a measure of feature

diversity, a concept closely aligned with disparity. The

study did, however, make the claim that PD may be a strat-

egy to safeguard future diversification as well: ‘We

therefore argue that maximizing PD will in turn maximize

the options for future diversification . . . Throughout the his-

tory of angiosperms, diversification has been a complex

process in which the propensity to diversify was highly

labile and dependent upon many different traits at different

times’ [10, p. 759]. Initial arguments for safeguarding future

diversification potential [11–14,16] were raised as comp-

lements to those for preserving present disparity. So,

though feature diversity is a more common argument for pre-

serving PD, including it here (measured, e.g. as PD) would

lead us to circularly prefer PD-maximizing over speciation

rate-maximizing schemes (see Davis et al. [41] for a clear

discussion of the potentially weak relationship between the

accumulation of biodiversity and the accumulation of disparity).

Finally, the time scale for measuring the outcome of con-

servation decisions on future biodiversity is relevant to

arguments about benefits to humans. One could also ask

how choices at one time slice affect biodiversity maintenance

and production at specific subsequent times (e.g. after 1 or
10 million years), though we know of no defensible way to

choose such a window. More generally, there is an active

debate on the benefits of conserving the means of production

of future biodiversity over short time scales (see [7,9,42]).

Conservation decisions flow from a complex interacting

nexus of social, economic and scientific concerns. Policy

makers and managers generally need to balance competing

priorities and provide meaningful evidence of improvement

across these concerns on time scales that are meaningful to

society. Social and economic factors, and the politics arising

from these, are always immediate, and conservation justifica-

tion relying on expected events over millions of years will

rarely gain traction [43]. But if our palaeo-phylogenies are

representative, the argument that maximizing current PD

safeguards future lineage production [10,11] is empirically

unsupported in any case. If anything, we might want to

reconsider approaches that explicitly safeguard ongoing

diversification [11] instead of strategies that maximize current

disparity. Most likely, though, the macroevolutionary future

cannot be predicted based on tree shape alone, and we

should consider other biodiversity benefits to help us priori-

tize species and areas for conservation activities. Given the

urgent need for operational and scalable triage approaches,

we call for more directed tests of the benefits to humans aris-

ing from the approach that aims to maximize standing PD.
3. Material and methods
(a) Phylogenetic data
Our dataset is made up of 10 empirical fossil phylogenetic data-

sets, selected via an extensive search of the relevant literature. In

order to qualify, the tree needed to be resolved to the species

level, and to contain extensive fossil information where phylo-

genetic affinities of fossil taxa are reasonably well established

and where the known stratigraphic range is included as part of

the length of the tips because our method relies on future diver-

sity trajectories (figure 1; see the electronic supplementary

material). An overview of the dataset is presented in figure 2
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15, 30, 60%). Coloured points reflect averaged metrics, and bars show +s.d. across 100 trees (except for Foraminifera, for which we analyse one tree). The horizontal
dashed line represents 50% performance: below this line, a given strategy performs worse than random conservation on average. (Online version in colour.)
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and further details are provided in the electronic supplementary

material.

(b) Evaluation of conservation strategies
We used two common measures of evolutionary diversity to

guide our sampling of species for conservation. The first is

Faith’s PD [8], which is simply the length of the minimum-

spanning tree connecting a set of species to the root of the

embedding tree. A greedy algorithm [44] was used to identify

(non-unique) sets of species guaranteed to maximize PD for a

given set size. The second measure is the species-level lineage

DR, the inverse of one measure of evolutionary isolation [24].

DR is higher for species that have many close extant relatives,

reflecting ongoing high rates of speciation. By contrast, species

with fewer close relatives generally contribute more to the PD

of a set and such species have lower DR.

A schematic workflow of our procedure is depicted in

figure 1. The core logic of our approach is to model conservation

decisions made at geological time slices in the past, whereby 15,

30 and 60% of species are selected for conservation and all others

are pruned from the tree to simulate anthropogenic extinction. At
each such time slice, we conserve the same number of lineages

that maximize PD, that maximize DR and at random, and then

compare subsequent diversity.

Because we have many trees and many possible sets of

species that fulfil each conservation strategy, our sampling pro-

ceeded as follows. Given a tree and a time slice, we produced

100 pruned trees that each conformed to a particular conserva-

tion strategy (e.g. 100 different PD-maximizing trees under 30%

sampling). We then produced a median lineages-through-time

plot for these 100 pruned trees, using the package palaeotree
[45], and took the area under that the median plot as our

measure of subsequent diversity. Our relative measure of per-

formance at a time slice is this median area over the

corresponding area under the median lineages-through-time

plot generated from 100 trees randomly pruned at that time

slice, a ratio that we log-transformed. Thus, slices where PD- or

DR-maximizing strategies perform better than random will

yield a value above 0 and slices where random conservation per-

forms better will yield a value below 0. We then repeated this at

every 1-million-year time slice (every 5 million years for the very

deep dinosaur, pterosaur, Avetheropoda and Neopterygii trees,

which produced similar total numbers of time slices as the



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20182896

7
others), discarding slices with fewer than five lineages present,

and recorded the percentage of time slices where our strategy

did better than random. This is our performance metric for a

sampled tree. We then repeated this for each of 100 trees from

our posterior sample of trees per taxon (except for Foraminifera,

where we have only one tree), and report the mean percentage

across trees (e.g. figure 4).

(c) Tree shape metrics
We estimate two sets of tree shape measurements. The first set of

metrics considers whether the overall performance of PD- and

DR-maximizing strategies can be predicted by overall tree

shape. Here, we measured overall tree balance (b), the pro-

portion of the total length of the tree belonging to the tips

(what we call ‘fossil gamma’, gf ) and ‘phylo-temporal’ clustering

(abbreviated PTC). The phylo-temporal clustering measure is the

extent to which temporally synchronous divergence and extinc-

tion events are also phylogenetically clustered (see electronic

supplementary material, figure S1). A clade where different sub-

clades successively replace each other in replicated radiations

through time (e.g. in canids [46]) will have a higher phylo-

temporal clustering score than clades where all subclades radiate

(or go extinct) at the same time or where events are widely scat-

tered. We hypothesized that a pattern of clade replacement

would best predict when the diversity-maximizing conservation

strategy would yield biodiversity dividends. More methodologi-

cal details are provided in the electronic supplementary material.

The second set of metrics was measured on the reconstructed

phylogeny at each time slice—the tree connecting those lineages

extant at that slice—in order to determine whether tree shape

on extant species might predict PD- and DR-maximizing
performance. We compute tree balance (b), the distribution of

splitting times through the tree (g), median DR (are lineages at

that slice diversifying at high or low rates) and DR skewness

(whether fast- or slow-diversifying lineages are more prevalent

in the reconstructed tree).

Data accessibility. All phylogenetic datasets analysed are available from
the Dryad Digital Repository: https://doi.org/10.5061/dryad.
gd8038s [47].
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