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Figure S1: Simulated band structures for a 5 QW sample showing the conduction band
profile bending assuming a 0.6 V Schottky barrier at each metal-semiconductor interface
for undoped outermost layers (a), and the ideal doping of the outermost layers (b). In
(a), the whole structure is depleted. The electron density is represented in grey in (b).
Inset: Electron wave function (squared modulus) in the central QW. The Fermi energy is
represented in dashed line. The Siδ-doping layers are represented in red dashes.

S1 Band Structure

The sample design has to take into account the conduction band profile bending at the
metal-semiconductor interface. In order to estimate this effect, we use a freely available
Schrödinger-Poisson solver1 to solve for the band profile self-consistently, coupled to an in-
house Schrödinger solver accounting for non-parabolicity. We assume a 0.6 V barrier at the
Au-GaAs interface. If no special care is taken for the outermost layers of the structure, as in
Fig. S1 (a), the Schottky barrier leads to a rise of the conduction band edge, fully depleting
the structure. To compensate for this effect, the outermost GaAs and Al0.15Ga0.85As layers
must be doped. The targeted band profile is shown in Fig. S1 (b). In real structures, the
actual dopant concentration is unknown and requires careful empirical tuning and calibration
to achieve an optimal result. Moreover, the exact barrier height is also unknown an depends
on the GaAs surface defect density. We show in the main text that our first sample was too
lightly doped at the metal-semiconductor interfaces, while the second one suffered from free
carrier absorption caused by electrons in the outermost GaAs layers.

S2 Lumped elements model

The resonant frequency of the LC resonator is evaluated using a lumped element model,
following previous work on structure without QWs.2 The capacitance of the structure is
calculated using the formula for two parallel strip lines, which allows accounting for the
parasitic capacitance between the two arms of the resonator.3 The formula for an odd-mode
coupling is:

C = Cf + Cp + Cgd + Cga (1)

where Cp is the usual planar capacitance between the strip and the ground plane, Cf is
the fringing field capacitance at the outer edge of the strip only. Cga and Cgd are the gap
capacitance between the two microstrip lines respectively in air and the dielectric substrate.
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The exact expression of Cga involves the ratio of the elliptic function and its complement,
which can be approximated as:
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S + 2W
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1− k2 (2)
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where W is the width of the strip and S the length of the gap between the strips (Lx in the
main text). The Cgd capacitance is:
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where d is the capacitor thickness, and ε the permittivity of the embedding dielectric material
(SiN in our case). Similarly, we calculate the total inductance by summing all the individual
inductances of each straight wire of the inductive loop and of the connecting wire on the
ground pad, and all the mutual inductances between parallel wires. The inductance of a
thin wire is given by:4

L = 2l (ln (2l/r)− 1) (5)

while the mutual inductance between two parallel wires is:4

Mi‖j = 0.001

[

z ln
(

z +
√

z2 + ρ2
)

−
√

z2 + ρ2
]

l3−l1,l3+l2

(z)
l2+l3−l1,l3

(6)

where l1 is the length of the first wire, l2 is the length of the second wire, l3 is the signed
distance between the first end of each wire, and ρ their parallel separation, and

[

f (z)
]s1,s3

(z)
s2,s4

=
4
∑

k=1

(−1)k+1f (sk) (7)

The value of M is in µH for lengths in centimetres. Finally, the total inductance reads:3

Ltot =
∑

i

Li − 2
∑

i‖j
Mij (8)

The resonant frequency is ultimately given by f = 1/2π
√
LC.

S3 25 QWs reference sample

We present in Fig. S2 the properties of the 25 QWs reference sample processed into patch
cavities. Fig. S2 (a) shows the reflectivity of the 13µm patch as a function of temperature,
showing a clear polaritonic splitting as the temperature decreases. Fig. S2 (b) shows the
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Figure S2: 25 QW sample processed into patch microcavities. Left: reflectivity as a function
of temperature for the cavity closest to the matter resonance. Right: polariton dispersion
relation as a function of cavity frequency. The Rabi splitting is 2ΩR = 1.28 THz= 0.4ω̃.
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dispersion relation of the two polaritonic branches, allowing us to determine the intersubband
plasmon frequency ω̃ = 3.6 THz and the Rabi splitting 2ΩR = 1.28 THz. We recall here
equation (2) of the main text, which is the basis of our analysis:

2ΩR =
√

Ψ2fwf12ωP =

√

Ψ2f12e2NQW (n1 − n2)

εε0m∗d
(9)

From the knowledge of the polariton splitting alone, one can only deduce the product
Ψf12NQW (n1 − n2). Assuming that at low enough temperature, n2 = 0, and furthermore
that Ψ ≈ 1 for the patch cavities, we can determine the product

f12NQWn1 = (2ΩR/e)
2 εε0m

∗d = 22× 1011cm−2 (10)

Using a Schrödinger-Poisson solver, and making successive hypothesis on the (integer)
number of populated quantum wells, we can determine the doping in each quantum well and
the corresponding oscillator strength. It is important to note that the oscillator strength
and the doping density have a complex interplay on the Rabi frequency, as a larger doping
density increases the Rabi frequency through the n1 term, but lowers the oscillator strength
f12 as it deforms the QW and hence changes the overlap between the electron wave functions.
The resulting doping density can be checked by calculating the theoretical value of the in-
tersubband plasmon frequency ω̃ =

√

ω2
12 + ω2

P from the plasma frequency. This theoretical
value can be compared to the experimental determination of ω̃, which is determined as the
asymptotic value of the upper polariton branch as the cavity frequency tends towards zero.

As an example, in the case of the 25 QWs sample, we find that 21 QWs are populated,
resulting in a surface equivalent doping per quantum well of n1 = 1.37 × 1011cm−2, and an
oscillator strength f12 = 0.907. Note that this value differs from the ideal quantum well one
of f12−ideal = 0.96. These values will be the starting point of our data analysis procedure,
discussed below, to determine the properties of the 5 QWs samples processed into patch
cavities and LC resonators.

S4 Iterative procedure for the data analysis

We describe here the iterative procedure used to determine the electron density in each
sample. Starting with the first 5 QWs sample in the main text (sample A hereafter) processed
into patch cavities, and comparing the Rabi splitting with the one of the 25 QWs sample,
we get:

(

ΩA
R

Ω25
R

)2

=
fA
12N

A
QWnA

1

f 25
12N

25
QWn25

1

(11)

where the denominator on the right hand side has been determined in the previous section.
From the Rabi splitting deduced in Fig. 4 (a) of the main text, ΩA

R = 0.85 THz, we obtain
the product fA

12N
A
QWnA

1 = 2.5× 1011cm−2. Assuming that the surface charge density is equal
in both samples, e.g. nA

1 = n25
1 = 1.37 × 1011cm−2, we have the same oscillator strength

fA
12 = 0.907 and we get NA

QW = 2. These hypothesis are further confirmed by calculating
the intersubband plasmon frequency ω̃ = 3.56 THz, in very good agreement with the results
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presented in Fig. 4 (a) of the main text.
We can then make use of this result to characterize the LC resonators processed on the

same 5 QWs sample, using the patch cavities as a reference, assuming that the number of
populated QWs is the same:

(

ΩA−LC
R

ΩA−patch
R

)2

=
Ψ2

A−LCf
A−LC
12 nA−LC

1

Ψ2
A−patchf

A−patch
12 nA−patch

1

(12)

If we naively assume in a first step that the electronic population is strictly the same, the
ratio of the Rabi frequencies directly yields the optical confinement factor:

ΩA−LC
R

ΩA−patch
R

= ΨA−LC = 0.84 (13)

since ΨA−patchs ≈ 1. However, Fig. 4 in the main text clearly evidences that the patch
cavities and LC resonators have different intersubband plasmon frequencies ω̃, indicating
a different doping density. An iterative procedure using Schrödinger-Poisson simulations
should thus be employed to well encompass the interplay between the oscillator strength and
the doping density in the Rabi frequency. A doping density of n1 = 1.2 × 1011cm−2 yields
an oscillator strength of fLC

12 = 0.918, and the correct ISB plasmon frequency ω̃ = 3.5 THz.
We can thus correct the confinement factor which ultimately reads ΨA−LC = 0.89. Finally,
using the number of populated QWs and the surface equivalent doping per QW, we get that
NA

e−patchs = 3.3× 105e−/patch and NA
e−LC = 2.4× 103e−/capacitor.

For the sake of consistency, we can try to relax the assumption NA−LC
QW = Npatch

QW = 2. As

the product f12NQWn1 has to be conserved, using NA−LC
QW = 1 results in a doping density of

around n1 = 2× 1011cm−2, f12 = 0.87 and ω̃ = 3.76 THz, which is larger than the measured
value. Inversely, NA−LC

QW = 3 results in a doping density of around n1 = 0.8 × 1011cm−2,
f12 = 0.936 and ω̃ = 3.35 THz, which is lower than the measured value. These values are
shown in stars in Fig. 4 (b) of the main text. We can thus confirm the values determined
above.

S5 5 QWs, increased doping (sample B)

We present in Fig. S3 the properties of the 5 QWs sample with increased doping (hereafter
designated as sample B), processed into patch cavities (Fig. S3 (a)), and compared to the
LC resonators (Fig. S3 (b)). From the dispersion relation of the sample processed into patch
cavities (Fig. S2 (a))we determine the intersubband plasmon frequency ω̃ = 3.6 THz and
the Rabi splitting 2ΩR = 1.28 THz.

Using the same iterative procedure, we can deduce the product fB−patch
12 NB−patch

QW nB−patch
1

in the new sample by comparing the Rabi splitting with the previous 5 QWs sample, and
accounting for the thickness difference between the active regions:

fB−patch
12 NB−patch

QW nB−patch
1 = fA−patch

12 NA−patch
QW nA−patch

1

dB−patch

dA−patch

(

ΩB−patch
R

ΩA−patch
R

)2

(14)
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Figure S3: Polariton dispersion relation in the case of patch microcavities (left) and LC
resonators (right) for the sample with the largest doping in the outer GaAs layers.

which yields fB−patch
12 NB−patch

QW nB−patch
1 = 6.26× 1011cm−2. Using Schrödinger-Poisson simu-

lations, we obtain a doping density of nB−patch
1 = 1.4× 1011cm−2 and a number of populated

QWs NB−patch
QW = 5.

We can then use these values to characterize the LC resonators fabricated on the same
sample. Again, we can check that the number of populated QWs is the same, NB−LC

QW =

5. Using Schrödinger-Poisson simulations, we obtain a doping density of nB−LC
1 = 1.2 ×

1011cm−2 and a corresponding oscillator strength fB−LC
12 = 0.918. Applying the same equality

as equation (12) on sample B, we finally get ΨB−LC = 0.75. We finally calculate that in this
sample, NB

e−patch = 8.5× 105e−/patch and NB
e−LC = 6× 103e−/capacitor.
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