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Abstract 

Recombinant	therapeutic	proteins	are	playing	an	ever-increasing	role	in	the	clinic.	High-

affinity	binding	candidates	can	be	produced	in	a	high-throughput	manner	through	the	

process	 of	 selection	 and	 evolution	 from	 large	 libraries,	 but	 the	 structures	 of	 the	

complexes	with	target	protein	can	only	be	determined	for	a	small	number	of	them	in	a	

costly,	low-throughput	manner,	typically	by	x-ray	crystallography.	Reliable	modeling	of	

complexes	would	greatly	help	to	understand	their	mode	of	action,	and	improve	them	by	

further	 engineering,	 e.g.,	 by	 designing	 bi-paratopic	 binders.	 Designed	 Ankyrin	 Repeat	

Proteins	(DARPins)	are	one	such	class	of	antibody	mimetics	that	have	proven	useful	in	

the	clinic,	in	diagnostics	and	research.	Here	we	have	developed	a	standardized	procedure	

to	model	DARPin-target	complexes	that	can	be	used	to	predict	the	structures	of	unknown	

complexes.	 It	 requires	only	 the	sequence	of	a	DARPin	and	a	structure	of	 the	unbound	

target.	 The	 procedure	 includes	 homology	 modeling	 of	 the	 DARPin,	 modeling	 of	 the	

flexible	parts	of	a	target,	rigid	body	docking	to	ensembles	of	the	target	and	docking	with	

a	 partially	 flexible	 backbone.	 For	 a	 set	 of	 diverse	 DARPin-target	 complexes	 tested	 it	

generated	a	single	model	of	the	complex	that	well	approximates	the	native	state	of	the	

complex.	We	provide	a	protocol	that	can	be	used	in	a	semi-automated	way,	and	with	tools	

that	 are	 freely	 available.	 The	 presented	 concepts	 should	 help	 to	 accelerate	 the	

development	of	novel	bio-therapeutics	for	scaffolds	with	similar	properties.		

	

Keywords:	DARPin,	protein-protein	docking,	homology	modeling,	Rosetta,	ClusPro	
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Introduction 

Protein-protein	 interactions	 mediate	 most	 biological	 processes,	 including	 structural	

organization	of	the	cell,	extra-	and	intracellular	signaling	and	metabolic	pathways	[1-3].	

Specificity	 of	 these	 interactions	 is	maintained	by	 a	 unique	 spatial	 arrangement	 of	 the	

residues	that	form	the	contacts	between	the	molecules	[4].	A	single	protein	may	interact	

with	 multiple	 binding	 partners	 in	 orthogonal	 ways,	 leading	 to	 different	 biological	

effects	[5].	 Therapeutic	 proteins	 that	 only	 block	 some	 of	 these	 interactions	 would	 be	

desirable.	 In	 other	 instances,	 receptors	 can	 be	 blocked	 by	 bi-paratopic	 therapeutic	

binding	 molecules	[6],	 which	 need	 to	 interact	 with	 the	 receptor	 in	 precise	 geometric	

arrangements.	In	all	of	these	and	many	other	instances,	a	structural	understanding	of	the	

interaction	of	the	target	with	the	binding	protein	would	be	instrumental	in	developing	

improved	protein-based	therapeutics.	

Although	in-vitro	methods	of	selection	of	protein	binders	may	promote	binding	to	certain	

regions	on	the	target	protein	surface,	such	a	bias	largely	depends	on	the	target,	i.e.,	if	the	

targeted	subdomains	can	be	expressed	individually	and	be	stable	during	the	selection,	or	

if	 reagents	 that	mask	unwanted	 surfaces	 are	 available.	 Even	 in	 these	 favorable	 cases,	

there	are	usually	still	many	possible	binding	geometries,	and	the	exact	epitope	remains	

to	 be	 determined	 experimentally,	 typically	 by	 x-ray	 crystallography	 with	 extremely	

uncertain	time	lines.	Therefore,	a	method	to	reliably	predict	the	binding	mode	of	protein	

binders	 that	 can	 be	 used	 routinely	 would	 greatly	 accelerate	 the	 development	 of	 bio-

therapeutics.	Such	method	would	not	only	help	to	explain	the	binder’s	mode	of	action,	

but	also	to	rationally	improve	its	design.		
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Predicting	structures	of	protein	complexes	 is	still	a	major	challenge.	This	because	of	a	

number	of	coexisting	isoenergetic	conformations	of	proteins	and	the	approximate	nature	

of	 energy	 functions.	 A	 number	 of	 protein-protein	 docking	 algorithms	 have	 been	

developed,	 e.g.,	 ZDOCK	[7],	HADDOCK	[8],	 PIPER	[9],	 SwarmDock	[10],	 GRAMM-X	[11],	

DOCK/PIERR	[12],	 Hex	 FFT	[13],	 ATTRACT	[14]	 and	 RosettaDock	[15].	 Their	

performance	 is	 periodically	 challenged	 in	 the	 Critical	 Assessment	 of	 Predicted	

Interactions	(CAPRI)	[16].	Whereas	most	of	the	available	algorithms	can,	in	many	cases,	

generate	several	solutions	 including	near-native	ones,	 the	near-native	solutions	rarely	

score	best.	Scoring	remains	a	primary	challenge,	because	scoring	functions	only	roughly	

approximate	 free	 energy	 differences	 between	 different	 conformational	 states	[17].	

Additionally,	the	algorithms	are	often	trained	on	sets	of	bound	complexes,	where	binding	

partners	match	each	other	perfectly	(ideal	but	artificial	lock-and-key	model)	[18].	Real-

life	docking	of	unbound	structures	that	have	been	experimentally	determined	as	separate	

proteins,	or	even	only	as	homology	models,	where	the	interface	is	not	in	perfect	shape	

complementarity	to	the	bound	partner,	is	much	more	difficult	[17].	It	requires	different	

approaches,	 like	 softened	 energy	 functions	 to	 tolerate	 clashes	 or	 exploiting	 different	

binding	models	 (induced-fit	 or	 conformational	 selection)	 that	 take	 into	 account	 small	

conformational	changes	upon	binding	[19,	20].		

The	 algorithms	 are	 typically	 evaluated	 on	 a	 diversified	 benchmark	 set	 that	 includes	

unbound	 structures	 of	 different	 complexes,	 classified	 as	 enzyme-inhibitor,	 antibody-

antigen	and	others	[21,	22].	The	best	algorithms	are	successful	in	20-30%	cases,	where	

success	is	still	defined	as	finding	a	near-native	solution	within	the	top	ten	models	[17].	

When	only	the	single	top-scoring	model	is	considered,	which	would	be	the	requirement	

to	 include	such	predictions	in	an	actual	project	workflow,	the	success	rate	drops	to	0-
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12%	[17].	 To	 improve	 ranking	 of	 the	 near-native	 solutions,	 many	 more	 re-scoring	

functions	 have	 been	 developed	 but,	 overall,	 they	 improve	 prediction	 only	 to	 a	 small	

extent	[23,	24].	

Because	 of	 these	 low	 success	 rates,	 modeling	 strategies	 have	 been	 proposed	 that	 are	

individually	 adapted	 to	 a	 single	 complex	 of	 interest,	with	 their	 success	 depending	 on	

modeling	expertise,	with	an	inherent	risk	of	subjectivity,	rather	than	being	based	on	an	

algorithm.	Such	strategies	are	low-throughput,	hence	less	attractive	for	a	routine	access	

to	structural	information.	A	general	protocol	that	could	be	applied	to	an	entire	class	of	

binders	would	be	particularly	valuable	given	that	the	number	of	selected	binders	grows	

too	rapidly	to	be	followed	by	experimental	structural	characterization.	

The	 need	 for	 computational	 modeling	 of	 protein	 binders	 is	 reflected	 by	 the	 constant	

interest	 in	 antibody	 docking	 and	 design	[25-27].	 Modeling	 antibodies,	 however,	 is	

particularly	 challenging	 because	 their	 binding	 mode	 involves	 the	 interaction	 of	 six	

complementarity-determining	loops,	some	of	which	are	considerably	flexible.	Designed	

Ankyrin	Repeat	Proteins	 (DARPins)	are	antibody	mimetics	[28]	with	a	broad	range	of	

applications	[29].	 Analogously	 to	 antibodies,	 they	 can	 be	 selected	 from	 randomized	

libraries	 against	 an	 arbitrary	 target	 protein	 of	 choice.	 They	 are	 very	 stable,	 easy	 to	

produce	 and	 to	 handle	[28,	 30].	 DARPins	 have	 a	 big	 potential	 for	 diagnostics	 and	 as	

therapeutics	[31].	For	instance,	a	DARPin	can	distinguish	between	the	active	and	inactive	

active	 form	 of	 a	 kinase	[32],	 detect	 tumor	 cells	 with	 specificity	 higher	 than	 the	 FDA-

approved	 antibody	[33],	 target	 adenovirus	 to	 the	 specific	 tissue	[34],	 or	 induce	 cell-

specific	apoptosis	[6].	At	present	 (May	2019)	 several	DARPins	are	undergoing	clinical	

trials	 (ClinicalTrials.gov	 Identifier:	 NCT03418532,	 NCT03136653,	 NCT02194426,	



6	
	

NCT03084926,	 NCT03539549,	 NCT02462486,	 NCT02186119,	 NCT02462928,	

NCT02181517,	NCT02181504,).	

DARPins,	with	most	of	the	advantages	of	antibodies	as	protein	reagents	for	research	and	

already	proven	in	the	clinic	as	therapeutics,	constitute	a	favorable	case	for	computational	

modeling.	Firstly,	they	are	rigid	and	even	their	binding	loops	have	limited	conformational	

flexibility,	which	largely	reduces	the	sampling	space.	Secondly,	they	are	fairly	small	(~15-

18	 kDa),	which	 significantly	 reduces	 computation	 times.	 Finally,	 they	 are	 structurally	

very	similar	to	one	another,	and	this	simplifies	homology	modeling.	

In	this	paper	we	report	on	a	general	strategy	that	can	be	applied	to	predict	the	structure	

of	DARPin-target	(DT)	complexes.	Through	extensive	search	for	optimal	parameters,	we	

developed	a	procedure,	involving	modeling,	docking	and	ranking	of	the	models,	that	is	

tailored	to	this	particular	type	of	protein-protein	complexes,	without	being	tailored	to	an	

individual	 target.	 It	 consists	 of	 steps	 performed	 within	 the	 Rosetta	 modeling	

software	[35]	 and	 ClusPro	 docking	 algorithm	[36],	 and	 is	 based	 on	 newly	 developed	

scripts	and	new	scoring	and	 filtering	approaches.	We	 thus	established	a	protocol	 that	

correctly	 predicted	 seven	 out	 of	 seven	 complexes,	 which	 included	 diverse	 targets	 of	

different	 sizes	 and	 folds,	 bound	 to	DARPins	derived	 from	different	 selection	 libraries.	

This	single	protocol	not	only	predicted	near-native	structures	of	all	these	complexes	as	

single	 top-scoring	 model,	 but	 importantly	 also	 the	 complexes	 that	 were	 not	 used	 in	

optimization.	 The	 protocol	 requires	 only	 the	 unbound	 structure	 of	 a	 target	 and	 the	

sequence	of	a	DARPin,	and	can	be	performed	in	a	semi-automated	way.	
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Results 

In	order	to	optimize	the	modeling	procedures	we	selected	five	DT	complexes	from	the	

Protein	Data	Bank	(PDB).	Although	there	are	more	structures	available,	many	of	them	are	

redundant	(the	same	DARPin	with	different	extensions),	contain	different	DARPins	that	

recognize	the	same	or	overlapping	epitopes,	or	are	complexes	that	contain	DARPins	that	

bind	differently	but	still	to	the	same	target	(for	instance,	there	are	20	complex	structures	

of	a	DARPin	with	multidrug	exporter	AcrB).	To	avoid	possible	biases	towards	DARPin	

sequence,	epitope	structure,	and	the	target	structure	and	fold	in	general,	we	focused	on	

several	representative	complexes.	We	aimed	to	cover	a	broad	diversity	of	targets	as	well	

as	DARPins,	although	the	latter	are	structurally	similar.	We	looked	for	monomeric	targets	

of	different	sizes	and	folds,	being	less	than	300	amino-acid	in	length	to	reduce	the	cost	of	

computation	(see	Table	1).	The	DARPins	contained	either	two	or	three	internal	repeats	

between	the	N-	and	C-terminal	capping	repeats	(denoted	as	N2C	or	N3C,	respectively).		

We	chose	the	following	complexes:	DARPin	G3	bound	to	domain	IV	of	human	epidermal	

growth	 factor	 receptor	 2	 (HER2_IV)	[37],	 DARPin	 3g124	 bound	 to	 GFP	[38],	 DARPin	

44C12V5	bound	to	interleukin	4	(IL4)	(PDB	ID:	4YDY,	unpublished),	DARPin	K27	bound	

to	human	KRAS	[39]	 and	DARPin	3H10	bound	 to	 kinase	domain	of	 polo-like	 kinase-1	

(PLK1)	[40].	We	will	further	refer	to	the	DARPin	as	‘ligand’	and	to	its	binding	partner	as	

‘receptor’,	as	is	commonly	done	in	the	protein-protein	docking	literature.		

To	further	test	the	performance	of	the	modeling	method,	we	looked	at	all	remaining	DT	

complexes	available	in	the	PDB,	with	different	receptors,	considering	those	receptors	that	

were	monomeric	and	less	than	300	amino	acids	in	length	(because	such	complexes	were	

also	used	 in	optimization	of	 the	modeling	steps).	From	among	five	such	receptors,	we	
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chose	complexes	with	interleukin	13	[41]	(IL13;	PDB	ID:	5KNH)	and	cathepsin	B	(PDB	ID:	

5MBL,	unpublished)	for	further	test.	We	also	considered	the	remaining	complexes	with	

BCL-W	[42]	 (PDB	 ID:	 4K5A),	 aminoglycoside	 phosphotransferase	[43]	 (APH;	 PDB	 ID:	

2BKK)	and	domain	I	of	HER2	[37]	(HER2_I,	PDB	ID:	4HRL),	but	excluded	them	for	the	

following	reasons.	BCL-W	is	known	for	its	extensive	flexibility,	and	the	reported	structure	

of	BCL-W	in	isolation	was	unusual	for	members	of	the	family;	in	fact,	a	DARPin	binder	

used	 as	 a	 co-crystallization	 chaperone	 was	 discovered	 to	 stabilize	 BCL-W	 in	 a	

conformation	 typical	 for	 other	 members	 of	 the	 BCL-2	 family	[42].	 Similarly,	 APH	

undergoes	 a	 significant	 conformational	 change	 upon	 binding	 (two	 helices	 spread	 to	

accommodate	 DARPin	 loops)	[43].	 Because	 of	 these	 a	 priori	 known	 conformational	

changes	upon	binding,	these	two	complexes	were	considered	as	too	challenging	at	the	

current	stage	and	excluded	from	analysis	(Fig.	S1);	the	general	topic	of	receptor	flexibility	

and	the	remaining	limitations	will	be	discussed	later.	Modeling	the	complex	of	HER2_I	

would	be	problematic	for	a	number	of	reasons.	First,	the	binder	that	recognizes	HER2_I	

constitutes	an	unusual	exception	among	the	known	DT	complexes	as	the	flexible	histidine	

tag,	a	feature	introduced	at	the	N-terminus	of	a	DARPin	for	purification	purposes,	is	in	

this	 case	 also	 involved	 in	 binding.	 Second,	 the	 target	 contains	 a	 long	 flexible	 loop,	

unresolved	in	available	unbound	structures,	which	would	require	an	individual	modeling	

approach	—	this	complex	was	therefore	considered	as	too	challenging	and	excluded,	too.	

A	simplified	scheme	of	the	modeling	pipeline	is	depicted	in	Fig.	1	and	its	particular	steps	

(sections	in	the	panel)	will	be	described	below.	The	detailed	version	of	the	protocol	can	

be	 found	 in	 Methods	 and	 Supplementary	 Methods.	 The	 crystal	 structures	 of	 bound	

complexes	were	not	used	in	modeling	but	only	as	evaluation	of	different	modeling	stages	

as	well	as	the	entire	modeling	success.	
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Homology modeling of DARPins 

We	 developed	 a	 set	 of	 templates	 for	 DARPin	 modeling	 with	 Rosetta	 (Supplementary	

Files).	The	templates	are	PDB	structures	of	consensus	N3C	DARPins	with	different	caps	

(PDB	 ID:2QYJ,	2XEE),	 or	N2C	 structures	derived	 from	 them	by	 removal	of	 the	 second	

internal	repeat	(details	in	Supplementary	Methods).	These	templates	were	used	as	input	

structures	 for	 fixed	 or	 flexible	 backbone	 design	 followed	 by	 all-atom	 refinement	 (see	

Methods	for	details).	After	clustering,	we	obtained	models	with	<1	Å	Cα	RMSD	from	the	

corresponding	crystal	structures	of	the	DARPin	within	the	complex	(Fig.	2).	This	suggests	

that	 the	 homology	 modeling	 of	 DARPins	 is	 rather	 straightforward	 because	 of	 their	

rigidity.	As	expected,	the	largest	discrepancies	occur	within	the	loop	regions.	

Receptor modeling 

Proteins	 are	 flexible	 and	 undergo	 conformational	 changes	 upon	 interacting	 with	 one	

another.	 Conformational	 changes	 can	 range	 from	 large	 movements,	 like	 domain	

reorientation	or	loop	movements,	to	very	small	conformational	adaptation	of	side	chain	

rotamers	at	interfaces	between	proteins.	Because	of	the	flexible	nature	of	proteins,	the	

interfaces	of	partners	in	the	unbound	form	normally	may	not	match	each	other	perfectly.	

One	 of	 the	 strategies	 to	 account	 for	 protein	 flexibility	 is	 to	 consider	 ensembles	 of	

structures	representing	the	variability	of	receptor,	ligand,	or	both,	existing	in	a	number	

of	different	conformations.	There	are	a	number	of	ways	to	generate	ensembles	[44],	one	

of	them	being	Rosetta	backrub	[45].	

To	account	for	receptor	flexibility,	we	developed	a	simple	method	to	determine	its	most	

flexible	regions	that	is	based	on	Rosetta	backrub	and	Pymol.	We	generate	a	number	of	

ensembles	(250)	that	are	then	structurally	aligned	and	the	protein	segments	of	highest	

standard	deviation	of	the	position	of	each	atom	around	the	average	(root	mean	square	



10	
	

fluctuation,	 RMSF)	 are	 calculated.	 With	 an	 RMSF	 cut-off	 of	 0.2	 Å,	 9-52%	 of	 receptor	

residues	were	considered	as	flexible	(Table	1)	and	their	backbone	atoms	are	then	allowed	

to	 be	 moved	 by	 Rosetta	 backrub	 to	 generate	 loop	 ensembles	 that	 are	 later	 used	 for	

docking	(Fig.	3).	

Interestingly,	ensembles	 that	mimic	 the	bound	state	best	are	structurally	only	slightly	

closer	 to	 the	 bound	 state	 than	 to	 the	 unbound	 structures,	 when	 entire	 receptors	 are	

compared.	When	instead	only	epitope	similarity	is	considered,	conformations	closer	to	

the	bound	state	are	sampled	still	only	in	some	cases,	and	the	distance	to	the	bound	state	

does	not	decrease	much	(Table	1).	How	these	ensembles	may	contribute	to	the	docking	

prediction	success	will	be	discussed	later.	

Rigid-body docking with ClusPro 

ClusPro	is	one	of	several	docking	servers,	freely	available	for	academic	use.	It	is	based	on	

the	PIPER	 algorithm	 that	 performs	Fast	 Fourier	Transform-based	 rigid-body	docking.	

PIPER	samples	and	scores	billions	of	receptor-ligand	poses	[9].	The	key	step	in	ClusPro		

involves	 clustering	 of	 the	 best-scoring	 poses,	 assuming	 that	 the	 largest	 cluster	

corresponds	to	the	broadest,	hence	near-native,	funnel	in	the	binding	energy	landscape.	

ClusPro	has	constantly	been	the	most	successful	automated	server	for	global	docking	in	

CAPRI	[36].	

We	use	20	loop	ensembles	as	independent	receptor	inputs	for	ClusPro,	always	with	the	

same	single	model	of	the	DARPin	ligand.	We	found	that	DARPin	models	are	too	similar	to	

each	other	 to	make	 it	worthwhile	 to	 include	more	models.	From	the	different	 scoring	

functions	available	in	ClusPro,	we	found	the	default	one	—	called	‘balanced’	—	to	be	the	

most	accurate	for	re-docking	the	bound	DT	complexes	(unpublished).	We	also	noticed	

that	if	the	near-native	solution	was	not	present	in	the	top	10	solutions,	then	it	was	usually	
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not	present	at	all	(unpublished).	Therefore,	we	consider	only	top	10	solutions	from	each	

run.	We	run	ClusPro	with	default	options,	including	repulsive	constraints	on	the	DARPin	

side,	as	depicted	in	Fig.	S2,	as	we	know	that	binding	occurs	on	the	concave	randomized	

surface	in	all	known	structures.	

To	make	the	whole	procedure	robust	and	work	for	multiple	complexes,	we	first	spent	

extensive	 efforts	 to	 evaluate	 the	 200	 (10	 each	 from	 the	 20	 receptor	 conformers)	

produced	models	 (mostly	using	Rosetta,	 testing	 a	 variety	of	 parameters	 and	different	

rescoring	 strategies).	 This	 led	 us	 to	 extending	 the	 clustering	 approach,	 inspired	 by	

ClusPro	 itself,	 and	 we	 noticed	 that	 further	 clustering	 based	 on	 Cα	 RMSD	 allows	 to	

drastically	narrow	the	pool	of	models	to	consider.	We	call	this	step	sequential	clustering.	

Remarkably,	most	of	the	largest	clusters	within	a	5	Å	clustering	radius	in	the	optimization	

set	were	already	near-native	(Table	2).	In	one	case	(PLK1),	the	near-native	cluster	ranked	

as	third.	As	in	one	case	(GFP)	the	near-native	cluster	was	exceptionally	broad,	we	further	

clustered	the	pool	within	a	smaller	radius	of	2	Å	to	identify	the	most	populated	region.	In	

all	cases,	further	clustering	within	2	Å	helped	to	remove	many	models	that	were	more	

distant	 from	 the	 native	 conformation	 (see	 Average	 L-RMSD	 in	 Table	 2	 or	 Fig.	 S3).	

Whereas	in	most	cases	centers	of	2-Å	clusters	did	not	change	compared	to	centers	of	5-Å	

clusters	 (suggesting	 a	 symmetric	 distribution	 of	 decoys	 around	 the	 cluster),	 the	 2-Å	

center	for	GFP	complex	shifted	significantly	towards	native	from	25.5	Å	to	~3.9	Å.	Based	

on	 these	 observations,	 we	 considered	 the	 three	 largest	 5-Å	 clusters,	 clustered	 them	

further	within	a	2	Å	radius	and	took	the	centers	of	these	sub-clusters	for	the	next	steps.	

Flexible docking with Rosetta 

To	further	account	for	protein	flexibility	we	developed	a	flexible	docking	protocol	that	

mimics	induced-fit	conformational	changes	by	including	flexible	loop	minimization	[46].	
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It	is	known	that	constraints,	i.e.,	any	information	about	atoms	that	are	involved	in	binding,	

help	in	docking	by	significantly	narrowing	the	search	space	[47].	Knowing	that	specific	

DARPins	 invariably	 bind	 via	 their	 randomized	 surface,	 we	 defined	 a	 few	 general	

constraints	for	docking.	These	include	repulsion	at	the	backside	of	the	DARPin	that	is	not	

involved	in	interaction,	and	attraction	at	the	randomized	positions	that	usually	bind	the	

receptor	(Fig.	S2a).	Each	internal	repeat	of	a	DARPin	contains	randomized	positions	in	

the	 α-helix	 and	 in	 the	 loop,	 but	 not	 all	 of	 the	 repeats	 are	 necessarily	 involved	 in	

interactions.	Therefore,	we	defined	an	‘attractive’	constraint	to	be	satisfied	if	any	of	the	

chosen	loop	residues	and	any	of	the	chosen	helix	residues	is	involved	in	binding.	In	other	

words,	an	attractive	constraint	would	be	satisfied	if	at	least	one	of	the	repeats	is	involved	

in	binding,	and	constitutes	thus	a	very	soft	criterion	that	will	normally	be	met.	

We	then	built	a	scheme	of	the	relations	between	rigid	and	flexible	protein	fragments	for	

Rosetta	—	called	fold	tree	[46]	—	where	flexible	segments	are	DARPin	loops	(defined	as	

in	Fig.	S2a)	and	receptor	loops,	as	determined	above.	A	scheme	of	such	a	universal	fold	

tree	is	shown	in	Fig.	S2b.	

	

We	explored	the	local	energy	landscape	by	local	flexible	docking.	One	thousand	decoys	

were	generated	for	each	input	structure,	i.e.,	the	centers	of	each	2	Å	cluster.	Since	three	

clusters	were	considered	for	every	complex	to	be	modeled,	3000	structures	in	total	for	a	

single	complex	were	modelled.	We	provide	a	template	script	with	a	sample	fold	tree	that	

can	be	easily	adapted	to	any	DT	complex,	available	in	Supplementary	Files.	
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Final ranking and scoring 

Identifying	near-native	solutions	in	a	crowd	of	false	positives	is	the	primary	challenge	in	

protein-protein	docking	[17,	48].	We	tried	a	variety	of	filtering	and	ranking	approaches	

to	identify	the	near-native	solutions	within	the	3000	decoys.	Our	approaches	were	based	

on	different	Rosetta	scores	as	well	as	clustering.	Although	many	alternative	strategies	

have	worked	for	either	one	or	two	different	complexes,	they	were	never	robust	enough	

to	succeed	in	more	than	three	cases	at	the	same	time	(unpublished	observations).		

Interestingly,	Rosetta	total_score	was	never	a	good	metric	to	distinguish	the	near-native	

cluster,	 nor	 were	 scores	 accounting	 for	 binding	 energy	 (dG_separated),	 packing	

(packstat)	 or	 shape	 complementarity	 (sc_value),	 when	 considered	 individually.	 A	

parameter	that	allowed	good	discrimination	of	the	near-native	cluster	considers	all	these	

parameters	(dG_separated,	packstat,	sc_value)	together,	where	the	weight	of	packing	is	

increased	(by	considering	packing	twice).	We	called	this	parameter	the	p2gs	score	(Table	

ST1	and	Table	ST2).	This	may	be	interpreted	such	that,	according	to	Rosetta,	the	decoys	

around	 native	 structure	 have	 on	 average	 better	 binding	 energy,	 packing	 and	 shape	

complementarity	than	the	decoys	around	a	false	positive	structure.	This	also	means	that	

the	other	terms,	many	of	which	are	knowledge-based	(i.e.,	derived	from	PDB	statistics),	

that	contribute	to	Rosetta	total_score	are	not	discriminative	in	our	cases.	

In	the	last	stage,	we	chose	the	best	model	from	within	the	near-native	cluster.	We	found	

the	binding	energy	(dG_separated)	a	discriminator	that	was	better	than	the	total	energy	

(total_score),	as	in	most	cases	the	correlation	between	dG_separated	and	RMSD	was	more	

pronounced.	The	energy	plots	for	decoys	generated	around	near-native	input	models	are	

shown	in	Fig.	4.	The	top	ten	decoys	from	each	ranking	(by	binding	or	total	energy)	are	

also	 listed	in	Table	3.	 Interestingly,	 the	p2gs	score,	which	well	discriminates	the	near-
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native	cluster,	is	less	accurate	in	ranking	models	within	the	near-native	cluster	according	

to	their	quality	(Table	ST3).	

We	computed	the	fraction	of	native	contacts,	ligand	RMSD,	and	interface	RMSD	according	

to	CAPRI	definitions.	We	considered	a	decoy	with	the	best	binding	energy,	dG_separated,	

as	our	final	model	(Fig.	5,	Table	3).	In	most	cases,	we	obtained	models	better	than	the	

models	 after	 sequential	 clustering	 (see	 Table	 2).	 According	 to	 CAPRI	 definitions,	 we	

ended	up	as	the	top	scoring	model	for	each	complex	with	five	medium	quality	models	and	

two	acceptable	models	as	the	single	model	(top	line	in	Table	3).	We	consider	this	as	a	

refinement	 success.	 Interestingly,	 in	 all	 cases,	 even	 better	 solutions	 (closer	 to	 native)	

were	 generated,	 but	 we	 could	 not	 find	 a	 uniform	 measure	 to	 identify	 them	 in	 all	

complexes.		

	

Discussion 

We	developed	a	strategy	to	generate	structural	models	of	DARPin	complexes	with	their	

targets,	starting	from	the	crystal	structure	of	the	unbound	target	and	only	the	DARPin	

sequence.	 This	 is	 the	 scenario	 encountered	 when	 binders	 have	 been	 selected	 from	 a	

library	against	a	target.	It	would	offer	great	insight,	if	the	epitopes	and	orientations	of	the	

binders	on	the	target	could	be	determined	routinely	to	elucidate	the	molecular	origin	of	

the	biological	activity,	or	its	absence.	

The	 strategy	 has	 been	 optimized	 with	 structures	 of	 diverse	 complexes	 and	 tested	 on	

these,	as	well	as	on	additional	unrelated	complexes.	In	all	cases	we	were	able	to	obtain	a	

single	model	 that	was	near-native	and	would	be	classified	as	 ‘medium’	or	 ‘acceptable’	
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model	according	to	CAPRI	criteria.	We	found	several	steps	of	the	protocol	crucial	for	this	

success	and	will	discuss	them	in	more	detail	in	the	following	paragraphs.	

The	 first	 important	 step	 is	 sequential	 docking	 to	 different	 receptor	 ensembles.	 The	

ensembles	are	generated	by	exclusively	varying	the	conformation	of	receptor	fragments	

that	we	define	as	most	 flexible.	This	reduces	unnecessary	exploration	of	 the	structure	

space	around	rigid	segments	and,	instead,	introduces	more	diversity	to	the	flexible	parts	

at	similar	computational	costs.		

Whether	 ensembles	 may	 increase	 docking	 success	 rates	 has	 been	 previously	

discussed	[19,	49].	We	believe	that	in	the	case	of	small	conformational	changes,	where	

the	epitope	does	not	have	to	be	first	uncovered,	or	significantly	move	towards	the	bound	

state	(insightfully	discussed	by	Kuroda	and	Gray	[50]),	 it	 is	most	 important	 to	slightly	

relax	the	epitope	to	probe	binding.	As	the	native	complex	should	be	in	a	broad	energetic	

minimum,	such	small	perturbations	should	not	greatly	disturb	binding.	On	the	other	hand,	

they	would	hamper	false	positives	that	score	well	only	because	of	particularly	good	local	

geometries,	but	would	no	longer	bind	even	after	very	small	movements.	In	other	words,	

minor	movements	of	the	backbone	at	the	interface	should	not	prevent	native	binding	but	

would	 remove	 some	 of	 the	 false	 positives.	 Indeed,	 among	 our	 examples,	 near-native	

models	were	found	within	models	containing	different	receptor	conformations	and	not	

just	in	a	single	conformation	that	was	closest	to	the	bound	state,	emphasizing	the	width	

of	the	energy	funnel	of	the	native	complex.	In	the	case	of	the	DARPin-GFP	complex,	the	

entire	 native	 epitope	 was	 determined	 as	 rigid.	 Therefore,	 as	 we	 hypothesize,	 loop	

ensembles	far	from	the	binding	region	might	have	removed	a	number	of	false	positives,	

since	they	would	bind	to	only	a	single	conformer.	Docking	3H10	to	the	unbound	structure	

of	PLK1	as	a	control	(using	20	independent	ClusPro	simulations,	but	instead	of	20	target	
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ensembles,	using	the	same	unbound	structure	of	the	target	–	not	subjected	to	backrub)	

did	not	generate	any	near-native	model	among	the	200	solutions	(not	shown).	Sequential	

clustering	of	models	containing	only	 the	ensemble	of	 target	 structures	 (instead	of	 the	

single	 structure)	 allowed	 narrowing	 the	 200	 models	 from	 ClusPro	 to	 the	 three	 most	

populated	groups	(clusters),	one	of	which	was	in	all	cases	near-native.	

The	 second	 challenge	 was	 to	 distinguish	 the	 correct	 model	 out	 of	 the	 three	 highest-

ranking	 clusters.	 We	 took	 the	 cluster	 centers	 as	 a	 starting	 point	 for	 high	 resolution	

flexible	 docking	 with	 Rosetta.	 Despite	 individual	 successes	 with	 a	 number	 of	 diverse	

attempts	of	filtering,	sorting,	and	scoring,	we	strived	to	find	a	robust	method	that	would	

work	for	all	five	diverse	cases	used	for	optimization,	and	could	thus	form	the	basis	for	a	

more	generic	approach.	We	therefore	came	up	with	the	idea	of	comparing	average	scores	

of	sets	of	decoys	generated	from	individual	input	structures.	This	approach	is	again	based	

on	 the	 assumption	 that	 the	 near-native	 structure	 should	 lie	 in	 a	 broad	 funnel	 on	 the	

energy	landscape,	and	the	average	energy	of	the	near-native	cluster	should	be	lower	than	

the	average	energy	of	false	positive	clusters	(even	if	single	decoys	may	score	better	than	

any	near-natives).	In	other	words,	false	positives	should	score	less	favorably	after	local	

perturbations	 (because	 they	 lie	 in	a	narrow	energetic	minimum	and	 thus	 in	a	narrow	

minimum	of	the	scoring	function).		

An	 alternative	 approach	 of	 exploring	 the	 local	 minima	 of	 the	 scoring	 function	 was	

proposed	by	Kozakov	et	al.	[51].	There,	the	stability	of	the	cluster,	corresponding	to	the	

broadness	of	the	energy	funnel,	is	assessed	by	the	convergence	of	cluster	members	to	a	

single	 structure	 after	 Monte	 Carlo-based	 local	 docking.	 Our	 approach	 provides	 an	

effective	alternative	by	exploiting	the	same	assumption	about	the	energy	landscape	in	a	
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different	 way,	 which	 is	 independent	 of	 the	 additional	 uncertainty	 of	 successful	

convergence.	

From	all	the	different	Rosetta	scores,	as	well	as	the	additional	metrics	that	we	introduced,	

the	final	ranking	of	the	near-native	cluster	by	binding	energy	was	the	most	discriminative.	

We	took	the	best-scoring	model	as	the	final	one,	but	other	models	in	the	top	ten	were	on	

average	 similarly	 good	 (except	 for	PLK1),	 and	 choosing	 a	 random	model	 of	 these	 ten	

would	in	most	cases	still	be	safe.	Interestingly,	Rosetta	often	sampled	exceptionally	good	

solutions	that	were	less	than	2	Å	L-RMSD	(Fig.	4)	but	we	could	not	find	a	unified	way	to	

identify	them.	Nevertheless,	solutions	at	10	Å	L-RMSD	would	in	most	cases	still	be	a	good	

approximation	 of	 the	 binder’s	 position,	 sufficient	 to	 redesign	 the	 less	 promising	

candidates	 by	 rational	 mutagenesis,	 or	 designs	 of	 flexible	 or	 rigid	 linkers	 that	 often	

connect	 DARPins	 to	 each	 other	[37],	 or	 to	 other	 functional	 moieties	 that	 should	 not	

interfere	 with	 binding	 (small-molecule	 drugs,	 dyes,	 PEG)	[52].	 On	 the	 other	 hand,	

solutions	 that	 are	 less	 than	 10	 Å	 off	 can	 often	 be	 refined	 by	 other	 approaches,	 e.g.,	

molecular	dynamics	[53,	54].		

Remarkably,	even	solutions	as	far	as	10	Å	L-RMSD	off	the	native	conformation	captured	

a	high	fraction	of	native	contacts,	which	comes	as	a	result	of	side-chain	and	backbone	

flexibility.	Therefore,	even	when	the	rigid	body	orientation	is	not	perfect,	such	loops	and	

side-chain	 conformations	 are	 preferred	 that	 maintain	 the	 correct	 residue-residue	

contacts.	The	knowledge	about	interacting	residues	may	serve	for	improved	design	by	

rational	mutagenesis.		

There	are	some	limitations	that	remain.	One,	very	vivid	to	the	entire	modeling	field,	is	the	

flexibility	of	proteins,	here	limited	to	the	target,	as	DARPins	are	rather	rigid.	Remarkably,	

in	some	cases,	even	despite	quite	significant	conformational	changes	induced	by	binding,	
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we	 could	 still	 identify	near-native	models.	 In	KRAS,	 an	entire	helix	 shifts	 towards	 the	

bottom	 side	 of	 the	 DARPin.	 Apparently,	 this	 interaction	 is	 not	 critical	 and,	 most	

importantly,	lack	of	this	conformational	change	in	the	receptor	does	not	prevent	binding.	

In	other	cases,	like	APH	or	BCL-W,	the	conformational	change	upon	binding	is	too	massive	

to	recapitulate	it	with	Rosetta	backrub,	and	it	would	be	hard	with	other	methods,	too.		

The	change	in	APH	seems	to	be	very	much	induced	by	the	DARPin	ligand	that	slips	 in	

between	two	helices	(Fig.	S1).	Sampling	such	conformations	without	the	presence	of	the	

ligand	is	extremely	difficult,	even	though	this	state	must	be	populated	to	some	degree	for	

binding	to	occur.	The	Cα	RMSD	between	bound	and	unbound	APH	is	3.22!Å	for	the	full	

structure	and	4.83	Å	for	the	epitope.	We	attempted	to	model	this	challenging	complex	

with	our	protocol.	Nevertheless,	as	expected,	the	difference	between	the	bound	and	the	

unbound	state	appeared	to	be	too	large,	and	none	of	the	200	models	generated	by	ClusPro	

were	near-native.	A	key	reason	for	this	failure	was	that	this	epitope,	consisting	of	two	

helices,	was	not	 recognized	as	 flexible	by	 the	Rosetta	backrub-based	method.	For	 this	

reason,	we	also	tried	to	recapitulate	the	bound	state	with	another	recently	published	tool	

—	CABS-flex	 2.0	[55].	 This	method	was	 trained	 on	 a	 database	 of	molecular	 dynamics	

simulations	 and	 might	 be	 expected	 to	 better	 reflect	 larger	 conformational	 changes.	

Nevertheless,	 also	 CABS-flex	 2.0	 evaluated	 this	 epitope	 as	 rigid,	 emphasizing	 the	

challenge	 of	 sampling	 the	 rarely	 populated	 states.	 It	 is	 conceivable	 that	 the	

conformational	change	within	the	epitope	becomes	only	energetically	accessible	in	state	

already	partially	bound	by	the	DARPin,	which	would	make	modeling	of	such	complexes	

extremely	 challenging.	 On	 the	 other	 hand,	 bound	 docking	 in	 ClusPro	 generated	 near-

native	solution	as	first	rank	(Table	ST4),	indicating	that	scoring	should	not	be	a	problem	

in	this	case.		
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BCL-W	contains	 large	 flexible	 loops	and	 long	 flexible	 termini,	one	of	which	covers	 the	

epitope	in	the	unbound	structure	of	the	protein.	In	this	case,	only	very	harsh	sampling	of	

the	loop	could	perhaps	uncover	the	epitope.	Interestingly,	the	bound	structure	of	BCL-W	

makes	 it	 more	 similar	 to	 the	 structure	 of	 other	 BCL-2	 family	 members	[42],	 again	

suggesting	that	this	conformation	must	be	populated	to	some	degree,	or	binders	would	

not	have	been	selected.		

A	 related	 problem	 may	 be	 any	 structurally	 unresolved	 parts	 of	 the	 receptor	 in	 its	

unbound	structure.	If	the	missing	loops	are	short	(up	to	5-6	residues),	they	can	usually	

be	reasonably	well	modelled,	e.g.,	with	kinematic	loop	closure	algorithms	[56].	Otherwise,	

more	sophisticated	approaches	may	be	necessary,	e.g.,	docking	with	loop	rebuilding	[46]	

which	are	beyond	the	scope	of	this	work.	It	is	particularly	likely,	though,	for	DARPins	that	

the	missing	part	of	the	receptor	is	not	involved	in	binding,	as	DARPins	normally	bind	to	

well-ordered	regions	of	a	protein.		

Another	 limitation	may	 arise	 at	 the	 level	 of	 scoring	 in	ClusPro.	Docking	 of	 the	 bound	

structures,	although	successful	(defined	as	the	presence	of	near-native	ones	among	top	

ten)	for	all	complexes	investigated	here,	may	not	always	work	so	well,	even	despite	the	

overall	rigidity	of	the	receptor	(Table	ST4).	For	example,	DARPin	off7	fails	in	docking	to	

maltose	binding	protein	even	when	starting	from	the	structures	found	in	the	complex,	

most	 likely	 because	 the	 epitope	 is	 very	 rich	 in	 lysines,	 which	 are	 statistically	 rare	 at	

protein-protein	interfaces	[57]	and	thus	receive	a	low	probability.	In	such	a	case,	ClusPro	

would	also	likely	fail	in	docking	of	unbound	structures	or	homology	models,	which	is	even	

more	 demanding.	 Interestingly,	 in	 this	 particular	 case,	 the	 use	 of	 'antibody	 mode'	 in	

ClusPro,	 where	 the	 score	 function	 does	 not	 include	 the	 knowledge-based	 DARS	

potential	[58],	helps	to	resolve	the	problem	(unpublished	observations).	We	believe	that	



20	
	

a	ClusPro	score	function	could	in	the	future	be	weighted	for	DARPin	complexes,	as	was	

the	case	with	the	score	function	tailored	to	antibody	complexes	[59].		

What	fraction	of	DT	complexes	is	predictable	with	our	method	largely	depends	on	the	

range	of	conformational	changes	of	the	receptor	upon	binding.	From	the	complexes	that	

we	 investigated,	 i.e.,	 monomeric	 receptors	 of	 limited	 size	 –	 which	 are	 very	 often	 the	

targets	used	for	selections	–	it	seems	that	most	DT	complexes	involving	such	receptors	

are	rather	rigid	and	are	 thus	suitable.	Nevertheless,	we	caution	that	 the	very	 fact	 that	

there	is	a	structure	of	the	complex	in	the	PDB	database	may	be	a	bias	for	the	fact	that	the	

structure	of	the	target	is	rather	rigid.		

Some	estimates	about	the	success	potential	of	this	modeling	method	can	be	derived	from	

just	examining	the	unbound	structures.	If	they	contain	many	loops	that	appear	flexible,	

the	chance	of	success	decreases,	simply	because	a	DARPin	may	bind	there	and	rigidify	the	

loop	upon	binding.	On	the	other	hand,	the	binder	may	still	recognize	the	rigid	part	of	the	

receptor,	as	was	the	case	with	IL-13.	Interestingly,	the	unbound	structure	for	this	case	

came	from	NMR,	emphasizing	that	our	modeling	strategy	is	independent	of	the	method	

used	to	obtain	the	unbound	structure	of	the	receptor.	

Acknowledging	 the	 above	 limitations,	 the	 strategy	 presented	 here	 may	 be	 robust	 to	

predict	a	number	of	DT	complexes,	provided	that	the	target	is	not	too	flexible.	What	we	

find	 especially	 noteworthy	 is	 that	 a	 single	 objective	 modeling	 protocol	 that	 can	 be	

executed	without	human	bias	can	generate	a	single	near-native	model	of	the	complex	in	

seven	out	of	seven	cases	that	fulfilled	our	entry	criteria,	or	seven	out	of	ten	cases,	when	

not	taking	prior	knowledge	of	conformational	changes	into	account.	This	is	not	a	standard	

achievement	when	so	many	modeling	steps	are	included,	and	we	identified	a	robust	way	

to	distinguish	the	near-native	model	among	several	candidates.		
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The	 three	 complexes	 that	 would	 not	 be	 predictable	 with	 the	 presented	 strategy	 are	

characterized	by	 significant	 conformational	 changes	upon	binding,	 or	 involved	a	non-

canonical	 contribution	 to	 the	 binding	 mode	 of	 a	 DARPin	 (partial	 contribution	 via	 the	

histidine	 tag).	Nevertheless,	 the	protocol	 is	 suitable	 for	 receptors	of	diverse	 folds	and	

sizes,	as	well	as	DARPins	of	different	length	and	with	various	mutations,	even	including	

deletions,	and	by	analogy,	a	small	insertion	should	not	be	a	problem	either.	It	does	not	

require	large	computational	resources,	and,	if	these	are	still	scarce,	one	could	also	stop	

after	 the	 sequential	 clustering,	 ending	with	 three	models	 that	 contain	 a	 lower-quality	

near-native	structure.	Remarkably,	we	did	not	use	any	biochemical	data	at	all	to	navigate	

docking,	 even	 though	 it	 was	 available.	 Often,	 information	 from	 mutagenesis	 studies,	

competition	studies,	or	HDX/MS	could	further	narrow	the	number	of	model	candidates	

and	improve	the	prediction	quality.	

Finally,	although	the	strategy	was	optimized	with	and	for	DARPins,	we	neither	modified	

the	 energy	 functions	 nor	 included	 any	 known	 DARPin-specific	 statistical	 potentials.	

Therefore,	 it	 is	 likely	 that	 the	 approach,	 including	 ensemble	 docking	 with	 sequential	

clustering,	 as	 well	 as	 comparing	 average	 p2gs	 score	 of	 clusters	 in	 Rosetta	 could	 be	

extended	 to	 other	 protein-protein	 complexes,	 especially	 those	 including	 other	 rigid	

protein	scaffolds,	e.g.,	like	leucine-rich	repeat	proteins	or	affibodies.		

Methods 

Software and hardware 

Rosetta	 3	[35]	 (version	 59812),	 the	 ClusPro	 docking	 server	[36]	 and	 Pymol	 2.1.0	

(Schrödinger)	were	used	for	modeling,	docking	and	analysis.	R	software	[60]	was	used	to	

analyze	data.	
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Modeling 

The	full	detailed	protocol	which	was	used	for	every	complex	in	this	study	is	described	in	

Supplementary	Methods.	All	templates	and	scripts	can	be	found	in	Supplementary	Files.	

Briefly,	PDB	structures	2QYJ,	2XEE	and	their	derivatives	(see	Supplementary	Methods	for	

details)	were	used	as	templates	for	homology	modeling	of	DARPins	with	Rosetta.	Desired	

mutations	were	introduced	with	fixed	backbone	design	[61]	or,	when	loop	insertion	was	

necessary,	 with	 the	 flexible	 backbone	 design	 protocol	[62].	 Models	 were	 refined	 with	

Rosetta.relax	[63]	in	40	independent	trajectories,	and	the	models	were	clustered	within	

0.2	 Å	 radius	 in	 Rosetta.cluster.	 The	 best	 scoring	 model	 of	 the	 largest	 cluster	 was	

considered	further.	

The	unbound	structure	of	 the	 target	(receptor)	was	subjected	to	Rosetta.backrub	[64].	

250	generated	ensembles	were	structurally	aligned,	and	the	Cα	RMSD	of	the	3-residue	

protein	 segments	 were	 calculated.	 Residues	 in	 segments	 with	 RMSD	 >	 0.2	 Å	 were	

considered	 as	 flexible.	 20	 loops	 ensembles	 of	 the	 target	 were	 generated	 with	

Rosetta.backrub	performed	exclusively	on	flexible	parts.	

Rigid	body	docking	was	performed	in	ClusPro,	with	a	single	DARPin	model	and	the	20	

target	ensembles	individually.	Repulsive	constraints	on	the	DARPin	side	were	included.	

The	 top	 10	 solutions	 of	 each	 simulation	 were	 combined	 (200	 models)	 and	 clustered	

sequentially	with	Rosetta.cluster:	 three	 largest	clusters	within	5	Å	radius	were	 further	

clustered	within	2	Å	radius	and	the	centers	of	these	clusters	were	considered	further	in	

flexible	docking.	

Flexible	docking	was	performed	in	Rosetta	with	a	custom	Rosetta	script	[65],	available	in	

Supplementary	 Files.	 It	 was	 based	 on	 Wang	 et	 al.	[46],	 the	 synthesis	 of	 valuable	
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suggestions	 from	 the	 RosettaCommons	 community	

(https://www.rosettacommons.org/forum)	and	further	optimization.	Protein	segments	

considered	 as	 flexible	 were	 receptor	 loops,	 as	 determined	 above,	 and	 DARPins	 loops	

(details	 in	 Supplementary	 Information).	 Site	 constraints	 in	 the	 functional	 form	 of	

(1/(1+exp(–m*(x–x0)))	 –	 0.5	 were	 used	 throughout	 the	 simulation,	 where	 x0	 is	 the	

center	of	the	sigmoidal	function	and	m	is	the	slope.	The	constraints	were	centered	at	8	Å.	

Repulsive	constraints	had	a	slope	set	to	-2.0.	Attractive	constraints	had	a	slope	set	to	+2.0	

and	 were	 wrapped	 up	 into	 KofNConstraints,	 where	 at	 least	 one	 condition	 had	 to	 be	

satisfied	for	the	KofNConstraint	to	be	satisfied.	The	constraints	were	applied	at	a	weight	

=	5	to	both	low-	and	high-resolution	docking	stages.	The	initial	pose	of	the	ligand	was	

perturbed	along	the	vector	connecting	the	centers	of	mass	of	the	two	proteins	and	around	

its	axis	(Gaussian	distribution	around	3	Å	and	8°).	Low	resolution,	rigid	body	docking	was	

performed	as	in	Grey	et	al.	[15].	This	was	followed	by	50	cycles	of	high-resolution	Monte-

Carlo	 minimization	 (MCM).	 Each	 cycle	 consisted	 of	 a	 random	 perturbation	 (Gaussian	

distribution	around	0.1	Å	and	3°),	 repacking,	minimization	of	 side	chains	at	 interface,	

repacking	and	minimization	of	backbone	and	side	chains	of	segments	defined	as	flexible.	

For	all	minimization	steps	within	the	cycle,	the	Ref2015	score	function	was	used	[66].	A	

single	 MCM	 cycle	 was	 evaluated	 using	 the	 Metropolis	 criterion	 on	 the	 docking	 score	

function	[48].	An	example	of	constraint	file,	fold	tree	and	the	full	script	can	be	found	in	

the	Supplementary	Files.	Flexible	docking	 in	Rosetta	was	performed	 for	each	of	 the	3	

model	candidates	(after	sequential	clustering)	as	input,	generating	3	×	1000	new	models.	

All	decoys	were	analyzed	with	Rosetta.InterfaceAnalyzer	and	the	average	p2gs	for	sets	of	

models	derived	from	different	inputs	were	compared.		
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Figure	captions	

	

Fig.	1.	Schematic	protocol	for	modeling	and	docking	of	DARPins.	The	procedure	can	be	

completed	 within	 a	 few	 days.	 The	 most	 time-intensive	 step	 is	 flexible	 docking	 which	

depends	on	the	size	of	the	receptor	and	the	computational	resources.	

	

Fig.	2.	Overview	of	homology	modeling	of	DARPins.	Diverse	 template	structures	were	

used	for	modeling,	including	those	with	two	or	three	internal	repeats	(N2C	or	N3C)	and	

different	C-capping	modules	(the	template	derived	from	PDB	ID:	2XEE	contains	the	next	

generation	 C-cap,	 called	 Mut5).	 Final	 models	 (magenta)	 were	 structurally	 aligned	 to	

crystal	structures	of	the	DARPin	within	the	complex	(green)	and	Cα	RMSD	was	calculated.	

3H10	(PLK1	binder)	was	a	special	case	where	the	C-cap	of	the	N3C	template	was	removed	

(as	 it	 was	 experimentally	 shown	 that	 the	 cap	 clashes	 with	 the	 receptor	 and	 partially	

unfolds)	[40].		

	

Fig.	3.	Overview	of	receptor	modeling.	(a)	Root-mean-square	fluctuation	(RMSF)	of	Cα	

atoms	as	a	 function	of	protein	residue.	250	 full-atom	ensembles	generated	by	Rosetta	

backrub	were	aligned	to	the	template	structure	and	RMSF	of	3-residue	protein	fragments	

was	calculated,	and	is	plotted	as	a	function	of	the	first	residue	of	the	3-residue	segment	

(denoted	resi).	(b)	Regions	with	RMSF	>	0.2	Å	are	defined	as	flexible	and	indicated	in	cyan	

on	 the	 unbound	 structure	 of	 the	 receptor	 (magenta).	 (c)	 Unbound	 structure	 of	 the	

receptor	 (magenta)	 aligned	 to	 the	 bound	 structure	 (green).	 20	 loop	 ensembles	 are	

indicated	in	other	colors.	For	details	see	Table	1.	
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Fig.	4.	Flexible	docking	with	Rosetta.	Score	 (total_score,	blue	plots)	or	binding	energy	

(dG_separated,	black	plots)	of	the	models	from	the	near-native	cluster	as	a	function	of	L-

RMSD	values.	In	all	cases,	solutions	closer	to	the	crystal	structure	than	the	input	model	

(indicated	by	vertical	line)	were	generated.	Total_score	axes	were	scaled	such	that	the	y-

axis	 midpoint	 is	 at	 the	 mean,	 and	 the	 axis	 stretches	 symmetrically	 to	 the	 observed	

minimum	(with	a	 further	distance	of	10	REU	on	either	side)	and	 the	same	distance	 is	

plotted	 to	define	 the	maximum	 (e.g.,	 if	 the	mean	 total_score	 value	 for	 the	 set	 of	 1000	

decoys	was	-400	REU	and	the	minimal	value	was	-500	REU,	then	the	axis	stretches	from	

-390	to	-510	REU).	All	dG_separated	values	within	models	generated	for	each	complex	are	

shown.		

	

Fig.	 5.	 Final	models	 according	 to	 binding	 energy	 (dG_separated)	 (cf.	 Table	 3).	Models	

(blue)	were	structurally	aligned	to	receptors	in	crystal	structure	complexes	(green)	to	

indicate	the	position	of	the	DARPin	(reflecting	the	different	L-RMSD	values).		


