
This is a repository copy of Observation tree approach : active learning relying on testing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/146040/

Version: Accepted Version

Article:

Soucha, M. and Bogdanov, K. (2020) Observation tree approach : active learning relying 
on testing. The Computer Journal, 63 (9). pp. 1298-1310. ISSN 0010-4620 

https://doi.org/10.1093/comjnl/bxz056

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Observation Tree Approach: Active

Learning relying on Testing

MICHAL SOUCHA AND KIRILL BOGDANOV

Department of Computer Science

The University of Sheffield

Sheffield, S1 4DP, UK

Email: {msoucha1, k.bogdanov}@sheffield.ac.uk

The correspondence of active learning and testing of finite-state machines has been known for

a while, however, it was not utilized in the learning. We propose a new framework called the

observation tree approach that allows one to use the testing theory to improve the performance

of active learning. The improvement is demonstrated on three novel learning algorithms that

implement the observation tree approach. They outperform the standard learning algorithms, such

as the L* algorithm, in the setting where a minimally adequate teacher provides counterexamples.

Moreover, they can also significantly reduce the dependency on the teacher using the assumption of

extra states that is well-established in the testing of finite-state machines. This is immensely helpful

as a teacher does not have to be available if one learns a model of a black box, such as a system only

accessible via a network.
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1. INTRODUCTION

Finite-state machines can model a wide variety of systems,

such as communication protocols, hardware components or

software projects. If a model of a system is not available

explicitly or one wants to determine how the system behaves,

machine learning methods can be used.

Knowing the inner representation of a system is the main

goal of reverse engineering and it is a crucial part of many

other related fields, for example, testing and verification.

There are two main approaches to learning, active and

passive. Passive learning derives a model of a system

from given traces, or input sequences with corresponding

responses. In contrast, active learning interacts with the

system by asking for responses on particular input sequences

chosen by the learner. The process of learning is stepwise,

on each step a tentative model is expanded based on the

output from a previous sequence and a sequence to query

next is generated.

The contribution of the paper is to show the beneficial use

of testing theory in active learning of finite-state machines.

A new approach to learning will be described in Section 4.

The improvement of the new approach emerges from the

comparison with the framework that covers the standard

learning algorithms such as the L* algorithm. Section 4 also

proposes three new learning algorithms that are based on the

new approach. The experimental evaluation in Section 5

then confirms the improvement in the learning by the new

learning algorithms compared to the standard ones.

2. BACKGROUND

This section defines the type of finite-state machines used

in this paper and it explains testing and active learning on a

simple example.

2.1. Finite-State Machine

A finite-state machine (FSM) is a model consisting of states

and transitions between states. According to the received

input, the FSM changes its current state and responds with

corresponding output. There are many different definitions

of finite-state machines in the literature. Active automata

learning deals with deterministic finite automata (DFA)

whereas active learning of finite-state machines works rather

with Mealy machines as they describe reactive systems more

precisely. A Moore machine is another type of finite-state

machines. The difference is mainly the position of outputs in

a model. Moore machines and deterministic finite automata

have outputs tied to states. In contrast, outputs are only

on transitions in the case of Mealy machines. This section

proposes a general model called deterministic finite-state

machine (DFSM) that have outputs both on states and on

transitions.

There are two functions that describe the behaviour of

a model, a transition and an output functions. Generally,

both functions take an input symbol and produce either a

next state, that is, a state where the transition with the input

leads, or an output symbol that is observed if the transition

is followed. Two special symbols are introduced to cover

both Moore and Mealy machines in one definition. An
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2 M. SOUCHA, K. BOGDANOV

input symbol ↑ called stOut requests the state output and the

current state of the machine is not changed when asked. An

output symbol ↓ called noOut represents ‘no response’.

DEFINITION 2.1. A deterministic finite-state machine

(DFSM) is a septuple (S,X, Y, s0, D, δ, λ), where S is

a finite nonempty set of states and s0 is an initial state

(s0 ∈ S), X and Y are input and output alphabets (a finite

nonempty sets of symbols, ↑ /∈ X), D is a domain of defined

transitions; D ⊆ S × X , D↑ = D ∪ {S × {↑}}, δ is a

transition function δ : D↑ → S such that ∀s ∈ S : δ(s, ↑) =
s, and λ is an output function λ : D↑ → Y ∪ {↓}.

Note that the stOut ↑ is not in the input alphabet X so

that it differs from all other input symbols. Similarly, the

noOut ↓ can be declared outside the output alphabet Y not to

interfere with other output symbols but it is usually matched

to the output of ‘timeout’ that is in Y . Therefore, it is not

specified if ↓ is or is not in Y . The timeout output represents

the situation in which no response is observed during the

predefined time limit. Strings over X ∪ {↑} are called

input sequences and strings over Y ∪ {↓} are called output

sequences. ‘Input’ and ‘output’ are sometimes omitted so

only ‘sequence’ is used if it is clear from the context. The

empty string is denoted ε. An input sequence with the

corresponding output sequence that was observed is called

a trace. Any sequence w can be split into a prefix u and a

suffix v where w = u · v.

The initial state s0 is the current state of the machine

before any input is asked. Moreover, s0 is also the current

state if the machine is reset. Machines that can be reset are

called resettable.

Transitions are labelled with input and output symbols.

The next state, or the target state, of a transition is defined

by the transition function δ and the function λ assigns an

output symbol to the transition. This paper works only with

completely-specified machines, that is, DFSMs that have all

transitions defined; D = S ×X .

An example of a DFSM is shown in Fig. 1. The model on

the right captures a part of the map E shown on the left such

that the map is formed of the grid of tiles and every tile is

modelled by a state. The agent that is directed by the user

can move in four directions and to explore the map. If the

adjacent tile in a particular direction is not accessible, that is,

it is outside the map or there is a wall, then the agent stays

on the same tile and C is received as the response to the

input corresponding to the direction. Otherwise, the agent

moves in the chosen direction and the output F is obtained

as the response. For instance, δ(s0, right) = s2 and λ(s0,
right) =F. Each tile can contain an object. The agent asks the

input ↑ in order to find out which object is on the tile where

the agent stands; there is usually nothing (the output N), for

example, λ(s0, ↑) =N. Note that the agent does not move

from the tile while exploring it, that is, δ(si, ↑) = si for any

i. The map E (Fig. 1) is from the GridWorld scenario of

the Brain Simulator [1]. The GridWorld scenario is similar

to the toy environment that motivated the research of one of

the first learning algorithm [2].

2.2. Testing of Finite-State Machines

A finite-state model of a system is very useful for

construction of a test suite to test an implementation for

equivalence to this model. There is a range of different

testing methods known for this, originally developed for

testing of communication protocols where testing is purely

black box, that is, no internal structure of the implementation

is known and it is not possible to observe a state such an

implementation is in. A testing method would derive a series

of tests from the model and if these sequences produce the

same response from the model and the implementation, the

implementation is deemed correct and otherwise faulty.

Derivation of test sequences requires an a-priori knowl-

edge of the upper bound on the number m of states in the

implementation. Without such a bound, it is not practical to

explore all of a state space and hence not possible to have

any guarantee of equivalence by testing. Traditional DFSM

testing methods (such as the W-method [3, 4]) generate test

sequences to explore the state space of the model by vis-

iting every state, attempting every input and then verifying

entered states by observing how these states respond to se-

quences that distinguish them from other states in the model.

The model, or the specification, is therefore assumed to be

minimal. A machine is minimal if every state is reachable

from the initial one and every two states si, sj are distin-

guishable, that is, there is a sequence w that produces dif-

ferent output sequences when is asked from both si and sj ;

w is called separating sequence of si, sj . A set of separat-

ing sequences is called state characterizing set of si if for

each state sj different from si the set contains a separating

sequence of si and sj . In addition, state characterizing sets

of all states are called harmonized state identifiers (HSI) if

for each two states there is a common separating sequence

in both corresponding sets.

An m-complete test suite is by definition one capable of

finding all faults in an implementation of at most m states.

Where a model has n < m states, one has to consider a

possibility of redundant states in an implementation. These

states also have to be tested in case they have different

transitions leading from them compared to a model. Since

it is not known how to enter these states, all sequences

of inputs of length m − n have to be attempted in every

state, followed by all possible inputs and then sequences to

check the target state. This causes an exponential growth in

the number of test sequences. More effective test methods

generate sequences that do multiple things at the same time

such as combine testing of transitions with checking of states

entered by earlier transitions.

An example of separating and test sequences below is

depicted using GridWorld map E in Fig. 1. A separating

sequence of s0 and s7 is the stOut input ↑ because there is

an object on the tile corresponding to s7. The action ‘right’

separates s9 from states s0 or s2. If one wants to test the

transition with input ‘down’ from s6, a test sequence consists

of an access sequence of s6 (‘right · right’ for instance),

then the transition ‘down’ and a separating sequence that

identifies the target state s7 (‘right · left · ↑’); one of
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FIGURE 2. Active learning explained on the GridWorld example

complete test sequences thus could be ‘right · right · down ·
right · left · ↑’. The choice of the separating sequence ‘right

· left · ↑’ is explained in Section 4 where so-called adaptive

separating sequences are introduced.

2.3. Learning of Finite-State Machines

Active learning of finite-state machines usually consists of

four entities as sketched in Fig. 2. There is a learner, a

teacher, the black box and the conjectured model. The

learner, or the learning algorithm, interacts with the black

box through the teacher in order to construct the conjectured

model M that is equivalent to the black box. There are

two types of queries that the learner can ask. An output

query (OQ), or a membership query in the case of automata

learning, asks for the response to the given input sequence.

This could be done without the teacher but in general, the

teacher can operate as a mapper between symbolic and

concrete inputs and outputs used by the learner and the black

box. An equivalence query (EQ) is asked in order to check

if the given conjectured model is output-equivalent to the

black box, that is, if both machines respond equivalently to

any input sequence. If they are not, a counterexample is

provided to the learner.

For models of software, a ‘teacher’ is an unknown

program. Therefore, EQ is usually approximated by testing

where a testing method constructs test sequences based on

the given conjectured model providing some confidence

that both the conjectured model and the black box are

equivalent. The amount of testing to confirm the correctness

of a program is in the worst case exponential in the number

of extra states. The example in Fig. 2 depicts the learner

assuming that the GridWorld map E is modelled with the 1-

state DFSM and so the counterexample to an EQ could be

the sequence ‘right · down · ↑’.

3. RELATED WORK

The field of Active Automata Learning is based on

the notion, proposed in [5], that each finite automaton

is identifiable in the limit (from positive and negative

examples). The L* algorithm was then proposed by Angluin

in [6]. It learns using an observation table that stores

observed responses in its cells and the labels of rows and

columns form queries, that is, both rows and columns are

labelled with input sequences. The rows can be separated

into two parts. The first part represents observed states;

labels of these rows are access sequences of states. The

second part is labelled with one-symbol extensions of the

access sequences, that is, it corresponds to next states. The

L* algorithms aims to have an observation table (OT) that

is closed and consistent. An OT is closed if each row

of the second part has the content equal to a row from

the first part, that is, each transition leads to an observed

state. An OT is consistent if for every two rows of the

first part that are equal, the rows corresponding to their

one-symbol extensions have the same content as well. In

other words, if an observed state is accessed by different
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sequences, their extensions reach the same states (this is

required because the machine is deterministic). When the

OT is both closed and consistent, the OT defines an finite-

state machine M and so the algorithm asks an equivalence

query that checks whether M correctly models the system.

There are several versions of the algorithm that differ in

processing of provided counterexamples (CE). The original

version by Angluin uses all prefixes of CE, thus here called

L* – AllPrefixes. Other versions work with suffixes only,

for example [2, 7, 8]. The best processing of long random

CEs provides the version Suffix1by1 [9] that extends the

set of separating sequences by suffixes of a CE (starting

from the shortest) until the conjectured model responds to

the CE correctly. L* was adjusted for Mealy machines in

[10]. The Discrimination Tree (DT) algorithm [11] employs

a classification tree to learn instead of an observation table

used by the L* algorithm. The DT algorithm was improved

by the TTT algorithm proposed in [12].

A theoretic framework called observation pack for

efficient active learning was set in [13]. The authors

showed that the L* and DT algorithms implement their

framework and provided lower bounds of numbers of output

and equivalence queries and their complexity. Moreover,

they introduced a way to reduce the number of equivalence

queries (EQ) by identifying all successors of states reached

by a sequence of length up to the given number l. The

Observation Pack (OP) algorithm proposed in the PhD

thesis of Howar [14] combines a discrimination tree and

observation tables to infer Mealy machines. Its versions,

OP – AllGlobally, OP – OneGlobally and OP – OneLocally,

differ in the way how the distinguishing suffix of a CE is

used. The thesis [14] also covers incremental approximation

of EQs using a testing method. The GoodSplit algorithm

[15] approximates EQs by querying random input sequences

of limited length.

Correspondence of testing and active learning was

studied, for example in [16] and [17]. A recent method,

called here the Quotient algorithm [18], inspired by testing

of finite-state machines learns using the observation tree. It

is based on one of the oldest testing methods, the W-method

[3, 4]. There are more advanced testing methods such as

the H-method [19], the SPY-method [20], or the SPYH-

method [21]. An experimental evaluation of different testing

methods of FSMs can be found in [22].

The most promising application of active learning and

testing is adaptive model checking (AMC) [23] and grey

box checking [24] that are based on black box checking

[25]. Both AMC and grey box checking use testing as a

task separated from the learning, hence, it duplicates a lot

of queries that the learner already asked. AMC employs

the L* algorithm to learn a model that is then passed to

a model checker. If a discrepancy is found, it is checked

against the system. A counterexample is returned to L*

if the discrepancy is not confirmed in the system. On the

other hand, if all properties hold in the conjectured model,

the W-method is employed to test the model against the

system. AMC thus provides software verification. The

model checker is an additional oracle which the work

presented in this paper would also benefit from. Grey box

checking uses knowledge about parts of the system that

are so-called white boxes because the definition of their

behaviour is available as source code for example.

A framework is needed for experiments with learning

approaches. Such tools are LearnLib [26], libalf [27]

and FSMlib [22]. LearnLib is a JAVA framework with

GUI for experimenting with learning process; libalf is a

C++ library supporting remote execution and Java native

interface. FSMlib is a new C++ library used in this paper

for handling DFSM and it contains an implementation of

numerous test generation and active inference methods [28].

4. OBSERVATION TREE APPROACH

The standard learning algorithms mentioned in the previous

section have limitations addressed in this section by

introducing a new framework called the observation tree

approach. This approach allows one to use the testing theory

in order to minimize the interaction with the black box and

still learn its model.

This section is structured as follows. First, drawbacks of

standard learning algorithms are discussed as they motivate

the research of a new learning procedure. Then, the structure

of an observation tree is defined and the new learning

approach is proposed in Section 4.3. The learning using

the approach is explained on an example in Section 4.4.

Section 4.5 describes three new learners that implement

the observation tree approach. A high-level description

of dealing with inconsistencies is provided in Section 4.6.

This section is concluded with a comparison against the

observation pack framework and with the time complexity

of the approach.

4.1. Motivation

The standard learning algorithms ask an equivalence query

(EQ) immediately after the conjectured model becomes

completely-specified. Hence, the states of the black box

are revealed mostly due to the provided counterexamples

rather than a targeted exploration. This is captured best

by the use of the DT algorithm that needs almost n EQs

to learn a machine with n states. The L* algorithm does

not need so many EQs but it requires many more output

queries (OQ) in order to learn a completely-specified model.

The trade-off between the numbers of EQs and OQs was

described by [13] based on the framework of an observation

pack. The insufficient generality of the observation pack will

be discussed at the end of this section after new learning

algorithms are described.

There are two reasons to base active learning on methods

of testing of finite-state machines:

1. a faster construction of a completely-specified conjec-

tured model, and

2. a guided exploration of the black box based on the

assumption of extra states.
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The first reason is a direct improvement compared to the

standard learning algorithms as either they do not handle

the observed traces well or they correspond to the W-

method. The W-method uses a characterizing set, or a set

of separating sequences, for the state identification which

is exactly what the L* algorithm or the Quotient algorithm

do. The DT algorithm corresponds to a more efficient

testing method, the HSI-method [29], as it identifies states

by harmonized state identifiers. The classification tree used

by the DT algorithm does not remember observed traces and

so the drawback of the DT algorithm is the duplication of

many output queries.

The second reason to base active learning on testing is the

assumption of extra states that allows the learner to provide

the following guarantee.

DEFINITION 4.1. (Complete learning guarantee) If the

black box is different from the conjectured model of n states,

then the black box has more than n + l states where l is the

assumed number of extra states.

The guarantee relies on sufficient conditions that are

formally proven for the described FSM testing methods.

These conditions capture what should be observed in order

to check the equivalence of two machines with bounded

number of states. The conditions help learning algorithms

to optimize which output query to ask in order to reveal new

states or gain the complete learning guarantee. Moreover,

the number of asked equivalence queries is decreased

dramatically by the assumption of extra states. The

experimental evaluation shows that the assumption of just

one extra state is sufficient to reveal most states and then

there is no need for equivalence queries which are hard to

approximate for software.

4.2. Structure of an Observation Tree

The observation tree approach is proposed in Algorithm 1.

It provides a general framework for a learner to learn with

the assumption of extra states based on the testing theory

in order to reduce the number of equivalence queries. All

traces that are observed during learning are stored in the

observation tree (OTree).

DEFINITION 4.2. Given a set U of observed traces of a

DFSM (S,X, Y, s0, D, δ, λ), the observation tree is a DFSM

(R,X, Y, r0, DU , δU , λU ) such that for each trace ui ∈ U
there is a unique state ri ∈ R which only ui leads to.

The observation tree basically groups observed traces

with the same prefix. Its transition system has no cycles

and looks like a tree with the root as the initial state r0.

Hence, it corresponds to a prefix tree acceptor (PTA) used

in passive grammar inference, for example, by the Blue-

Fringe algorithm [30]. The observation tree is the most

suitable learning structure because it does not forget any

observed trace in contrast with the classification tree of the

DT algorithm and it stores each trace only once in contrast

with the observation table of the L* algorithm. In addition,

the OTree corresponds to a testing tree that is used to capture

test sequences while a testing method is constructing a test

suite. Sequences of both the OTree and the testing tree

consist of 4 parts: an access sequence, a tested transition,

an extension, and a separating sequence. Each state of

the conjectured model (or of the specification in the case

of testing) corresponds to a reference node (RN) of the

OTree (or the testing tree) and each node is reached by a

unique access sequence from the root of the OTree. Access

sequences as the first parts of sequences in the OTree are

used to lead to a particular state from which a transition

is to be tested or the target state of the transition which

to be identified if it is not known. In contrast, separating

sequences are used to identify the state in which they start.

The third part, that is, the extension, is needed when one

works with the assumption of extra states. These extensions

have the length up to the considered number l of extra

states in order to reach states that could be ‘extra’ with

respect to the conjectured model, that is, such states could

be different from those corresponding to the reference nodes.

The purpose of the separating sequences is thus to determine

if these states are different or not.

The correspondence between the conjectured model and

the observation tree is based on the reference nodes that

represent states of the conjectured model. Every two

reference nodes are distinguished in the OTree by different

responses to the same input sequence that starts in both

RNs. Transitions are defined such that the target state is

determined according to the corresponding successor r of

the RN, that is, if there is a transition labelled with the input

a leading from the RN of state si to the node r corresponding

to the state sj , then the conjectured model contains the

transition (si, a) leading to sj . The correspondence of

the successor r and the state sj is based on the sufficient

conditions for the used FSM testing method that also

depends on the number l of extra states. Basically, the

successor r needs to be distinguished from the RNs of states

different from sj and the successors of r reached by a

sequence of the length up to l need to correspond to a single

RN as well. Moreover, these successors of r need to be

distinguished one from the other if the one is a successor of

the other one. If all the transitions are defined with respect

to the assumed number l of extra states, then the observation

tree is closed for l extra states.

4.3. Learning Process

The learning process of the learner that is based on the OTree

approach (Algorithm 1) can be divided into two phases. In

the first phase, the learner constructs a completely-specified

conjectured model as the standard learning algorithms do,

that is, the observation tree is made closed for 0 extra states

and all transitions are defined. In the second phase when

the learner makes the OTree closed for the number l of

extra states such that l > 0, all transitions are considered

defined but unverified. Note that undefined transitions are

also unverified. Any response observed for the first time

can break the consistency between the conjectured model

and the OTree. It means that the conjectured model can
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6 M. SOUCHA, K. BOGDANOV

Algorithm 1: Learner based on the observation tree approach

input : A teacher providing information about the black box through output and equivalence queries

input : maxExtraStates as the maximal number of extra states to be considered during learning

output: A conjectured model M

1 repeat

2 for l← 0 to maxExtraStates do

// make the observation tree T closed for l extra states

3 while there is an unverified transition do

4 (s, x)← choose an unverified transition

5 if l = 0 then // t is not defined in M
6 identify state δ(s, x) using adaptive separating sequences

7 else

8 verify transition (s, x) using testing theory, l extra states

9 if observed responses and outputs of M differ then

10 RESOLVEINCONSISTENCY(T,M):
11 query appropriate sequences to reveal a new state

12 update the conjectured model M

13 l← 0 // assume 0 extra states again as

14 break // some transitions are not defined in M

15 if equivalence query returns a counterexample w then

16 query w and RESOLVEINCONSISTENCY(T,M)

17 until EQ reports that M is correct or EQs are not allowed or the user is satisfied with M

no longer model the observed traces as the black box has

more states than the conjectured model. The inconsistency

is resolved by localizing a new reference node which usually

requires several output queries that distinguish a node from

all current reference nodes. This process is described by the

RESOLVEINCONSISTENCY function (discussed later) which

is also used after the teacher provides a counterexample

in response to an equivalence query. The purpose of a

counterexample is to show an inconsistency between the

OTree and the conjectured model. After resolving the

inconsistency, the transitions from the new state are usually

not defined, therefore, the number l of assumed extra state

is reset to 0. If there is no inconsistency observed in the

second phase and the number l reaches the given number

maxExtraStates, an equivalence query can be asked. The

learning can stop for three reasons: (1) either the conjectured

model is correct as no counterexample is returned to an EQ,

or (2) EQs are not allowed at all because the teacher has

no capability to answer this type of query, or (3) the user

is satisfied with the conjectured model. The last reason

could be used in the following scenario. The user starts the

learner with a large value for maxExtraStates. Most states

are revealed by the assumption of 1 extra state, that is, l = 1.

A few last states are harder to reveal and so the learner

starts to increase l. The number of output queries grows

exponentially with the increasing l and so it takes more time

to reveal these ‘hidden’ states. The learner provides the user

with the guarantee of l extra states (Definition 4.1) and the

user can be satisfied with the number of revealed states so

that the user stops the learning even if l does not reach the

given maxExtraStates. The exponential growth is due to

the complexity of FSM testing that nevertheless secures the

guarantee.

The first phase of the learning depends on so-called

adaptive separating sequences. An adaptive separating

sequence groups separating sequences with the same prefix

so that it looks like a tree. Each transition corresponds

to an input and branches reflect different outputs from the

black box. It is used to identify the target state of a

transition that is not defined yet. If the corresponding node,

that is, the successor of a RN, is not distinguished from

more than one RN, then the separating sequences of these

‘undistinguished’ RNs captured in the OTree form adaptive

separating sequences such that each starts with a different

input symbol. To reduce the amount of testing, the input

that distinguishes the most ‘undistinguished’ RNs is then

queried. Note that only one separating sequence is queried

out of all sequences that form the chosen adaptive separating

sequence because the input to be queried next is selected

based on the observed response to the previous input. This

is a change compared to the standard learning algorithms

that ask output queries on entire input sequences, not symbol

by symbol. The use of adaptive separating sequences thus

reduces the number of queried symbols.

4.4. Running Example

Figure 3 shows how the learning of the GridWorld map

E (Fig. 1) could start. The observation tree on the left

captures the first 5 queries that correspond to the numbers

labelling nodes of the tree. At first, the output of the initial
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FIGURE 3. Beginning of learning the GridWorld example

state is obtained by asking ↑. Then, the learner asks for

the response on ‘left · ↑‘. The response N to ↑ suggests

that the transition on input ‘left‘ leads back to the initial

state s0. It is confirmed by the same response to ‘left · ↑‘
queried from the reached state δ(s0, left). The fourth query

checks the transition on ‘right‘ from the initial state. The

reached state produces the output N, hence, it seems to equal

to s0. Nevertheless, the response to another ‘right · ↑‘
(fifth query) differs from the expected one. The observed

difference leads to the identification of two states, s1 and s2,

that are reached by ‘right‘ and ‘right · right‘ from the initial

state, respectively. All three states can be distinguished by

separating sequences ‘↑‘ and ‘right · ↑‘ that can be combined

in the adaptive distinguishing sequence shown in Fig. 3.

4.5. Novel Learners

The H-, SPY- and S- learners are novel learning algorithms

that follow the observation tree approach and so outperform

the standard learning algorithms. They differ in the choice of

testing method by which they are inspired. It influences the

choice of access and separating sequences as is summarized

in Table 1. The H-learner is the simplest of the three. It

is inspired by the H-method [19] and so it always uses the

shortest access sequences of reference nodes. In the second

phase of the learning, it chooses separating sequences on-

the-fly from the observed ones in order to distinguish the

reached node from one reference node that corresponds to

a different state. The SPY-learner is inspired by the SPY-

method [20]. In addition to the shortest access sequences

of RNs, it can employ the access sequence of nodes that

were proven to be convergent with RNs. The convergence of

two sequences (or the reached nodes of OTree) means that

both sequences lead to the same state in all machines with

up to m states that provide expected responses to queried

sequences [20]. This paper considers the system to learn has

at most m states where m equals the number n of states in

the specification plus the number l of considered extra states.

The convergence provides a way to minimize the number

of output queries by appending the needed separating

sequences over convergent sequences. The drawback of

Learner Access sequences Separating sequences

H-learner fixed
chosen on-the-fly to

distinguish from one RN

SPY-learner fixed + convergent fixed – formed in HSIs

S-learner fixed + convergent
chosen on-the-fly to

distinguish from most RNs

TABLE 1. The choice of access and separating sequences by the

three new learners.

the SPY-learner is the use of fixed separating sequences

formed in the harmonized state identifiers (HSI) that is not so

efficient compared to separating sequences chosen on-the-fly

by the H-learner. The S-learner is similar to the SPY-learner

in the first phase, that is, it utilizes the convergence of access

sequences and employs adaptive separating sequences. The

second phase is delegated to the S-method that is a new

testing method that is an improvement of the SPYH-method

[21]. It makes the given OTree (considered as a testing tree)

closed for the given number of states by extending some

sequences. It works with the convergence of sequences and

separating sequences are chosen based on the splitting tree

that allows one to distinguish most ‘undistinguished’ RNs.

Hence, it is more efficient than the H- and SPY- methods.

Their implementation can be found in the FSMlib [28].

4.6. Resolving Inconsistencies

An inconsistency of the conjectured model and the OTree

can be observed in different ways depending on the

implementation of the learner. All three new learners use the

notion of domains of states associated with each node of the

OTree. Domains capture the similarity of the corresponding

node to the reference nodes. Hence, a RN s is not in the

domain of node r if a separating sequence of s and r was

observed. The basic inconsistency is revealed if a node

r has an empty domain. It means that r is distinguished

from all RNs and so it represents another state of the

system; r becomes a new RN. Another type of inconsistency

is when a node r should correspond to a particular state

of the conjectured model but the corresponding RN s is

not in the domain of r. Such an inconsistency is called

inconsistent domain and can be resolved by querying several

sequences that reveal the basic inconsistency in a form of

an empty domain. The sequences are formed from the

separating sequence of r and s (captured in the OTree)

prepended with suffixes of the access sequence of r. The

sequences are queried starting from the shortest and each is

queried from the RN that corresponds to the node where the

sequence begins in the OTree. There are two other types

of inconsistency that can be observed by the SPY- and S-

learners as they employ the convergence of sequences. Both

learners group OTree nodes in convergent nodes (CN) if

their access sequences were proven to be convergent. It

means that a so-called convergent graph is built on top of

the OTree. If any two OTree nodes belonging to different

CNs are shown to be convergent, then the CNs are merged

so that the convergent graph is equivalent to the conjectured
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model in the end of learning. As all OTree nodes of a

CN need to correspond to a single state, there are also CN

domains that keep track which state the CN can correspond

to. The inconsistency is observed if a CN domain is

empty or if a CN cannot be merged successfully into the

corresponding CN of RN because some of their successors

are incompatible. These two inconsistencies are resolved

by reducing the domain of a particular OTree node r using

observed separating sequences of other OTree nodes that

were (possibly incorrectly) in the same CN as r.

4.7. Comparison with an Observation Pack

The proposed observation tree approach is more general

than the framework of observation pack (OP) [13] as the

following shows. First, each state has a fixed verifying

component of separating sequences in the OP; components

thus corresponds to HSIs. Therefore, the H-learner does

not implement the OP framework. Second, the OP does not

allow different access sequences of a single state, that is, the

convergence of sequences is not considered. Therefore, the

SPY- and S- learners do not implement the OP framework.

4.8. Time Complexity

The time complexity of the observation tree approach

depends mainly on the number of considered extra states.

Any learner that uses a testing method to approximate

equivalence queries is bound by the time complexity of the

used testing method. In the worst case, it is exponential in

the number l of extra states with the base of the number p
of inputs because all sequences of the length l need to be

examined from every state in order to secure the guarantee

(Definition 4.1). Nevertheless, the average case is nearly

always much smaller. Theoretical evaluation of such an

average complexity is the subject of future work. If no extra

state is considered, then the complexity relates to the size

of the OTree which is polynomial in the number n of states

in this case. The complexity is also influenced by provided

counterexamples that could be of arbitrary length in general.

5. EXPERIMENTS

This section describes an experimental evaluation that aims

to address the following two research questions:

Q1. Is practical complexity of automata inference using new

methods significantly better than that of existing methods?

Q2. Is it practical to learn accurate models in the presence

of extra states?

The three new learners were compared with the standard

learning algorithms experimentally on the GridWorld map

E (Fig. 1), on three real system models and on a set of

randomly-generated machines. GridWorld had no model

available and so it was learnt by interaction and equivalence

queries were approximated by a testing method. The

interaction with GridWorld was done through a mapper

that translates symbolic inputs to real actions and observed

responses to symbolic outputs. Hence, the GridWorld

learning is the most realistic experiment. Random machines

show that the learners are very effective on a range of

different DFSMs and finally three models of real systems

are shown where learners exhibit similar trends to both

GridWorld and randomly-generated machines.

5.1. GridWorld Case Study

The learnt model of the GridWorld map E is visualized in

Fig. 4 using the FSMvis that is a part of the FSMlib. The

learning metrics of 6 learners are captured in Table 2. The

algorithms are compared on the numbers of resets, queried

symbols, output queries, equivalence queries, GridWorld

simulation steps and the learning time in seconds. The

three new learners were not allowed to ask EQ but they

can learn the correct model with the assumption of only

one extra state. Therefore, when they assume 2 extra states

(ES), they also do not need the teacher but they provide a

stronger guarantee about the states of the black box. The

most efficient of the standard learning algorithms is the

Quotient algorithm that however needs 4 EQs (implemented

by the SPY-method and 0 ES). Test sequences generated

by the SPY-method are queried by the teacher starting with

the shortest ones, hence, the shortest counterexample is

provided. The results in Table 2 show the lowest number of

extra states that the SPY-method needs to assume in order to

find a counterexample for each faulty conjectured model that

the standard learning algorithms create. A faulty conjectured

model is simply each that has less than 32 states. It is not

mentioned in Table 2 but the S-learner assuming 1 ES learns

the map E only in 7 894 simulation steps and in the next

23 228 steps the learner verifies the absence of another state.

5.2. Randomly Generated Machines

Figure 5 depicts the results of learning randomly-generated

DFSMs. The algorithms were compared on 3 400 DFSMs,

3 400 Mealy machines, 3 400 Moore machines and 3 400

deterministic finite automata (DFA) such that all of them

except DFA have 5 outputs. For each machine type, half

of machines has 5 inputs and the others 10 inputs, both

halves are divided into 17 groups of 100 machines with

the same number of states that ranges from 10 to 1000.

Target states of transitions and outputs are first chosen at

random and then some are changed in order to create initially

connected machine with the presence of each output symbol.

If the generated machine is not strongly connected, then it

is deleted and another machine is generated. A machine

is strongly connected if there is a directed path between

any two states. As the black box is known to the teacher,

it provides the shortest counterexamples in response to an

equivalence query if the conjectured model is not output-

equivalent to the black box. The shortest counterexample is

obtained by the breadth-first search in the product machine

of the black box and the given conjectured model.

The figures in Fig. 5 show the first and the third quartiles

calculated for each ‘state group’ of 100 DFSMs with 5

inputs. In addition, the boxplots on the right of each

graph also capture minimum and maximum values for the
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Mapping

to Fig. 1:

Inputs

0 - stay

1 - left

2 - right

3 - up

4 - down

State outputs

0 - N

i - Oi

Transition

outputs
0 - F

2 - C

FIGURE 4. Learnt model of the GridWorld map E. States, inputs and outputs are numbered from 0. Highlighted state 0 (with the output 0

shown below) is the initial state.

Learning algorithm Resets Symbols OQs EQs Seconds Steps

S-learner: 1 ES 486 9 784 3 859 0 620 31 122

H-learner: 1 ES 1 026 10 028 2 618 0 829 41 434

Quotient 1 110 7 487 1 110 4 615 48 652

+ SPY-method: 0 ES 377 4 835

SPY-learner: 1 ES 1 801 17 415 4 058 0 1 345 74 651

S-learner: 2 ES 2 005 51 300 20 997 0 3 443 156 357

H-learner: 2 ES 4 185 44 325 10 565 0 3 314 186 274

TTT 1 363 7 870 1 363 11 4 145 378 793

+ SPY-method: 2 ES 6 864 131 212

SPY-learner: 2 ES 9 630 96 493 18 177 0 8 134 432 450

L*AllPrefixes 3 444 28 062 3 444 8 4 664 445 285

+ SPY-method: 2 ES 5 641 115 749

TABLE 2. Learning GridWorld map E: learners are sorted by the number of simulation steps (last column) that corresponds to the amount

of interaction, that is, the number of resets of the black box plus the number of symbols queried during the learning by both the learner and

the teacher. The teacher gets a counterexample to equivalence queries by the SPY-method.

machines with 1000 states. All machines with the results are

available in the GitHub repository FSMmodels [31].

The exploration efficiency (EE) is a new objective

developed by the authors. It is calculated as the number of

edges in the OTree divided by the total number of queried

symbols. It permits one to evaluate how much of the black

box is explored and how much effort was put in it. The

greater the value, the better the learner is.

The new learners assuming 0 extra states (ES) can be

directly compared with the standard learning algorithms.

They outperform the DT and TTT algorithms in all measures

(besides time). They are more efficient than the other

standard algorithms in the numbers of OQs, queried symbols

and resets and in the exploration efficiency. However,

they have a greater number of EQs because they build a

completely-specified model fast with the least number of

symbols which means very little exploration and hence a low

chance to find an inconsistency. This is balanced by the new

learners assuming 1 ES that query about the same number of

symbols as the standard algorithms but reset the black box

less and need no EQ to learn. Moreover, they provide the

guarantee at the end that there is not one extra state. Note

that all learners were allowed to ask EQ, therefore, they

ask at least one EQ, the last one, which confirms that the

conjectured model is correct. The DFSMs with 10 inputs as

well as the 10 200 randomly generated machines of the other

three machine types produce results with the same trends of

the learners’ performance as in Fig. 5.
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FIGURE 5. Comparison of learning algorithms on 17 groups of 100 randomly-generated DFSMs with 5 inputs and 5 outputs such that the

groups vary in the number of states, from 10 to 1000.
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Learning algorithm Resets Symbols EQs Seconds EE [%]

SPY-learner: 0 ES 2 007 25 334 68 9.14 14.3

S-learner: 0 ES 2 017 25 438 65 9.09 14.0

H-learner: 0 ES 2 307 28 913 78 0.55 11.0

TTT 3 606 43 757 94 0.03 5.5

DT 11 805 110 183 96 0.05 2.2

S-learner: 1 ES 14 107 178 965 1 181.94 9.8

H-learner: 1 ES 14 254 190 634 1 5.42 14.8

SPY-learner: 1 ES 15 908 203 289 1 350.83 9.0

Quotient 16 741 206 793 4 0.14 8.3

OPOneLocally 18 322 224 021 18 0.10 6.3

L*Suffix1by1 18 655 231 131 15 0.16 7.4

OPOneGlobally 21 736 269 173 4 0.12 6.4

L*AllPrefixes 23 235 283 013 12 0.19 7.6

OPAllGlobally 63 670 1 056 247 4 0.60 18.4

GoodSplit: l = 2 149 591 1 944 084 2 42.87 7.8

TABLE 3. Learning sched4: learners are sorted by the amount of interaction, that is, the number of resets of the black box plus the number

of input symbols queried during the learning

5.3. Real Systems

Table 3 shows the results of learning a scheduler. Its model

is referred sched4 in the literature [14, 12] and it is a

deterministic finite automaton with 97 states and 12 inputs.

The teacher provides the shortest counterexamples. The

results are similar for the other two models of real systems

that are called peterson2 and sched5. The results also

capture the same trends observed on randomly-generated

machines (Fig. 5). Hence, the improvement by the new

learners is more than promising. As in the case of randomly-

generated machines, all three models with the results of

experiments are available in the repository FSMmodels.

5.4. Results

The research questions are answered based on the

experiment results as follows.

Q1. The experimental evaluation shows that the new

methods are more efficient than the standard learning

algorithms in the interaction with the black box.

Q2. There is always exponential growth in complexity if one

works with extra states. Nevertheless, the results show that

the assumption of one or two extra states is sufficient to learn

a correct model and no equivalence query is needed.

5.5. Threats to Validity

Automata used for experiments are not representative of

those seen in real life. This is mitigated by generating both

random machines and by using actual case studies. In order

to make it less likely to have a bias in the generation of

random machines, a machine that is not strongly connected

is discarded and a new one generated. Case studies

were chosen from different domains, including both AI

(GridWorld) and real software.

Equivalence queries are cheap when one has access to

an efficient oracle. This is usually encountered in model

verification where models could be generated by abstraction

of more complex models in order to check compliance with

temporal logic formulae [32, 33]. The work considered in

this paper is aimed at building models of actual software so

an oracle has to consult the source code or an executable

which makes this task computationally expensive (existing

methods use testing).

6. CONCLUSION

The proposed observation tree approach allows one to

employ testing theory in active learning which improves

the learning performance. The improvement is both in the

construction of a completely-specified conjectured model

and in the reduction of dependency on the teacher. The

conjectured model can be constructed using much less

interaction with the black box than the standard learning

algorithms need because of the analysis of observed traces

and the use of appropriate separating sequences which is

what advanced testing methods do. The assumption of

extra states can guide the exploration of the black box

in order to reveal other states efficiently and thus reduce

the number of equivalence queries (which corresponds to

the need of an efficient teacher). The complexity grows

exponentially with the number of assumed extra states. The

experiments show that the assumption of a single extra state

is usually sufficient to learn a correct model without any

counterexample provided by the teacher. Moreover, all three

new learners based on the observation tree approach need

about the same (or less) amount of interaction with the black

box to learn it even if they assume one extra state.

The three new learners differ in the choice of a testing

method which they are based on. It means that they trade-

off the complexity of their algorithm and their learning

efficiency differently. Future work involves evaluation of

these learners on larger real systems and with a teacher

providing non-optimal counterexamples.
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