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1Academy of Finland ReSoLVE Centre of Excellence, Department of Computer Science, Aalto University FI-02150
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK
3School of Mathematics, Statistics and Physics, Newcastle University, NE1 7RU, UK
4Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK
5Plasma Dynamics Group, Department of Automatic Control and Systems Engineering, University of Sheffield, S1 3JD, UK
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ABSTRACT

The magnetic network extending from the photosphere (solar radius ≃ R⊙) to lower corona
(R⊙ + 10Mm) plays an important role in the heating mechanisms of the solar atmosphere.
Here we further develop the models with realistic open magnetic flux tubes of Gent et al.
(2013, 2014) in order to model more complicated configurations. Closed magnetic loops,
and combinations of closed and open magnetic flux tubes are modelled. These are embedded
within a realistic stratified atmosphere, subject to solar gravity and including the Interface
Region. Constructing a magnetic field comprising self-similar magnetic flux tubes, an analytic
solution for the kinetic pressure and plasma density is derived following Gent et al. (2014).

Combining flux tubes of opposite polarity it is possible to create a steady background
magnetic field configuration modelling realistic solar atmosphere. The result can be applied
to SOHO/MDI and SDO/HMI and other magnetograms from the solar surface, upon which
realistic photospheric motions can be simulated to explore the mechanism of energy transport.
We demonstrate this powerful and versatile method with an application to Helioseismic and
Magnetic Imager data.
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1 INTRODUCTION

Since discovery that the solar corona was significantly hotter than

the photosphere, following the 1932 solar eclipse (Cillié & Men-

zel 1935) and subsequent confirmation (Redman 1942), how so has

posed a major challenge. Across the solar atmosphere temperatures

vary by orders of magnitude. Typical photospheric temperatures

are about 6500K (solar radius R⊙ ≃ 696Mm), and above 106 K
in the corona (out to about 2R⊙) (Priest 1987, 2014; Aschwanden

2005; Erdélyi 2008, and references therein). The solar surface and

atmosphere are extremely dynamic. Frequent and powerful events

such as coronal mass ejections release high energy, localised heat-

ing within the atmosphere, and yet the corona everywhere is hot.

Jets, flares, prominences, and flux emergence, among others, carry

mass and energy from the surface into the atmosphere. However,

it remains unclear how energy is dissipated through the chromo-

sphere and subsequently to the coronal plasma (Zirker 1993; As-

chwanden 2005; Klimchuk 2006; De Pontieu et al. 2011; van Bal-

legooijen et al. 2011; Priest et al. 2018; Zank et al. 2018). Persis-

tent and ubiquitous small-scale processes would appear to be can-

didates for this effect. Some advocate small-scale reconnections of

magnetic field lines (Peter et al. 2004; Bourdin et al. 2013). Such

⋆ E-mails: frederick.gent@aalto.fi

reconnections occur on physical scales well below the resolution

and cadence currently available for observational validation. An al-

ternative view may be that solar magnetic field lines, in the form of

magnetic flux tubes, act as guides for magnetohydronamic (MHD)

waves that may carry the missing energy to heat the atmosphere to

observed temperatures. These occur at scales, which are increas-

ingly available to observational comparison (Jess et al. 2007; Mor-

ton et al. 2012; Wedemeyer-Böhm et al. 2012). This article is moti-

vated by the latter, but may nevertheless be useful more generally.

Models of magnetic field configuration dealing with coronal

heating often set the flux-tube footpoints just above the Transition

Region (TR), or leave it unresolved. The TR is a relatively narrow

layer between chromosphere and corona where the plasma temper-

ature jumps. In the corona the magnetic field is commonly mod-

elled as force-free, assuming the plasma pressure to be negligible,

but in the low chromosphere and the photosphere kinetic forces

cannot reasonably be ignored, with the ratio of thermal to magnetic

pressure plasma-β ≫ 1. The dynamic interface region (IR) spans

the photosphere and lower corona. Typical mass and energy den-

sity in the IR are orders of magnitude larger than in the corona as a

whole (McWhirter et al. 1975; Vernazza et al. 1981; Fontenla et al.

2006, 2007, 2009), so it is reasonable to expect IR dynamics to be

critical for the coronal heating mechanism.

The extreme nine orders of magnitude gradient in plasma den-
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sity (six in pressure, three in temperature) over 2.5Mm from the

upper photosphere to the lower corona presents a significant chal-

lenge in modelling magnetic fields in the chromosphere (DeFor-

est 2007). Typical magnetic flux-tube footpoint strength of about

100mT (1000G) are observed emerging from the photosphere

(Zwaan 1978; Priest 1987, 2014; Aschwanden 2005; Erdélyi 2008,

and references therein, the latter Ch.8.7, Ch.5, respectively). An

isolated magnetic flux tube must, therefore, expand exponentially

in radius as it rises to balance the plasma pressure. Magnetic struc-

tures remain steady over various time-scales (McGuire et al. 1977;

Levine & Withbroe 1977; Malherbe et al. 1983) and this has been

used to investigate the transport mechanisms along the field lines

with a series of numerical simulations (Shelyag et al. 2008; Fedun

et al. 2009; Shelyag et al. 2009; Fedun et al. 2011; Vigeesh et al.

2012; Khomenko & Collados 2012; Mumford et al. 2015; Mum-

ford & Erdélyi 2015). These numerical studies were restricted to

single flux tubes and did not breach the TR, so flux tube inter-

action and the effect on the corona cannot feasibly be explored.

Khomenko et al. (2008); Khomenko & Collados (2012) constructed

a 2D magnetic field with multiple flux tubes, each identical to its

neighbour, but excluding the TR. Hasan et al. (2005); Hasan &

van Ballegooijen (2008) constructed a 2D magnetic field which

does extend into the low corona. Gent et al. (2014, hereafter Pa-

per II) generalised the background configuration to 3D, multiple,

non-identical flux tubes, extending into the lower corona. This was

successfully applied to a 3D model of a flux-tube pair by Snow et al.

(2018), who showed that chromospheric shocks at the intersections

between the tubes are capable of driving supersonic jets.

However, all of these models apply only to open magnetic flux

tubes of the same polarity. Their major omission is flux loops with

footpoints of opposite polarity, which are common features of solar

magnetic networks. Vesecky et al. (1979) considered an analytic

construction of a single 3D magnetic flux loop as a static back-

ground, but for a thermodynamic model, not MHD. The primary

contribution of the current work will be to add loops to the multi-

ple flux tube network described in Paper II. An advantage of this

result shall be that any arbitrary magetogram of the photosphere,

e.g. from the Helioseismic and Magnetic Imager for SDO (HMI)

(Kosovichev & HMI Science Team 2007), can be constructed by

matching the vertical field for each pixel to the model and con-

structing analytically a realistic 3D magnetic network extending

into the corona. Using the corresponding velocity field from the

same observational image or similar, forward modelling can then

be applied to explore the energy transport mechanism. The analyt-

ical model is outlined explicitly in Section 2, and differences with

Paper II. In Section 3 some applications for the model are described

and some discussion of its uses and limitations.

2 MAGNETIC FLUX LOOP

2.1 Ambient magnetic field outside the flux tubes

In Gent et al. (2013, hereafter Paper I) we constructed analytically a

3D model of a single vertical magnetic flux tube embedded in a re-

alistic solar atmosphere at magnetohydrostatic (MHS) equilibrium.

This was extended to multiple magnetic flux tubes in Paper II.

The background atmosphere employed was derived from the

combined modelling profiles of Vernazza et al. (1981, Table 12,

VALIIIC) and McWhirter et al. (1975, Table 3) for the chromo-

sphere and lower solar corona, respectively (see Fig 1 Paper I).

However, the models do not depend on the choice of atmosphere

and the derivation described could be applied to many alternative

atmospheric models.

Observations (Ch.3.5 in Mariska 1993; Schrijver & Title

2003) indicate the atmosphere outside the flux tubes includes a non-

zero magnetic field of order 1−10mT in the corona. It is important

to model this ambient field, so that realistic ratios can be obtained

between the thermal and magnetic pressures, i.e. plasma-β < 1
outside the flux tube. Paper I and Paper II implemented explicit

external fields to provide ambient magnetic pressure. In this article

we model magnetic flux loops by combining vertical flux tubes of

opposite polarity. For a flux tube of opposite polarity an ordered

ambient field will negate the effective field in the flux tube. There-

fore, a constant vertical ambient field is not suitable for use with

flux loops. A realistic solution still requires a low plasma-β in the

corona. Further refining the model the ambient magnetic pressure

felt by each individual flux tube is now induced by the superposi-

tion of its neighbouring flux tubes. Plasma-β < 1 above the pho-

tosphere will be obtained due to the expansion of strong flux tubes

and loops near the local network. Therefore, we drop the ambient

field denoted by b00 in Equation 22 of Paper II.

2.2 The MHD equations

A full outline of the governing ideal MHD equations, which we

would use to describe the environment in the solar atmosphere is

provided in Gent et al. (2014, Section 2.2). Our approach, following

that of Shelyag et al. (2008), is to derive the system of equations

governing the perturbed MHD variables by splitting the variables

ρ (plasma density), e (energy density) and B (magnetic field) into

their background and perturbed components

ρ = ρb + ρ̃, e = eb + ẽ, B = Bb + B̃, (1)

where tilde denotes the perturbed portion and it is assumed ρb, eb
and Bb do not vary with time. When the time-independent momen-

tum equation describing the background equilibrium is deducted,

the modified form of the momentum equation governing the per-

turbed system is given by

∂ [(ρb + ρ̃)ui]

∂t
+

∂

∂xj

[

(ρb + ρ̃)uiuj −
B̃iB̃j

µ0

]

(2)

+
∂

∂xi

p̃T −
∂

∂xj

[

B̃iBbj +BbiB̃j

µ0

]

+ Fbali
= ρ̃gi,

and the consequent energy equation is given by

∂ẽ

∂t
+

∂

∂xj

[

(eb + ẽ)uj −
B̃iB̃j

µ0

ui

]

(3)

+
∂

∂xj

[

p̃Tuj −
B̃iBbj +BbiB̃j

µ0

ui

]

+pbT
∂uj

∂xj

−
BbjBbi

µ0

∂ui

∂xj

+ Fbali
ui = ρ̃giui,

in which u and g are the velocity and gravitational acceleration.

F bal represent net background equilibrium forces. The system is

completed by the equations of continuity, induction and state, as

detailed in Paper II.

Given no vertical current Jz a stationary state, where mag-

netic force balances exactly pressure and gravitational forces, has

an MHS equilibrium solution providing the magentic field satisfies

∂yBz∂zBx = ∂xBz∂zBy, (4)

and, hence, F bal= 0. A scalar solution for pressure can other-

wise still be derived by inclusion of minimal horizontal balanc-
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ing forces F bal, yielding forced magnetohydrostatic equilibrium

(FME). These balancing forces are small compared to the other

forces and may be considered to be a statistical steady superposi-

tion of small-scale high-cadence turbulence in the chromosphere,

where the magnetic field is not force-free. Our approach is to

specify the background magnetic field. We then solve the time-

independent momentum equation

∇pb +∇
|Bb|

2

2µ0

− (Bb ·∇)
Bb

µ0

− ρbgR̂+ F bal = 0, (5)

to find the FME pb and ρb, and identify the balancing forces F bal.

Gravity depends only on solar radius R,

2.3 A single magnetic flux tube

In cylindrical coordinates, taking ẑ to be along R, the magnetic

potential of a self-similar axisymmetric magnetic flux tube is

m
Abr = m

Sφ
m
G
∂

mf

∂r
,

m
Abφ = 0, m

Abz = m
Sφ

m
G
∂

mf

∂z
,

or in Cartesian coordinates we have

m
Abx = m

S arctan

(

y − my

x− mx

)

m
G

∂
mf

∂x
,

m
Aby = m

S arctan

(

y − my

x− mx

)

m
G

∂
mf

∂y
,

m
Abz = m

S arctan

(

y − my

x− mx

)

m
G

∂
mf

∂z
, (6)

where mAb denotes the potential for the mth flux tube, which has

its axial vertical magnetic field mS located at a footpoint (mx, my)
on the photosphere. We scale mf and mG from Paper II to

m
f = −

mr2B0z
2

2
and

m
G = exp

(

mf

f0
2

)

, (7)

with factor f0
2 governing the radial scale of the flux tube and the

radial distance mr from the axis at (mx, my) is

m
r =

√

(x− mx)2 + (y − my)2. (8)

The reduction in the vertical field strength along the flux tube axis

is specified by an appropriate monotonically decreasing function

B0z(z), such as a sum of exponentials as applied in Paper II or a

polynomial form as applied by Gary (2001) and employed in Sec-

tion 3.1 The sign of real parameter mS determines the polarity of

the flux tube. The components of the magnetic field for the mth

flux tube mBb are then defined as in Equation 22 of Paper II with

b00 = 0. Now, however, by construction at (mx, my) mG = 1
and mr = mf = 0. We also impose B0z(z = 0) = 1. Hence, at

the flux tube axis the photospheric magnetic field is mBbz = mS,

which can be set directly or interpolated from HMI data or similar.

Equation (5) can be decomposed into hydrostatic (HS) and

MHS parts, i.e.

∇(pbh + m
pbm) +∇

|mBb|
2

2µ0

− (m
Bb ·∇)

mBb

µ0

(9)

+m
F bal − (ρbh + m

ρbm)gẑ = 0,

in which pbh and ρbh denote HS plasma pressure and density, and
mpbm and mρbm denote MHS adjustments due to flux tube mBb.
mF bal vanishes, with Equation (4) satisfied for the single flux tube.

The HS equilibrium is constructed using the VAL IIIC (Vernazza

et al. 1981) temperature and density profiles to calculate a pressure

profile, using the ideal gas law. That is then differentiated vertically

to produce a stable density profile, assuming constant gravity. The

advantage of this method is that it allows the pressure and density

fields to be corrected, after the MHS corrections have been applied,

to exclude negative values. What remains of Eq. (9) is

∇
m
pbm+∇

|mBb|
2

2µ0

−(m
Bb ·∇)

mBb

µ0

− m
ρbmgẑ = 0. (10)

The solution to Eq. (10) follows Paper I and Paper II, in the absence

of terms defining an ambient magnetic field b00, to yield

m
pbm =

mS2

2µ0

m
G

2
[

f0
2
B0zB

′′
0z + 2m

fB
′
0z

2 −B0z
4
]

,(11)

m
ρbm =

mS2 mG2

µ0g

[(

f0
2

2
+ 2m

f

)

B
′
0zB

′′
0z+ (12)

B0zB
′′′
0zf0

2

2
− 2B0z

3
B

′
0z

]

.

2.4 Including a second or more flux tubes of mixed polarity

Let us now include a second flux tube, such that nBb denotes one

with the same construction as mBb apart from the arbitrary axial

coordinates ( nx, ny) and parameter nS. Equation (10) becomes

∇(m
pbm + n

pbm + mn
pbm) (13)

− ([mBb +
n
Bb] ·∇)

mBb +
nBb

µ0

+∇
|mBb +

nBb|
2

2µ0

+mn
F bal − (m

ρbm + n
ρbm + mn

ρbm)gẑ = 0,

where superscript n has equivalent meaning for the second flux tube

as indicated for the first in Equation (9). The additional superscript
mn refers to the interaction between the flux tube pair. Subtracting

Equation (10), and the equivalent for the second flux tube retains

∇
mn

pbm − (m
Bb ·∇)

nBb

µ0

− ( n
Bb ·∇)

mBb

µ0

(14)

+∇

mBb ·
nBb

2µ0

+ mn
F bal −

mn
ρbmgẑ = 0.

Equation (4) is not satisfied, so mnF bal does not vanish.

∂

∂x
mn

pbm =
2 nf2

f0
2
B

′
0z

2 m
S

n
SB

2

0z
m
G

n
G
x− nx

µ0

(15)

+
2mf2

f0
2

B
′
0z

2 m
S

n
SB

2

0z
m
G

n
G
x− mx

µ0

+
∂

∂x

(

mS nSf0
2

2µ0

m
G

n
G
[

B
′
0z

2
+B0zB

′′
0z

]

)

,

in which the first two lines cannot integrate with respect to x, while

a similar residual expression is obtained from integrating the y-

component of Equation (14). However, a scalar solution for the

pressure and density is possible, if this contribution to the magnetic

tension force is balanced by

mn
F bal = −

2

f0
2
B

′
0z

2 m
S

n
SB

2

0z
m
G

n
G (16)

{

n
f
2

[

x− nx

µ0

x̂+
y − ny

µ0

ŷ

]

+ m
f
2

[

x− mx

µ0

x̂+
y − my

µ0

ŷ

]}

.

If we generalise to a system of N flux tubes with Bb = 1Bb +
2Bb + ...+ NBb, then the pressure can be fully descibed by

pb = pbh +
N
∑

m=1

m
pbm +

N
∑

m,n=1|n>m

mn
pbm, (17)

in which pbh is derived from the interpolated observed profile, con-

strained to be monotonically decreasing with height, and mpbm is

MNRAS 000, 000–000 (0000)
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Figure 1. Observed HMI magnetogram (left) model (right) of the photo-

sphere. Filled pixels highlight the resolution.

defined by Equation (11). The pressure adjustment due to each pair-

wise flux tube interaction is given by

mn
pbm =

mS nSf0
2

2µ0

m
G

n
G
[

B
′
0z

2
+B0zB

′′
0z

]

−
mBbz

nBbz

µ0

.

(18)

The corresponding expression for the plasma density is

ρb = ρbh +
N
∑

m=1

m
ρbm +

N
∑

m,n=1|n>m

mn
ρbm, (19)

in which ρbh is the product of g−1 and the z-derivative of pbh, and
mρbm is defined by Equation (12). The density adjustments due to

each pairwise flux tube interaction are given by

mn
ρbm = 2

mS nS

µ0 g
m
G

n
GB0zB

′
0z

[(

mf + nf

f0
2

− 2

)

B0z
2
(20)

−
mf + nf

2

(

B′
0z

2

B0z
2
+

B′′
0z

B0z

)

+
f0

2

4

(

3
B′′

0z

B0z

+
B′′′

0z

B′
0z

)

+ {(x− m
x)(x− n

x) + (y − m
y)(y − n

y)}
{(

1−
mf + nf

f0
2

)

B
′
0z

2
+B0zB

′′
0z − 2

B0z
4

f0
2

}]

.

The net balancing force in Equation (5) is then fully specified as

F bal =
N
∑

m,n=1|n>m

mn
F bal. (21)

3 APPLICATION OF THE MODEL

3.1 Fitting arbitrary flux tubes

A stable atmosphere can be generated for any distribution of pho-

tospheric magnetic field by using the observed magnetic field in

each pixel to construct a series of interacting flux tubes. To demon-

strate this, the atmosphere is constructed using a subsection of the

HMI magnetogram observed on 2014.07.06 00 00 45. A relatively

small region (16× 16 pixels) is chosen that features a few isolated

magnetic regions of opposite polarity.

In a numerical grid of horizontal dimension 64× 64 magnetic

flux tubes with f0 ≃ 750 km are fitted for each pixel in the ob-

serving box. Figure 1 shows the observed HMI magnetogram (left)

and the reconstructed photospheric magnetic field (right). A region

around the observation is set to zero to allow numerical boundaries

to be well defined when the atmosphere is used for simulations.

Shown in Figure 1, there is strong agreement between the observa-

tion and the reconstruction both in terms of locations and magni-

tude of magnetic field.

Figure 2. 2D slice at x = 8.15 Mm of model balancing forces.

Figure 3. 3D plot of chromospheric loop reconstruction.

The density and pressure modifications, required to stabilise

the magnetic field, are generated using the methods outlined in Sec-

tion 2. The additional forcing terms F bal applied to account for

the magnetic tension effects between neighbouring flux tubes are

plotted in Figure 2. The forcing terms are significant only in the

lower atmosphere and are zero in most of the domain. For context,

the magnitude of the forcing terms is maximally around 2% of the

horizontal pressure gradient. These forcing terms represent a small

adjustment to the system.

The end result is a 3D FME that models the photospheric mag-

netic field, shown in Figure 3, using VAPOR (Clyne & Rast 2005;

Clyne et al. 2007). Due to the modest footpoint magnetic field of

around 30 mT, the loop is mainly confined to the chromosphere, so

we model the region to a height of 2 Mm above the photosphere.

Simulations of a well-observed region, in preparation, aim to illus-

trate the model’s effectiveness for such complex networks.

Above active regions, the magnetic field can easily extend

through the transition region and into the solar corona. To test

the construction of such atmospheres we apply the same method-

ology to an active region with vertical magnetic field strength of

Bz ≈ ±2500 G. This region is much larger than the previous test

and hence fitting a flux tube to each observational pixel is computa-

tionally expensive. To circumvent this, we degrade the observation

to a lower spatial resolution (see Figure 4 and fit flux tubes to the

strongest sources only, yielding the network plotted in Figure 5.

MNRAS 000, 000–000 (0000)
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Figure 4. HMI magnetogram (left), spatially degraded HMI (centre) and

model photosphere (right).

Figure 5. 3D plot of magnetic fieldlines above an active region, including

the lower corona.

4 RESULTS SUMMARY

In this article we describe and demonstrate a new method for recon-

structing a stationary state solar atmosphere, with realistic magnetic

configuration. The model parameters have been streamlined and

generalised, making them easy to apply for arbitrary photospheric

magnetic field sources. Calculating the magnetic fields and result-

ing atmosphere is computationally efficient, available in parallel

python from PYSAC (https://github.com/fredgent/pysac).

The free parameters in radial scaling and scale height, and the

generalised inclusion of any ambient atmosphere models, makes

the method versatile for a number of scientific problems. The phys-

ical veracity of the parameters can, however, be constrained by

comparison with observations of the magnetic field and kinetics at

various heights. The stability of the solution can also be confirmed

by numerical simulation for each configuration. This was carried

out for the flux-tube pair solution used in Snow et al. (2018), by

treating the solution as the MHD perturbations, and the system re-

mained stationary to within machine accuracy.

ACKNOWLEDGEMENTS

The authors wish to acknowledge CSC IT Center for Science,

Finland, for computational resources and the financial support

by the Academy of Finland to the ReSoLVE Centre of Excel-

lence (project no. 307411). FAG, RE and VF were supported by

STFC Grant R/131168-11-1. BS is supported by STFC research

grant ST/R000891/1. We would also like to thank HPC-EUROPA3

Transnational Access Program for providing HPC facilities and

support.

REFERENCES

Aschwanden M. J., 2005, Physics of the Solar Corona. An Introduction with

Problems and Solutions (2nd edition)

Bourdin P.-A., Bingert S., Peter H., 2013, A&A, 555, A123
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Zank G. P., Adhikari L., Hunana P., Tiwari S. K., Moore R., Shiota D.,

Bruno R., Telloni D., 2018, ApJ, 854, 32

Zirker J. B., 1993, Sol. Phys., 148, 43

Zwaan C., 1978, Sol. Phys., 60, 213

van Ballegooijen A. A., Asgari-Targhi M., Cranmer S. R., DeLuca E. E.,

2011, ApJ, 736, 3

MNRAS 000, 000–000 (0000)

https://github.com/fredgent/pysac
http://dx.doi.org/10.1051/0004-6361/201321185
http://adsabs.harvard.edu/abs/2013A%26A...555A.123B
http://adsabs.harvard.edu/abs/1935HarCi.410....1C
http://dx.doi.org/10.1126/science.1197738
http://adsabs.harvard.edu/abs/2011Sci...331...55D
http://dx.doi.org/10.1086/515561
http://adsabs.harvard.edu/abs/2007ApJ...661..532D
http://dx.doi.org/10.1142/9789812832726_0005
http://dx.doi.org/10.1007/s11207-009-9407-9
http://adsabs.harvard.edu/abs/2009SoPh..258..219F
http://dx.doi.org/10.1088/0004-637X/727/1/17
http://adsabs.harvard.edu/abs/2011ApJ...727...17F
http://dx.doi.org/10.1086/499345
http://adsabs.harvard.edu/abs/2006ApJ...639..441F
http://dx.doi.org/10.1086/520319
http://adsabs.harvard.edu/abs/2007ApJ...667.1243F
http://dx.doi.org/10.1088/0004-637X/707/1/482
http://adsabs.harvard.edu/abs/2009ApJ...707..482F
http://dx.doi.org/10.1023/A:1012722021820
http://adsabs.harvard.edu/abs/2001SoPh..203...71G
http://dx.doi.org/10.1093/mnras/stt1328
http://adsabs.harvard.edu/abs/2013MNRAS.435..689G
http://dx.doi.org/10.1088/0004-637X/789/1/42
http://adsabs.harvard.edu/abs/2014ApJ...789...42G
http://dx.doi.org/10.1086/587773
http://adsabs.harvard.edu/abs/2008ApJ...680.1542H
http://dx.doi.org/10.1086/432655
http://adsabs.harvard.edu/abs/2005ApJ...631.1270H
http://dx.doi.org/10.1051/0004-6361:20077916
http://adsabs.harvard.edu/abs/2007A%26A...476..971J
http://dx.doi.org/10.1088/0004-637X/747/2/87
http://adsabs.harvard.edu/abs/2012ApJ...747...87K
http://dx.doi.org/10.1007/s11207-008-9133-8
http://adsabs.harvard.edu/abs/2008SoPh..251..589K
http://dx.doi.org/10.1007/s11207-006-0055-z
http://adsabs.harvard.edu/abs/2006SoPh..234...41K
http://dx.doi.org/10.1002/asna.200710740
http://adsabs.harvard.edu/abs/2007AN....328..339K
http://dx.doi.org/10.1007/BF00240447
http://adsabs.harvard.edu/abs/1977SoPh...51...83L
http://adsabs.harvard.edu/abs/1983A%26A...119..197M
http://dx.doi.org/10.1007/BF00935792
http://adsabs.harvard.edu/abs/1977SoPh...52...91M
http://adsabs.harvard.edu/abs/1975A%26A....40...63M
http://dx.doi.org/10.1038/ncomms2324
http://adsabs.harvard.edu/abs/2012NatCo...3E1315M
http://dx.doi.org/10.1093/mnras/stv365
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.1679M
http://dx.doi.org/10.1088/0004-637X/799/1/6
https://ui.adsabs.harvard.edu/abs/2015ApJ...799....6M
http://dx.doi.org/10.1086/427168
http://adsabs.harvard.edu/abs/2004ApJ...617L..85P
http://dx.doi.org/10.3847/2041-8213/aad4fc
http://adsabs.harvard.edu/abs/2018ApJ...862L..24P
http://dx.doi.org/10.1093/mnras/102.3.140
http://adsabs.harvard.edu/abs/1942MNRAS.102..140R
http://dx.doi.org/10.1086/379870
http://adsabs.harvard.edu/abs/2003ApJ...597L.165S
http://dx.doi.org/10.1051/0004-6361:200809800
http://adsabs.harvard.edu/abs/2008A%26A...486..655S
http://dx.doi.org/10.1051/0004-6361/200911709
http://adsabs.harvard.edu/abs/2009A%26A...501..735S
http://dx.doi.org/10.3847/1538-4357/aab7f7
http://adsabs.harvard.edu/abs/2018ApJ...857..125S
http://dx.doi.org/10.1086/190731
http://adsabs.harvard.edu/abs/1981ApJS...45..635V
http://dx.doi.org/10.1086/157462
http://adsabs.harvard.edu/abs/1979ApJ...233..987V
http://dx.doi.org/10.1088/0004-637X/755/1/18
http://adsabs.harvard.edu/abs/2012ApJ...755...18V
http://dx.doi.org/10.1038/nature11202
http://adsabs.harvard.edu/abs/2012Natur.486..505W
http://dx.doi.org/10.3847/1538-4357/aaa763
http://adsabs.harvard.edu/abs/2018ApJ...854...32Z
http://dx.doi.org/10.1007/BF00675534
http://adsabs.harvard.edu/abs/1993SoPh..148...43Z
http://dx.doi.org/10.1007/BF00156523
http://adsabs.harvard.edu/abs/1978SoPh...60..213Z
http://dx.doi.org/10.1088/0004-637X/736/1/3
http://adsabs.harvard.edu/abs/2011ApJ...736....3V

	1 Introduction
	2 Magnetic flux loop
	2.1 Ambient magnetic field outside the flux tubes
	2.2 The MHD equations
	2.3 A single magnetic flux tube
	2.4 Including a second or more flux tubes of mixed polarity

	3 Application of the Model
	3.1 Fitting arbitrary flux tubes

	4 Results summary

