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The association between pulmonary hypertension (PH) and hypoxia is well-established,

with two key mechanistic processes, hypoxic pulmonary vasoconstriction and

hypoxia-induced vascular remodeling, driving changes in pulmonary arterial pressure.

In contrast to other forms of pulmonary hypertension, the vascular changes induced by

hypoxia are reversible, both in humans returning to sea-level from high altitude and in

animal models. This raises the intriguing possibility that the molecular drivers of these

hypoxic processes could be targeted to modify pulmonary vascular remodeling in other

contexts. In this review, we outline the history of research into PH and hypoxia, before

discussing recent advances in our understanding of this relationship at the molecular

level, focussing on the role of the oxygen-sensing transcription factors, hypoxia inducible

factors (HIFs). Emerging links between HIF and vascular remodeling highlight the potential

utility in inhibiting this pathway in pulmonary hypertension and raise possible risks of

activating this pathway using HIF-stabilizing medications.

Keywords: hypoxia, pulmonary hypertension, altitude, vascular remodeling, hypoxic pulmonary vasoconstriction

(HPV)

INTRODUCTION

Pulmonary hypertension (PH) is a feature of several distinct clinical phenotypes which, by differing
means, result in increased pressure within the pulmonary vasculature. Despite some advancements
in treatment over recent years (1), most forms of PH are progressive and life-limiting. In the
current classification of PH etiology, Group III (PH due to lung diseases and/or hypoxia) is the
second commonest cause of elevated pulmonary artery pressure, behind heart disease (2). Group III
encompasses a broad range of conditions such as chronic obstructive pulmonary disease (COPD),
interstitial lung disease (ILD) and sleep apnoea (3). Alongside parenchymal changes, two key
pathological process, pulmonary vascular remodeling and vasoconstriction, contribute to PH in
this group of patients but treatment with pulmonary vasodilators has, to date, been disappointing.
New approaches to the management of these patients are thus urgently required to improve
outcomes as 3 year survival remains as low as 33% for COPD patients with mean pulmonary
artery pressures >40 mmHg (1, 2, 4). While pathologic mechanisms might vary depending on the
underlying disease or phenotype, a better understanding of the defining component of Group III
disorders, hypoxia, may help provide new targets for therapies.

A causal relationship between hypoxia and PH is well established; hypoxia is frequently used to
both precipitate PH in animal models (5) and to induce aberrant cell phenotypes in vitro (6). These
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approaches have greatly improved our understanding of the
underlying physiological mechanisms that drive the pathology.
In humans, compelling evidence of the effects of hypoxia
on pulmonary vascular tone and remodeling derives from
studies performed at altitude, where the inherent reduction in
barometric pressure results in hypobaric hypoxia. This approach
is advantageous for evaluation of the effects of hypoxia on
the pulmonary vasculature in relative isolation, without the
complicating factors of disease. In this review, we outline
the historical context of research into PH and hypoxia and
discuss emerging molecular mechanisms for this relationship.
We focus on the role of the oxygen-sensing transcription factors,
hypoxia inducible factors (HIFs), and links between HIFs and
vascular remodeling.

IMPORTANT DEFINITIONS

Before embarking on this review, it is important to consider
the definitions of PH used within this manuscript and others.
The term PH is used to describe elevation in mean pulmonary
artery pressure (mPAP) from any cause. PH was first classified
as a mPAP exceeding 25 mmHg at the 1st World Symposium on
Pulmonary Hypertension (WSPH) in 1973 (7). Notably, at the
recent 6th WSPH, the upper limit of normal for mPAP was set at
20 mmHg, argued in part due to emerging evidence of poorer
survival in patients with mPAPs of 21–24 mmHg and in part
based on the distribution of values in healthy population data
(8). For a diagnosis of pre-capillary pulmonary hypertension,
of any cause, an increased pulmonary vascular resistance (PVR
> 3 WU) is also required (8). Pre-capillary hemodynamics that
meet the above definition, are not uncommon in patients with
lung disease (4, 9), but the prevalence of increased PVR in
healthy individuals who are hypoxic without lung disease, for
example altitude residents and those with sleep apnoea, is less
clear and will be discussed later (10). To avoid confusion we have,
where possible, included values (±SD) from the cited literature
indicating recorded pulmonary artery pressures and/or PVR.

PULMONARY HYPERTENSION: A HISTORY

Pathological changes in the pulmonary arteries co-existing with
right ventricular hypertrophy (RVH) were first observed by
the German physician Ernst von Romberg toward the end of
the nineteenth century, which he coined “pulmonary vascular
sclerosis” (11). However, the etiology of PH remained elusive at
this time and was wrongly attributed to syphilis for many years
(12, 13). Whilst the British cardiologist Oscar Brenner eventually
disproved this link in 1935, he could not provide an explanation
for pulmonary vascular changes coinciding with RVH (14). It
was only with the advent of right heart catheterization in the
mid-twentieth century that these observations were intrinsically
linked by raised pulmonary artery pressure (PAP). Despite
extensive use in animals in the early twentieth century, cardiac
catheterization in humans was widely considered unsafe until
Werner Forssman’s gallant self-catheterization of his right heart
in 1929 (15, 16). Whilst this act of bravery was initially

poorly received and widely ignored by the medical community,
American physicians Dickinson Richards and Andrew Cournard
would recognize the importance of Forssman’s work in the 1940s.
Their pioneering research characterized mPAP in cardiac and
pulmonary diseases for the first time, a feat for which they were
awarded a Nobel Prize, together with Forssman, in 1956 (17, 18).

Further work in the 1950s began to establish the clinical
and pathological features of PH. In 1951, one of the first
detailed descriptions of the haemodynamic profiles of the
disease was provided by David Dresdale who also observed
cyanosis, orthopnoea and haemoptysis amongst patients with
idiopathic PH. Dresdale and others termed their findings
“primary pulmonary hypertension” (19, 20); this terminology
provided important nomenclature for the emerging research
community. Additionally, an extensive characterization of
histological changes in PH was described by Donald Heath
who, in collaboration with William Whitaker, first detailed
extensive thickening of the pulmonary arterial wall associated
with fibrosis in 1953, amongst individuals with congenital heart
disease, mitral stenosis and idiopathic PH (21, 22). Heath and
Jesse Edwards subsequently produced a detailed histological
classification system correlated to PH severity in Eisenmenger’s
syndrome, which ranged from early vascular medial hypertrophy
in mild PH to late intimal fibrosis in severe disease (23).

EARLY LINKS BETWEEN ACUTE HYPOXIA
AND PULMONARY HYPERTENSION

Despite elevated PAP being first associated with ventilatory
failure in 1852 (24), a causal relationship between hypoxia
and PH only became established in 1946 when von Euler and
colleagues demonstrated increased mPAP on exposing cats to
both hypoxia and hypercapnia (25); in 1947, Dresdale reported
similar findings in humans (26). These reports constituted
the first measurements of pulmonary arteriole constriction
to hypoxia, or hypoxic pulmonary vasoconstriction (HPV),
a phenotype which contrasts the vasodilating properties
of hypoxia on the systemic circulation (27). At the time,
von Euler correctly hypothesized that this physiological
response is beneficial in order to shunt blood from areas of
regional lung hypoxia that stems from reduced ventilation,
thus maintaining blood oxygenation (a concept now termed
ventilation-perfusion matching).

However, the adverse effects of this response in the context
of more global alveolar hypoxia soon became apparent,
particularly in relation to high-altitude pulmonary oedema
(HAPE). Whilst a syndrome of cough, blood-stained sputum and
severe breathlessness was previously recognized in high altitude
sojourners, Hurtado was the first to attribute this to pulmonary
oedema in 1937 (28). PH was first identified as co-existing with
HAPE in 1962 by Fred et al. (29) in one patient with a mPAP
of 46 mmHg, although Hultgren and Spickard had proposed
this association in 1960, providing clinical descriptions of a loud
second heart sound and electrographic changes consistent with
PH in 41 cases of HAPE in Peru (30). Hultgren et al. subsequently
confirmed this in seven individuals following acute exposure to
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high altitude in 1964, in whom mPAP ranged from 33 to 117
mmHg (PVR reported in 2 patients; 8 and 36 WU). Importantly,
the authors could also demonstrate a degree of reversibility of
pulmonary oedema and elevated mPAP on administration of
100% oxygen (31). Further work from this group, along with
others (32), identified a predisposition to pulmonary oedema
amongst five individuals with mPAPs of 38.8 ± 10.3 mmHg on
ascent to 3,100 m (33).

Despite the early identification of PH as a factor in
the pathogenesis of HAPE, how this results in oedema
formation remains unclear. Hultgren proposed that because
HPV is heterogeneous, areas of the lung are over-perfused
leading to pulmonary capillary stress failure in HAPE (34).
Indeed, subsequent studies in HAPE-susceptible individuals have
provided evidence of exaggerated heterogeneity of perfusion (35),
whilst haemodynamic studies have also demonstrated elevated
pulmonary capillary pressures (19 ± 1 mmHg vs. 13 ± 1 mmHg
in controls) and arterial pressures (mPAP 37± 2 mmHg vs. 26±
1 mmHg in controls) amongst such individuals at high altitude
(36). Other factors in HAPE pathogenesis include impaired nitric
oxide (NO) biosynthesis and reduced alveolar fluid reabsorption,
as reviewed here (37, 38).

CHRONIC HYPOXIA AND REMODELING
OF THE PULMONARY VASCULATURE

Concurrently, research began to investigate the effects of
chronic hypoxia on the pulmonary vasculature of high-altitude
populations. This initially began in cattle which often developed
significant oedema around the lower chest at high altitude,
dubbed “brisket disease,” a condition that caused significant
mortality upon ascent. In the 1940s, Rue Jensen first identified
right ventricular dilatation and failure co-existing with brisket
disease amongst the high-altitude cattle populations in Colorado
(39), with further work with Grover, Reeves and Will identifying
a positive correlation between the severity of RVH and the degree
of raised PAP (40). Further breeding experiments led by Grover
and Reeves suggested an autosomal dominant inheritance of
HAPH among these cattle (41, 42). In contrast to Hultgren’s
later findings amongst patients with HAPE (31), 100% oxygen
did not fully reverse PH in cattle (40), indicating a lesser role
of HPV in PH pathogenesis in the setting of chronic hypoxia.
Interestingly, similar findings were documented by Anand et al.
amongst a human population, detailing evidence of peripheral
oedema and shortness of breath amongst Indian soldiers who
had sojourned at altitudes above 5,800m for 18 weeks. While
no measurements were made at altitude, shortly after return to
sea level right heart catheter studies on these patients provided
evidence of mild pre-capillary pulmonary hypertension, with
mPAP and PVR measured as 26.1 ± 4.5 mmHg and 3.41 ± 2.46
WU, respectively (43).

Elevated PAP in human populations at high altitude was
first reported in 1956 by Canepa in one of the first reports of
human right heart catheterization in Peruvians from Morochoca
(4,540m), recorded as 25 (range 18–29) mmHg amongst 7
highlanders and 34 and 35 mmHg amongst two chronic

mountain sickness patients; however, these findings were
initially attributed to polycythaemia, abnormal ventilation and
increased cardiac output (44). It would take the work of fellow
Peruvians Dante Peñaloza and Javier Arias-Stella in the 1960s
to demonstrate that PH amongst high altitude populations was
associated with remodeling of the pulmonary vasculature (45–
47). Earlier work from Peñaloza confirmed elevated mPAP (23
± 5.1 mmHg) associated with RVH in Peruvians at high altitude
(48, 49) and interestingly, also identified PH amongst new born
children both at sea level and altitude, with a swift resolution at
sea level that was not recognized amongst Peruvian infants (50).
Importantly, the authors found no difference in PAWP and CO
between residents at sea level and altitude, with PVR elevated
at 4.15 ± 2.66 WU in high altitude dwellers (46, 49). Oxygen
administration to Peruvian adults resulted in minor reductions
in mPAP of 15–20% (45, 47), mirroring prior results in brisket
disease (40) and indicating that pulmonary vascular remodeling
was primarily responsible for PH in chronic hypoxia. Further
weight to this hypothesis was added by Jensen and Alexander,
who later demonstrated a linear relationship between medial
hypertrophy of the pulmonary arteries and PAP amongst cattle
(51). Notably, despite a failure of immediate resolution with
oxygen, Peñaloza identified a normalization of mPAP (12 ±

1.9 mmHg) and PVR (1.81 ± 0.44 WU) amongst high altitude
populations following 2 years spent at sea level, demonstrating
that changes as a result of chronic hypoxic exposure are not
permanent (52). Complementing this finding, the Indian soldiers
studied by Anand et al., who had developed signs of right heart
failure during their altitude sojourn, made a full recovery, with
reversal of cardiomegaly and normalization of mPAP (16.3 ±

2.9 mmHg) and PVR pulmonary vascular resistance (1.34± 0.48
WU) 12–16 weeks after descent from high altitude (43).

While the above studies in healthy individuals imply that
elevated pulmonary artery pressures are found ubiquitously at
altitude, whether the magnitude of elevation in healthy altitude
residents reaches that which would define pre-capillary PH
remains unclear. A recent meta-analysis by Soria et al. revealed
an average systolic PAP of 25.3 mmHg across high altitude
populations with a wider distribution than amongst lowlanders
implying a low prevalence of PH even by the new WHO criteria
(8, 10). Furthermore, PVR is seldom reported and a notable
limitation of reported PVRs among historical catheterization
studies at altitude, is the lack of correction for hematocrit.
Resistance to blood flow is dependent upon viscosity as well as
vessel dimensions [reviewed by Vanderpool and Naeije (53)],
with equations describing the relationship derived from isolated
perfused lung experiments involving alterations in haematocrit
(54). Thus, reporting of haematocrit is important in determining
true PVR (53, 55) and may lead to false assumptions regarding
the extent of vascular remodeling in healthy individuals following
hypoxic exposure.

Nonetheless, similar to observations in patients with lung
disease, there is a sub-population of altitude residents who
develop more severe PH. A consensus definition for high altitude
PH (HAPH) was reported in 2005, to encompass those at altitude
with exaggerated elevation in PAP and signs of RVH and right
heart failure (56). HAPH was defined as a mean PAP of >30
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mmHg (or systolic PAP > 50 mmHg) in the absence of excessive
erythrocytosis (hemoglobin concentration > 19 g/dl for women,
> 21 g/dl for men). This definition allowed discrimination
between HAPH and chronic mountain sickness (CMS), in which
there is excessive erythrocytosis (57, 58). Despite aforementioned
epidemiological studies indicating the rarity of HAPH by the
above definition amongst high altitude dwellers (10), the study of
such individuals may provide important insights into molecular
pathways that drive vasoconstrictive and remodeling processes in
both hypoxic PH and, potentially, other forms of PAH. However,
it could be argued that a revision of the current definition of
HAPH, to include haematocrit-corrected PVR, would facilitate
this research.

INTER-SPECIES VARIATION AT HIGH
ALTITUDE

Following these results in both humans and cattle, Donald Heath
became interested in inter-species variability in the pulmonary
vasculature of high-altitude populations. Heath traveled to Cerro
de Pasco, Peru (4,330m) alongside Peter Harris in 1965, in
what became the first of many high-altitude research expeditions
dedicated to PH research. A descriptive overview of this work is
provided by one of this article’s authors in Box 1. In 1974, Heath
published their research in llamas (Lama glama) demonstrating
a lack of pulmonary arteriole muscularisation or RVH at altitude,
contrasting previous findings in humans and cattle (Bos taurus)
(59). A similarly thin walled pulmonary vasculature was also
identified in the Himalayan yak (Bos grunniens) (60), indicating
a role of natural selection in the loss of the thick-walled, reactive
pulmonary arteries typically characteristic of the Bos genus.

An interesting biological issue arises when species fromwithin
the same genus interbreed; one such example is the interbreeding
of cattle giving rise to species such as the dzo (cow x yak) and
stol (dzo x bull) (61). In 1986, work from Peter Harris’ group
identified that protection from PH correlated with the degree
of yak heritage; whilst dzos and yaks demonstrated minimal
PH, half of the stols had significantly raised PAPs similar to
that of cattle (62), indicating a degree of inheritance. These
observations lend support to the concept that animals indigenous
to high altitude have become genetically adapted to their hypoxic
environment, vs. acclimatization as seen in other species.

MOLECULAR MECHANISMS OF PH IN
ACUTE AND CHRONIC HYPOXIC
EXPOSURE

While the evidence above clearly illustrates connections between
hypoxic exposure and pulmonary hypertension, the underlying
genetic, molecular and cellular mechanisms that regulate
these phenotypes remain unclear and in part, controversial.
Nonetheless, basic science work over the last 25 years has
advanced our understanding of common pathways that govern
both adaptation to altitude and hypoxia-induced PH. Reviewed
extensively elsewhere (63–65), pulmonary vasoconstriction in
acute hypoxia comprises at least two phases involving distinct

Box 1 | Adaptation to chronic hypoxia in the andes.

The recognition of the different biological classes of man and mammals at

high altitude is best illustrated by taking a mental stroll around the streets and

surrounding countryside of any small town in the high Andes. The studies

undertaken demonstrated that there was no single stereotypical man or

mammal at high altitude.

Cerro de Pasco is a mining community with a population of 70,000 people,

situated at an attitude of 4330m in the central Andes of Peru. In the streets will

be a number of lowlanders who may have arrived at high altitude in a matter

of hours from Lima on the coast. Approximately 50% will suffer from benign

acute mountain sickness mainly characterized by headache, insomnia,

anorexia, nausea and dizziness. These symptoms are the consequence of

hypobaric hypoxia and may be regarded as the physiological components of

early acclimatization.

In contrast, most people are native Quechua Indians born and bred in the

high Andes. These descendants of the Inca people have very characteristic

physical features of skin color with deeply polycythaemic and suffused

conjunctiva and lips. Many will have a capacious chest which looks

prominent and out of proportion to their short and stocky physique. These

native highlanders lead normal busy lives at high altitude. They participate

in vigorous games of football at altitudes exceeding the summit of the

Matterhorn in the Swiss Alps.

Living on the pastures surrounding Cerro de Pasco are examples of

indigenous mountain animals such as the llama, alpaca, vicuna and guanaco.

These animals have been living on the Andean altiplano for many thousands

of years. One cannot help but be impressed by the vigor and activity of these

animals in an atmosphere characterized by severe hypobaric hypoxia.

mechanisms. Initially, changes in redox status within smooth
muscle cell mitochondria mediate alterations in potassium and
voltage-gated calcium channel flux, promoting contraction (63).
Subsequently, vasoconstriction is maintained by mechanisms
that include reduced bioavailability of NO (66), release of
endothelial-derived vasoconstrictors (67) and increases in
myofilament calcium sensitivity (68). The focus of this article will
be on the role of the hypoxia-inducible factors (HIFs) in vascular
remodeling due to chronic hypoxic exposure.

HYPOXIA-INDUCIBLE FACTORS (HIFs)
AND PULMONARY VASCULAR
REMODELING

HIFs are a family of heterodimeric transcription factors,
discovered in 1995 (69), whose alpha subunits are stabilized
in hypoxia by the inhibition of oxygen-dependent prolyl
hydroxylase (PHD) enzyme activity (70); under normoxic
conditions, hydroxylation of HIF-alpha by PHDs targets them
for ubiquitination by the VHL complex, resulting in subsequent
proteasomal degradation (Figure 1) (71). Whilst HIF-1α is
expressed ubiquitously throughout body tissues (72), HIF-2α
expression is tissue specific with an endothelial bias (73, 74). In
hypoxia, stabilization of HIF-α subunits induces transcription of
targets with a wide range of functions.

Perhaps unsurprisingly, genetic variation in the HIF pathway
has been identified amongst indigenous altitude dwellers.
Notably, genome wide association studies in the Tibetan
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FIGURE 1 | Pulmonary vascular responses to hypoxia with emphasis on the role of HIF isoforms in remodeling. The right upper branch of this vessel depicts

vasoconstriction in acute hypoxia, occurring due to alterations in redox and NO signaling and release of vasoactive mediators. The lower branch indicates remodeling

in the context of sustained hypoxic exposure and illustrates HIF-dependent processes revealed by tissue-specific deletion of HIF-isoforms in endothelial cells (HIF-2α)

or smooth muscle cells (HIF-1α). Below the vessel, a schematic shows degradation of hydroxylated HIF-α subunits in normoxia via the von-Hippel Lindau (VHL)

pathway. In hypoxia or following treatment with prolyl hydroxylase inhibitors (PHDi), HIF-α stabilization and dimerization with HIF-β occurs, leading to transcription of

target genes. HIF inhibitors (HIFi) with specific activity against HIF-2α are in clinical development.

population have identified single nucleotide polymorphisms
(SNPs) in EPAS1 (encoding HIF-2α) and ELGN1 (encoding
PHD2) that were not enriched in lowlanders (75–77). EPAS1
variants were associated with lower PAP (78) and a high
frequency ELGN1 mutation has been linked to reduced
proliferation of erythroid progenitors in response to EPO,
thus dampening hypoxia-induced erythrocytosis (79). These
findings demonstrate a selection pressure for specific HIF
pathway polymorphisms over 25,000 years at altitude that has
aided adaptation for the Tibetan population. Interestingly, such
variation is not observed in Andean counterparts, a population
that has resided at altitude for 15,000 years and who are more
susceptible to PH (80, 81) and erythrocytosis (82).

However, the evidence for HIF pathway polymorphisms
influencing remodeling processes is weakened by the observation
that correction for erythrocytosis reduces mPAP amongst
Andean populations to values near those of Tibetans (57). Thus,
correcting for erythrocytosis argues against a susceptibility of
Andean populations to HIF-mediated remodeling processes. In
light of the new PH definition (8), however, Andean corrected
mPAP remains consistently above 20 mmHg at rest and the
slope of rise in mPAP with cardiac output is steeper than that of
lowlanders (57).

Furthermore, evidence from murine models strongly
implicates the HIF pathway in hypoxia-induced vascular
remodeling. Soon after the discovery of the pathway, early
work in both Hif1a and Hif2a heterozygotes revealed a marked
reduction in PH and vascular remodeling following chronic
exposure to 10% oxygen (83, 84). Conversely, HIF2A (EPAS1)
gain-of-function mutations can predispose to PH; aHif2a variant
in high altitude cattle increases susceptibility to brisket disease
(85), whilst a HIF2A mutation causing familial erythrocytosis
is also associated with elevated systolic PAP in humans (86).
A mouse generated to have the same G536W gain-of-function
mutation in the Hif2a gene also developed erythrocytosis and
PH, providing further evidence of cross-species conservation
of this HIF-2α role (87). Additionally, both animal models and
patients with Chuvash polycythaemia (CP), characterized by
a VHL mutation, exhibit marked erythrocytosis and elevated
PAP that could be rescued in mice by Hif2a but not Hif1a
deletion (88–90). While the descriptions of elevated PAP in
humans with CP did not include right heart catheter data or
haematocrit-corrected PVR, it is worth noting that elevations
in systolic PAP and vessel muscularisation in young mice
with homozygous VHL mutations, preceded the onset of
polycythaemia (90).
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TISSUE-SPECIFIC MANIPULATION OF HIF
EXPRESSION REVEALS DISTINCT ROLES
FOR HIF ISOFORMS IN PULMONARY
VASCULAR REMODELING

Evidence is now emerging as to how the HIF isoforms
regulate pulmonary vascular cell function, with advances gained
through use of murine tissue-specific deletion models, see
Figure 1. For example, HIF-1α has been implicated in both
vasoconstriction and vascular cell proliferation, the two key
components of hypoxic pulmonary hypertension. Ball et al.
demonstrated that inducible Hif1a deletion in PASMCs reduced
right ventricular systolic pressure, arterial wall thickness and
vessel muscularisation in chronic hypoxia (91), whilst Shiekh
et al. reported a dependence on Hif1a in PASMC progenitors
in order to drive distal migration and expansion (92). Proposed
mechanisms that could explain these findings include enhanced
intracellular calcium via Hif1a dependent downregulation of K+

channels (93) and upregulation of transient receptor potential
calcium channels (94), recognized to enhance vasoconstriction,
PASMC proliferation and migration (95). HIF-1α also mediates
pro-proliferative metabolic changes in PASMCs and fibroblasts
that could contribute to hypoxia-induced remodeling. One
widely recognized consequence of HIF signaling amongst
cancer cells is the favoring of glycolysis over oxidative
phosphorylation in aerobic conditions, known as the “Warburg
effect,” inducing glycolytic enzymes to enhance ATP production
and promote tumor growth (96, 97). Interestingly, HIF signaling
amongst pulmonary arterial smooth muscle cells (PASMCs)
and fibroblasts results in a similar shift to aerobic glycolysis

as seen in tumors (98–100), with increased glucose uptake
observed in the lungs of rats with hypoxia-induced PH and

in PAH patients (101, 102). This metabolic reprogramming of

pulmonary vascular cells has proven stable ex vivo with evidence

of underlying epigenetic regulation (103, 104). Targeting these
mechanisms may limit hypoxia-induced PASMC proliferation in
the pulmonary vasculature.

Consistent with its predominantly endothelial expression

profile, a growing body of evidence implicates endothelial cell
(EC) HIF-2α expression as essential for pulmonary vascular
remodeling through varied biological mechanisms, see Figure 1.
Two studies have demonstrated severe and spontaneous PH
following Phd2 knockdown in murine ECs (105, 106). Double
knockouts of Phd2 and eitherHIF isoform revealed that this was a

Hif2a-mediated phenotype (105, 106) but the studies highlighted
different mechanisms: one associating HIF-2α expression with
reduced expression of the potent vasoconstrictor endothelin-1

(ET-1) (106) and the other demonstrating HIF-2α involvement
in CXCL12-mediated PASMC proliferation (105). Reduced EC
Phd2 expression was also observed amongst occlusive vessels in
IPAH (105), implying relevance to human pathology. Notably,
these Phd2 knockout mice did not develop polycythaemia prior
to the development of PH.

The NO synthesis pathway has also been implicated in

EC HIF-2α-mediated remodeling. Cowburn et al. observed
a similar level of protection from hypoxia-induced PH as

Hif2a knockdown following EC-specific deletion of arginase-
1 (Arg1), a downstream HIF-2α target and negative regulator
of NO synthesis (107). Additionally, ECs from PH patients
demonstrated impaired NO production in vitro, restored on
arginase inhibition (107). A further mechanism by which HIF-
2α could contribute to remodeling is through regulation of
endothelial-mesenchymal transition (EMT), a process implicated
in pathogenic remodeling (108). Tang et al. showed that
markers of EMT were regulated by HIF-2α in ECs and that
while endothelial-specific deletion of Hif2a protected mice from
hypoxia-induced PH, deletion of Hif2a in vascular smooth
muscle cells did not (109).

There remain notable controversies in the literature
surrounding HIF-mediated regulation of remodeling.Whilst Ball
et al. demonstrated a role for PASMC Hif1a in chronic hypoxic
remodeling using a tamoxifen-inducible conditional deletion
(91), Kim et al. reported enhanced pulmonary arterial tone in
the absence of arterial muscularisation following constitutive
PASMC-specific Hif1a deletion (110). Similarly, constitutive EC
Hif1a deletion was found to confer no protection to PH by three
authors (105–107), whilst Shiekh et al. could ameliorate PH
following tamoxifen-inducible conditional EC Hif1a deletion,
which prevented PASMC expansion and distal migration (92).
Alongside evidence detailing the importance of embryonic HIF
signaling for the developing vasculature (111), these observed
differences imply a role of early HIF-1α signaling in pulmonary
vessel development.

The crucial role of HIF isoforms in hypoxia-induced PH
has identified the inhibition of these molecules as an important
strategy for targeting remodeling processes. Whilst efforts
to develop HIF pathway inhibitors have previously proven
challenging due to poor efficacy, HIF isoform specificity and
adverse effects (112, 113), a specific HIF-2α small molecule
inhibitor developed to treat renal cancer has demonstrated
a favorable safety profile in a recent Phase I trial (114).
Encouragingly, the use of another HIF-2α inhibitor, C76,
has recently been demonstrated to attenuate remodeling in
three murine models of PH, with no notable inhibition of
HIF-1α (115).

The pleiotropic nature of HIF signaling has identified several
other pathways as possible therapeutic targets. Using congenic
linkage analysis, Zhao et al. discovered a dependence on
intracellular zinc in hypoxia-induced remodeling. Homozygous
deletion of the zinc transporter ZIP12, a target of both
HIF-1α and HIF-2α, was found to attenuate PAP, RVH and
vascular remodeling in chronic hypoxia (116). Additionally,
induction of ZIP12 was also reported in the pulmonary
tissue in Brisket disease and highland human populations
(116). How intracellular zinc influences hypoxia-induced
remodeling remains unclear; however, targeting intracellular
zinc homeostasis may represent a further therapeutic strategy.

CONCLUSIONS

This article has reviewed historical observations connecting
hypoxia and pulmonary hypertension and described more
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recent insights into the molecular mechanisms involved in
hypoxia-induced remodeling. Notably, the evidence linking HIF
expression to processes involved in vascular remodeling strongly
raises the prospect of HIF inhibition, and in particular HIF-2α
inhibition, as a strategy in order to ameliorate vascular pathology
in the context of chronic hypoxia. The recent success of a HIF-2α
inhibitor in several murinemodels is supportive of such a strategy
and may lead to the consideration of clinical trials amongst PH
patients in the future. However, the mechanistic links between
HIF-pathway activation and PH, notably the development of
spontaneous PH following Phd2 deletion, should also raise a
note of caution for use of PHD inhibitors which are currently
undergoing Phase II/III clinical trials in renal anemia (117).

Genetic insights gained through study of high-altitude
populations suggests that a greater appreciation of factors
underlying altitude adaptation may highlight further
mechanisms involved in the regulation of vascular remodeling.
However, while similarities exist between the pathological
features of hypoxia-induced PH and other forms of the disease,
the extent of overlap in the pathological mechanisms, even
for patients with chronic respiratory disease, remains unclear.

Furthermore, the notable lack of correction for haematocrit in
previous work reporting PVR at altitude casts some doubt over
some of the apparent differences between altitude populations,
which may in fact be due to differences in haematocrit.
Nonetheless, a reversal of PH on return to sea level provides the
tantalizing possibility that exploiting endogenous mechanisms
might provide agents that reverse vascular remodeling in hypoxic
disease. Therefore, there is still hope that lessons learned from
studying hypoxia-induced disease could impact on the search
for agents that target pervasive vascular remodeling in other
forms of PH.
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