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Simplified and Enhanced Multiple Level Nested

Arrays Exploiting High Order Difference Co-Arrays
Qing Shen, Wei Liu, Senior Member, IEEE, Wei Cui, Siliang Wu, and Piya Pal, Member, IEEE

Abstract—Based on the high order difference co-array con-
cept, an enhanced four level nested array (E-FL-NA) is first
proposed, which optimizes the consecutive lags at the fourth
order difference co-array stage. To simplify sensor location
formulations for comprehensive illustration and also convenient
structure construction, a simplified and enhanced four level
nested array (SE-FL-NA) is then proposed, whose performance
is compromised but still better than the four level nested array
(FL-NA). This simplified structure is further extended to the
higher order case with multiple sub-arrays, referred to as sim-
plified and enhanced multiple level nested arrays (SE-ML-NAs),
where significantly increased degrees of freedom (DOFs) can be
provided and exploited for underdetermined DOA estimation.
Simulation results are provided to demonstrate the performance
of the proposed E-FL-NA, while a higher number of detectable
sources is achieved by the SE-ML-NA with a limited number of
physical sensors.

Index Terms—sparse array, higher order, difference co-array,
direction of arrival estimation, nested array.

I. INTRODUCTION

Direction of arrival (DOA) estimation is a fundamental

problem in array signal processing [1]–[4], and has been

studied extensively over the decades. It is well known that for

an N -sensor uniform linear array (ULA), only N − 1 degrees

of freedom (DOFs) can be exploited for DOA estimation by

commonly used subspace based methods such as MUSIC [5],

ESPRIT [6], and compressive sensing (CS) based methods

such as ℓ1-SVD [7].

In the past few years, DOA estimation for the underdeter-

mined case where the number of sources is larger than the

number of physical sensors has attracted significant attention

[8], and various sparse arrays [9]–[11] have been proposed

as possible solutions, among which nested arrays [12] and

co-prime arrays [13], [14] are the most notable configura-

tions presented recently. In [15], co-prime arrays with com-

pressed inter-element spacing (CACIS) and co-prime arrays

with displaced subarrays (CADiS) are proposed, while super

nested arrays [16], [17] and augmented nested arrays [18] are

introduced to reduce mutual coupling. Furthermore, thinned
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co-prime arrays are proposed in [19], [20], offering further

increased DOFs for DOA estimation. Moreover, a single ULA

acting as two sub-arrays of a co-prime array configuration

at two continuous-wave signals of co-prime frequencies is

employed in [21]. This idea is extended to multiple frequencies

in [22]–[24]. Based on the co-array equivalence, except for the

spatial smoothing based subspace approaches such as MUSIC

(SS-MUSIC) [12]–[14], [25], [26], DOA estimation algorithms

under the CS framework [15], [27]–[29] can also be utilized.

Most of the aforementioned works are based on the second

order difference co-arrays, and their Cramér-Rao Bounds

(CRBs) are given in [30]–[32]. On the other hand, high

order statistics have been exploited for underdetermined DOA

estimation over the decades. The fourth order cumulants based

DOA estimation methods are proposed in [33], [34], and its

virtual array concept is presented in [35]. Recently, the 2q-

th order cumulants are exploited for DOA estimation and its

performance such as DOFs and resolution power improves

with the increase of q [36]–[38]. Then, the 2q-th order differ-

ence co-array concept is proposed in [39], corresponding to

the manifold of the virtual array configuration generated by

vectorizing the 2q-th order circular cumulant matrix. Further-

more, multiple level nested arrays (ML-NAs) are introduced

with a substantial increase in the number of DOFs [39]. SS-

MUSIC is applied to find the DOAs for the narrowband case

[39], while the group sparsity based method [28], [40] and a

focusing-based method within the CS framework is presented

in [41] for the wideband case.

Although the ML-NA provides a systematic way for con-

venient structure construction, it is not optimum and further

improvement is possible. Our first attempt in [42], [43] gives a

sparse array construction method with the fourth order differ-

ence co-array enhancement by introducing a third sub-array to

the nested array and co-prime array, respectively, forming the

structures referred to as SAFOE-NA and SAFOE-CPA, and a

DOA estimation method for nonstationary sources based on

the fourth order difference co-arrays is presented in [43]. An

expanding and shift scheme is proposed in [44], leading to

structures with more DOFs at the fourth order difference co-

array stage, i.e., EAS-NA-NA and EAS-NA-CPA. In [45], a

two level nested array for fourth order cumulant based DOA

estimation (2L-FO-NA) is proposed with hole-free co-arrays

achieved, and more potential DOFs can be provided compared

with the SAFOE-NA [42] when the sensor number is smaller

than 12. Based on the fourth order difference co-arrays, an

extension of co-prime arrays is presented in [46], and DOA

estimation for non-circular signals is studied in [47].

In this paper, we further investigate the array structure

optimization problem exploiting the fourth order difference

co-array concept. Based on the property of permutation invari-
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ance, the fourth order difference co-array can be considered as

a further second order difference co-array, which is based on

the virtual array corresponding to the first-level second order

difference co-array of the original physical array. Then, an

array construction method is proposed by constructing two

sub-arrays simultaneously to form an enhanced four level

nested array (E-FL-NA), maximizing the consecutive co-array

lags by arranging the virtual ULA sets associated with extra

sensors to be adjacent to each other. By exploiting the physical

array aperture along with the virtual array aperture and its

symmetric information, a great increase in the number of

consecutive co-array lags is achieved.

The formulations of sensor positions in the constructed

E-FL-NA and other configurations such as SAFOE-NA and

EAS-NA-NA are complicated, and will be much more com-

plicated and difficult to follow when extended to the 2q-th

order case following a similar construction method, where the

sub-array sensor position will be a linear combination of the

virtual ULA apertures at the lower order difference co-array

stage, and each aperture is also a linear combination of the

ULA apertures at the lower order difference co-array stage.

Therefore, we simplify the sensor distribution formulations

for convenient structure construction and comprehensive illus-

tration with an assistant sensor at the zeroth position, which

is finally removed from our resultant simplified and enhanced

four level nested array (SE-FL-NA). Except for the ML-NA

[39], constructing sparse array structures for higher order dif-

ference co-arrays is still an unsolved problem. By investigating

the 2q-th order difference co-arrays, it can be considered as the

difference between the second order difference co-array and

the 2(q − 1)-th order difference co-array, and there would be

potential increase of DOFs at each 2m-th (1 ≤ m ≤ q) order

difference co-array stage. Then, the simplified and enhanced

configuration SE-FL-NA is extended to the 2q-th order based

on the link between the 2q-th order and the 2(q− 1)-th order

difference co-arrays, forming a generalized and optimized

configuration, referred to as simplified and enhanced 2q-th

level nested array (SE-2qL-NA), providing a convenient con-

struction for the exploration of high order difference co-arrays.

It is noted that the formulations of the sensor positions in the

SE-ML-NA are independent of the virtual ULA apertures or

any other information at the lower order stage. As a result, the

SE-ML-NA is far more comprehensive.

Our contributions are therefore: 1) introducing the fourth

order difference co-array concept from the perspective of

applying the second order difference co-array twice, and

developing an enhanced four level nested array to maximize

the consecutive co-array lags, achieving a higher number of

DOFs than existing configurations; 2) for convenient structure

construction, sensor position formulations are further simpli-

fied; 3) the sparse array construction method is extended to

high order difference co-arrays, and a simplified and enhanced

multiple level nested array (SE-ML-NA) is proposed with

simple formulations for each sensor location.

This paper is organized as follows. Definition of the high

order difference co-array and the ML-NA are introduced in

Section II. The proposed enhanced four level nested arrays

exploring the fourth order difference co-arrays is presented in

Section III, while the sparse array design method for the high

order co-array case and the simplified and enhanced multiple

nested arrays are proposed in Section IV with the exact number

of consecutive lags derived. Simulation results are provided in

Section V, and conclusions are drawn in Section VI.

II. HIGH-ORDER DIFFERENCE CO-ARRAY PERSPECTIVE

AND MULTIPLE LEVEL NESTED ARRAYS

A. Virtual Array Generation from the High Order Difference

Co-Array Perspective

Consider a general linear array with N physical sensors.

The set of sensor positions S is expressed as

S =
{
~0 · d, ~1 · d, . . . , ~N−1 · d

}
, (1)

where ~n · d is the position of the n-th sensor, n =
0, 1, . . . , N − 1, and d is the unit spacing satisfying d ≤ λ/2
with λ being the signal wavelength.

Definition 1: For the linear array in (1), the set of the 2q-th

(q is an integer and q ≥ 1) order difference co-array is defined

as [39]

C2q = Φ2q · d , (2)

where the set of the 2q-th order difference co-array lags

Φ2q =

{
q∑

m=1

~nm
−

2q∑

m=q+1

~nm
| 0 ≤ nm ≤ N − 1

}
. (3)

To exploit the increased DOFs offered by the 2q-th order

difference co-array for underdetermined DOA estimation, a

virtual array signal model with a series of virtual sensors

distributed at the set C2q is required. Assume that there are

K mutually uncorrelated zero-mean narrowband signals sk(t)
impinging from the far-field directions θk, k = 1, 2, . . . ,K,

respectively. The array output model in discrete version is

x[i] = A(θ)s[i] + n̄[i] , (4)

where x[i] is the observed N × 1 signal vector, s[i] =
[s1[i], . . . , sK [i]]

T
is the source signal vector consisting of

all the impinging signals, and {·}T denotes the transpose

operation. n̄[i] represents the noise vector, and the N × K
steering matrix A(θ) = [a(θ1), . . . ,a(θK)], with its k-th

column vector a(θk) being the steering vector corresponding

to the k-th source signal, expressed as

a(θk) =
[
e−j

2π~0d

λ
sin(θk), . . . , e−j

2π~N−1d

λ
sin(θk)

]T
. (5)

By calculating the 2q-th order circular cumulants, a cu-

mulant matrix C2q,x(µ) for the arrangement indexed by µ
(0 ≤ µ ≤ q) can be obtained, given by [36], [37], [39]

C2q,x(µ) =

K∑

k=1

c2q,sk

[
a(θk)

⊗µ ⊗ a(θk)
∗⊗(q−µ)

]

×
[
a(θk)

⊗µ ⊗ a(θk)
∗⊗(q−µ)

]H
+ σ2

n̄INq · δ(q − 1) ,

(6)

where {·}∗ is the conjugate operation and {·}H represents the

Hermitian transpose. a(θk)
⊗µ , a(θk)⊗ a(θk)⊗ . . .⊗ a(θk)

is an Nµ × 1 column vector, with the Kronecker product (⊗)

of in total µ of the vectors a(l, θk). σ
2
n̄ is the noise power,
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INq is the Nq×Nq identity matrix, and δ(·) is the Kronecker

delta function. c2q,sk is the 2q-th order circular auto-cumulant

of sk[i], obtained by [48]

c2q,sk = Cum
{
sk[i], . . . , sk[i]︸ ︷︷ ︸

q times

,

q times︷ ︸︸ ︷
s∗k[i], . . . , s

∗
k[i]
}
, (7)

with Cum{·} denoting the cumulant operator. For zero-mean

white Gaussian noise, its 2q-th (q ≥ 2) order auto-cumulant

is zero. Therefore, the second term in (6) related to noise is

zero for q ≥ 2.

According to Theorem 1 in [39], vectorizing the 2q-th

cumulant matrix C2q,x(µ) yields a virtual array model inde-

pendent of µ

z = vec {C2q,x(µ)} = B(θ)u+ σ2
n̄ĨN2q · δ(q − 1) , (8)

where ĨN2q is an N2q × 1 column vector obtained by vec-

torizing the identity matrix INq . u = [c2q,s1 , . . . , c2q,sK ]
is the equivalent signal vector consisting of all the 2q-th

order auto-cumulants of the source signals, while B(θ) =
[b(θ1), . . . ,b(θK)] is the equivalent steering matrix behaving

like the manifold of virtual sensors located at the set of the

2q-th order difference co-array C2q in (2), with each of its

column vectors expressed as

b(θk) =
[
a(θk)

⊗µ ⊗ a(θk)
∗⊗(q−µ)

]∗

⊗
[
a(θk)

⊗µ ⊗ a(θk)
∗⊗(q−µ)

]
.

(9)

B. Nested Arrays with Multiple Levels

The number of virtual sensors in C2q is much larger than the

number of physical sensors, and 2q-level nested arrays (2qL-

NAs) [39] are designed to optimize the virtual ULA segment

included in the 2q-th order difference co-array. These increased

DOFs offered by the virtual ULA can be exploited by a spatial

smoothing based subspace method [12], [39].

Definition 2: A typical 2q-level nested array [39] consists

of 2q uniform linear sub-arrays. Denote N0 = 1, for 1 ≤ m ≤
2q − 1, the m-th sub-array has Nm − 1 sensors located at

Sm =

{
nd

(
m−1∏

m̃=0

Nm̃

)
| n = 1, 2, . . . , Nm − 1

}
, (10)

while the sensors of the 2q-th sub-array with N2q sensors are

located at

S2q =

{
nd

(
2q−1∏

m̃=0

Nm̃

)
| n = 1, 2, . . . , N2q

}
. (11)

Then, there are N =
∑2q

m=1 (Nm − 1) + 1 physical sensors

in total.

By Lemma 1 in [39], the number of virtual ULA sensors

in the 2q-th order difference co-array of the 2qL-NA reaches

MML = 2(

2q∏

m=1

Nm +

2q−1∏

m=1

Nm)− 1 . (12)

The maximum number of virtual ULA sensors included in

the 2q-th order difference co-array C2q indicates the maximum

number of consecutive lags in Φ2q , and with an appropriate

unit spacing d ≤ λ/2 between adjacent virtual sensors to avoid

spatial aliasing, DOFs provided by this ULA segment can be

exploited through various DOA estimation methods based on

(8). In particular, spatial smoothing based subspace methods in

[12]–[14], [39] and the subspace method based on a reshaping

process to form a Toeplitz matrix in [49] can only exploit

the DOFs provided by the virtual ULA segment, while the

CS-based method [15], [27], [28] is capable of exploiting the

DOFs provided by all the unique virtual sensors.

Remark 1: The number of virtual sensors of the 2q-th order

difference co-array is N2q including redundancies. The 2qL-

NA gives rise to O(N2q) consecutive lags at the 2q-th order

stage compared with N2q total lags including redundancies,

showing that it is an effective and attractive structure, although

it is not optimum and further improvement is possible. As will

be demonstrated, in our proposed array construction methods,

the consecutive segments in Φ2q associated with introduced

sensors are designed to be adjacent to each other. In this way,

based on a standard TL-NA with certain redundancies at the

2q-order difference co-array stage, we optimize the redundan-

cies introduced by each additional sensor under construction,

and therefore both the consecutive lags and the unique lags are

increased compared with the 2qL-NA. As in [15], [39], [42],

[43], the achievable number of consecutive virtual sensors

is considered for quantitative evaluation, comparison, and

optimal design.

III. SPARSE ARRAY OPTIMIZATION BASED ON THE

FOURTH ORDER DIFFERENCE CO-ARRAY CONCEPT

For the TL-NAs, their second order difference co-arrays

provide a significant increase in DOFs by exploring the

features of the given physical geometry. However, the non-

uniform feature of the generated virtual array at the second

order is not optimized for the fourth order difference co-

array usage, and the increase of DOFs is limited at the latter

stage. By analysing the consecutive lags associated with the

introduced additional sensors, we optimize/adjust the non-

uniformity of the second-order difference co-array so that the

consecutive segments associated with introduced sensors at

the fourth-order difference co-array stage are adjacent to each

other, leading to an even higher number of DOFs.

A. Fourth Order Difference Co-Array Perspective

According to Definition 1, the second order difference co-

array (also known as difference co-array) is defined as

C2 = Φ2 · d ,

Φ2 = {~n1
− ~n2

| n1, n2 = 0, 1, . . . , N − 1} .
(13)

Similarly, the fourth order difference co-array is expressed

as C4 = Φ4 · d, where for n1, n2, n3, n4 = 0, 1, . . . , N − 1,

the set of the fourth order difference co-array lags

Φ4 = {~n1
+ ~n2

− ~n3
− ~n4

}

= {(~n1
− ~n3

)− (~n4
− ~n2

)}

= {µ1 − µ2 | µ1, µ2 ∈ Φ2} ,

(14)

where µ1 = ~n1
− ~n3

∈ Φ2 and µ2 = ~n4
− ~n2

∈ Φ2.
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d 2d (N1 − 1)d

• • · · · • ◦ ◦ · · · ◦

N1d 2N1d N1N2d

Fig. 1. Structure of a general TL-NA with two uniform linear sub-arrays.

d (N1 − 1)d

• · · · • ◦ · · · ◦ ⋄ · · · ⋄ ⊳ · · · ⊳

N1d N1N2d︸ ︷︷ ︸
TL-NA part

α1d αN3−1d β1d βN4−1d︸ ︷︷ ︸
The constructed two sub-arrays

Fig. 2. A general structure of the E-FL-NA, consisting of four uniform linear
sub-arrays, with their sensors indicated as •, ◦, ⋄, and ⊳, respectively.

From this point of view, the fourth order difference co-array

can be obtained by calculating the second order difference

co-array of the virtual array generated at the second order

difference co-array stage with virtual sensors given in C2.

A general TL-NA according to Definition 2 for q = 1 is

shown in Fig. 1, where the first sub-array has N1 − 1 sensors

starting from the position 1d with an inter-element spacing

d, and the second sub-array has N2 sensors starting from the

position N1d with the inter-element spacing N1d. Denote Sm

as the sensor position set of the m-th sub-array, the sensor

positions of a TL-NA can be expressed as

S1 = {n1d | n1 = 1, 2 . . . , N1 − 1} ,

S2 = {n2N1d | n2 = 1, 2 . . . , N2} .
(15)

There are N1 + N2 − 1 physical sensors in total, and

the second order difference co-array lags achieved can be

expressed as

Φ2 = {µ | −N1N2 + 1 ≤ µ ≤ N1N2 − 1, µ ∈ Z} , (16)

where Z denotes the set of all integers.

Note that Φ2 of the TL-NA only contains consecutive

integers from −N1N2 + 1 to N1N2 − 1, corresponding to

a ULA with 2N1N2 − 1 virtual sensors at the second-order

difference co-array stage. Furthermore, the four level nested

array (FL-NA) is not optimum since the physical array aperture

and the symmetric features in the second order difference co-

array have not been fully exploited in array construction.

B. Extended Four Level Nested Arrays with Fourth Order

Difference Co-Array Enhancement

As illustrated in our earlier work [42], the sparse array with

the fourth order difference co-array enhancement based on a

TL-NA (SAFOE-NA) provides a larger number of consecutive

lags than the existing FL-NA when the sensor number N ≤
20. To form a better configuration compared with both the

SAFOE-NA and the FL-NA with a consistently larger number

of consecutive lags for different N , an enhanced four level

nested array is proposed by constructing two extra sub-arrays

based on the TL-NA simultaneously.

Proposition 1: The enhanced four level nested array (E-FL-

NA) consisting of four uniform linear sub-arrays is shown in

Fig. 2, where for dN4
= N3(2N1N2 − 1) + N1N2 − 1, the

locations of the E-FL-NA are given as

S1 = {n1d | n1 = 1, 2 . . . , N1 − 1} ,

S2 = {n2N1d | n2 = 1, 2 . . . , N2} .

S3 = {(3N1N2 − 1)d+ (n3 − 1)(2N1N2 − 1)d |

n3 = 1, 2, . . . , N3 − 1} ,

S4 = {2N3(2N1N2 − 1)d+ (n4 − 1)dN4
d |

n4 = 1, 2, . . . , N4 − 1} .

(17)

The set of the consecutive fourth order difference co-array lags

Φ4
C of our proposed structure is updated to

Φ4
C =

{
µ | −M4

max ≤ µ ≤M4
max, µ ∈ Z

}
, (18)

where M4
max = N3N4(2N1N2−1)+(N4−1)(N1N2−1)−1,

and the number of consecutive lags is 2M4
max + 1.

Proof: Denote αn3
d (n3 = 1, 2, . . . , N3−1) and βn4

d (n4 =
1, 2, . . . , N4−1) as the n3-th sensor position of the third sub-

array and the n4-th sensor position of the fourth sub-array,

respectively. Due to symmetry of the high order difference

co-arrays, we only analyze the positive part.

By analyzing the cross-difference co-array between the

introduced sensors and the original TL-NA sensors according

to (16) with the consecutive integers ranging from −N1N2+1
to N1N2 − 1 in the original TL-NA, the sets of consecutive

integers at the fourth order difference co-array stage associated

with αn3
d and βn4

d are given as

φαn3
=
{
µ | ναn3

≤ µ ≤ ζαn3
, µ ∈ Z

}
,

φβn4
=
{
µ | νβn4

≤ µ ≤ ζβn4
, µ ∈ Z

}
,

(19)

where

ναn3
= αn3

− 2N1N2 + 1, ζαn3
= αn3

+N1N2 − 2 ,

νβn4
= βn4

− 2N1N2 + 1, ζβn4
= βn4

+N1N2 − 2 .
(20)

Without loss of generality, assume that the fourth sub-

array has the largest inter-element spacing, and βn4
> αn3

,

∀n3 = 1, 2, . . . , N3 − 1, n4 = 1, 2, . . . , N4 − 1. By examining

the fourth order cross-difference co-arrays between the third

sub-array and the fourth sub-array, the set of consecutive lags

associated with βn4
d− αn3

d according to (16) is given by

ϕαn3
,βn4

=
{
µ | ναn3

,βn4
≤ µ ≤ ζαn3

,βn4
, µ ∈ Z

}
, (21)

with the lower bound and upper bound expressed as

ναn3
,βn4

= βn4
− αn3

−N1N2 + 1 ,

ζαn3
,βn4

= βn4
− αn3

+N1N2 − 1 .
(22)

To maximize the consecutive range associated with each

sensor in the fourth sub-array, the following relationship

should be satisfied to ensure the covered ranges with a fixed

n4 are adjacent to each other:

ζαn3+1,βn4
+ 1 = ναn3

,βn4
. (23)

Then we can obtain the inter-element spacing of the third

sub-array by solving (23), given by

dN3
= αn3+1 − αn3

= 2N1N2 − 1 . (24)
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As a result, ∀1 ≤ n3 ≤ N3 − 1, the set of consecutive

integers associated with βn4
d is combined into

ϕα,βn4
= ϕα1,βn4

⋃
ϕα2,βn4

. . .
⋃
ϕαN3−1,βn4

=
{
µ | ναN3−1,βn4

≤ µ ≤ ζα1,βn4
, µ ∈ Z

}
,

(25)

where

ναN3−1,βn4
= βn4

− αN3−1 −N1N2 + 1 ,

ζα1,βn4
= βn4

− α1 +N1N2 − 1 .
(26)

A straightforward idea is to arrange these sets ϕα,βn4
to be

adjacent to each other by ensuring ναN3−1,βn4+1
= ζα1,βn4

+1.

However, a further improvement can be achieved by ensur-

ing φβn4
in (19) and ϕα,βn4

in (25) to be adjacent to form a

larger set containing increased number of consecutive integers

associated with βn4
d, with the relationship expressed as

νβn4
= ζα1,βn4

+ 1 = βn4
− 2N1N2 + 1

= βn4
− α1 +N1N2 − 1 + 1 .

(27)

Then, the starting position in the third sub-array is

α1 = 3N1N2 − 1 . (28)

Therefore, a large set ϕβn4
of consecutive difference co-

array lags associated with βn4
d is generated by

ψβn4
= φβn4

⋃
ϕα,βn4

=
{
µ | ναN3−1,βn4

≤ µ ≤ ζβn4
, µ ∈ Z

}
.

(29)

By allowing ναN3−1,βn4+1
= ζβn4

+ 1, the inter-element

spacing of the fourth sub-array is

dN4
= βn4+1 − βn4

= N3(2N1N2 − 1) +N1N2 − 1 . (30)

For β1d in the fourth sub-array, the lower bound ναN3−1,β1

is arranged to be ζαN3−1
in (19) plus 1 for the fourth order

difference co-array optimization, given by

ναN3−1,β1
= ζαN3−1

+ 1 = αN3−1 +N1N2 − 2 + 1

= β1 − αN3−1 −N1N2 + 1 .
(31)

Then we can obtain the starting sensor position as

β1 = 2N3(2N1N2 − 1) = αN3−1 + βn4+1 − βn4
. (32)

Finally, βN4−1 is expressed as

βN4−1 = β1 + (N4 − 1) (βn4+1 − βn4
)

= N3N4(2N1N2 − 1) + (N4 − 2)(N1N2 − 1) ,

and the maximum integer in the set of consecutive fourth order

difference co-array lags can be obtained as

M4
max = ζβN4−1

= βN4−1 +N1N2 − 2

=N3N4(2N1N2 − 1) + (N4 − 1)(N1N2 − 1)− 1 .
(33)

Remark 2-(1): (N1N2−1)d is the original physical aperture

of the TL-NA part, while (2N1N2 − 1)d is the number of

consecutive lags (virtual array aperture) at the second order

difference co-array stage. The larger spacings in the extra two

sub-arrays are due to exploration of the physical aperture and

the symmetric information at the second order difference co-

array stage, which is not exploited in the design of the FL-NA

[39].

Remark 2-(2): Since α1−N1N2 = αn3+1−αn3
= 2N1N2−

1 and β1 = αN3−1 + βn4+1 − βn4
as shown in (32), the last

sensor in the original TL-NA can also be considered as part

of the third sub-array located at α0d, whereas αN3−1d can be

treated as β0d in the fourth sub-array. Therefore, the structure

of our proposed E-FL-NA is similar to the FL-NA with its

sensor number being N =
∑4

m=1 (Nm − 1) + 1.

Remark 2-(3): The number of consecutive lags 2M4
max+1 is

the aperture of the virtual ULA at the fourth order difference

co-array stage, and according to (33), it contains the physical

array aperture and the virtual ULA aperture at the second order

stage. Furthermore, denote P2q as the aperture of the (virtual)

ULA at the 2q-th order stage with q = 0 representing the

physical array, the inter-element spacings of the latter two sub-

arrays in (24) and (30) are a linear combination of the P0 and

P2. When further extended to the high order case with a similar

construction method, there is no doubt that the spacings of the

(2q − 1)-th and 2q-th sub-arrays will be a linear combination

of the apertures P2q1 (q1 = 0, 1, . . . , q−1), where each P2q1 is

also a linear combination of P2q2 with q2 = 0, 1, . . . , q1 − 1,

leading to a much more complicated expressions for sensor

positions which is extremely difficult to follow.

IV. SIMPLIFIED AND ENHANCED MULTIPLE LEVEL

NESTED ARRAYS

As discussed in Remark 2-(3), for a more comprehensive

illustration and also convenient structure construction, we first

modify the E-FL-NA into a simplified and enhanced four

level nested array (SE-FL-NA) configuration by sacrificing

some potential DOFs but leading to a much more simple

formulations for sensor positions, and then extend it to the

high order case with a simplified and enhanced multiple

nested array (SE-ML-NA) proposed. It is noted that the sensor

position formulations of the SE-ML-NA are independent of the

apertures at the lower order difference co-array stage, and the

number of DOFs provided by the SE-ML-NA is still much

more than that of the ML-NA.

A. Simplified and Enhanced Four Level Nested Arrays

Proposition 2: The SE-FL-NA consists of four uniform lin-

ear sub-arrays, as shown in Fig. 3. The sets of sensor positions

in each sub-array Sm, m = 1, 2, 3, 4, can be expressed as

S1 = {n1d | n1 = 1, 2, . . . , N1 − 1} ,

S2 = {n2N1d | n2 = 1, 2, . . . , N2} ,

S3 = {n32N1N2d | n3 = 1, 2, . . . , N3 − 1} ,

S4 = {n42N1N2N3d | n4 = 1, 2, . . . , N4} .

(34)

With
∑4

m=1(Nm−1)+2 sensors in total, the set of consecutive

lags at the fourth order difference co-array stage is

Φ4
max =

{
µ | −M4

max ≤ µ ≤M4
max

}
, (35)

where M4
max = 2N1N2N3N4 + N1N2, and the number of

consecutive co-array lags is 2M4
max + 1.

Proof: To simplify the formulations of array apertures, a

sensor at the zeroth position is added first. Denote αn3
d (n3 =

1, 2, . . . , N3 − 1) and βn4
d (n4 = 1, 2, . . . , N4) as the n3-

th sensor position of the third sub-array (N3 − 1 sensors in
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d (N1 − 1)d 2N1N2d 2(N3 − 1)N1N2

• · · · • ◦ · · · ◦ ⋄ · · · ⋄ ⊳ · · · ⊳

N1d N1N2d︸ ︷︷ ︸
TL-NA part

2N1N2N3d 2N1N2N3N4d︸ ︷︷ ︸
The constructed two sub-arrays

Fig. 3. A general configuration of the SE-FL-NA, consisting of four uniform
linear sub-arrays, with their sensors indicated as •, ◦, ⋄, and ⊳, respectively.

total) and the n4-th sensor position of the fourth sub-array

(N4 sensors in total), respectively. Again we only analyze the

positive part.

For these pre-allocated sensors including the newly added

zeroth sensor, the second order difference co-array lags are

Φ2
C = {µ | −N1N2 ≤ µ ≤ N1N2, µ ∈ Z} . (36)

By calculating the cross-difference co-array between the

introduced sensor and the pre-allocated sensors, the sets of

consecutive integers at the fourth order difference co-array

stage associated with αn3
d and βn4

d can be expressed as

φαn3
=
{
µ | ναn3

≤ µ ≤ ζαn3
, µ ∈ Z

}
,

φβn4
=
{
µ | νβn4

≤ µ ≤ ζβn4
, µ ∈ Z

}
,

(37)

with

ναn3
= αn3

− 2N1N2, ζαn3
= αn3

+N1N2 ,

νβn4
= βn4

− 2N1N2, ζβn4
= βn4

+N1N2 .
(38)

Without loss of generality, we follow the same assumption

that the fourth sub-array has the largest inter-element spacing,

and βn4
> αn3

, ∀n3 = 1, 2, . . . , N3−1, n4 = 1, 2, . . . , N4. By

examining the fourth order cross-difference co-arrays between

the two sub-arrays under construction, the set of consecutive

lags associated with βn4
d− αn3

d is given by

ϕαn3
,βn4

=
{
µ | ναn3

,βn4
≤ µ ≤ ζαn3

,βn4

}
, (39)

with the lower bound and upper bound expressed as

ναn3
,βn4

= βn4
− αn3

−N1N2 ,

ζαn3
,βn4

= βn4
− αn3

+N1N2 .
(40)

To ensure that the segments of consecutive lags ϕαn3
,βn4

with respect to different αn3
while associated with a fixed βn4

are overlapped to form a larger uniform linear virtual array,

the following relationship should be satisfied:

ζαn3+1,βn4
+ 1 ≥ ναn3

,βn4
. (41)

Then, we can obtain the inter-element spacing of the third

sub-array by solving (41), given by

dN3
= αn3+1 − αn3

≤ 2N1N2 + 1 . (42)

For simplification, we set dN3
= 2N1N2 and α1 = 2N1N2.

Therefore, the sensor positions of the third sub-array are

αn3
d = (α1 + (n3 − 1)dN3

) d = 2N1N2n3d . (43)

Obviously, φβn4
and ϕα1,βn4

are overlapped. As a result,

∀n3 = 1, 2, . . . , N3, the set of consecutive integers associated

with βn4
d is combined into

ψβn4
= ϕα1,βn4

⋃
ϕα2,βn4

. . .
⋃
ϕαN3−1,βn4

⋃
φβn4

=
{
µ | ναN3−1,βn4

≤ µ ≤ ζβn4
, µ ∈ Z

}
.

(44)

with

ναN3−1,βn4
= βn4

− αN3−1 −N1N2 ,

ζβn4
= βn4

+N1N2 .
(45)

To enlarge the number of consecutive lags, we can arrange

the sets ψβn4
with adjacent sensors to be overlapped by

ensuring

ναN3−1,βn4+1
≤ ζβn4

+ 1 , (46)

and therefore the inter-element spacing of the fourth sub-array

dN4
= βn4+1 − βn4

≤ αN3−1 + 2N1N2 + 1

= 2N1N2N3 + 1 .
(47)

We fix dN4
= 2N1N2N3, and set the first sensor in the

fourth sub-array β1 = 2N1N2N3 for convenience. Then, the

sensor positions of the fourth sub-array become

βn4
d = [β1 + (n4 − 1)dN4

] d = 2N1N2N3n4d . (48)

The maximum integer in the set of consecutive fourth order

difference co-array lags can be achieved by

M4
max = ζβN4

= 2N1N2N3N4 +N1N2 . (49)

Corollary 1: With the αn3
d defined in (43), the assistant

sensor at 0d can be removed without sacrificing the number of

consecutive lags at the fourth order difference co-array stage.

Proof: See Appendix A.

As a result, the SE-FL-NA is derived and Φ4
max in (35) can

be achieved by our proposed SE-FL-NA.

Remark 3: We compare M4
max of the E-FL-NA in (33) by

replacing N4 with N4+1 and the SE-FL-NA in (49) with the

same sensor number N =
∑4

m=1(Nm − 1) + 2. The term

2N1N2N3N4 is the largest among all terms in M4
max, and

by applying the Arithmetic Mean-Geometric Mean (AM-GM)

inequality, 2N1N2N3N4 achieves the maximum value when

Nm = N+2
4 , 1 ≤ m ≤ 4. Clearly, the ratio between M4

max in

(33) and (49) gets close to 1 with the increase of N , where

Nm is selected as an integer around N+2
4 .

B. Simplified and Enhanced Multiple Level Nested Arrays

According to Definition 1, the 2q-th order difference co-

array for the general linear array given in (1) is expressed as

C2q = Φ2q · d, where the set of the 2q-th order difference

co-array lags is given by

Φ2q =

{
q∑

m=1

~nm
−

2q∑

m=q+1

~nm

}

=

{
(
~nq

− ~n2q

)
−

(
2q−1∑

m=q+1

~nm
−

q−1∑

m=1

~nm

)}

=
{
µ1 − µ2 | µ1 ∈ Φ2, µ2 ∈ Φ2(q−1)

}
,

(50)
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where nm = 1, 2, . . . , N − 1.

From this perspective, the 2q-th order difference co-array

can be obtained by calculating the difference between the

virtual array at the second order difference co-array stage and

the virtual array at the 2(q − 1)-th order difference co-array

stage with virtual sensors in C2(q−1).

Proposition 3: Denote Sm as the sensor position set of

the m-th sub-array. As shown in Fig. 4, for a simplified and

enhanced 2q level nested array (SE-2qL-NA, q ≥ 2) consisting

of 2q sub-arrays, the sets Sm for m = 1, 2 and m = 2q are

expressed as

S1 = {n1d | n1 = 1, 2, . . . , N1 − 1} ,

S2 = {n2N1d | n2 = 1, 2, . . . , N2} ,

S2q =



n2q2

q−1

2q−1∏

n2q=1

Nmd | n2q = 1, 2, . . . , N2q



 ,

(51)

while Sm for 2 < m < 2q, m ∈ Z with Nm − 1 sensors

located at

Sm =

{
nm2⌊

m−1

2
⌋

m−1∏

nm=1

Nmd | nm = 1, 2, . . . , Nm − 1

}
,

(52)

where ⌊x⌋ returns the greatest integer that is less or equal to

x. Therefore, there are
∑2q

m=1(Nm − 1) + 2 sensors in total,

and the set of consecutive lags at the 2q-th order difference

co-array stage is

Φ2q
C =

{
µ | −M2q

max ≤ µ ≤M2q
max, µ ∈ Z

}
, (53)

with M2q
max = 2q−1

∏2q
m=1Nm + 2q−2

∏2q−2
m=1 Nm, and the

maximum number of consecutive lags at the 2q-th order

difference co-array stage is

2M2q
max + 1 = 2q

2q∏

m=1

Nm + 2q−1

2q−2∏

m=1

Nm + 1 . (54)

Proof: Obviously, the SE-FL-NAs is obtained when q = 2.

For q > 2, assume that the set of consecutive lags included

at the 2(q− 1)-th difference co-array stage of the derived SE-

2(q − 1)L-NA can be expressed as

Φ
2(q−1)
C =

{
µ | −M2(q−1) ≤ µ ≤M2(q−1), µ ∈ Z

}
, (55)

where M2(q−1) ≤ M
2(q−1)
max is a selected positive number of

the consecutive 2(q−1)-th order difference co-array lags, with

the purpose of both enlarging the length of the consecutive co-

arrays of the enhanced array configuration and simplifying the

formulations of the sensor positions.

The optimum configuration of the SE-2qL-NA can be

obtained by constructing two extra sub-arrays based on a given

SE-2(q − 1)L-NA. Denote N2q−1 − 1 and N2q as the sensor

number of the (2q − 1)-th sub-array and the 2q-th sub-array

under construction, with αn2q−1
d, n2q−1 = 1, 2, . . . , N2q−1,

and βn2q
d, n2q = 1, 2, . . . , N2q , representing the n2q−1-th and

the n2q-th sensor position of the (2q−1)-th sub-array and the

the 2q-th sub-array, respectively. Again due to the symmetry,

we only consider optimizing the positive co-array lags.

Following the same approach, a sensor at the zeroth position

is added first. Then, the cross-difference co-array between the

introduced sensor and the pre-allocated sensors is given by

φαn2q−1
=
{
µ | ναn2q−1

≤ µ ≤ ζαn2q−1
, µ ∈ Z

}
,

φβn2q
=
{
µ | νβn2q

≤ µ ≤ ζβn2q
, µ ∈ Z

}
,

(56)

where the lower and upper bounds are

ναn2q−1
= αn2q−1

− ~
2(q−1)
max −M2(q−1) ,

ζαn2q−1
= αn2q−1

+M2(q−1) ,

νβn2q
= βn2q

− ~
2(q−1)
max −M2(q−1) ,

ζβn2q
= βn2q

+M2(q−1) .

(57)

with ~
2(q−1)
max d being the maximum physical array sensor

position in the pre-designed SE-2(q − 1)L-NA.

Denote ~
nq

q as the nq-th sensor in the q-th sub-array,

and Nq is the number of sensors of the corresponding sub-

array. Without loss of generality, large sensor positions are

assigned to higher level sub-arrays with ~
nq1
q1 > ~

nq2
q2 , ∀nq1 =

1, 2, . . . , Nq1 , nq2 = 1, 2, . . . , Nq2 when q1 > q2. By examin-

ing the cross-difference co-arrays between the two extra sub-

arrays, the consecutive lags associated with βn2q
d− αn2q−1

d
are given by

ϕαn2q−1
,βn2q

=
{
µ | ναn2q−1

,βn2q
≤ µ ≤ ζαn2q−1

,βn2q
, µ ∈ Z

}
,

(58)

where

ναn2q−1
,βn2q

= βn2q
− αn2q−1

−M2(q−1) ,

ζαn2q−1
,βn2q

= βn2q
− αn2q−1

+M2(q−1) .
(59)

For a fixed βn2q
, the segments of consecutive lags

ϕαn2q−1
,βn2q

with respect to αn2q−1
are designed to be over-

lapped to form a larger uniform linear virtual array at the 2q-th

order difference co-array stage, satisfying

ζαn2q−1+1,βn2q
+ 1 ≥ ναn2q−1

,βn2q
. (60)

By solving (60), the inter-element spacing of the 2q − 1-th

sub-array is obtained, given by

dN2q−1
= αn2q−1+1 − αn2q−1

≤ 2M2(q−1) + 1 . (61)

To simplify the formulations, we fix dN2q−1
and the location

of its first sensor α1d as

dN2q−1
= 2M2(q−1) , α1d = 2M2(q−1)d , (62)

and therefore the sensor positions of the constructed 2q − 1-th

sub-array are expressed as

αn2q−1
d =

[
α1 + (n2q−1 − 1)dN2q−1

]
d

= 2M2(q−1)n2q−1d ,
(63)

where n2q−1 = 1, 2, . . . , N2q−1 − 1.

According to (63), φβn2q
and ϕα1,βn2q

are overlapped.

Then, the set of consecutive integers at the 2q-th order

difference co-array stage is

ψβn2q
= ϕα1,βn2q

⋃
ϕα2,βn2q

. . .
⋃
ϕαN2q−1−1,βn2q

⋃
φβn2q

=
{
µ | ναN2q−1−1,βn2q

≤ µ ≤ ζβn2q

}
.
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0 d (N1 − 1)d 2⌊
m−1

2
⌋
∏m−1

nm=1
Nmd (Nm − 1)2⌊

m−1

2
⌋
∏m−1

nm=1
Nmd

△ • · · · • ◦ · · · ◦ · · · ⋄ · · · · · · ⋄ · · · ⊳ · · · · · · ⊳

N1d N1N2d︸ ︷︷ ︸
TL-NA part

︸ ︷︷ ︸
The m-th sub-array

2q−1
∏2q−1

n2q=1
Nmd 2q−1

∏2q

n2q=1
Nmd

︸ ︷︷ ︸
The 2q-th sub-array

Fig. 4. A general configuration of the SE-2qL-NA, consisting of 2q uniform linear sub-arrays. Note that the assistant sensor △ at the zeroth position is
finally removed from our proposed configuration.

with

ναN2q−1−1,βn2q
= βn2q

− αN2q−1−1 −M2(q−1) ,

ζβn2q
= βn2q

+M2(q−1) .
(64)

To ensure the segments of consecutive lags in ψβn2q
with

adjacent n2q are overlapped, the sensors of the 2q-th sub-array

should satisfy the following relationship:

ναN2q−1−1,βn2q+1
≤ ζβn2q

+ 1 . (65)

Then we can obtain the inter-element spacing of the 2q-th

sub-array, given by

dN2q
= βn2q+1 − βn2q

≤ αN2q−1−1 + 2M2(q−1) + 1

= 2M2(q−1)N2q−1 + 1 .
(66)

We set dN2q
= 2M2(q−1)N2q−1, and β1 = 2M2(q−1)N2q−1

for simplification of the location formulations. The sensor

positions of the 2q-th sub-array can then be expressed as

βn2q
d =

[
2M2(q−1)N2q−1 + (n2q − 1)dN2q

]
d

= 2M2(q−1)N2q−1n2qd ,
(67)

where n2q = 1, 2, . . . , N2q , and the maximum integer in the

set of consecutive lags at the 2q-th order difference co-array

stage reaches

M2q
max = ζβN2q

= 2M2(q−1)N2q−1N2q +M2(q−1) . (68)

We can set M2q = M2q
max to design the two extra intro-

duced sub-arrays. However, for convenience of sensor position

formulations of each sub-array in SE-2qL-NA, we select

M2q = 2M2(q−1)N2q−1N2q by sacrificing some potential

DOFs provided by the constructed SE-2qL-NA, and therefore

M2q

M2(q−1)
= 2N2q−1N2q . (69)

Based on Proposition 2 for SE-FL-NA and (69), we obtain

M2q = 2q−1
∏2q

m=1
Nm . (70)

Then the sensor positions of the introduced two sub-arrays

can be expressed as

αn2q−1
d = 2q−1

∏2q−2

m=1
Nmn2q−1d ,

βn2qd = 2q−1
∏2q−1

m=1
Nmn2qd .

(71)

Corollary 2: With the defined αn2q−1
d, the assistant sensor

at 0d can be removed without sacrificing the number of

consecutive lags at the 2q-th order difference co-array stage.

Proof: See Appendix B.

According to (62) and (67), it is noted that α1 =
2M2(q−1) = 2M2(q−2)N2q−3N2q−2, which means that the

first sensor in the (2q− 1)-th sub-array is shared with the last

sensor (the N2q−2-th sensor) in the (2q − 2)-th sub-array. As

a result, the sensor positions of all sub-arrays in SE-2qL-NA

(q ≥ 2) can be derived, where the sets Sm for m = 1, 2, . . . , 2q
are expressed in (51) and (52).

According to (68), it is obvious that M2q
max =

2q−1
∏2q

m=1Nm + 2q−2
∏2q−2

m=1 Nm, and then the maximum

number of consecutive lags at the 2q-th order difference co-

array stage is 2M2q
max + 1.

Remark 4-(1): Different from all the virtual arrays at higher

order difference co-array stage, the physical array does not

share the symmetric property. After selecting an appropriate

inter-element spacing, the first sensor location in each sub-

array is defined to be equal to the corresponding inter-element

spacing, leading to the simplified and enhanced multiple level

nested array (SE-ML-NA).

Remark 4-(2): The sensor position formulations of the SE-

ML-NA in (51) and (52) are simple, and each formulation

is independent of the virtual ULA apertures at the lower

order difference co-array stage. As a result, the SE-ML-NA

is far more comprehensive and also convenient for structure

construction.

V. COMPARISON OF DOFS AND SIMULATION RESULTS

For all simulations, we set d = λ/2. After combining the

redundant co-arrays together [28], SS-MUSIC is employed for

DOA estimation, and all the K source signals are uniformly

distributed between −60◦ and 60◦.

A. Comparison and DOA Estimation Results for Configura-

tions Based on the Fourth Order Difference Co-Array

We first focus on the performances of a series of nested

configurations where the standard TL-NA is employed as part

of the array structure, i.e., FL-NA, SAFOE-NA, EAS-NA-NA,

and the proposed E-FL-NA. Then, further comparison between

the E-FL-NA and the 2L-FO-NA will be given in 3).

1) Comparison in the Number of DOFs

For N given physical sensors, more DOFs can be provided

by the proposed E-FL-NA compared with the FL-NA and the

SAFOE-NA due to the larger inter-element spacing in the third

sub-array and the fourth sub-array. As analyzed in [44], the

EAS-NA-NA is capable of resolving more sources than the

SAFOE-NA and FL-NA with the same number of sensors.

For comparison between our proposed E-FL-NA and the EAS-

NA-NA, we have the following corollary:
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TABLE I
COMPARISON OF THE CONSECUTIVE LAGS FOR DIFFERENT ARRAY

STRUCTURES BASED ON THE FOURTH ORDER DIFFERENCE CO-ARRAYS

Array
Structures

Number of Sensors Number of Consecutive Fourth
Order Difference Co-Array Lags

FL-NA
∑

4

m=1
(Nm−1)+1 2N1N2N3(N4 + 1)− 1

SAFOE-NA
∑

3

m=1
(Nm−1)+1 2(3N3 − 1)N1N2 − 4N3 + 1

EAS-NA-NA
∑

3

m=1
(Nm−1)+1 MEAS

†

E-FL-NA
∑

4

m=1
(Nm−1)+1 ME

‡

Examples of different structures for comparison

Array
Structures

(N1, . . . , Nm)
2 ≤ m ≤ 4

Number of
Sensors

Number of
Consecutive Lags

FL-NA (2, 2, 2, 3) 6 63

SAFOE-NA (2, 3, 3) 6 85

EAS-NA-NA (2, 2, 2, 3) 6 83

E-FL-NA (2, 2, 2, 3) 6 95

FL-NA (3, 3, 3, 3) 9 215

SAFOE-NA (3, 4, 4) 9 249

EAS-NA-NA (3, 3, 3, 3) 9 305

E-FL-NA (3, 3, 3, 3) 9 337

FL-NA (3, 4, 4, 4) 12 479

SAFOE-NA (4, 5, 5) 12 541

EAS-NA-NA (3, 4, 4, 4) 12 735

E-FL-NA (3, 4, 4, 4) 12 801

† MEAS = (2N1N2 − 1)(2N3N4 − 1) + 2(N1N2 − 1).
‡ ME = 2N3N4(2N1N2 − 1) + 2(N4 − 1)(N1N2 − 1)− 1.

Corollary 3: Given the same number of physical sensors,

the potential DOFs provided by an optimized E-FL-NA can

be more than any configurations of EAS-NA-NA [44].

Proof: For an EAS-NA-NA with
∏4

m=1(Nm − 1) + 1 sen-

sors, its number of consecutive co-array lags at the fourth order

difference co-array stage is MEAS = (2N1N2 − 1)(2N3N4 −
1) + 2(N1N2 − 1). However, for E-FL-NA, this number is

ME = 2N3N4(2N1N2 − 1)+ 2(N4 − 1)(N1N2 − 1)− 1. The

difference between the two for the same (N1, N2, N3, N4) is

∆M4 =ME −MEAS = 2(N4 − 1)(N1N2 − 1) > 0 . (72)

To ensure the existence of each level, N4 ≥ 2.

As a result, there always exists a configuration in E-FL-

NA which can provide more DOFs than any EAS-NA-NA.

As shown in (30), the inter-element spacing in the fourth sub-

array of an E-FL-NA is N3(2N1N2 − 1) + N1N2 − 1. The

physical aperture N1N2 − 1 is not exploited in the EAS-NA-

NA, and thus E-FL-NA is a better configuration for the fourth

order difference co-array enhancement.

The number of consecutive integers at the fourth order

difference co-array stage for different structures is listed in

Table I. It is clear that with a larger inter-element spacing

in the third and fourth sub-arrays, the DOFs provided by

the E-FL-NA is much more than that of an FL-NA with

the same Nm, m = 1, 2, 3, 4. Combined with Corollary 3,

with a fixed number of sensors, E-FL-NA is the best one

offering the largest number of consecutive lags among all

those configurations for the fourth order difference co-array

enhancement.

2) DOA Estimation Results

Now consider examples with N = 6 physical sensors:

(2, 2, 2, 3) for FL-NA, (2, 3, 3) for SAFOE-NA, (2, 2, 2, 3) for

(a) FL-NA (K = 28). (b) SAFOE-NA (K = 34).

(c) EAS-NA-NA (K = 34). (d) E-NA-NA (K = 34).

Fig. 5. DOA estimation results for different array configurations based on
the fourth order difference co-array.

EAS-NA-NA, and (2, 2, 2, 3) for E-FL-NA.

For the first set of simulations, the SNR is set to be

20 dB. To evaluate the number of distinguishable sources,

a sufficient number of snapshots for calculating the fourth

order cumulant matrix is used, fixed at 500000, and different

number of sources K is used for different configurations. The

DOA estimation results for different array configurations are

shown in Fig. 5, where the dotted lines represent the actual

incident angles of the impinging signals, whereas the solid

lines represent the estimation results. It is clear that FL-NA,

SAFOE-NA and EAS-NA-NA have failed in resolving all the

28, 34, and 34 sources respectively, while the proposed E-FL-

NA has resolved the 34 sources successfully.

In the second set of simulations, we focus on the root

mean square error (RMSE) results to compare the estimation

accuracy of different array configurations through Monte Carlo

simulations of 500 trials. The number of sources K is 10.

Fig. 6(a) gives the results with respect to a varied input SNR,

where the number of snapshots is fixed at 10000. Clearly, the

performance of E-FL-NA is the best, with that of the FL-NA

being the worst. It is noted that the physical aperture for E-FL-

NA is 44d, while it is 23d for FL-NA, 37d for SAFOE-NA,

and 38d for EAS-NA-NA. With the largest aperture in both

physical array and virtual array, the proposed configuration

has consistently outperformed the other three.

In Fig. 6(b), the RMSE results with respect to different num-

ber of snapshots are shown, where SNR is fixed at 0 dB. Due

to a better estimation of the statistics of the involved signals,

the larger the number of snapshots, the higher its estimation

accuracy. Similarly, the performance of the proposed E-FL-NA

is still the best among them.

3) E-FL-NA versus 2L-FO-NA

The 2L-FO-NA structure in [45] consists of two sub-arrays
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(a) RMSE results versus input SNR. (b) RMSE results versus number of
snapshots.

Fig. 6. RMSE results of different array configurations.

(a) Number of consecutive lags versus
number of sensors.

(b) Number of unique lags versus num-
ber of sensors.

Fig. 7. Number of consecutive and unique lags of different configurations
with respect to the number of physical sensors.

with N1 sensors and N2 sensors respectively, and it is a

specially designed hole-free configuration with respect to the

consecutive fourth order difference co-array lags where a

number of 16N1N2− 8N2+1 lags is achieved. As illustrated

in [45], when the number of sensors N < 12, the 2L-FO-NA

offers higher number of consecutive fourth order difference

co-array lags compared with SAFOE-NA [42]; otherwise more

DOFs are provided by SAFOE-NA.

As demonstrated earlier, the proposed E-FL-NA outper-

forms the SAFOE-NA. Therefore, we further compare the

number of consecutive fourth order difference co-array lags

of E-FL-NA and 2L-FO-NA versus the number of physical

sensors, as shown in Fig. 7(a), where each point is the

maximum number of consecutive lags among all potential

configurations. We can see clearly that higher number of

the consecutive fourth order difference co-array lags can be

achieved by our proposed E-FL-NA when the sensor number

N ≥ 9.

On the other hand, as shown in Remark 1, we minimize

the redundancies introduced by each additional sensor under

construction based on a standard TL-NA with certain redun-

dancies, and therefore both the consecutive lags and the unique

lags are increased. However, the TL-NA is not part of the 2L-

FO-NA. Then, we compare the unique fourth order lags of

the two configurations using the same structure analyzed in

Fig. 7(a), and the results are given in Fig. 7(b). Obviously, the

number of unique lags of the proposed E-FL-NA exceeds that

of the 2L-FO-NA for any number of sensors.

Finally, we fix the number of sensors to 6, and the CS-

based method utilizing all unique lags is applied based on the

(a) RMSE results versus input SNR. (b) RMSE results versus number of
snapshots.

Fig. 8. RMSE results of the E-FL-NA and the 2L-FO-NA.

structures offering the largest number of lags in Fig. 7, i.e.,

E-FL-NA with (2, 2, 2, 3) and 2L-FO-NA with (3, 3). Fig. 8(a)

shows the RMSE results with respect to the input SNR, while

Fig. 8(b) gives the RMSE results with repect to the number

of snapshots. It is clear that the E-FL-NA with larger number

of unique lags outperforms the 2L-FO-NA due to its larger

physical and virtual array aperture.

B. Comparison and DOA Estimation Results for Configura-

tions based on High Order Difference Co-Array

1) SE-ML-NA versus ML-NA

For array configurations with the 2q-th order difference co-

array enhancement, there are N2 sensors in the second sub-

array of a SE-2qL-NA, while N2 − 1 sensors are included in

the second sub-array of a 2qL-NA.

Corollary 4: With the same number of physical sensors, the

potential DOFs provided by an optimized SE-2qL-NA can be

more than any configurations of 2qL-NA if N2q satisfies

N2q ≥

{
3, q = 2 ,
2, q > 2 .

(73)

Proof: For comparison with a 2qL-NA, whose number

of consecutive lags at the 2q-th order difference co-array

stage reaches MML = 2(
∏2q

m=1Nm +
∏2q−1

m=1 Nm) − 1 =

2(N2q+1)
∏2q−1

m=1 Nm−1 with
∑2

m=1 q(Nm−1)+1 sensors,

we remove the last sensor in the 2q-th sub-array of a SE-

2qL-NA, and therefore with the same
∑2

m=1 q(Nm − 1) + 1
physical sensors, its number of consecutive lags arrives at

MSE = 2q
∏2q−1

m=1 Nm(N2q − 1) + 2q−1
∏2q−2

m=1 Nm + 1. Then

the difference between the two is

∆M =MSE −MML

=

2q−1∏

m=1

Nm [(2q − 2)N2q − (2q + 2)] + 2q−1

2q−2∏

m=1

Nm + 2 .

Clearly, the second term 2q−1
∏2q−2

m=1 Nm > 0. After re-

moving the last sensor in SE-2qL-NA, the 2q-th level sub-

array has N2q − 1 sensors. To ensure the existence of each

level, N2q should satisfy N2q ≥ 2. By forcing the first term∏2q−1
m=1 Nm [(2q − 2)N2q − (2q + 2)] ≥ 0, we obtain

N2q ≥





2q + 2

2q − 2
= 3, q = 2 ,

2q + 2

2q − 2
≥ 2, q > 2 .

(74)
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TABLE II
COMPARISON OF THE CONSECUTIVE LAGS FOR DIFFERENT ARRAY

STRUCTURES BASED ON THE 2q-TH ORDER DIFFERENCE CO-ARRAYS

Array
Structures

Number of Sensors Number of Consecutive
Co-Array Lags

2qL-NA
∑2q

m=1
(Nm−1)+1 2(N2q + 1)

∏2q−1

m=1
Nm − 1

SE-2qL-NA
∑2q

m=1
(Nm−1)+2 MSE

†

Examples of different structures for q = 2

Array
Structures

(N1, . . . , N2q)
q = 2

Number of
Sensors

Number of
Consecutive Lags

FL-NA (2, 2, 2, 3) 6 63

SE-FL-NA (2, 2, 2, 2) 6 73

FL-NA (3, 4, 4, 4) 12 479

SE-FL-NA (3, 4, 4, 3) 12 601

Examples of different structures for q = 3

Array
Structures

(N1, . . . , N2q)
q = 3

Number of
Sensors

Number of
Consecutive Lags

6L-NA (2, 2, 2, 2, 2, 2) 7 191

SE-6L-NA (2, 2, 2, 2, 2, 1) 7 321

6L-NA (2, 3, 3, 3, 3, 3) 12 1295

SE-6L-NA (2, 3, 3, 3, 3, 2) 12 2809

† MSE = 2q
∏2q

m=1
Nm + 2q−1

∏2q−2

m=1
Nm + 1.

Then for N2q satisfying (74), we have

∆M =MSE −MML > 0 . (75)

2) DOA Estimation Results for SE-ML-NA and ML-NA

For SE-ML-NA and ML-NA, the number of consecutive

integers at the 2q-th order difference co-array stage is listed

in Table II. With a fixed number of sensors, the number of

consecutive co-array lags of SE-2qL-NA is much more than

that of 2qL-NA.

The optimal sensor allocation for a 2qL-NA is given in

Corollary 3 in [39]. With the optimal Nm, m = 1, 2, . . . , 2q,

the number of sensors in 2qL-NA is N =
∑2q

m=1(Nm−1)+1.

Then we set the same Nm, m = 1, 2, . . . , 2q − 1, for the

corresponding sub-arrays of the proposed SE-2qL-NA, while

N2q−1 sensors are allocated to the last sub-array to ensure that

the number of sensors achieves the same N as the 2qL-NA.

Based on this, the number of consecutive lags at the fourth

order stage for SE-2qL-NA and 2qL-NA (q = 2) is shown in

Fig. 9(a), where we can see that the number of consecutive co-

array lags increases significantly with the number of sensors

for the same configuration, while more consecutive lags can

be provided by SE-2qL-NA with a fixed N .

Next we analyze the number of consecutive co-array lags at

the 2q-th order stage with respect to a varied order q, as shown

in Fig. 9(b), where the number of sensors is fixed to N = 25
and the optimal sensor allocation is adpted. As expected, an

extremely high number of consecutive lags can be achieved

by SE-2qL-NA compared with 2qL-NA for a fixed q, and for

the same configuration, the larger the number of q, the higher

its number of consecutive lags.

To analyze the number of distinguishable sources, we set

q = 2, and the input SNR is 20 dB. The number of snapshots is

500000. The DOA estimation results for SE-2qL-NA (q = 2)

are shown in Fig. 10. Obviously, under the same situation, SE-

2qL-NA is capable of resolving all the 28 sources successfully,

(a) Number of consecutive lags versus
number of sensors.

(b) Number of consecutive lags versus
order q.

Fig. 9. Number of consecutive lags of different configurations.

(a) Results for SE-2qL-NA (K = 28).(b) Results for SE-2qL-NA (K = 34).

Fig. 10. DOA estimation results for SE-2qL-NA (q = 2) with different
number of sources.

(a) RMSE results versus SNR. (b) RMSE results versus number of
snapshots.

Fig. 11. Number of consecutive lags of different configurations.

while 2qL-NA (q = 2) fails as already given in Fig. 5(a).

However, SE-2qL-NA (q = 2) is unable to detect 34 sources,

and therefore its resolution is worse than E-FL-NA in Fig.

5(d) due to the compromise of potential DOFs in array

configuration for simplification.

Then we compare the estimation accuracy of SE-2qL-NA

and 2qL-NA (q = 2), through Monte Carlo simulations of

500 trials. we set the number of sources K = 10, and the

number of snapshots is 10000. The RMSE results with respect

to a varied input SNR are shown in Fig. 11(a). With a larger

physical array aperture of 31d for the proposed SE-2qL-NA

compared with 23d for 2qL-NA and also a larger virtual ULA

aperture corresponding to Table II and Fig. 9(a), the proposed

SE-2qL-NA (q = 2) consistently outperforms 2qL-NA (q = 2)

by a large margin.

The RMSE results versus the different number of snapshots

are shown in Fig. 11(b), where the input SNR is set to 0 dB,
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K = 10, q = 2, and the number of snapshots is 10000. Clearly,

these RMSE results again verifies the superior performance of

the proposed SE-2qL-NA.

VI. CONCLUSION

The fourth order difference co-array construction problem

has been investigated with a novel enhanced four level nested

array (E-FL-NA) proposed at first based on the fourth order co-

array concept with a significant increase in DOFs. This new

configuration is then simplified, leading to a simplified and

enhanced array structure SE-FL-NA, which is finally extended

to form the array structure SE-2qL-NA with 2q uniform linear

sub-arrays by optimizing the consecutive co-array lags at the

2q-th order difference co-array stage. It has been shown by

simulations that among all considered array configurations,

the proposed E-FL-NA can resolve most sources, and a better

performance can be achieved due to its larger physical and

virtual array aperture. Furthermore, with a fixed number of

sensors, the proposed SE-ML-NA offers many more DOFs

than the ML-NA, especially for a larger q, and therefore

superior performances including more resolvable sources and

more accurate estimation results have been achieved.

APPENDIX A

PROOF OF THE COROLLARY 1

After removing the zeroth sensor at 0d, the sets of the

positive cross-difference co-array lags between the intro-

duced sensors and the pre-allocated sensors are the same

as those in (19) and (20), with the consecutive sec-

ond order difference co-array lags expressed as Φ2
C =

{µ,−N1N2 + 1 ≤ µ ≤ N1N2 − 1, µ ∈ Z}. However, by con-

sidering α1d = 2N1N2d in the constructed SE-FL-NA as

one of the pre-allocated sensor, an extra co-array lag of

2N1N2 − N1N2 = N1N2 can be acquired at the second

order difference co-array stage, and therefore Φ2
C is updated

to Φ2
C = {µ,−N1N2 ≤ µ ≤ N1N2}, which is the same as in

(36). As a result, (19) and (20) change to

φαn3
=
{
µ | ναn3

≤ µ ≤ ζαn3
, µ ∈ Z

}
,

φβn4
=
{
µ | νβn4

≤ µ ≤ ζβn4
, µ ∈ Z

}
,

(76)

where

ναn3
= αn3

− 2N1N2 , ζαn3
= αn3

− 1 +N1N2 ,

νβn4
= βn4

− 2N1N2 , ζβn4
= βn4

− 1 +N1N2 .
(77)

Furthermore, a discrete value of αn3
+N1N2 = αn3

+α1−
aN2− bN2 and βn3

+N1N2 = βn3
+α1−aN2− bN2 can be

achieved when a + b = N1, a, b = 1, 2, . . . , N1 − 1. Clearly,

aN2 · d, bN2 · d ∈ S2. Therefore, the upper and lower bounds

in (77) are finally the same as those in (38).

Then we can derive the sensor positions of the two extra

sub-arrays as shown in (43) and (48), leading to the proposed

SE-FL-NA given in (34), and the same maximum integer in

the set of consecutive fourth order difference co-array lags

M4
max can be obtained.

Remark A: Note that for SAFOE-NAs in [42] and E-FL-NAs

in Section III-B, the consecutive lags are maximised with a

displacement equal to the inter-element spacing between the

starting sensor of the constructed sub-array and the last sensor

of a lower level sub-array. Therefore, the co-array segments or

discrete values associated with their α1d and β1d are unable to

be considered as one overlapped part in the array construction.

APPENDIX B

PROOF OF THE COROLLARY 2

After removing the zeroth sensor at 0d, we still assume that

the set of consecutive lags included at the 2(q−1)-th difference

co-array stage of the derived SE-2(q − 1)L-NA is illustrated

in (55).

By constructing two sub-arrays simultaneously, the positive

part of the cross-difference co-array lags between the intro-

duced sensor and the pre-allocated sensors is given by

φαn2q−1
=
{
µ | ναn2q−1

≤ µ ≤ ζαn2q−1
, µ ∈ Z

}
,

φβn2q
=
{
µ | νβn2q

≤ µ ≤ ζβn2q
, µ ∈ Z

}
,

(78)

where the lower and upper bounds are given by

ναn2q−1
= αn2q−1

− ~
2(q−1)
max −M2(q−1) ,

ζαn2q−1
= αn2q−1

− ~
2(q−1)
min +M2(q−1) ,

νβn2q
= βn2q

− ~
2(q−1)
max −M2(q−1) ,

ζβn2q
= βn2q

− ~
2(q−1)
min +M2(q−1) .

(79)

with ~
2(q−1)
max d being the maximum physical array position in

the pre-designed SE-2(q−1)L-NA, while ~
2(q−1)
min d represents

the minimum physical array position in the corresponding

array configuration. Note that ~
2(q−1)
min d = 1d after removing

the zeroth sensor.

According to (67), the sensor position set of the (2q−2)-th
level sub-array is

S2(q−1) =
{
2M2(q−2)N2q−3n2q−2d

}
, (80)

where n2q−2 = 1, 2, . . . , N2q−2 − 1.

With a given α1d = 2M2(q−1)d in (62) and M2(q−1) =
2M2(q−2)N2q−3N2q−2 in (69), we can figure out that the

co-array lag αn2q−1
+ M2(q−1) = αn2q−1

+ α1 − a ·
2M2(q−2)N2q−3−b·2M2(q−2)N2q−3 and βn2q−1

+M2(q−1) =
βn2q−1

+ α1 − a · 2M2(q−2)N2q−3 − b · 2M2(q−2)N2q−3

when a + b = N2q−2, a, b = 1, 2, . . . , N2q−2 − 1. Clearly,

a·2M2(q−2)N2q−3d ∈ S2(q−1), b·2M2(q−2)N2q−3d ∈ S2(q−1).

Therefore, ζαn2q−1
and ζβn2q

can be replaced by

ζαn2q−1
= αn2q−1

+M2(q−1) ,

ζβn2q
= βn2q

+M2(q−1) ,
(81)

and then the sets of co-array lags in (78) remain the same as

those in (56). As a result, the sensor positions of the extra two

sub-arrays in (71) can be derived.
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