
This is a repository copy of Side-Channel Protected MPSoC through Secure Real-Time
Networks-on-Chip.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/145894/

Version: Accepted Version

Article:

Soares Indrusiak, Leandro orcid.org/0000-0002-9938-2920, Harbin, James Robert
orcid.org/0000-0002-6479-8600, Reinbrecht, Cezar et al. (1 more author) (2019) Side-
Channel Protected MPSoC through Secure Real-Time Networks-on-Chip. Microprocessors
and Microsystems. pp. 34-46. ISSN 0141-9331

https://doi.org/10.1016/j.micpro.2019.04.004

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Side-Channel Protected MPSoC through Secure

Real-Time Networks-on-Chip

Leandro Soares Indrusiaka,∗, James Harbina, Cezar Reinbrechtb, Johanna
Sepúlvedac

aDepartment of Computer Science, University of York, UK
bInstitute of Informatics - Federal University of Rio Grande do Sul, Brazil

cInstitute for Security in Information Technology,Technical University Munich, Germany

Abstract

The integration of Multi-Processors System-on-Chip (MPSoCs) into the In-
ternet -of -Things (IoT) context brings new opportunities, but also represent
risks. Tight real-time constraints and security requirements should be con-
sidered simultaneously when designing MPSoCs. Network-on-Chip (NoCs)
are specially critical when meeting these two conflicting characteristics. For
instance the NoC design has a huge influence in the security of the system. A
vital threat to system security are so-called side-channel attacks based on the
NoC communication observations. To this end, we propose a NoC security
mechanism suitable for hard real-time systems, in which schedulability is a
vital design requirement. We present three contributions. First, we show
the impact of the NoC routing in the security of the system. Second, we
propose a packet route randomisation mechanism to increase NoC resilience
against side-channel attacks. Third, using an evolutionary optimisation ap-
proach, we effectively apply route randomisation while controlling its impact
on hard real-time performance guarantees. Extensive experimental evidence
based on analytical and simulation models supports our findings.

Keywords: Side Channel, MPSoC, NoC, Routing

∗I am corresponding author
Email address: leandro.indrusiak@york.ac.uk (Leandro Soares Indrusiak)

Preprint submitted to Microprocessors and Microsystems: Embedded Hardware Design (MICPRO)

1. Introduction1

The comprehensive use of Internet-of-Things (IoT) will be the driver of2

digitization in all domains, e.g. industry automation, automotive, avionics,3

and healthcare. Increasingly complex and powerful Multi-processor Systems-4

on-Chips (MSoCs) connected through a 5G network, form the basis of the5

IoT. The semiconductor industry has been challenged to meet the tight and6

demanding requirements of such applications. These requirements include7

low power, tight latencies and high throughput. When developing systems8

for these hyper-connected environments, real-time constraints and security9

are necessary considerations.10

Network-on-Chips (NoCs) are the heart of the MPSoC. NoCs are shared11

by different communication flows characterized by a wide set of require-12

ments, which include performance, reliability or security. Their key role13

in the MPSoCoperation turns the NoC design into a critical task. Over14

the past decades, a significant amount of work has addressed the trade-offs15

between performance and other secondary objectives such as energy [1], fault-16

tolerance [2], and chip area [3]. Less work has addressed such trade-offs in17

NoCs with hard real-time constraints, with some inroads towards improving18

energy [4] and area efficiency (by optimising buffering in virtual channels19

[5]) while meeting deadlines of all packets even in the worst-case scenario.20

While hard real-time applications impose strict latency requirements on the21

NoC, the impact on security has been not addressed before. Hard real-time22

mechanisms may impact the MPSoC security.23

MPSoCs operating in the context of IoT usually integrate cryptographic24

hardware cores for confidentiality and authentication security services. How-25

ever, these components are prone to implementation attacks. During the26

operation of a cryptographic core, the secret key may passively be revealed27

through so-called side-channels. Classical side-channels include the measure-28

ment of the execution time, power-consumption and electromagnetic (EM)29

radiation of the cryptographic IP core [6]. The interconnection of MPSoCs30

operating in the Internet-of-Things permits possible timing side-channel at-31

tacks that emerge from sharing resources on the MPSoC.32

Cache hierarchies and NoC are a common target in timing side-channel33

attacks. In general, NoC communication can be exploited to optimize cache34

attacks, as demonstrated in [7] and [8]. By detecting the communication35

patterns of the sensitive traffic (e.g., volume and communication rate) an36

attacker is able to trigger cache attacks in the most vulnerable point of the37

2

encryption process. Thus the NoC communication collision of malicious and38

sensitive traffic can potentially compromise the security of the complete em-39

bedded system. Many mechanisms have been proposed to improve NoC secu-40

rity and many more will certainly be developed in the coming years. However,41

most of such mechanisms impose performance overheads, and therefore can42

potentially jeopardise the ability of the NoC to provide real-time guarantees.43

In this paper, security is used as a driver to optimise hard real-time NoC44

design. The hard real-time NoCs constraints must be always guaranteed.45

Our approach is based on the randomisation of packet routes. By randomly46

changing the route of every packet injected into the NoC, we can introduce47

random effects to all side-channels of interest, such as packet timing, energy48

dissipation, temperature and electromagnetic emissions. In this paper, we49

concentrate on a threat model based on packet timing.50

This paper extends our earlier conference paper work upon security through51

routing randomisation in NoCs [9]. In summary, the contributions of our to-52

tal work upon this idea are:53

• Provide a realistic motivation for our work by specifying case studies;54

a side-channel attack on AES encryption and how it may arise in an55

IoT context due to the interaction between secure and malicious down-56

loaded code communicating over a shared NoC. A novel case study57

involving an autonomous vehicle is added in this paper, over that pre-58

sented in [9].59

• Present an experiment performed on a NoC hardware platform in order60

to motivate route randomisation as a viable approach for improving61

security - the current publication adds this upon the earlier work in [9]62

• Define a schedulability analysis for determining the worst-case end-to-63

end latency in the case of randomised routing64

• Present a GA optimisation process which uses task mapping to main-65

tain schedulability assessed by this analysis, while permitting improv-66

ing security by allowing flows to use randomised routing67

• Assess via simulation the impact of randomised routing strategies upon68

empirically measured latency in a real application case study69

The rest of the paper is organized as follows. Section 2 presents the70

description of the MPSoC and the security requirements. It includes the NoC71

3

timing attack and the threat model. Section 3 presents the most relevant NoC72

security mechanisms and the types of security mechanisms to prevent the73

MPSoC attacks. Performance overheads and resource usage are discussed,74

highlighting the need for the contributions of this paper. Section 4 we identify75

techniques that support NoC designers in improving NoC resilience against76

side-channel attacks while still maintaining full system schedulability. The77

paper is closed with extensive experimental work based on schedulability78

analysis and simulation in Section 5, and with a summary of our findings.79

2. Multi-Processor System-on-Chip and security requirements80

MPSoCs are prone to attacks. In this section the MPSoC architecture81

and operation are described. These concepts will be used to understand the82

threat model for the NoC-based communication side-channel vulnerability.83

2.1. MPSoC / NoC Architectural Description84

While the contribution of this paper can be applied to a large variety of85

NoC architectures, we believe it is easier to explain it with the help of a con-86

crete architecture. We assume a NoC architecture with a 2D-mesh topology87

and wormhole switching protocol, because such features are commonly used88

in embedded systems for their simplicity and moderate resource overheads.89

• In a 2D-mesh topology, every core is connected to a NoC switch via a90

network interface (NI), which is responsible for packetising and depack-91

etising data, and controlling the injection of packets into the network.92

The regularity of such a topology is attractive because it simplifies93

packet routing, and facilitates chip floorplanning, placement and rout-94

ing.95

• The use of wormhole switching protocols allows packets to be gradually96

sent over the NoC in smaller units called flits. Once a flit is received97

by a switch, it can be forwarded to the next switch down the packet98

route as long as that switch has sufficient buffering to hold it. This99

means that at any given time a packet could have its flits temporarily100

stored by multiple switches, so each of them are not required to hold101

a complete packet, thus reducing the overall buffering requirements of102

the NoC.103

4

• There is a downside to this choice of topology and switching protocol,104

which is the difficulty in predicting packet latencies. Since a packet105

can be simultaneously occupying multiple NoC buffers and links, there106

is a significant amount of competition for resources throughout the107

NoC at all times. The wide variety of interference patterns makes it108

hard to predict how long it takes for a packet to reach its destination.109

Different resource arbitration policies can make such predictions more110

or less difficult, especially in the case of hard real-time NoCs when an111

upper-bound worst-case latency is needed.112

• Previous work has considered NoC arbitration based on packet prior-113

ity [10], time multiplexing [11] and round robin [12], and has devised114

analytical models that can be used to find latency upper-bounds for115

packet flows transmitted over such NoCs [13]. Any of those approaches116

could be used in this paper, and we chose a priority-arbitrated NoC117

because of its ability to provide upper-bound latency guarantees that118

are customisable to different levels of packet urgency while allowing for119

high NoC link utilisation [14].120

• The general architecture of the network on chip described in previous121

bullet points explains the data communications. However, when con-122

sidering security implications it is important to describe the enclosing123

context of the MPSoC in which the NoC exists. MPSoCs are tile-based124

structures which are flexible enough to meet a variety of application re-125

quirements. Each tile is either composed of a single IP core or a cluster126

of IP cores. Data is exchanged over a NoC between tiles. In order to127

increase the performance, current MPSoCs employ two main strategies:128

i) memory hierarchies, where several levels of cache (e.g. L1 to L3) and129

a set of DRAMs are integrated; and ii) resource sharing, where different130

applications are split and mapped onto the MPSoC resources.131

2.2. Threat Model and Timing Side Channel Attacks132

In this paper, we assume that the NoC and its interfaces to the cores133

are secure. We also assume that secure tasks execute in secure cores (i.e.134

cores that do not allow the execution of unsecured tasks). For this threat135

model, we assume that the NoC communicates sensitive information between136

two secure tasks, which we refer as the sensitive communication. We then137

assume an adversary that has knowledge about the NoC architecture, about138

5

the mapping of secure tasks to (secure) NoC cores, and is able to gain control139

of at most two non-secure NoC cores.140

A successful attack happens when the adversary, which has taken control141

of two non-secured processors, is able to obtain information about the sensi-142

tive traffic. In such attack, the adversary injects packets to the NoC in order143

to collide with the sensitive traffic. These two types of traffic (malicious and144

sensitive) collide inside the router, that is, they compete for the same output145

port resource. As a consequence of the malicious traffic, delays in the com-146

munication are caused and thus the malicious packets transmission is also147

delayed. At an endpoint at the other non-secured core, the adversary is able148

to measure the latency of their malicious traffic and infer how many collisions149

with the sensitive traffic occured. The resulting collisions leak information150

regarding sensitive communication flows. Note that the router is not nec-151

essarily malicious and that no any information embedded into the sensitive152

packet is required to perform the attack. The latency interference imposed153

by the sensitive communication over the malicious low priority traffic can154

provide the attacker with valuable information about the timing, frequency155

and volume of the secure communication.156

This threat model is not new, and its variations have also been used in157

best-effort NoC-based systems by [15], [16], [7]. The timing nature of the158

threat is also the same used in hard real-time uniprocessor systems by [17].159

2.3. Security of MPSoCs Case Studies160

In order to motivate the work and provide a concrete example of the161

security consequences of a timing attack, we now present two illustrative162

interrelated case studies. In both of them, timing attacks focused upon NoC163

communication can lead to negative consequences for a trusted application,164

even if the endpoint cores are fully secured against intrustion. The first165

focuses upon an AES encryption scenario, and the second focuses upon an166

autonomous vehicle. Note that these case studies are illustrative and apply167

to an example system; while expected to be representative of real security168

concerns in a system, they are not strictly based upon a particular hardware169

implementation or the simulation case study evaluated later in the paper.170

2.3.1. AES NoC Timing Attack Case Study171

MPSoCs operating in the context of IoT usually integrate security fea-172

tures such as cryptographic hardware cores for providing security services173

6

(confidentiality, authentication and integrity). The symmetric key encryp-174

tion algorithm Advanced Encryption Standard (AES) is widely used to im-175

plement security functions in several MPSoCs. AES encrypts 128 bits of176

data with key lengths of 128 bits using 10 rounds. AES operates iteratively177

data organized as a 4x4 state matrix. Each round is composed of four round178

operations: AddRoundKey (XORing the state with the current round key),179

SubByte (byte substitution), ShiftRow (byte transposition) and MixColumn180

(matrix multiplication). In order to speedup the execution of AES, trans-181

formation tables (T-tables) are used. T-table AES reduces the SubByte,182

ShiftRow and MixColumn operations to four lookup tables whose entries183

are simply XOR’ed [7]. The AES functionality is integrated in the MPSoC184

through a security co-processor, an IP core with a private L1 cache. In such185

scenario T-tables are stored along the different cache hierarchies of the MP-186

SoC. The vulnerability exploited by attackers is that T-tables are accessed187

depending on the secret key. Such attacks are know as cache attacks. A188

deeper description of the access-based cache attacks for MPSoCs is given in189

[7] and [6]. The weakest point of the AES operation is at the end of the190

first round. The NoC timing attack detects the end of the first round of191

the AES, thus allowing an attacker to trigger in the cache attack in the best192

moment, when noise generated from other cache accesses performed during193

the encryption are avoided.194

Fig. 1 presents the NoC-based MPSoC architecture. It integrates 16 IP195

cores (IP0 to IP15) which exchange communication through a mesh-based196

NoC. The integration of MPSoCs into an IoT context may permit remote197

applications downloaded from the Internet to be stored into external mem-198

ories and mapped into the MPSoCs. These applications are vulnerable to199

attacks and can be tampered with by an attacker. When mapped into the200

system resources, attackers are able to control packet injection into the NoC.201

In Fig. 1, the attacker has infected the IP1 and controls the traffic injection.202

IP3 represents the AES cryptoprocessor, where the T-Tables are stored in203

the shared cache IP0.204

The goal of the NoC timing attack is to identify the end of the first AES205

round. The attacks is performed in 7 steps, as shown in Fig. 1. In step206

(1) and (2), the attacker triggers first an AES encryption, then continues207

to frequently inject packets into the NoC. The throughput of the infected208

core is monitored by the attacker. Step (3) shows the execution of the AES209

encryption by the IP13. During the AES encryption, the value stored in the210

T-tables should be retrieved, thus a read request to IP0 is performed in step211

7

R8 R9 R10 R11

R12 R13 R15

ARM

IP 9 IP 10 IP 11

IP 13 IP 14 IP 15

IP 8

IP 12

AES

R0

Shared

Cache

ARM

R1 R2 R3

R4 R5 R6 R7

IP 0

IP 1
IP 2 IP 3

IP 5 IP 6 IP 7 IP 4

Main

Memory

3

1

2

4

5

6

7

Figure 1: Description of the NoC timing attack to NoC-based MPSoCs

(4). As a result, a big packet is retrieved in step (5). The communication212

collision in R1 between the infected traffic and the sensitive traffic causes a213

degradation in the throughput of the attacker. This is illustrated in Figure214

2 which illustrates the timing behaviour at the router R1, for an attacker215

injecting a packet coincident with IP0 responding. The attacker can measure216

the time taken between injecting its malicious packets and its completion.217

Since it knows its basic latency; the time taken to deliver this packet without218

load, it can determine the excess latency by subtraction. This provides an219

estimate of the response size.220

This triggers a cache attack, where the attacker perform a read request to221

the shared memory in IP0 in step (6). As is [7] and [6], by reading the shared222

cache in step (7), the attacker can identify the memory sets accessed due the223

8

AES encryption. As a result a key candidate is obtained. This process is224

performed multiple times until the key is found.225

Time (flit units)

Read to IP0

(step 4)

Response from

IP0

(step 5)

Malicious

packet

injected

Malicious

packet

delivered

Excess

latency

Figure 2: Timing diagram demonstrating the attacker measuring the latency

2.3.2. Autonomous Vehicle Case Study226

A similar attack case study may apply in the case of an autonomous227

vehicle. The integration of heterogeneous software and MPSoCs for an au-228

tonomous vehicle could incorporate components derived independantly by229

different manufacturers. As mechanical systems and engine control units230

(ECUs) become more complex and integrated, the timing of messages for231

tasks such as engine control and emissions control becomes more critical [18].232

Simple attacks on timing in an AV system could include using malicious cores233

to inject additional traffic that delays sensor readings from reaching external234

buses such as CAN at the expected times [18]. If the MPSoCs in the AV235

uses AES encryption, then this would be vulnerable to the attack described236

in the previous section 2.3.1.237

However, it is possible to imagine a more subtle attack. Take for exam-238

ple the requirement in autonomous vehicles for computer vision algorithms239

to analyse camera data and identify particular targets. It is possible that240

manufacturers of these systems would not wish to reveal their algorithm op-241

eration, either from competitors, or to not reveal what targets their system242

is scanning for. In the case of a potential detection of an object requiring243

additional processing, the secured tasks may need to transmit more data244

amongsts themselves, or send requests for additional data from sensors. The245

9

potential motivation of an attacker would be to detect these communica-246

tions occuring, and thus infer information about the AV system’s goal or247

techniques of operation.248

If the computer vision tasks were located upon secured cores, then the249

attacker would not be able to access these tasks directly. However, by inject-250

ing low priority traffic into the onboard NoC and observing the delays these251

low priority communications experience, the attacker would be able to infer252

increased communication lengths or frequencies by the secured tasks, leading253

to potential leakage of the AV system purpose or operation.254

3. Related Work255

Multiprocessor embedded systems are target of attacks by means of ma-256

licious hardware or software [19]. Hardware-based attacks depend on design-257

time access to the system, which is then modified in a way that can be258

exploited during operation (e.g. by adding hardware able to leak informa-259

tion by changing chip temperature [20]). Software-based attacks are the most260

common cause of security incidents in such types of systems [21], and are car-261

ried out by malicious software installed at design time or after deployment.262

NoC-based systems have been shown to be vulnerable to a variety of263

attacks, both hardware and software-based. Active NoC attacks, such as264

code injection [22], malware [23] and control hijacking [24], or passive NoC265

attacks, such as side-channel exploitation, can be used to read sensitive com-266

munications, modify the system behaviour or prevent correct NoC operation.267

NoCs are especially vulnerable to side-channel attacks that exploit traffic in-268

terference as timing channels [15] [25]. The shared nature of NoCs can be269

exploited by an attacker to obtain sensitive information. By forcing traffic270

collision with sensitive packet flows, an attacker can observe the throughput271

variations and infer sensitive data, as shown in [15] [25] [26].272

Security-enhancing mechanisms have been added to NoC platforms to273

provide authentication [27], access control [23], integrity [28], and confiden-274

tiality services [29]. By monitoring and controlling the data exchange inside275

the chip, NoCs can detect and avoid attacks.276

Firewall-based and crypto-based techniques integrated at the network in-277

terface are the most commonly used approaches against active NoC attacks278

over the past decade [23] [30]. Firewalls implement authentication, access279

control and integrity services by means of traffic matching with a security280

10

table. Authorized transactions are allowed and injected to the NoC, other-281

wise they are denied and thus dropped. Crypto-based NoCs implement the282

confidentiality service by creating a shared secret among the sensitive cores283

and perform the encoded data exchange. While achieving desirable secu-284

rity enhancements, such approaches have an unpredictable impact upon the285

performance of the NoC and thus the overall system.286

PhaseNoC [31] focuses upon traffic isolation, which provides separation287

of traffic in adjacent domains and therefore potential reductions in the attack288

surface for timing attacks. However, such TDM (time-division multiplexing)289

static techniques reduce performance in the case of dynamic traffic arrival,290

so the authors provide a scheme which can opportunistically steal bandwidth291

between traffic classes. This scheme does permit potential timing attacks via292

leakage between the traffic classes.293

Firewalls and crypto-based NoCs are the state-of-the-art in NoC security,294

but they are not able to protect the system against passive NoC attacks.295

Randomised arbitration [25], virtual channel allocation [16] and routing [26]296

have been investigated and evaluated as countermeasures against timing at-297

tacks. By randomising the characteristics of sensitive packet flows, it is298

possible to break the correlation between the traffic characteristics (e.g. vol-299

ume and access patterns) and the sensitive data thus avoiding information300

leakage. Among those mechanisms, random routing has achieved the best301

levels of security enhancement with the lowest energy and area overhead [26].302

By spreading sensitive traffic over the NoC, the spatial distribution makes303

it harder for compromised cores or external attackers to gather sufficient304

side-channel information to infer correlations with sensitive data.305

Similarly to firewalls and crypto-based approaches, the focus of randomi-306

sation approaches is to increase security and none of the works in the state-307

of-the-art consider the performance requirements of the applications. In this308

paper, we argue that NoCs supporting real-time applications require a care-309

ful balance of a trade-off between security and performance. In most cases,310

we envisage that the level of security will be constrained by the NoC’s ability311

to support attack countermeasures while at the same time ensuring perfor-312

mance guarantees to the application. By providing a test to evaluate whether313

performance guarantees can hold under a specific side-channel attack coun-314

termeasure (namely route randomisation) we aim for a better balance of315

performance guarantees, resource usage and security trade-offs.316

11

3.1. System Model317

To increase NoC resilience against side-channel attacks while providing318

hard real-time guarantees to the application tasks running on it, we must319

make assumptions about the application behaviour such as upper-bounds320

on resource usage by every application task and packet. In this paper, we321

follow the well-known and widely used sporadic task model, which makes322

assumptions about the worst-case execution time (WCET) of all tasks and323

their shortest inter-arrival interval (i.e. their period). Since we are concerned324

about NoC communications, we follow an extension of the sporadic task325

model that considers that tasks inject packets to the NoC only after their326

execution completes, and that the maximum packet size is known [14].327

Thus, a hard real-time application Γ comprises n real-time tasks such as328

Γ ={τ1, τ2, . . . , τn}. Each task τi is a 6-tuple τi = (Ci, Ti, Di, Ji, Pi, {φi})329

indicating respectively its worst case computation time, period, deadline,330

release jitter and priority. The sixth element of the tuple is an extension to331

the sporadic task model proposed by [14], and represents the communication332

packets sent by τi at the end of its execution. Each packet φi is defined as a333

3-tuple φi = (τd,Zi,Ki) representing its destination task, size and maximum334

release jitter. In this paper, we assume for simplicity that a single packet335

is released at the end of each execution of each task, but the contributions336

presented here can be generalised for any number of released packets.337

Such applications are executed over a NoC platform like the one described338

in subsection 2.1 above. We model such a platform as a set of cores Π339

={πa, πb, . . . , πz}, a set of switches Ξ ={ξ1, ξ2, . . . , ξm}, and a set of unidirec-340

tional links Λ ={λa1, λ1a, λ12, λ21, . . . , λzm, λmz}. We also model the mapping341

of tasks to cores with the function map(τi) = πa.342

The routing of packets over the NoC can be modelled by the function343

route(πa, πb) = {λa1, λ12, . . . , λmb}, denoting the subset of Λ used to transfer344

packets from core πa to core πb. We can then extend the function map to also345

model the mapping of a packet to its route: map(φi) = route(map(τi),map(τd)).346

With the knowledge of the NoC architectural characteristics such as the347

latency to cross a link or to route a packet header, and with the knowledge348

of the length of a packet’s route (i.e. its hop count, or |route(πa, πb)| as349

expressed in [14]), it is possible to calculate the no-load latency Li of every350

packet φi: the time it takes to completely cross the NoC from its source to351

destination without any interference or contention from other packets. For352

the NoC described in subsection 2.1, and for most commercial and academic353

12

NoCs, the no-load latency of a packet can be deterministically obtained, and354

will not change if its route and the NoC operation frequency do not change.355

4. NoC Routing Randomisation356

4.1. Overview Of Route Randomisation357

By using a route randomisation approach, it is possible to prevent the358

adversary from obtaining accurate information about the sensitive commu-359

nication. Because not every packet of the secure communication will interfere360

on the malicious flows injected by the attacker, the information about tim-361

ing, frequency and volume they can obtain will be less accurate, which as a362

consequence increases the resilience of the NoC against the threat. There are363

many ways to introduce route randomisation in NoCs, and we will discuss364

our design decisions in subsection 4.3.365

Figure 1 and Fig. 3 show examples of the described threat model in366

Section 2.2. Fig. 3 shows an adversary controlling cores F and G, and using367

a malicious packet flow (shown as a purple dashed line) to infer data about368

a sensitive communication between secure cores C and E (shown as a red369

dotted line, representing the case of a NoC with deterministic XY routing).370

In the case of a NoC with randomised routing, all routes between C and E371

will be used (red dashed and dotted lines), preventing the adversary from372

inspecting the complete sensitive communication.373

4.2. Motivation Experiment374

Different NoC parameters impact the security of the system. Routing375

may have a huge impact on the success of the attack. In order to show this376

statement, we performed an experiment on a FPGA-based prototype of an377

MPSoC as shown in [8]. It is composed of 16 NIOS II IP cores, each with378

a 32 kB private L1 cache. The shared L2 cache is of 256 kB size and it is379

inclusive of L1. All of them have a cache line size of 16 bytes. The MPSoC380

structure is similar to Fig. 1. However the position of the AES, shared caches381

and attackers are modified. In the experiment the infected IP could be placed382

in six location of the MPSoC: i) linked to the east port of the router 1 (R1383

E); ii) linked to the north port of the router 1 (R1 N); iii) linked to the east384

port of the router 4 (R4 E); iv) linked to the north port of the router 4 (R4385

N); v) linked to the north port of the router 6 (R6 N); and vi) linked to the386

east port of the router 9 (R9 E).387

13

A

D

B

C

E

F G

Figure 3: Threat model, and examples of route randomisation with pseudo-adaptive XY
(from A to B) and west-first (from C to D and C to E) algorithms

The sensitive path is defined by the communication channel between the388

IP 0 and IP 10. Three different dimension ordered routing strategies were389

used to commute packets in the NoC: i) XY, which limits all turns to y-390

dimension until the x-dimension is reached; ii) XY-YX, which alternates391

randomly the XY and YX routing algorithms; and iii) West First (WF),392

which restricts turns to the west. The detection rate of the sensitive pack-393

ets for each configuration was evaluated. The observation points were the394

output ports shared with the sensitive traffic. Results are shown in Fig. 4).395

For the deterministic XY, the attackers that intersected the sensitive path396

were able to detect all the packets. However, when XY and YX were used397

randomly, the effectiveness of the attacker varies according to the amount of398

traffic that collides with the attacker traffic. Since only two paths were pos-399

sible, an attacker was not able to detect all sensitive traffic. The best results400

were achieve for attacks on the east port of the router 9 (R9 E) and the north401

port of the router 4 (R4 N). However, such results are highly dependent on402

the routing algorithm. In the last scenario, the West-first algorithm has six403

route possibilities. Hence, the efficiency of the attack was very low, since404

the messages became spread in the NoC through different routes. This moti-405

vates work on improving the security of the MPSoC via route randomisation.406

However, in viable real-time systems, security must be considered alongside407

14

end-to-end latency constraints.408

Figure 4: The detection rate of sensitive packets under different attacker IP locations and
routing strategies

4.3. Design Choices and Constraints409

There are many design choices related to packet routing in different NoC410

architectures [32]. As expected, those choices also define whether and how411

route randomisation can be achieved. For example, some NoC architectures412

use deterministic routing [33], meaning that there is only one possible route413

between a source and a destination, effectively preventing the approach pro-414

posed here. Among NoCs supporting dynamic or adaptive routing, which are415

the ones we target, there is a key design choice affecting the randomisation416

approach: source or distributed routing.417

In source-routed NoCs, the routing decision is done by the source core418

or its respective NI. This is usually implemented as multiple packet header419

flits that contain the next-hop information for each of the switches along the420

packet’s route. Once a switch routes one of the packet headers by assigning421

its output port, it discards that header flit and forwards the rest of the422

packet through that port. The next switch will route the subsequent header423

flit, discard it, forward the rest of the packet, and this is repeated all the way424

towards the packet destination. By following this approach, it is possible to425

program the source core or its NI to perform full route randomisation before426

every packet release.427

In NoCs with distributed routing, the next-hop decision is made by each428

switch individually. Typically, they have far less resources than the cores (and429

15

often than the NIs), so the routing decisions are based on simple rules related430

to the relative position of the destination core with regards to the switch431

holding the packet header (e.g. pseudo-adaptive XY [34], turn model [35]).432

In those cases, it is only possible to randomly choose from a predefined433

subset of all possible routes. For instance, pseudo-adaptive XY switches can434

only randomly choose between two routes between a source and a destination435

(e.g. routes between cores A and B in Figure 3). Switches implementing turn436

model routing may have a larger number of alternative routes to randomly437

choose from in most cases, but must behave deterministically for some specific438

cases. Figure 3 shows two routes created by a west-first turn model: packets439

between core C and D have only one possible route, as the destination is440

located on the west of the source, while packets from core C to E can take a441

variety of possible routes.442

In both source and distributed routing, the NoC component making ran-443

dom decisions must have access to a source of random data, such as a pseudo-444

random number generator (PRNG, generated by a deterministic algorithm)445

or a true random number generator (TRNG, often generated out of low level446

noise signals). Such sources can have significant hardware overhead, thus447

favouring source routing because of the low area constraints for NoC switches.448

For the route randomisation approaches reviewed above, however, overheads449

should be minimal in either case as they only require random sources with450

one-bit output.451

Additional issues when randomising packet routes include the potential452

increase of the packet route, the possibility of deadlocks, and the potential453

increase of packet latency (and therefore the potential violation of real-time454

constraints). Let us now address each of them.455

All the routing approaches reviewed above are minimal: the route they456

choose has the smallest possible hop count between source and destination.457

This is because of their obvious advantages in terms of latency, network458

contention and energy dissipation. However, from the point of view of side-459

channel attack resilience, it may be interesting to exploit non-minimal ran-460

domised routing in order to decorrelate the side channels with the functional461

properties of the packet communication (e.g. short packet transmission be-462

tween neighbouring cores would not necessarily have the shortest latency and463

lowest energy dissipation if they are forced to take a long route across the464

chip).465

Deadlock-free packet communication is a critical characteristic for NoCs.466

This can be achieved at the link arbitration layer, e.g. with priority-preemptive467

16

virtual channels [14], or at the network layer by restricting the possible turns468

of the routing algorithm (either in source or in distributed routing). In NoCs469

that ensure deadlock-freeness at the network layer, special care must be taken470

by the route randomisation approach to avoid introducing turns that can lead471

to deadlocks.472

Finally, route randomisation is likely to change the latencies of packets,473

both because for every release their routes may have different hop counts474

(leading to different no-load latencies) and because different routes may trig-475

ger different contention scenarios (leading to different blocking times). In476

our approach, such variability is actually desirable because it is a key as-477

pect to increasing the NoC’s resilience against side channel attacks. In the478

case of hard real-time systems, however, it is critical that such variability is479

bounded and that the worst-case latencies of all packets are always less than480

their deadlines. In the next subsection, we propose an extension to existing481

schedulability analysis to evaluate if that is the case for a given application482

mapped to a given NoC architecture. The proposed approach is simple, yet483

general enough to analyse randomised routing approaches following any of484

the design choices reviewed above: source or distributed, minimal or non-485

minimal, and with deadline-freeness ensured at the link or network layer.486

4.4. Schedulability Analysis487

Schedulability analysis for a set of sporadic packets transferred over a488

priority-preemptive wormhole switching NoC was presented in [36]. A set of489

packets is deemed schedulable if the worst-case latency of each packet is less490

than their deadline. By coupling that analysis with classical response time491

analysis for uniprocessor fixed-priority scheduling, an end-to-end schedula-492

bility analysis for that type of NoC was proposed in [14], considering the493

worst-case response times of tasks and the worst-case latency of the packets494

they generate. Both the original analysis from [36] and the end-to-end ex-495

tension from [14] assume static routing, so a different formulation is needed496

before it can be used for the purpose of this paper. First, we review those497

formulations, but using the notation described in subsection 3.1.498

According to [36], the worst-case latency Si of a packet φi can be obtained499

from Equation 1. This equation is defined recursively and iterated until a500

stable fixed point is discovered.501

Si = Li +
∑

φj∈interf(i)

⌈

Si +Kj +KI
j

Tj

⌉

Lj, (1)

17

The set interf(i) is the set of higher priority packets φj whose route shares502

at least one link with the route of φi and therefore can interfere with it.503

Precisely, interf(i) = {φj ∈ φ : map(φi) ∩ map(φj) 6= ∅}. The two terms504

Kj and KI
j denote respectively the maximum release jitter of the interfering505

packet φj and its maximum indirect interference jitter. As shown in [14],506

Kj is equal to the worst case response time Rj of task τj which produces φj,507

assuming that φj will be released immediately after the end of τj’s execution.508

Rj can be calculated using uniprocessor response time analysis, considering509

the type of task scheduling by the operating system at each core (e.g. priority-510

preemptive). And as shown in [36], the indirect interference jitter KI
j can be511

bound by Sj − Lj.512

It can be seen in Equation 1 that the route of a packet affects its worst-case513

latency because it defines the set of packets that can add to the interference514

term of the equation (i.e. sum operator). Route randomisation would change515

the set interf(i) at each packet release, since different routes would produce516

different interference patterns. An intuitive way to find the worst-case latency517

of a packet with a randomised route would be to calculate the worst-case518

latency of each of its possible routes with Equation 1, and pick the highest519

value. However, that approach works only if there is a single packet with520

randomised route, and all others following deterministic routes.521

A general analysis where all packets could potentially have randomised522

routes is more complex: all possible routes of a packet would have to be tested523

with all possible routes of all other packets before the worst case could be524

found. Furthermore, if one cannot make probabilistic assumptions on the525

randomisation approach, pathological cases must also be taken into account526

(e.g. the same route could be chosen again and again for a single packet over527

a long period of time, even though that is very unlikely).528

In this paper we assume that, in the worst case, if there is a way for a529

high-priority packet to interfere with a low priority packet, it would interfere530

with it in every possible release. This means that even though there may531

be routes when packets do not interfere with each other, we assume that in532

the worst case the random choice of route would always pick the ones where533

there is interference. This is perfectly reasonable when packets have similar534

periods, but it gets more and more pessimistic as we reduce the periods of535

higher priority packets. In that case, high priority packets would have a536

larger number of releases within a single release of a low priority packet, thus537

interfering more often with it, even though the larger number of releases538

would make less likely that an interfering route would be chosen every time.539

18

To calculate worst-case latencies for the general problem where all pack-540

ets could have randomised routes, we define the set interfr(i) as the set541

of higher priority packets φj who could, with any of their possible routes,542

interfere with any of the possible routes of the packet of interest φi. To543

precisely define that set, we must first define a new function router(πa, πb)544

= {λa1, λ12, λ13, λ14, . . . , λmb}, denoting the subset of Λ that contains all the545

links that could be part of any of the routes that could be randomly chosen546

to transfer packets from core πa to core πb, and a new function mapr(φi)547

= router(map(τi),map(τd)). Then, interfr(i) = {φj ∈ φ : mapr(φi) ∩548

mapr(φj) 6= ∅}.549

By applying Equation 1 with the summation over the set interfr(i) in-550

stead of the original interf(i), we can then find an upper bound to the packet551

latencies over a NoC with randomised routing.552

4.5. Optimising the Performance-Security Trade-off553

The schedulability analysis proposed in the previous subsection can only554

be used to test whether a particular randomised NoC configuration can meet555

the hard real-time constraints of an application. It offers no alternatives556

in case of negative results, i.e. when performance constraints are not met.557

In this subsection we show how the schedulability test can be exploited as558

a fitness function in a design space exploration process. Similarly to [4]559

and [14], we follow an evolutionary approach to navigate over a key part560

of the design space: task-core mapping. By changing that mapping, it is561

possible to achieve fine-grained improvements on schedulability of tasks over562

cores and packet flows over NoC infrastructure (e.g. tasks that are barely563

unschedulable can become schedulable by a simple remapping of one of the564

higher priority tasks that interfere with their computation or communication,565

thus changing the set interf in Equation 1). The same can happen in the566

case of route randomisation, since changes on mapping can determine which567

randomised routes interfere with each other and in turn affect schedulability568

through changes in the interfr set.569

Figure 5 shows the evolutionary pipeline proposed here, which starts with570

an arbitrary population of task mappings using a given route randomisation571

approach and a given level of security. It then uses evolutionary operators572

such as mutation and crossover to improve the mapping population with re-573

gards to the percentage of schedulable tasks and packets calculated using the574

proposed modification of Equation 1. For every generation of the population,575

those with the larger number of schedulable tasks and packets are selected576

19

to the next generation, where they will be again mutated, crossed-over, eval-577

uated and selected to the subsequent generation. The pipeline stops after578

a fully schedulable mapping is found, or a predefined maximum number of579

generations is reached.580

Unlike many constructive task mapping approaches, the evolutionary581

pipeline proposed here does not necessarily try to map communicating tasks582

to the same or neighbouring cores. Its fitness function can be tuned, for583

instance, to keep communicating tasks as far apart as possible while keeping584

their communication packets schedulable over a variety of randomly-chosen585

routes.586

8 3 4 … 6

3 5 1 … 3

1 3 4 … 6

7 2 4 … 3

2 3 4 … 6

5 3 4 … 6

6 4 1 … 2

2 3 4 … 5

1 9 4 … 2

6 4 1 … 2

1 9 4 … 2

parent population selection crossover

1 4 1 … 2

6 9 4 … 2

mutation

6 9 4 … 5

2 5 4 … 6

3 3 4 … 8

1 3 1 … 2

7 5 1 … 3

offspring population

5 3 4 … 6 6 4 4 … 6

1 3 4 … 6

6 9 4 … 5

1 2 3 … n task id

core id

evaluation using schedulability analysis

ranking based on percentage of schedulable

tasks and packets top ranked

- NoC parameters

- application parameters

- route randomisation

- security level

Figure 5: Evolutionary pipeline to optimise performance-security trade-off

In this paper, we consider two types of route randomisation which can be587

implemented either as source or distributed routing, namely random XY/YX588

and random west-first. Random XY/YX is a randomised version of pseudo-589

adaptive XY routing used in [34], so the route of the packet to its destination590

is randomly chosen between the XY or the YX route prior to the injection591

of the packet header into the network. In random west-first, we randomise592

one of the turn model routing approaches [35] so that whenever a packet is593

20

allowed more than one route it randomly chooses one of them (i.e. uniform594

probability among all alternatives).595

We then allow for multiple levels of security by changing how many packet596

flows are allowed to have their routes randomised. A baseline with no ran-597

domisation should have the best results regarding schedulability, given that598

packets suffer less interference and therefore are more likely to be schedula-599

ble. Then, increased levels of security can be achieved by randomised larger600

percentages of packet flows, up to a fully randomised configuration where601

all packets follow randomised routes on every release. In the next section,602

we show experimentally that the proposed schedulability test and evolution-603

ary optimisation pipeline can produce NoC configurations able to hold hard604

real-time guarantees with maximised security potential.605

5. Experimental Work606

We evaluate the proposed approach in two distinct experimental setups.607

The first uses the proposed schedulability test and evolutionary pipeline to608

balance the trade-off between performance guarantees and security over a609

large set of synthetically generated applications. The second uses a cycle-610

accurate NoC simulator to show the effects of route randomisation upon611

latency with a realistic application.612

5.1. Schedulability-driven optimisation of route randomisation613

This section presents the workflow for analytic schedulability evaluation,614

and evolution with an evolutionary pipeline based on a genetic algorithm615

(GA). It follows the pipeline presented in Figure 5. To evaluate the challenge616

of optimising different applications with different levels of load, we synthet-617

ically generate thousands of applications, each of them composed of tasks618

that communicate with each other with different numbers of packet flows.619

We then apply the evolutionary pipeline to each one of those applications,620

aiming to optimise the mappings of tasks in such a way that the whole set621

of tasks and flows is schedulable at different levels of security. We then plot622

the percentage of schedulable applications we could achieve for each level of623

security and each level of load. For the sake of reproducibility, we provide624

below more details on the whole process.625

For a single experiment upon a given NoC and set of parameters (e.g.626

topology, operating frequency, switch and link latencies), a range of packet627

flow counts are identified, each of which represents a level of communication628

21

within the application, and therefore a utilisation load upon the NoC. For629

each flow count chosen for experimental evaluation, a set of tasksets and630

packet flowsets are generated, each containing the chosen number of flows.631

The number of tasks is kept roughly constant, and all of them are either632

source or destination of at least one packet flow. Therefore, flowsets with633

higher flow counts represent increasing packet contention between the same634

endpoints. Flows are assigned to particular source and destination tasks635

with uniform random probability. This implies that the average number of636

flows transmitted is even across all tasks, although as a result of the random637

assignment there may be unique hotspots.638

Following this, an experiment is initialised by defining a population of639

initial mappings, and a setting for the target level of security case setting.640

The levels of security settings are defined as either unsecured, or 25%, 50%,641

75% and 100% secured flows. The secured flows are those that will use642

randomised routing, providing increased potential protection against side-643

channel attacks. In case of a partial provision of security e.g. 50%, security is644

assigned to the flows in their order of priority, with the highest priority flows645

being randomised. The rationale is to enforce overall random interference646

patterns, since higher priority packets are the ones causing interference.647

A population of chromosomes (each representing of a mapping of tasks to648

cores upon the NoC, as shown in the upper-left corner of Figure 5) is specified649

for each level of load (i.e. synthetically generated taskset and flowset with a650

specific flow count). A genetic algorithm is then used to evolve these chro-651

mosomes, performing mutation, crossover and evaluation of the population652

according to a fitness function based on the modified Equation 1. This is653

done separately for each level of security, each of them generating a different654

interfr(i) set representing the randomised routes of different packet flows.655

By applying the modified Equation 1 for every packet flow of the appli-656

cation, it is possible to check whether each of them is schedulable, i.e. their657

end-to-end latency is less than the respective deadline. The overall fitness658

of an application is then assumed to be the number of schedulable packet659

flows. Following the fitness function evaluation, the population is culled to660

retain only the chromosomes that are at the top of the fitness ranking. If661

the fitness function indicates that the top-ranked chromosome represents a662

mapping where all flows are schedulable, then the GA terminates early. Oth-663

erwise, following the completion of the chromosome improvement process at664

a fixed number of generations, the best chromosome (output mapping) and665

schedulability obtained (both aggregate flows and flowsets) is output for dis-666

22

NoC/Packet flowset parameters Value
Maximum packet flow no-load latency 100 ms
Maximum period 500 ms
Priority assignment Deadline monotonic
Route randomisation Random XY/YX
Standard NoC topology 4x4
Enlarged NoC topology 8x8
Flowsets per data point 100
GA parameters
Population size 100
Mutation individual task moving probability 0.3
Maximum generations 50

Table 1: Evaluation parameters

play.667

To show the impact of the level of security on performance guarantees668

and resource usage, we have produced several experimental series:669

No security (NS) Deterministic routing, fitness function incorporates schedu-670

lability calculated using Equation 1 with the original interf(i) set.671

Percentage security (PS(%)) A given percentage of the packet flows use672

randomised routing, fitness function evaluated using Equation 1 with673

the proposed interfr(i) set reflecting that percentage.674

Application of security a posteriori (SAP) Evolution is performed us-675

ing a fitness function that tests the schedulability without any security676

mechanisms (only deterministic routing), aiming to find a schedulable677

mapping without security considerations. Following the completion678

of this evolutionary process, the evolved best application mapping has679

100% of its packet routes randomised, and is then evaluated with Equa-680

tion 1 with the proposed interfr(i) set. This experiment therefore aims681

to show that the optimisation of the mapping should take into account682

route randomisation, and that poor results can be expected from apply-683

ing randomisation to a mapping that was optimised for deterministic684

routing.685

23

5.1.1. Results686

Figure 6a shows the aggregate schedulability of flows after improvement687

with the GA, as a mean proportion across all flowsets generated for that688

data point. It is clear that the ordering of the results series in the illustrated689

plot follows the proportion of security provided, with an increasing number690

of flows in the flowsets (and therefore an increasing load upon the NoC) pro-691

viding a slight reduction in schedulability of the evolved cases. This is as692

anticipated, in that the worst-case schedulability analysis would be affected693

by the increased interference present from the optional random routes. How-694

ever, since each GA run is an independent evolutionary process, the ordering695

of the series does not always follow the anticipated order. In the SAP se-696

ries (security a posteriori), evolution is performed using a fitness function697

that tested schedulability under the no security case (XY routing). How-698

ever, following the completion of the GA the evolved mapping schedulability699

was evaluated with all flows using randomised routing. As anticipated, the700

schedulability of SAP is considerably worse than the NS or PS series, since701

the evolution was performed using a routing strategy that assumes lower in-702

terference than the final evaluation case. Figure 6b shows the schedulability703

of flowsets. A flowset is only considered schedulable if every flow within it704

is schedulable. The results follow the same general trend as in Figure 6a,705

although they reach zero earlier since flowset schedulability requires every706

component flow to be schedulable.707

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow count

P
ro

p
o
rt

io
n
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
s

Flow schedulability after improvement using a GA
under various models − 100 flowsets per data point

No security − (NS)

25% random − PS(25)

50% random − PS(50)
75% random − PS(75)

100% random − PS(100)

Security a posteriori − SAP

(a) Flow schedulability

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow count

P
ro

p
o

rt
io

n
 o

f
s
c
h

e
d

u
la

b
le

 f
lo

w
s
e

ts

Flowset schedulability after improvement using a GA
under various routing strategies − 100 flowsets per data point

No security − (NS)

25% random − PS(25)

50% random − PS(50)
75% random − PS(75)

100% random − PS(100)

Security a posteriori − SAP

(b) Flowset schedulability

Figure 6: Schedulability under various security models in the 4x4 case

24

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow count

P
ro

p
o
rt

io
n
 o

f
s
c
h
e
d
u
la

b
le

 f
lo

w
s

Flow schedulability after improvement using a GA
under various models − 100 flowsets per data point

No security − (NS)

25% random − PS(25)

50% random − PS(50)
75% random − PS(75)

100% random − PS(100)

Security a posteriori − SAP

(a) Flow schedulability

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow count

P
ro

p
o

rt
io

n
 o

f
s
c
h

e
d

u
la

b
le

 f
lo

w
s
e

ts

Flowset schedulability after improvement using a GA
under various routing strategies − 100 flowsets per data point

No security − (NS)

25% random − PS(25)

50% random − PS(50)
75% random − PS(75)

100% random − PS(100)

Security a posteriori − SAP

(b) Flowset schedulability

Figure 7: Schedulability under various security models in the 8x8 case

For the 8x8 example evaluation case, the results are presented in Figures708

7a and 7b. The results show a greater separation between the NS and PS709

series after NoC evolution, due to the increased NoC size and number of flows710

allowing a greater complexity of interference graphs when randomised routing711

is enabled. The SAP case also has significantly lower schedulability, since its712

evolved mapping was obtained without routing randomisation and imposing713

randomisation later affects schedulability. In the schedulability of flowsets714

in Figure 7b, it is clear there is a wider difference in schedulability between715

the PS(100) secured case and NS (no security) particularly in flowsets with716

70 to 85 flows. This illustrates that as the interference graph becomes more717

complex it is harder for the GA to find schedulable mappings.718

5.2. Cycle-accurate simulation of route randomisation719

One of the key concerns in altering network routing is the impact that720

it will have upon latency for packet transmission, particularly in latency-721

sensitive real time applications. This section considers via simulation the722

impact of randomising of the routing protocol on the latency of a previously723

published real-time application case, the autonomous vehicle application [14].724

The simulation framework used for this section is a cycle-accurate NoC725

model with support for priority preemption and virtual channels. This sim-726

ulator has been extensively validated in our previous work, frequently being727

used as a baseline for results in latency and power analysis [37] [38].728

25

5.2.1. Application Structure729

The application used in this application is an autonomous vehicle (AV)730

application [14]. This application consists of 38 communicating flows be-731

tween a set of tasks that represent video processing, system monitoring and732

control for a robotic vehicle. As is the convention throughout this paper, pri-733

orities are defined such that lower priority index values represent the highest734

priority transmissions. The priorities, data transmission rates, frequencies735

and deadlines of these application transmissions are as defined in [14], al-736

though a different mapping has been used in order to show the impact of737

routing protocols on a randomly selected mapping without artificial tuning738

to favour a particular routing protocol. The application has been mapped739

onto a 4x3 NoC, and the video resolution of the AV application video streams740

is 640x480. Since the application mapping is static and a single priority level741

is used per packet, a packet always travels between a fixed source-destination742

pair during the simulation.743

5.2.2. Routing Alternatives744

In this simulation evaluation, two routing alternatives incorporating ran-745

domisation are used, in addition to the baseline comparison of XY routing.746

The first routing alternative uses the XY/YX approach. In this approach,747

traffic producers determine uniformly randomly on injection whether a data748

packet will use XY or YX routing, and following this decision a flag is set749

in the data packet to control the routing behaviour. As a result, the chosen750

routing algorithm (either XY or YX) is used throughout packet transmission.751

In addition, an alternative routing structure known as random west first752

(RWF) routing is also implemented, which allows randomised routing de-753

cisions to be taken by individual arbiters during data transmission. RWF754

requires the packet always be forwarded towards the west when the desti-755

nation node is west of the current arbiter. However, any other destination756

port can be chosen uniformly randomly (east, north or south) as long as the757

direction taken is towards the destination. Therefore, the RWF approach758

permits a more diverse range of transmission paths than the XY/YX se-759

lection approach, providing more potential protection against side channel760

attacks.761

5.2.3. Evaluation Results762

The results are presented in Figures 8 and 9, illustrating the max-min-763

mean latencies and normalised latencies for the randomised routing cases764

26

(XY/YX and RWF) versus the baseline. Normalised latency is calculated765

by dividing the end-to-end latency of the packets by the packet size, which766

provides a metric of latency per flit. This metric is therefore more sensitive767

to delays in the transmission of short packets.768

The latency results presented in Figure 8 illustrate that routing randomi-769

sation typically increases the communication latencies for the majority of770

packets compared to fixed XY routing. This is particularly evident in the771

case of the packets with priority 8 under RWF routing, which experience772

an increased latency due to contention with other higher priority flows on773

some of the randomly chosen routes. In the XY/YX routing case, increased774

latency is also observed for the packets with priorities 21 and 26 in some775

cases. Interestingly, for some of the packet transmissions with priority 10776

and 13, the use of randomised routing is also to reduce latency in the best777

case, either by routing a higher priority packet so that it no longer causes778

interference, or routing the current packet around the interferer.779

Considering the normalised latency results in Figure 9, it is clear that780

the relative impact of route randomisation is most significant upon packets781

with priorities 13, 15, 18 and 26. These transmissions represent some of the782

shortest packets in the system, which are therefore more greatly impacted on783

a relative basis by contention with other packets. As depicted in the previous784

figure, some priority 13 packets encounter a large reduction in latency during785

some transmissions as a result of avoiding interference.786

6. Conclusions and Future Work787

This paper has addressed the trade-off between security and hard real-788

time performance guarantees in Networks-on-Chip. It has proposed route789

randomisation as a way to increase NoC resilience against side-channel at-790

tacks, and has discussed a number of design alternatives for the randomi-791

sation approach. It then has proposed a schedulability test for applications792

running over a secure priority-preemptive NoCs using route randomisation.793

Finally, the paper identifies an optimisation pipeline which can be guided794

by the proposed schedulability test towards configurations that can achieve795

full schedulability while maximising the provided level of security. Extensive796

experimental work using 4x4 and 8x8 NoCs with random XY/YX routing797

running thousands of synthetically generated applications show the perfor-798

mance guarantees that can be achieved by the proposed approach at four799

different levels of security, compared against two baselines (no security, and800

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0

1

2

3

4

5

6

x 10
−4

Flow priority index

La
te

nc
y

pe
r f

lit

(w
ith

 m
in

−m
ax

 e
rro

r b
ar

s)
 (s

)
Latencies per flit for AV application
 with RWF, XY/YX and XY routing

XY routing

RWF routing

Random XY−YX

Figure 8: Communication latency results for the randomised routing case on the AV
application

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0

0.5

1

1.5

2

2.5
x 10

−7

Normalised latencies per flit for AV
 application with RWF, XY/YX and XY routing

Flow priority index

N
o

rm
a

lis
e

d
 l
a

te
n

c
y
 p

e
r

fl
it

(w
it
h

 m
in

−
m

a
x
 e

rr
o

r
b

a
rs

)
(s

)

XY routing

RWF routing

Random XY−YX

Figure 9: Communication latency results (normalised) for the randomised routing case on
the AV application

full security applied a posteriori). Additional experiments with a realistic801

application running over 4x3 NoCs with random XY/YX and random west-802

first routing were performed with a cycle-accurate simulator, aiming to show803

28

the impact of route randomisation on latency variability, which in turn shows804

the increased resilience against side-channel attacks.805

Since this is the first paper addressing the trade-off between security and806

hard real-time performance in NoCs, it had to make several assumptions to807

be able to attack the problem. Lifting some of those assumptions will cer-808

tainly open new avenues of research, such as using different NoC arbitration809

mechanisms (e.g. TDM) or different route randomisation techniques (e.g. if810

randomised routes of subsequent releases of packets are never the same, a less811

pessimistic schedulability test can be used). Addressing those cases will re-812

quire new schedulability tests, but could still reuse the proposed optimisation813

pipeline.814

Acknowledgements815

The research described in this paper is funded, in part, by the EPSRC816

grant, MCC (EP/K011626/1). No new primary data were created during817

this study. This work was partly funded by the German Federal Ministry of818

Education and Research (BMBF), grant number 01IS160253 (ARAMiS II).819

References820

[1] C. Silvano, M. Lajolo, G. Palermo, Low Power Networks-on-Chip,821

Springer Science & Business Media, 2010.822

[2] M. Radetzki, C. Feng, X. Zhao, A. Jantsch, Methods for Fault Tolerance823

in Networks-on-chip, ACM Comput. Surv. 46 (2013) 8:1–8:38.824

[3] S. Pestana, E. Rijpkema, A. Radulescu, K. Goossens, O. Gangwal,825

Cost-performance trade-offs in networks on chip: a simulation-based826

approach, in: Design, Automation and Test in Europe Conference and827

Exhibition, 2004. Proceedings, pp. 764–769.828

[4] M. N. S. M. Sayuti, L. S. Indrusiak, Real-time low-power task mapping829

in networks-on-chip, in: VLSI (ISVLSI), 2013 IEEE Computer Society830

Annual Symposium on, pp. 14–19.831

[5] B. Nikolic, H. I. Ali, S. M. Petters, L. M. Pinho, Are Virtual Channels832

the Bottleneck of Priority-aware Wormhole-switched NoC-based Many-833

cores?, in: Proceedings of the 21st International Conference on Real-834

Time Networks and Systems, RTNS ’13, ACM, New York, NY, USA,835

2013, pp. 13–22.836

29

[6] J. Sepulveda, M. Gross, A. Zankl, G. Sigl, Exploiting bus communi-837

cation to improve cache attacks on systems-on-chips, in: 2017 IEEE838

Computer Society Annual Symposium on VLSI (ISVLSI), pp. 284–289.839

[7] C. e. a. Reinbrecht, Gossip noc - avoiding timing side-channel attacks840

through traffic management, in: ISVLSI 16, Pittsburgh, USA, pp. 601–841

606.842

[8] C. Reinbrecht, B. Forlin, A. Zankl, J. Seplveda, Earthquake - a noc-843

based optimized differential cache-collision attack for mpsocs, in: 2018844

Design, Automation Test in Europe Conference Exhibition (DATE), pp.845

648–653.846

[9] L. S. Indrusiak, J. Harbin, M. J. Sepulveda, Side-channel attack847

resilience through route randomisation in secure real-time networks-848

on-chip, in: 2017 12th International Symposium on Reconfigurable849

Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8.850

[10] Z. Shi, A. Burns, L. S. Indrusiak, Schedulability Analysis for Real Time851

On-Chip Communication with Wormhole Switching, International Jour-852

nal of Embedded and Real-Time Communication Systems 1 (2010) 1 –853

22.854

[11] M. Schoeberl, A Time-Triggered Network-on-Chip, in: Field Pro-855

grammable Logic and Applications, 2007. FPL 2007. International Con-856

ference on, pp. 377–382.857

[12] D. Dasari, B. Nikolic, V. Nelis, S. M. Petters, NoC Contention Analysis858

Using a Branch-and-prune Algorithm, ACM Trans. Embed. Comput.859

Syst. 13 (2014) 113:1–113:26.860

[13] A. E. Kiasari, A. Jantsch, Z. Lu, Mathematical Formalisms for Perfor-861

mance Evaluation of Networks-on-chip, ACM Comput. Surv. 45 (2013)862

38:1–38:41.863

[14] L. S. Indrusiak, End-to-end schedulability tests for multiprocessor em-864

bedded systems based on networks-on-chip with priority-preemptive ar-865

bitration, Journal of Systems Architecture 60 (2014) 553–561.866

30

[15] W. Yao, G. Suh, Efficient timing channel protection for on-chip net-867

works, in: Networks on Chip (NoCS), 2012 Sixth IEEE/ACM Interna-868

tional Symposium on, pp. 142–151.869

[16] J. Sepulveda, M. Soeken, D. Florez, J.-P. Diguet, G. Gogniat, Dynamic870

noc buffer allocation for mpsoc timing side channel attack protection, in:871

Circuits and Systems (LASCAS), 2016 IEEE Seventh Latin American872

Symposium on, IEEE, pp. 1–4.873

[17] M. Yoon, S. Mohan, C. Chen, L. Sha, Taskshuffler: A schedule ran-874

domization protocol for obfuscation against timing inference attacks in875

real-time systems, in: 22nd IEEE Real-Time and Embedded Technology876

and Applications Symposium (RTAS 2016), IEEE, pp. 1–12.877

[18] A. Lima, F. Rocha, M. Vlp, P. Esteves-Verissimo, Towards safe and878

secure autonomous and cooperative vehicle ecosystems, in: Proceedings879

of the Second ACM Workshop on Cyber-Physical Systems Security and880

PrivaCy, ACM, pp. 59–70.881

[19] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, E. Juin, Noc-centric882

security of reconfigurable soc, in: Networks-on-Chip, 2007. NOCS 2007.883

First International Symposium on, pp. 223–232.884

[20] T. Iakymchuk, M. Nikodem, K. Kepa, Temperature-based covert chan-885

nel in FPGA systems, in: 2011 6th International Workshop on Re-886

configurable Communication-centric Systems-on-Chip (ReCoSoC), pp.887

1–7.888

[21] D. Papp, Z. Ma, L. Buttyan, Embedded systems security: Threats,889

vulnerabilities, and attack taxonomy, in: Privacy, Security and Trust890

(PST), 2015 13th Annual Conference on, IEEE, pp. 145–152.891

[22] D. M. Ancajas, K. Chakraborty, S. Roy, Fort-nocs: Mitigating the892

threat of a compromised noc, in: Proceedings of the 51st Annual Design893

Automation Conference, DAC ’14, ACM, New York, NY, USA, 2014,894

pp. 158:1–158:6.895

[23] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, C. Silvano, Secure896

memory accesses on networks-on-chip, Computers, IEEE Transactions897

on 57 (2008) 1216–1229.898

31

[24] S. Lukovic, N. Christianos, Enhancing network-on-chip components to899

support security of processing elements, in: Proceedings of the 5th900

Workshop on Embedded Systems Security, WESS ’10, ACM, New York,901

NY, USA, 2010, pp. 12:1–12:9.902

[25] J. Sepulveda, J.-P. Diguet, M. Strum, G. Gogniat, Noc-based protection903

for soc time-driven attacks, Embedded Systems Letters, IEEE 7 (2015)904

7–10.905

[26] H. Wassel, G. Ying, J. Oberg, T. Huffmire, R. Kastner, F. Chong,906

T. Sherwood, Networks on chip with provable security properties, Micro,907

IEEE 34 (2014) 57–68.908

[27] J. Sepulveda, R. Pires, G. Gogniat, W. J. Chau, M. Strum, Qoss hier-909

archical noc-based architecture for mpsoc dynamic protection, Interna-910

tional Journal of Reconfigurable Computing 2012 (2012) 3.911

[28] J. Sepulveda, G. Gogniat, D. Florez, J.-P. Diguet, C. Zeferino, M. Strum,912

Elastic security zones for noc-based 3d-mpsocs, in: Electronics, Circuits913

and Systems (ICECS), 2014 21st IEEE International Conference on,914

IEEE, pp. 506–509.915

[29] J. Sepulveda, D. Florez, G. Gogniat, Reconfigurable security architec-916

ture for disrupted protection zones in noc-based mpsocs, in: Reconfig-917

urable Communication-centric Systems-on-Chip (ReCoSoC), 2015 10th918

International Symposium on, IEEE, pp. 1–8.919

[30] P. Cotret, G. Gogniat, J. Sepulveda, Protection of heterogeneous archi-920

tectures on fpgas: An approach based on hardware firewalls, Micropro-921

cessors and Microsystems (2016) 1–31.922

[31] A. Psarras, J. Lee, I. Seitanidis, C. Nicopoulos, G. Dimitrakopoulos,923

Phasenoc: Versatile network traffic isolation through tdm-scheduled vir-924

tual channels, IEEE Transactions on Computer-Aided Design of Inte-925

grated Circuits and Systems 35 (2016) 844–857.926

[32] S. Pasricha, N. Dutt, On-chip communication architectures: system on927

chip interconnect, Morgan Kaufmann, 2010.928

32

[33] F. Moraes, N. Calazans, A. Mello, L. Moeller, L. Ost, HERMES: an929

infrastructure for low area overhead packet-switching networks on chip,930

Integration, the VLSI Journal 38 (2004) 69–93.931

[34] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, Z. Navabi, Evaluation of932

pseudo adaptive XY routing using an object oriented model for NOC,933

in: The 17th International Conference on Microelectronics, 2005. ICM934

2005, pp. 5 pp.–.935

[35] C. J. Glass, L. M. Ni, The Turn Model for Adaptive Routing, in:936

Proceedings of the 19th Annual International Symposium on Computer937

Architecture, ISCA ’92, ACM, New York, NY, USA, 1992, pp. 278–287.938

[36] Z. Shi, A. Burns, Real-Time Communication Analysis for On-Chip Net-939

works with Wormhole Switching, in: ACM/IEEE Int Symposium on940

Networks-on-Chip (NOCS), pp. 161–170.941

[37] L. S. Indrusiak, J. Harbin, O. M. Santos, Fast Simulation of Networks-942

on-Chip with Priority-Preemptive Arbitration, ACM Trans. Des. Au-943

tom. Electron. Syst. 20 (2015) 56:1–56:22.944

[38] J. Harbin, L. S. Indrusiak, Comparative performance evaluation of la-945

tency and link dynamic power consumption modelling algorithms in946

wormhole switching networks on chip, Journal of Systems Architecture947

63 (2016) 33–47.948

33

