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Abstract
This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the depen-

dency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed

based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress

which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the

fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to

align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The

incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is

assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same

intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule

in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and

fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic

shearing with different loading directions. The model is also validated by comparing with laboratory test results of

Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging

applicability of the model for predicting the anisotropic behaviour of granular materials.

Keywords Anisotropic critical state � Fabric anisotropy � Fabric evolution law � Loading direction � Non-coaxial flow �
Rotational hardening

1 Introduction

Fabric anisotropy has a significant influence on the strength

and deformation characteristics of granular materials as

reported in both experimental [3, 41, 46–48, 50, 77, 84, 88]

and numerical observations [34, 69, 81, 86]. In the past

years, various effects caused by fabric anisotropy have

been taken into account in constitutive models using dif-

ferent concepts.

The concept of rotational hardening, first proposed by

Sekiguchi [64], has been widely used in constitutive

modelling of geomaterials for describing initial anisotropy
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as well as induced anisotropy (e.g.

[2, 10, 20, 27, 54, 67, 76]). Hashiguchi [19] discussed

similarities and differences between the rotational hard-

ening and the kinematic hardening [98] for metals. There

are several general features of the rotational hardening rule

in general stress spaces:

• A second-order traceless anisotropy tensor is used to

reflect the material anisotropy, and it is introduced into

the yield function through the back stress concept;

• The evolution of the anisotropy tensor is linked to the

plastic strain rate. The tensor can reach a ‘saturated’

value [2] under monotonic shearing. In other words, the

anisotropy tensor stops changing at large strains, for

example, by introducing a rotational limit surface [20].

In the concept of rotational hardening, the anisotropy

tensor, in general, is indirectly linked to the material fabric

based on some microscopic evidence, but usually lacks

clear physical meaning at a microscopic level. Hence the

evolution of the tensor is hard to be calibrated directly even

while microstructural information is available.

Recently, several constitutive models have been pro-

posed using different fabric tensors associated with various

microstructural quantities (see the references of [33, 73])

such as the orientation of the long axis of particles [30, 31],

void vector [14, 32] and contact normal [1, 96, 97]. As

contacts may represent the most fundamental fabric of

granular materials, contact normal-based fabric tensors

receive increasing attention, and potential effects of the

fabric anisotropy show a strong link to this fabric tensor.

Micromechanical analyses of the stress–force–fabric rela-

tionship showed that anisotropy of the orientation distri-

bution of contact normals (or anisotropy of the contact

normal-based fabric tensor) may play an important role in

contributing to the shear strength of granular materials

[35, 52, 60]. Meanwhile, the non-coincidence between the

fabric tensor and the stress tensor is a key source of non-

coaxial deformation [36].

In evolution laws of contact normal-based fabric tensors,

the rate of the fabric tensor has often been related to stress

rate [75], elastic strain rate [96, 97], or plastic strain rate

[42, 43]. As the elastic strain rate and stress rate can be

easily linked by an elastic model, the responses of evolu-

tion laws in terms of them are essentially similar. Evolution

laws associated with the stress (or elastic strain) rate alone

(the first type) can capture the characteristics of peak

strength under monotonic shearing with various loading

directions. However, they rarely show a unique critical

state fabric tensor. On the contrary, fabric evolution laws

associated with the plastic strain rate alone (the second

type) tend to give a unique critical value of the fabric

tensor, but they cannot capture the characteristics of peak

strength upon monotonic shearing easily. Although these

types of evolution laws may be able to qualitatively

account for some experimental and numerical observations,

quantitative calibrations with microscale fabric evolution

data have rarely been achieved.

Most of the above-mentioned constitutive models,

incorporating either a rotational hardening or a fabric

tensor, are based on the critical state concept which has

been widely recognised as the cornerstone of modern

constitutive modelling of soils [63, 78]. Conventionally,

the critical state is defined as a state at which the soil

behaves like a frictional fluid with a constant void ratio

and stress ratio, regardless of the initial state of the soil. It

is clear that this definition makes no reference to other

fabric-related entities than the scalar-valued void ratio.

Consequently, it cannot provide necessary constraints on

the evolution of the anisotropic fabric towards the critical

state. However, microstructural investigations reveal that

material fabric at the critical state is anisotropic [61] and

contact normal-based fabric tensors at the critical state

seem to be independent of the initial fabric

[22, 81, 82, 95]. For more realistically modelling the

anisotropic behaviour within the framework of the critical

state concept, it is necessary to revisit the conventional

critical state theory [9, 32].

The main aim of this paper is to present a critical state

constitutive model for granular materials taking the fabric

anisotropy into account. The model is developed on the

basis of the isotropic bounding surface model named

CASM_b [89, 90]. A contact normal-based fabric tensor is

additionally incorporated, and its evolution is formulated

by using the hybrid evolution law proposed by the first

author [21]. In the new hybrid evolution law, the rate of the

fabric tensor is related to both the stress ratio rate and the

deviatoric plastic strain rate.

In short, the model can capture the following common

effects of fabric anisotropy on the strength and deformation

behaviour of granular materials:

• the dependency of the peak strength on loading

directions;

• the uniqueness of the anisotropic critical state under

different loading directions with a constant b value and

mean effective stress;

• the non-coaxial plastic flow.

Effects of the intermediate stress ratio on the soil

strength and deformation are also hierarchically consid-

ered in this model. Predictions by the new model are

compared with results from DEM simulations and labo-

ratory tests. It is demonstrated that the new constitutive

model can capture both the stress–strain relation and the

evolution of the fabric tensor with a high degree of

satisfaction.
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2 Anisotropic critical state

2.1 Definition of fabric tensor

In most cases of three-dimensional materials, the frequency

distribution of contact normals in a granular assembly can

be expressed by a spherical harmonic series with the sec-

ond-order approximation [21, 93] as

E nð Þ ¼ 1

4p
1þ F : n� nð Þ ð1Þ

where n denotes the unit contact normal at a contact.

According to Kanatani [23], the tensor F in Eq. (1) is

known as the second-order fabric tensor of the third kind in

terms of unit contact normals. The fabric tensor F is

traceless, and it can be used to describe fabric anisotropy in

the assembly. Practically, the fabric tensor F can be esti-

mated as follows:

F ¼ 15

2

1

Nc

X

c2Nc

nc � nc � 1

3
I

 !
ð2Þ

where I denotes unit second-order tensor and Nc is the total

number of discrete directional contact normal nc of a

granular assembly.

2.2 Description of the anisotropic critical state

Since granular materials like sands usually lack a unique,

natural stress-free state, the critical state is important for

constitutive modelling as it provides a useful reference

state to characterise the granular materials under shearing.

Based on the critical state concept, many constitutive

models have been proposed, including a series of CASMs

by Yu [90]. However, the fabric anisotropy at the critical

state is often overlooked. Benefiting from the development

of advanced laboratory test [12, 83] and numerical simu-

lation technologies [13, 26, 44, 79, 81, 82, 95], the fabric

effect on the critical state is further studied in recent years

(e.g. [30, 32, 85], in particular, from a microscopic per-

spective. Increasing evidence shows that a unique critical

state exists, which is independent of the initial sand density

and the initial fabric anisotropy. In the light of the above

discussion, the conventional definition of the critical state

is revisited and modified considering the role of anisotropic

fabric as follows.

The mean effective stress, p, and deviatoric stress ten-

sor, S, can be expressed as:

p ¼ 1=3tr rð Þ ð3Þ
S ¼ r� pI ð4Þ

where r is the effective stress tensor. The intermediate

stress ratio (i.e. b value) is given as:

b ¼ r2 � r3
r1 � r3

¼ 1

2

ffiffiffi
3

p
tan hlð Þ þ 1

h i
ð5Þ

where r1; r2; r3 are the principal values of r in descending

order (i.e.r1 [ r2 [ r3), and hl is the Lode’s angle, which
equals:

sin 3hlð Þ ¼ �3
ffiffiffi
6

p det Sð Þ
Sk k3

ð6Þ

where �k k ¼
ffiffiffiffiffiffiffiffiffi
� : �

p
denotes the norm of any symmetrical

second-order tensor *. A stress ratio tensor can be defined

as:

g ¼ S=p ð7Þ

The deviators of tensors S; g;F are rewritten as q; g;F,
respectively.

q ¼ 3=2Sk k ð8Þ
g ¼ 3=2gk k ð9Þ
F ¼ 3=2Fk k ð10Þ

The conventional definition of the critical state can be

expressed in Eqs. (11) and (12), which describes that

plastic shearing could continue indefinitely without chan-

ges in volume or stress ratios while the critical state is

ultimately reached. For characterising the anisotropic crit-

ical state, an extra constraint on the fabric tensor at the

critical state is defined in Eq. (13) [21].

ec ¼ �kln pcð Þ þ C� 1; ð11Þ
gc ¼ M; ð12Þ
Fc ¼ ðMF=MÞgc ð13Þ

where k and C are the slope and intercept of the critical

state line in the v� lnp space, respectively; M, so-called

critical state stress ratio, is the slope of the critical state line

in the p–q space; gc; gc and Fc are the values of g, g and F

at the critical state, receptively; MF is the critical state

fabric ratio. Obviously, there is MF ¼ Fc where Fc is the

value of F at the critical state.

Equation (13) defines that the critical state fabric tensor

is only dependent on the stress state at the critical state. It

imposes a constraint on the evolution of the fabric tensor

towards the critical state. At the critical state, the fabric

tensor Fc is proportional to the corresponding stress ratio

tensor gc. In other words, Fc has the same principal

directions and b value as gc. However, the deviators of Fc

and gc are allowed to be different, as Fc ¼ MF while

gc ¼ M. The above description of the critical state is a

development of, but actually does not contradict to, the

conventional thinking of the critical state [32]. The

assumption of Eq. (13) is consistent with numerical

observations [44, 81, 82, 95].
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It should be noted that the critical state line in the e�
lnp plane might be nonlinear due to the breakage of par-

ticles under relatively high pressure (normally greater than

1 MPa for silica sands) [5]. In this situation, the relation-

ship between ec and lnpc is better to be replaced by a

bilinear relationship [5] or a nonlinear relationship [28]. As

the effect of particle breakage is ignored in this work, we

adopt the same linear relationship between ec and lnpc as

that employed in the original CASM [89]. This relationship

is valid until particle breakage occurs according to the

results of laboratory tests [74, 91], as shown in Fig. 1. In a

general stress space, it is found that both M and MF are

dependent on the b value [93]. For simplicity, we first take

M and MF as constants here, and their dependency on the

b value will be discussed in Sect. 3.6.

It should be noted that Li and Dafalias [32] proposed an

alternative description of fabric anisotropy at the critical

state by using a void-vector fabric tensor. They also argued

that the critical state fabric tensor has the same principal

directions and b value as those of the deviatoric stress

tensor. A joint invariant consisting of the critical state

fabric tensor normalised by Fck k was adopted, and, as a

consequence, MF always equals
ffiffiffiffiffiffiffiffi
3=2

p
therein. As the back

stress is more closely dependent on the fabric deviator Fc

rather than the normalised value, the more direct analytical

description of the critical state fabric tensor with respect to

Fc defined in Eq. (13) is used here while incorporating the

fabric tensor into the yield function using the back stress

concept as shown later.

2.3 Fabric evolution law

The rate of fabric tensor _F is related to both the stress ratio

rate _g and the plastic strain rate in terms of _K ¼ _ep where

_ep is the deviatoric plastic strain rate. The hybrid fabric

evolution law proposed by the first author [21] [i.e.

Eq. (14)] is used. The derivation and validation of the

fabric evolution law refer to the reference of [21], and an

extension for incorporating the intermediate stress ratio

effect is presented in the Ref. [93].

_F ¼ C1 1þ C2 gk kð Þ _gþ C3

MF

M
g� F

� �
_K ð14Þ

where C1, C2 and C3 are material constants controlling the

rate of the fabric evolution. At the critical state _F ¼ 0 and

_g ¼ 0, there should be Fc ¼ MFgc=M. The evolution law

satisfies the requirement of the principle of material frame

indifference together with the assumptions of rate inde-

pendence and uniqueness of the critical state fabric tensor

[i.e. Eq. (13)] [21].

Initially, the plastic strain rate is small whereas the stress

ratio increases rapidly under monotonic shearing. In this

case, the fabric evaluation is dominated by variations of the

stress ratio. The fabric evolution law (14), therefore, can be

simplified as:

_F ¼ C1 1þ C2 gk kð Þ _g ð15Þ

From Eq. (15), it can be deduced that the deviator Fq of

the fabric tensor is formulated as a parabolic function of the

stress ratio g under monotonic shearing. This is supported

by experimental [49, 75] and numerical results [25].

As shearing continues, the plastic strain rate increases

considerably while the rate of the stress ratio drops, espe-

cially, near the critical state. In this stage, the contribution

of the second term of the right side of Eq. (14) prevails,

and the fabric tensor evolves towards the critical state value

of Eq. (13). In this case, the fabric evolution can be

approximated by:

_F ¼ C3

MF

M
g� F

� �
_K ð16Þ

Equations (15) and (16) are special cases of the hybrid

evolution law of Eq. (14) while taking C3 = 0 and C1 = 0,

respectively. It is clear that the parameters C1 and C2

control the rate of fabric evolution at the initial stage of a

monotonic shearing, while C3 controls the rate of fabric

evolution towards the critical state at relatively large

strains. Upon continuous shearing, the evolution law tran-

sitions from the first type to the second type gradually, and

hence, the aforementioned disadvantages that exist in

evolution laws taking the form of only one of them may be

overcome.

From a microstructural perspective, the evolution laws

(15) and (16) may roughly represent two typical mecha-

nisms of fabric evolution, respectively [21, 93]. At the

initial stage of shearing, contacts are forced to reorganise to

stabilise the potential buckling of force chain responding to

the applied shear stress [71]. At this stage, the stress ratio

increases rapidly whereas plastic strains develop relatively
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Fig. 1 Critical state lines in the v� lnp plane for Toyoura sand and

Portaway sand
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slowly. Therefore, changes in the spatial distribution of

contact normals, i.e. evolution of the fabric tensor (e.g. a

considerable amount of contact disruptions in the minor

principal fabric direction and contact creations along the

major principal fabric direction [25, 69]), are more effi-

ciently expressed in terms of the rate of the stress ratio. At

relatively large shear strains, the net rate of contact cre-

ation/disruption decreases considerably. Instead, the fabric

evolution is primarily controlled by the reorientation and

migration of the contacts through sliding and rolling of

particles across each other which is usually accompanied

by more plastic deformation [25, 26]. Therefore, the fabric

evolution is more reasonably related to the plastic strain

rate at this stage.

3 Constitutive model

This constitutive model is developed based on CASM_b

[90] which is known as an isotropic critical state model

using the bounding surface framework. A contact normal-

based fabric tensor is incorporated into the yield surface

and the flow rule in the p plane to account for fabric ani-

sotropy, and the anisotropic critical state defined in

Eq. (13) is adopted. However, it should be noted that no

attempt is made to account for the potential effects of

fabric anisotropy in the dilatancy function and the elastic

model in this paper.

The constitutive model is presented in the general stress

space. The model described here is applicable to both fully

saturated and dry soils. All stress quantities are to be

understood as effective stress quantities in this paper. Our

attention is restricted to the small deformation regime,

isothermal conditions and rate-independent behaviour.

Thus, the strain rates are split as follows:

_e ¼ _ee þ _ep; _ev ¼ _eev þ _epv ð17Þ

where _e; _ee; _ep are the rates of total, elastic and plastic

deviatoric strains, respectively; _ev; _eev; _e
p
v are the rates of

total, elastic and plastic volumetric strains, respectively.

3.1 Elastic model

The hypoelastic model used in CASM is followed here.

Potential effects of the fabric anisotropy on the elastic

behaviour are ignored as purely elastic strains are relatively

small compared with plastic strains. The response associ-

ated with the elastic volumetric part is expressed in terms

of the bulk modulus K which is assumed to be a linear

function of the mean effective stress p:

_eev ¼
_p

K
; K ¼ 1þ eð Þp=j ð18Þ

where j is the slope of the swelling line in the v� ln p

plane.

The deviatoric elastic strain is calculated by using the

shear modulus as:

_ee ¼
_S

2G
; G ¼ 3 1� 2tð Þ

2 1þ tð Þ K ð19Þ

where t is Poisson’s ratio. A constant value of Poisson’s

ratio is assumed, which implies that the shear modulus is

dependent on the mean effective stress in the same way as

the bulk modulus. The advantages and disadvantages of a

constant Poisson’s ratio compared with a constant shear

modulus were discussed by Yu [89]. Note that various

other relationships of the shear modulus for uncemented

sands at small strains have also been proposed in the lit-

erature (e.g. [17]).

From Eqs. (18) and (19), the rate of the stress tensor can

be expressed in terms of the strain rates as:

_r ¼ 2G _e� _eP
� �

þ K _ev � _ePv
� �

I ð20Þ

3.2 Yield surface

Plastic deformation of granular materials with hard grains

is induced in the process of sliding and rolling of indi-

vidual grains across each other at contact points. As

frictional resistance increases, rolling becomes more

dominant. At a mesoscale, it may be assumed that dilatant

simple shearing over several interacting sliding planes

produces the resultant macroscopic deformation, which is

often accompanied by induced fabric anisotropy. By

applying the Mohr–Coulomb yield condition at sliding

planes, Nemat-Nasser [42] proposed a yield surface con-

sidering the fabric effect. The kernel idea is that the shear

resistance at the sliding plane can be divided into two

parts: an isotropic part due to a Coulomb-type isotropic

resistance and an anisotropic part due to fabric anisotropy.

The resistance due to fabric anisotropy is estimated by the

micromechanically based stress–force–fabric relationship.

From this approach, it was found that the back stress is

proportional to the contact normal-based fabric tensor in a

two-dimensional (2D) analysis. Actually, in this estima-

tion it was assumed that the total back stress stems from

an anisotropic stress tensor rr which is resulted from the

fabric tensor F. Similarly, one can obtain the back stress

Sb in the three-dimensional (3D) domain from the stress–

force–fabric relationship obtained by Ouadfel and

Rothenburg [52] as follows:

Sb ¼ rr ¼ fpF; f ¼ 2=5 ð21Þ

Detailed derivation process of the back stress refers to

the reference of [21]. In Eq. (21), f ¼ 2=5 is a constant
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coefficient obtained by spatial integration of the stress–

force–fabric relation. In a 2D case, the coefficient f equals
1/2 [60] as the same as that obtained by Nemat-Nasser [42].

The yield surface can be expressed in terms of stress

tensor and fabric tensor F as:

f ¼ S� fpFk k �Mfp ¼ 0 ð22Þ

where Mf is the frictional coefficient, which is generally

dependent on the void ratio and fabric tensor. Mf gives the

elastic range of the yield surface. Back stress fpF deter-

mines the location and orientation of the yield surface. If

we regard that the isotropic yield surface used in CASM is

a special case of Eq. (22), a suitable form of Mf in Eq. (22)

can be chosen. The yield surface with the inclusion of the

back stress can now be expressed as follows:

f ¼ ~q

mp

� �n

þ 1

ln r0ð Þ ln
p

p0

� �
¼ 0 ð23Þ

~q ¼ 3=2 S� Sbð Þk k ð24Þ

where n and r0 are material constants; m ¼ M; p0 is the

reference consolidation pressure. The conventional stress

deviator q ¼ 3=2Sk k is replaced by ~q. It is clear that when
the material fabric is isotropic, namely Sb ¼ 0 in Eq. (24),

Eq. (23) recovers the original yield function of CASM.

In the original CASM [89], the spacing ratio r was

introduced to represent the distance between the reference

consolidation line and the critical state line in the v� lnp

space. The spacing ratio can be calculated as r ¼ p0=pc
where pc is the mean effective stress at the critical state on

a given yield surface. It is noted that this distance should

remain unaltered for the anisotropic critical state model.

With this assumption, the spacing ratio r is replaced by a

new material constant r0 using the following equation:

lnr0 ¼ lnr 1� fMF=Mð Þ�n ð25Þ

This equation is obtained by applying the critical state

stress condition and fabric tensor [i.e. Eqs. (12) and (13)] to

the yield function with the condition that p0=pc ¼ r.

Through Eqs. (23) (24) and (25), the fabric tensor is

introduced into the isotropic yield surface with clear

physical meaning.

3.3 Hardening law

It is noted that the yield surface in Eq. (23), in fact,

involves both isotropic and rotational hardening. At first,

the isotropic hardening rule adopted in the original CASM

[89] is followed. The size of the yield surface is controlled

by the reference consolidation pressure p0 which varies

with the plastic volumetric strain as defined in Eq. (26).

_p0 ¼
1þ eð Þp0
k� j

_epv ð26Þ

If elastic strains are ignored, we can integrate Eq. (26)

and then find that p0 can be expressed in terms of the void

ratio. It indicates that the yield surface is dependent on the

void ratio if p0 is replaced, which is consistent with the

suggestion on Mf by Nemat-Nasser and Zhang [43].

The rotational hardening is introduced due to the evo-

lution law of the fabric tensor [i.e. Eq. (14)] as illustrated in

Fig. 2 in the triaxial stress space with a cross-anisotropy.

The slope of the axis of the yield surface (i.e. green line)

represents the degree of fabric anisotropy. Specifically, the

slope is equal to 2/5(F1 - F2) in the axial-symmetrical

case. Upon shearing, the degree of fabric anisotropy varies

as defined by the fabric evolution law (14). Therefore, the

slope of the green line changes, which results in rotations

of the yield surface in the p0-normalised p–q space. When

the critical state is reached, the slope of the axis of the yield

surface will rest on a value corresponding to the critical

state value of the fabric anisotropy. Mathematically,

Eq. (13) acts as a rotational limit surface of the anisotropy

tensor [20]. It defines that rotational hardening of the yield

surface will cease once the critical state is reached. One

important feature of this law is that the fabric deviator F

can both harden and soften as the stress ratio g might

harden and soften during a monotonic shearing. The slope

of the axis can be even larger than the critical state value as

demonstrated by Hu [21].

3.4 Flow rule

From the viewpoint of thermodynamics [6, 7] and

micromechanics [11], the flow rule is non-associated in
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Fig. 2 Illustration of rotational hardening in the triaxial stress space

with cross-anisotropy. Note F1, F2 and F3 are the principal values of

the fabric tensor F (F2 = F3 for cross-anisotropy)
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nature for frictional geomaterials like sands. To model this

behaviour, the volumetric plastic strain rate _epv and the

deviatoric plastic strain rate _ep are determined separately as

follows.

3.4.1 Flow rule in the deviatoric space

The deviatoric plastic strain rate can be generally expressed

as:

_ep ¼ _Kl0; _K ¼ _epk k; l0 : l0 ¼ 1 ð27Þ

where _K is the plastic multiplier index; l0 is a unit normal

deviatoric tensor representing the flow direction in the

deviatoric space.

In conventional plasticity theory, the flow direction l0 is
determined by the normal of the potential surface.

Although the flow rule for granular materials is widely

recognised to be non-associated, it is generally assumed

that the non-associativity of the plastic flow is restricted to

its volumetric components. Under this assumption, the

deviatoric flow direction l0 should be the same as the

loading direction of the yield surface in the deviatoric

space as:

l0 ¼ l1 ¼
g� fF
g� fFk k ð28Þ

For sands with initial fabric anisotropy, the fabric tensor

is not necessarily coaxial with the stress tensor. Upon

proportional loading with different loading directions, this

flow rule can predict non-coaxial flow as the fabric tensor

is generally non-coaxial with the stress tensor. As the

critical fabric tensor is coaxial with the stress tensor [see

Eq. (13)], the flow direction l1 at the critical state will be

coaxial with the stress tensor [81]. However, it is found that

the associated flow rule may overestimate the non-coaxial

angle of plastic flow. For example, for pre-sheared sands

with considerable initial cross-anisotropic fabric, as the

magnitude of the stress ratio is smaller than fF under initial

shearing, the flow direction is opposite to that of the stress

tensor. To overcome this limitation, a new flow direction l0

is assumed as:

l0 ¼ l2 ¼
L� 3=2fF
L� 3=2fFk k ; L ¼ S

Sk k ð29Þ

In Eq. (29), it is found that the magnitudes of the

components of L are always larger than 3=2fF even

with strong initial fabric anisotropy. This feature can

restrict the non-coaxial angle in a reasonable range. The

flow direction defined by Eq. (29) also implies that the flow

rule in the deviatoric space becomes non-associated.

According to Eq. (13), Fc will be coaxial with both S and

L. As a result, the plastic flow will be coaxial at the critical

state.

3.4.2 Dilatancy

The volumetric plastic strain rate is determined in terms of

dilatancy function D as:

_epv ¼
ffiffiffiffiffiffiffiffi
2=3

p
_KD ð30Þ

The phenomenon of dilatancy was first reported by

Reynolds [58]. Since then, numerous models for predicting

dilatancy behaviour were proposed. Among them, Rowe

[62] established a famous stress-dilatancy model for plane

strain or triaxial stress conditions, by considering the dis-

crete feature and the microscopic deformation mechanism

of simple granular assembly as well as assuming the

hypothesis of minimum energy ratio. This flow rule was

adopted in the original CASM [89]. However, it has been

pointed out that this stress-dilatancy relation is not very

suitable for soils at low stress ratio conditions [90]. In fact,

apart from the stress ratio, dilatancy is affected by many

other factors, including fabric anisotropy [75], void ratio

[29], non-coaxiality of the plastic flow [15], and the

number of shearing cycles [57]. For simplicity, a Cam-

bridge-type stress–dilatancy relation proposed by Nova and

Wood [45] [i.e. Eq. (31)] is used in this model, which has

been shown as a rather good stress–dilatancy relation for

modelling sand behaviour in comparison with several

commonly used flow rules [4].

D ¼ Cd M � gð Þ ð31Þ

where Cd is a material constant. Miura and Toki [41] val-

idated this equation for Toyoura sand and generalised it by

considering the b value effect. The essential constraint

underlying the stress–dilatancy relation in Eq. (31) is that

at the critical state where gc ¼ M, there is D = 0. This

means that the volumetric strain does not change further

with unlimited shear strains. Note that another feature of

this relation is that the stress ratio at the critical state equals

that at the phase transformation state.

3.5 Bounding surface and mapping law

For sands, it is normally difficult to detect a clear transition

from elastic to plastic behaviour. Some researchers argued

that the fabric keeps unaltered only when the strain is

applied up to the level of 10-5 [68]. Beyond this level,

sliding and rolling will occur at contacts among particles,

resulting in energy dissipation and plastic deformation.

Strictly speaking, the purely elastic deformation for gran-

ular materials may tend to be vanishingly small [24]. In

order to allow plastic strain to occur before the stress state

reaches the yield surface [e.g. Eq. (23)], the concept of

bounding surface is introduced. It is assumed that the

loading [i.e. Eq. (32)] and bounding [i.e. Eq. (33)] surfaces
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[8, 90] take the same shape as the yield surface but are

different in size:

f ¼ ~q

mp

� �n

þ 1

ln r0ð Þ ln
p

bp0

� �
¼ 0 ð32Þ

�f ¼
�~q

m�p

� �n

þ 1

ln r0ð Þ ln
�p

p0

� �
¼ 0 ð33Þ

where b ¼ p=�p ¼ ~q=�~q 2 0; 1ð � is the mapping ratio

between current state stress p; �pð Þ on the loading surface

and a mapping point �p; �~qð Þ on the bounding surface, as

shown in Fig. 3a. When b ¼ 1, the loading surface coin-

cides with the bounding surface (i.e. full mobilisation of

the shear resistance).

In this model, a radial mapping law [18] is used. The

evolution of the parameter b is defined as:

_b ¼ �Cb
_Klnb ð34Þ

where Cb is a constant controlling the evolution rate of b.
Initially, the soil deforms in a stress state far from the fully

yielding stage. As the hardening modulus is very large (i.e.

b is small), the material behaves more elastically. Upon

further shearing, b increases quickly, and the rate of b
reduces rapidly. While b ¼ 1; the bounding surface coin-

cides with the yield surface. Taking material constants for

Toyoura sand listed in Table 3, Fig. 4 presents example

results showing the effect of Cb on the evolution of b in an

initially anisotropic sand sample under undrained shearing.

It is evident that a larger value of Cb leads to a higher speed

approaching the final state of b ¼ 1. Although this radial

mapping law is different from the common method based

on interpolations of the hardening modulus (e.g. [8]), it was

shown that these two methods can be equivalently trans-

formed into each other [38].

3.6 Effects of shear mode

Results of laboratory tests (e.g. [72, 88] and numerical

simulations (e.g. [70, 87, 93]) demonstrated that the shear

mode has a significant influence on the strength and

deformation behaviour of granular materials. The shear

mode is normally measured by the intermediate stress ratio

(b value) or Lode’s angle hl. The relationship between b

value and hl is given in Eq. (5). It should be noted that the

incorporation of the shear mode effects will remarkably

increase the complexity degree of the formulation and

numerical implementation.

3.6.1 Effect of shear mode on the critical state

Here the function proposed by Sheng et al. [65] is

employed to characterise the relationship between M and

Lode’s angle hl:

M hlð Þ ¼ Mcch1 hlð Þ;

h1 hlð Þ ¼ 2l41
1þ l41 þ 1� l41

� �
sin 3hlð Þ

 !1=4 ð35Þ

where l1 ¼ Mct=Mcc is a shape parameter; Mcc and Mct are

the critical state stress ratios for triaxial compression and

extension, respectively. In Eq. (35), h1 hlð Þ determines the

shape of M hlð Þ in the p plane. For triaxial compression,

hl ¼ �p=6; h1 hlð Þ ¼ 1; M ¼ Mcc; for triaxial extension,

hl ¼ p=6; h1 hð Þ ¼ l1; M ¼ Mct. According to Loukidis

and Salgado [37], the value of l1 is generally in the range of
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0.67–0.75 for silica sands. This shape function is convex

for a larger range of l1 as compared with other kinds of

shape function. In particular, the shape function is still

convex when l1 is as low as 0.6. If we assume that the

critical state friction angles for triaxial extension and

compression are equal, Mcc and Mct can be estimated as

follows:

Mcc ¼
6sin /cvð Þ

3� sin /cvð Þ ;Mct ¼
6sin /cvð Þ

3þ sin /cvð Þ ð36Þ

where /cv ¼ sin�1 r1�r3
r1þr3

� �

c
is the critical state frictional

angle. Hence, l1 can be expressed in terms of Mcc as:

l1 ¼
3

3þMcc

ð37Þ

This relationship was proven to be realistic when com-

pared with results of laboratory tests and DEM simulations

[95] (e.g. Fig. 5). The shape function becomes very similar

to that proposed by Matsuoaka and Nakai [39].

A similar shape function is observed for the critical state

fabric ratio MF from DEM simulations [81]. The critical

state fabric ratio MF is assumed to be a function of Lode’s

angle as:

MF hlð Þ ¼ MFch2 hlð Þ;

h2 hlð Þ ¼ 2l42
1þ l42 þ 1� l42

� �
sin 3hlð Þ

 !1=4 ð38Þ

where l2 ¼ MFt=MFc, and MFc and MFt are the critical

fabric ratios for triaxial compression and extension,

respectively. In Eq. (38), h2 �p=6ð Þ ¼ 1;MF ¼ MFc;
h2 p=6ð Þ ¼ l2;MF ¼ MFt. It is noted that in some DEM

simulations under high pressures [44, 61, 66], the value of

MF for triaxial extension may be even greater than that for

triaxial compression. These observations suggest that the

shape parameter for MF might be different from that for the

critical state stress ratio M [93]. l1 and l2 in Eq. (38) could

be different, and they can be chosen dependently (e.g. a

reciprocal relationship l1 = 1=l2 [93]) or independently for

more general cases. Detailed discussions about the relation

between l1 and l2 are out of the scope of this paper.

It is indicated by Eq. (25) that different values of l1 and

l2 will lead to a dependency of r0 on the b value as we

assumed that the spacing ratio r is a constant. Vice versa, a

constant r0 means that r is dependent on b value, which

further implies that the reference consolidation line and

critical state line cannot be independent of the shear mode

simultaneously. For simplicity, they are assumed as iden-

tical [i.e. Eq. (39)] in the following analysis and model

predictions.

l2 ¼ l1 ð39Þ

This assumption implies that the proportional coefficient

between the critical state stress and fabric ratios, i.e.

MF=M ¼ MFc=Mcc, is a constant.

3.6.2 Effect of shear mode on the yield function

The dependency of M on Lode’s angle makes the yield

(loading) function in the p plane not circular. If we gen-

eralise the yield surface by using m ¼ M hlð Þ, the yield

surface would be singular at q ¼ 0 (see Fig. 3a). To avoid

this problem, we replace Lode’s angle hl [i.e. Eq. (6)] in
M hlð Þ by another local Lode’s angle h measured from a

deviatoric stress tensor t ¼ S� Sb:

m hð Þ ¼ Mcch1 hð Þ; sin 3hð Þ ¼ �3
ffiffiffi
6

p
det tð Þ= tk k3 ð40Þ

After this replacement, we can see that the loading and

bounding surfaces are continuous at q ¼ 0 in the p0-nor-

malised p� q plane, and they have the same shape as the

critical state surface in the p plane (see Fig. 3b). Changes in

the fabric anisotropy enable that the yield surface rotates in

the p� q plane and translates in the p plane. However, the

critical state surface is centred at the origin of the p plane,

even though an anisotropic critical stress ratio is assumed.

4

8

0.1

0.6

2.1

20Cb=

Shear strain,γ =ε1-ε3 (%)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

β

Fig. 4 Effects of Cb on the evolution of mapping ratio b

0

0.2

0.4

0.6

0.8

1

s1

s2s3

DEM
No effect of 

Lode’s 
angle

( )1 lh θ

Fig. 5 Theoretical prediction and DEM results [95] of critical state

stress ratio in the p plane

Acta Geotechnica (2020) 15:1125–1151 1133

123



3.6.3 Effect of shear mode on the flow rule

As M is expressed in terms of Lode’s angle hl in Eq. (35),

the stress-dilatancy function defined in Eq. (25) is also

dependent on the b value.

Considering that the volumetric strain rate is zero at the

critical state, the plane strain condition requires that the

b value of the plastic strain rate at the critical state should

be near 0.5. At the critical state, the fabric tensor has the

same b value as the stress tensor. If the flow direction in

Eqs. (28) or (29) is applied, the b value of the critical state

stress tensor under plane strain conditions, denoted as bPSc ,

should equal 0.5 as well. However, it has been reported

(e.g. [88]) that the b value at large strains is between 0.2

and 0.4. Most sands exhibit that the values of bPSc are very

close to 0.25. This discrepancy suggests that the flow

direction may also be dependent on the b value. Therefore,

the flow direction l0 is expressed by:

l0 ¼ l4 ¼
r

rk k ; r ¼ 1þ Að Þl2 � B l22 �
1

3
I

� �
ð41Þ

in which

A ¼ 3 1� l3ð Þg h0ð Þv
2l3

ð42Þ

B ¼ 3
ffiffiffi
6

p
1� l3ð Þg h0ð Þ
2l3

ð43Þ

v ¼ � sin 3h0ð Þ ¼ 3
ffiffiffi
6

p
det l2ð Þ ð44Þ

g h0ð Þ ¼ 2l3

1þ l3 þ 1� l3ð Þsin 3h0ð Þ ð45Þ

where g h0ð Þ is a shape function of the potential function in

the deviatoric space. The flow direction l4 is the unit-norm

normal of the potential function. When l3 ¼ 1, there is

g h0ð Þ ¼ 1; hence, l4 ¼ l2 and the potential function

becomes circular in the deviatoric plane [21].

The shape parameter l3 determines the value of bPSc .

According to Potts and Gens [55], l3 can be linked to the

critical state Lode’s angle for plane strain problems

(i.e.hpsc ) as follows:

l3 ¼
sin 3hpsc
� �

þ 1
� �

tan hpsc
� �

þ 3cos 3hpsc
� �

sin 3hpsc
� �

� 1
� �

tan hpsc
� �

þ 3cos 3hpsc
� � ð46Þ

Combing with the relationship between bpsc and hpsc in

Eq. (5), the relationship between l3 and bpsc can readily be

established, as depicted in Fig. 6. When bpsc is set between

0.2 and 0.4, the value of l3 ranges roughly from 0.7 to 0.9.

If such data are not available, bpsc can be taken around 0.25,

which corresponds to l3 ¼ 0:75. Alternatively, it can be

chosen based on available data for sands with similar index

properties [37].

3.7 Stress–strain relationship in the rate form

The consistency condition of the loading surface [i.e.

Eq. (32)] gives:

_f ¼ fS : _Sþ fp _pþ fb _bþ fp0 _p0 þ fF : _F ¼ 0 ð47Þ

where fS; fp; fb; fp0 and fF are partial derivatives of

the loading surface f with respect to S; p; b; p0 and F

respectively. The derivatives are detailed in Appendix 1.

By inserting the evolution equations with regard to _b; _p0
and _F into Eq. (47), we can obtain the plastic multiplier as:

_K ¼ fS : _Sþ fp _pþ CF1fF : _g
� �

=H ð48Þ

where CF1 ¼ C1 1þ C2 gjk jð Þ and H is the hardening

modulus:

H ¼ �
�
C3fF :

MF

M
g� F

� �
þ fp0

1þ eð Þp0
k� j

ffiffiffiffiffiffiffiffi
2=3

p
D

� fbCblnb

�

ð49Þ

By substituting the elastic model and flow rule into

Eq. (48), the plastic multiplier can be rewritten in terms of

total strain rates as:

_K ¼
2G fS þ CF1=pfFð Þ : _eþ K fp � CF1fF : g=p

� �
_ev

H þ 2G fS þ CF1=pfFð Þ : l0 þ
ffiffiffiffiffiffiffiffi
2=3

p
KD fp � CF1=pfF : g
� �

ð50Þ

With the used of Eq. (20), the elastoplastic stress–strain

relationship can be written in the rate form as:

_r ¼ 2G _e� _Kl0
� �

þ K _ev � _K
ffiffiffiffiffiffiffiffi
2=3

p
D

� �
I ð51Þ
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4 Prediction and comparison

Ignoring the potential effects of shearing mode, in total 13

parameters are involved in the new model. MF;C1;C2;C3

represent four newly introduced parameters describing the

evolution of the fabric tensor. These four parameters and

the initial fabric tensor can be readily determined via

regression analysis of relevant microscopic information

(e.g. from DEM simulations). However, these parameters

are hard to be obtained directly from laboratory tests due to

the difficulties in measuring the microscopic structures and

their evolution within a soil sample. Alternatively, a trial-

and-error method can be used as demonstrated later. Other

parameters inherited from CASM_b can be calibrated by

the method reported by Yu et al. [91, 92]. If the above

effects of the shear mode are considered, two additional

shape parameters l1 and l3 need to be determined. MF and

M should be interpreted as the corresponding critical fabric

values for triaxial compression, i.e. MFC, MCC. In general,

l1 can be determined by performing conventional triaxial

extension tests when MCC is known, and l3 can be deter-

mined from plane strain type tests (for example, simple

shear test). Alternatively, l1 can be estimated by using

Eq. (37), and l3 can be approximately set as 0.75. With

given initial values of the stress state, void ratio, and fabric

tensor, the initial reference consolidation pressure p0i and

the mapping ratio bi can be determined, as shown in

Appendix 2.

As aforementioned, the initial fabric tensor and the

parameters related to the fabric tensor evolution can be

determined directly based on DEM simulation results.

Therefore, we first validate the model using the results of

DEM simulations in Sect. 4.1. Afterwards, comparisons

between the model predictions and laboratory test results

are presented in Sect. 4.2. It needs to point out that the

focus will be placed on the performance of the new model

in capturing influences of the fabric anisotropy on the shear

strength and non-coaxial flow of granular materials in the

following analyses.

4.1 Comparison with DEM simulations

The model is compared with DEM simulations under

monotonic shearing with constant mean effective stress

p and b value. The DEM tests were carried out by Yang

[81] using PFC3D. In the simulations, the samples consist

of two-sphere clusters and have highly anisotropic fabric at

the initial state due to pre-shearing. The samples were

prepared by the deposition method. After isotropic con-

solidation to 500 kPa, the samples were pre-sheared tri-

axially (i.e. b = 0) up to 10% of shear strain, followed by

unloading to an isotropic stress state (see Fig. 7c for the

pre-loading history). During further monotonic shearing,

the mean effective stress p remains constant with b = 0.4,

and the direction of the major principal stress is fixed at 0�,
15�, 30�, 45�, 60�, 75�, 90� respectively, with respect to the

deposition direction (see Fig. 7a). Results of the fabric

evolution are presented in terms of the fabric deviator Fq-

= H3/2kFk, the intermediate fabric ratio Fb = (F2 - F3)/

(F1 - F3), and the principal direction of the fabric tensor

cF (see Fig. 7b). Fq, Fb and cF give a complete description

of the fabric tensor in a triaxial loading path.

The model parameters for the complete theoretical

scheme (SC1) are listed in Table 1. It should be noted that

in this section possible effects of the shear mode are

ignored. Hence MFc and Mcc are taken as constants and are

evaluated at b = 0.4. The fabric tensor after pre-loading is

characterised as Fqi ¼ 0:7; Fbi ¼ 0; cFi ¼ 0. The same

initial values of the model parameters for all the simula-

tions are taken as follows:

• Initial void ratio ei ¼ 0:65;

• Initial fabric tensor Fxxi ¼ Fyyi ¼ � 1
3
Fqi;Fzzi ¼ 2

3
Fqi;

Fxyi ¼ Fyzi ¼ Fxzi ¼ 0;

Fig. 7 a Definition of loading direction; b definition of principal fabric direction; c loading history of the pre-shearing of DEM samples
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• Initial reference consolidation pressure

p0i ¼ 26049kPa;

• Initial value of mapping ratio bi ¼ 0:0269.

In addition, three additional theoretical schemes as

summarised in Table 2 are also applied for the comparison

analysis. The theoretical scheme 2 (SC2) using the flow

direction of Eq. (28) is to more clearly reveal the effects of

associativity of flow rule in the deviatoric space. All the

material constants used in SC2 are the same as those in

SC1. In order to examine the influence of the fabric evo-

lution law on the predicted stress–strain relations, model

predictions with the evolution laws in Eqs. (15) and (16),

respectively, are also performed. Material constants used in

SC3 and SC4 are the same as those used in SC1. The initial

values are identical in all theoretical schemes.

Table 1 Material constants of the DEM samples

k v k M U Cb Cd r0 n C1 C2 C3 MF

0.005 0.3 0.058 0.95 2.13 10 1.5 50 2 0.32 1.3 9 1

Table 2 Summary of theoretical schemes

SC1 SC2 SC3 SC4

Evolution law Equation (14) Equation (14) Equation (15) Equation (16)

Flow rule in the deviatoric space Equation (29) Equation (28) Equation (29) Equation (29)
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4.1.1 Fabric evolution

Figures 8, 9 and 10 show results of the fabric evolution

obtained from both DEM simulations and model predic-

tions in terms of the fabric deviator Fq, intermediate fabric

ratio Fb, and principal fabric direction cF , respectively. At
large strains, DEM results under various loading directions

show that:

• the intermediate fabric ratio Fb evolves towards the

intermediate stress ratio, i.e. Fb ¼ b ¼ 0:4;

• the principal fabric direction cF evolves towards the

principal direction of stress tensor; hence, the fabric

tensor becomes coaxial with the stress tensor;

• the fabric deviator Fq evolves towards a unique value of

Fq ¼ MF ¼ 1.

Therefore, the fabric tensor tends to evolve towards a

unique critical fabric tensor Fc, which is independent of the

loading direction. This behaviour was also observed in

other DEM simulations with different initial fabric tensors

(e.g. [82, 95]). If we set the coordinate system coincident

with the loading directions, initial components of the fabric

tensors in the new coordinate system may vary with the

loading direction. In other words, the unique critical fabric

tensor is essentially independent of the initial fabric ten-

sors. The critical state fabric tensor is proportional to the

critical state stress tensor as postulated in Eq. (13). When

a� 45�, Fq will increase to a peak value and then decreases

gradually to the critical state value MF ¼ 1; when a[ 45
�
,

Fq will decrease initially to a minimum value, increase

gradually afterwards to a peak value and then decrease

again to the critical state value.

All these features of the fabric evolution are well cap-

tured by SC1 [namely, while using the fabric evolution law

of Eq. (14)]. The only imperfection in the predictions of

Eq. (14) is that Fq converges to MF ¼ 1 more quickly than

the DEM simulation results while a� 45
�
. This may be due

to that the chosen value of parameter C3 is slightly large. A

smaller value of C3 will ensure that the fabric evolution

approaches the critical state slower. The fabric evolution

predicted by SC2 (not presented here for brevity) is almost

the same as those by SC1. It implies that the flow direction

does not exert a significant effect on fabric evolution. This

is consistent with the fact that the fabric evolution law (14)
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Fig. 9 Stress ratio vs intermediate fabric ratio: a DEM; b SC1; c SC3; d SC4
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is dependent only on the norm, rather than the direction, of

the deviatoric plastic strain rate. SC3 can capture the fabric

evolution at a low stress level, but it has poor performance

at large strains as the predicted fabric tensors do not gen-

erally evolve towards the critical state fabric tensor. SC3

performs relatively better when the angle of the loading

direction is small. SC4 can capture the critical state char-

acteristics of the fabric tensor but does not perform well at

the pre-softening stage. This is due to that the plastic strain

rate is very small before the peak stress ratio, and the fabric

hardly evolves according to the fabric evolution law (16) at

this stage.

4.1.2 Strength and volumetric response

Figures 11 and 12 present DEM simulation results and

model predictions of the stress ratio and the volumetric

strain under different loading directions. Not surprisingly

that SC1 gives best predictions of the stress–strain beha-

viour over the entire loading paths. With increases of the

loading direction angle, the peak strength decreases and the

shear strain required to mobilise the peak strength increases.

The response of the sample is softer and more contractive in

tests with a larger loading direction angle. At large shear

strains, both the stress ratio and void ratio evolve towards a

unique value. SC3 captures the trend of the effects of

loading direction on the peak strength, but it fails to predict

a unique void ratio for tests with different loading direc-

tions. This can be explained by the fact that SC3 cannot

predict a unique fabric tensor at large strains. After the peak

stress ratio, the fabric tensor predicted by SC3 obviously

deviates from DEM results. The performance of SC3 is

better for a small loading direction angle. SC4 captures the

volumetric deformation behaviour satisfactorily, but it fails

to predict the effects of loading direction on the peak

strength. The comparison of results predicted using differ-

ent flow rules in the deviatoric space (i.e. SC1 and SC2)

shows that the flow direction has an insignificant effect on

the stress ratio and the volumetric strain.

4.1.3 Fabric anisotropy and non-coaxiality

Figure 13 presents DEM simulation results and theoretical

predictions of principal directions of the total strain
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Fig. 10 Stress ratio vs principal fabric direction: a DEM; b SC1; c SC3; d SC4
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increment (diamond) and the plastic strain increment (cir-

cle), in reference to the principal direction of the stresses.

As it is not easy to distinguish the elastic strain increment

from the total strain increment in DEM results, only results

of the total strain increment are presented. Generally, the

value of the non-coaxial angle increases with an increase in

the loading direction angle for a ranging from 0� to 45�,
and decreases are shown with further increases of the

loading direction while a is larger than 45�. At 0� and 90�
directions, the total strain increment is coaxial with the

stress tensor, which is due to that the fabric tensor is

coaxial with the stress tensor, as shown in Fig. 10. While

the loading direction varying between 0� and 90�, the non-
coaxial angle will reduce to zero gradually after the peak

stress ratio as the fabric tensor evolves towards the critical

state at which the fabric tensor is coaxial with the stress

tensor. All these features are captured by SC1 and SC2 in

terms of the total strain increments. However, the predic-

tions of SC1 and SC2 are different in terms of the plastic

strain increments. When the stress ratio is low, the pre-

dicted principal directions of the plastic strain increments

by SC2 are unrealistically large in comparison with those

by SC1. In theoretical predictions, at a low stress ratio the

total strain increment is nearly coaxial with the stress even

though the principal direction of the plastic strain obvi-

ously deviates from that of the stress tensor. Considering

that the elastic strain increment is always coaxial with the

stress tensor as an isotropic elastic model is assumed, it can

be inferred that the plastic strain develops gradually and is

smaller than the elastic strain at a low stress ratio. How-

ever, the DEM simulation results show that even at a very

low stress ratio, the strain increment is non-coaxial with the

stress tensor. This may imply that the elastic behaviour is

also anisotropic or the plastic strain increment should be

larger than the predicted values by SC1 and SC2. As the

stress ratio increases, predicted principal directions of the

total strain increment and plastic strain increment become

coincident, which implies that the elastic strain increment

becomes ignorable when compared with the plastic strain

increment. SC3 and SC4 adopt the same flow rule as SC1,

but SC3 is not able to predict coaxial deformation at large

strains as the fabric tensor cannot evolve to be coaxial with

the stress tensor. Overall, from the comparison, it can be

concluded that deformation non-coaxiality is highly related
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Fig. 11 Deviatoric strain vs stress ratio: a DEM; b SC1; c SC3; d SC4
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to fabric evolution and is significantly influenced by the

flow rule in the deviatoric space.

4.2 Comparison with laboratory tests

The applicability of the model is further assessed by

comparing with experimental results in the literature.

Model predictions for tests on different sands with various

loading paths under both drained and undrained conditions

are performed.

A series of tests investigating the drained behaviour of

air-pluviated Leighton Buzzard sand (Faction B) have been

performed by Yang [80]. The maximum and minimum

void ratios of the sand are 0.79 and 0.52, respectively. The

specific gravity Gs is 2.65. Only limited test results were

reported for the Faction B Leighton Buzzard sand. As

Portaway sand has index properties very similar to this

sand, the elastic and critical state parameters are taken as

suggested by Yu et al. [91] for Portaway sand

(Gs ¼ 2:65; emin ¼ 0:46; emax ¼ 0:79). The dilatancy

parameter Cd is calibrated using the response between the

volumetric strain and the shear strain in triaxial compres-

sion tests. The spacing ratio r is estimated by assuming the

maximum state parameter equals 0.07, which is also close

to the value calibrated for Portaway sand (i.e. 0.06).

Model predictions are also compared experimental

results from drained true triaxial tests [40] and simple shear

tests [56] and undrained true triaxial and simple shear tests

[88] with Toyoura standard sand. For Toyoura sand, the

elastic parameters follow those suggested by Gutierrez and

Ishihara [16], and the critical state parameters are deter-

mined from the data reported by Verdugo and Ishihara

[74], as shown in Fig. 1. Parameters Mcc and l1 are

obtained from the test results and l3 is determined as bpsc ¼
0:25 from simple shear tests at large strains as reported by

Yoshimine et al. [88]. The spacing ratio r is determined by

assuming that the maximum state parameter equals 0.1.

The dilatancy coefficient Cd is taken from Miura and Toki

[40].

The initial fabric tensor and the model parameters

related to the fabric evolution are optimised through trial-

and-error with reference to the values calibrated from the

previous DEM simulations. The material parameters for

both sands are summarised in Table 3. It is reasonable to

assume that the initial fabric tensor is cross-anisotropic,

namely Fb ¼ 0. Initial values of the fabric deviator for
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Fig. 12 Deviatoric strain vs volumetric strain: a DEM; b SC1; c SC3; d SC4
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Leighton Buzzard sand and Toyoura sand are set as 0.375

and 0.488, respectively. In all of the following predictions,

the influence of b value is considered.

4.2.1 Drained behaviour of Leighton Buzzard sand

Figures 14, 15, 16 and 17 compare test data and model

predictions for air-pluviated Leighton Buzzard sand under

monotonic shearing with constant values of b and a. In all

these tests, themean stress was kept constant at 200 kPa. The

loading condition and test setups were elaborated by Yang

[80]. Overall, the constitutive model generally captures the

influences of the loading direction and the b value on the

drained behaviour of Leighton Buzzard sand. In general, an

increase of either the angle a or the b value may lead to lower

shear strength and more contractive behaviour.

It is shown that before the peak strength is mobilised

(typically when the shear strain is lower than 10%), the
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Acta Geotechnica (2020) 15:1125–1151 1141

123



predicted strength and volumetric response are in good

agreement with the test results; after that, the predicted

sand response is stiffer and more dilative than that mea-

sured in the tests for most cases. These differences may be

attributed to the fact that after the peak stress ratio shear

bands develop quickly and become obviously visible,

which leads to high hetero-homogeneity of the hollow

cylindrical samples in the laboratory tests (see Fig. 18a).

Consequently, the hetero-homogeneity prevents the fabric

evolution towards the unique critical state fabric in the

tests. However, a unique critical state fabric is assumed in

the constitutive model, and the model parameters related to

fabric evolution were determined with reference to the

DEM results. In the DEM simulations, the sample is

homogenous and no shear band can be observed even at

very large shear strains (see Fig. 18b). In the DEM simu-

lations, the sample is not in a cylindrical shape but as a

solid drum, and a new technique is used to control the

movement of planes for generating general loading paths.

The use of this technique maintains that the sample tends to

be macroscopically uniform even at a large shear strain

(e.g. eq ¼ 40%). Besides, the particle number used in the

DEM simulations is limited when compared with that

involved in laboratory tests. This may also inhibit the

macroscopic development of shear bands, even though

micro-shear bands of several particle diameters in width

could develop. For example, in Fig. 14, the experimental

results obtained from tests with different loading directions

show no sign of a unique critical stress ratio or a unique

void ratio to be reached at the critical state. In the model

predictions, however, the volumetric strain and the stress

ratio continuously evolve towards the same value as the

fabric evolves towards a unique anisotropic critical state.

In addition, the discrepancy between the predicted and

measured volumetric strains (e.g. the case of b ¼ 1; a ¼ 0
�

in Fig. 15) suggests that the dilatancy function is dependent

on the current fabric. Although it may increase the degree

of complexity of the model, additional assumptions about

the dependency of the dilatancy function on the fabric

tensor need to be introduced, which can further improve

the accuracy of the model prediction on the volumetric

deformation response.

Table 3 Summary of material parameters

Category Symbol Leighton

Buzzard sand

(Faction B)

Toyoura

sand

Remarks

Elasticity k 0.005 0.004 Typical value

usedm 0.16 0.2

Critical

state

k 0.025 0.031 Figure 1

C 1.800 2.067

Mcc 1.16 1.25 Triaxial

compression

tests

MFc 1 1 Assumed

Yield

surface

r=r0 33/3568 40.6/

3130

Estimated by

the maximum

state

parameter

n 2 2 Typical value

used

Dilatancy Cd 0.85 0.9 Triaxial tests

Mapping

law

Cb 5 0.65 Trial-and-error

Fabric

evolution

law

C1 0.37 0.38 Trial-and-error

C2 1.3 1.3

C3 5.2 4.5

Effect of

b value

l1 0.73 0.75 Triaxial

extension tests

l3 0.75 0.75 Plane strain

tests

PredictedMeasured
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Fig. 14 Comparison between model predictions and measured data for drained shear tests of air-pluviated Leighton Buzzard sand (Faction B)

with different loading directions at b = 0.5. a Deviatoric strain vs. stress ratio; b deviatoric strain vs. volumetric strain
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4.2.2 Undrained true triaxial tests of Toyoura sand

Figures 19 and 20 compare model predictions and mea-

sured results [88] for dry-deposited Toyoura sands in

undrained shear tests with different loading directions and

b values. It is shown that the model satisfactorily predicts

the influences of the loading direction and the intermediate

stress ratio as well as the relative density on the undrained

behaviour of Toyoura sand. It shows that a larger value of a
or b generally leads to a softer and relatively more con-

tractive sand response, which is also often observed in tests

under drained conditions. It is noted that the model cap-

tures the gradual exhibition of the existence of the ‘quasi-

steady state’ with an increasing value of the loading angle.

It also predicts the gradual recovery of the shear stress after

the ‘quasi-steady state’. However, the model predictions

show that the recovery of shear stress after the ‘quasi-

steady state’ at a	 45
�
is slower than that of the measured

data for samples of Dr = 39–41%, but faster than that for

samples of Dr = 31–34%.

4.2.3 Undrained torsional simple shear test of Toyoura
sand

Figure 21 shows a comparison between the model predic-

tion and the measured data in undrained torsional simple

shear tests of dry-deposited Toyoura sand [88]. The sample

was torsionally sheared from an initial anisotropic con-

solidation state with p ¼ 133kPa and q ¼ 100kPa. As

shown in Fig. 21, the model predicts the sand response

reasonably well in the case of e0 ¼ 0:835. When shearing

begins, the direction of the major principal stress rotates

rapidly to the direction a ¼ 45
�
and the b value increases

quickly towards b ¼ 0:25. Although the model predicts the

measured data in trend for the case of e0 ¼ 0:858, the shear

stress recovers quicker than that measured. This may be

due to that the realistic critical state line in the v� lnp

plane is nonlinear (the slope of the critical state line

decreases with an increasing void ratio). After the ‘quasi-

steady state’, stresses evolve towards the critical state

values, but the linear assumption for the critical state line
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Fig. 15 Comparison between model predictions and measured data for drained shear tests of air-pluviated Leighton Buzzard sand (Faction B)

with different b values at a ¼ 0
�
. a Deviatoric strain vs. stress ratio; b deviatoric strain vs. volumetric strain
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Fig. 16 Comparison between model predictions and measured data

for drained shear tests of air-pluviated Leighton Buzzard sand

(Faction B) with different b values at a ¼ 30
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. a Deviatoric strain vs.
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in the v� lnp plane overestimates the critical state shear

stress, which makes the predicted recovery of the shear

stress faster than that measured in the tests with loose sand

samples.

4.2.4 Drained triaxial test of Toyoura sand

Figure 22 presents a comparison between the model pre-

dictions and the measured data for drained shear tests on

Toyoura sand samples prepared by a multiple sieving

pluviation method. Although different preparation methods

might induce different initial fabrics in a sample [53], the

initial fabric deviator was estimated based on dry-deposited

sand samples because of the insufficient relevant

information in the source reference. Fq ¼ 0:485 is used in

the predictions given in Fig. 22. Despite that the stiffness

and the dilation response of the sand are slightly overes-

timated, the influence of the loading angle on the drained

behaviour of Toyoura sand is well captured by the model.

4.2.5 Drained simple shear test of Toyoura sand

Figure 23 shows predicted and measured results of drained

simple shear tests that performed on air-pluviated Toyoura

sand samples with different initial void ratios [56]. Prior to

performing shear tests, the samples were one-dimension-

ally consolidated until the vertical stress r11 ¼ 98kPa was

reached. During shearing, the vertical stress was kept
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Fig. 17 Comparison between model predictions and measured data for drained shear tests of air-pluviated Leighton Buzzard sand (Faction B)

with different b values at a ¼ 90
�
. a Deviatoric strain vs. stress ratio; b deviatoric strain vs volumetric strain

Fig. 18 Typical sample shapes at a large shear strain. a laboratory tests with obvious shear bands (after [80]); b DEM tests without obvious shear

bands (after [81])
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constant. According to Okichi and Tatsuoka [51], the

consolidation coefficient is calculated as K0 ¼ 0:52e0.

Again, the estimated initial value of fabric deviator Fq ¼
0:485 is used in the model predictions. Overall, the model

predictions are in agreement with the measured data.

It is shown that the prediction accuracy is relatively

higher for the sample with an initial void ratio of

e0 ¼ 0:798. For the sample with a smaller initial void ratio,

the predicted stress ratio is slightly larger than that mea-

sured, and the rotation of the major principal stresses are

smaller than that measured. These differences may also be

attributed to the fact that the realistic critical state line in

the v� lnp plane of the Toyoura sand is nonlinear. It is

shown in Fig. 23e that rotation of the principal stress axes

takes place only at very early stages of shearing, which was

also reported in the torsional shearing test [56]. Fig-

ure 23(e) also presents the predicted principal directions of

the total strain rate, the plastic strain rate and the fabric

tensor (i.e. adet; adep; aF) and two non-coaxial angles

defined as adet � asð Þ and ðadep � asÞ, respectively. How-
ever, no measured data about the principal strain incre-

ments was reported. It can be seen that, as the fabric tends

to align with the stress, the non-coaxial angle becomes

smaller and smaller upon loading, which is generally

consistent with observations from experimental tests [59]

and DEM simulations [94] for granular materials.

5 Conclusions

This paper presents an anisotropic bounding surface model

for granular materials with consideration of the effects of

material fabric anisotropy. It is shown that this model has

the following features:
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Fig. 19 Comparison between model predictions and measured data for undrained true triaxial tests of dry-deposited Toyoura sand with different

loading directions at b = 0.5
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• The fabric anisotropy is described by a second-order

fabric tensor which characterises spatial distributions of

the contact normals. The evolution of the fabric tensor

is assumed to be dependent on both the stress ratio rate

and the plastic strain rate, which essentially defines that

the fabric evolution under a monotonic shearing is

initially dominated by the stress ratio rate and eventu-

ally towards the critical state with a unique fabric
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tensor. It is postulated that the critical state fabric tensor

is proportional to the stress tensor, which is independent

of the initial void ratio and the initial fabric tensor;

• The yield surface is modified from the original yield

surface of CASM by incorporating the back stress

which is proportional to the fabric tensor. The propor-

tional coefficient is obtained from the micromechanical

stress-force-fabric relationship, and it is recommended

to be 2/5 for 3D cases;

• A non-associated flow law in the deviatoric plane is

proposed, by which the non-coaxial flow can be

naturally predicted;

• The effects of the b value were incorporated into the

yield function, the dilatancy function and the flow

direction.
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The new constitutive model was calibrated by compar-

ing with DEM simulations under drained conditions with

stress principal directions fixed in different directions.

Predictions in terms of the stress-strength-deformation

behaviour and the fabric evolution agree well with the

DEM simulation results. In comparison with the predic-

tions obtained using simplified evolution laws and an

associated flow rule, it is concluded that:

• the fabric evolution law is crucial for modelling

anisotropic behaviour of granular materials;

• the proposed evolution law which assumes that the rate

of the fabric tensor is dependent on both the stress ratio

rate and the plastic strain rate is reasonably valid under

monotonic loading;

• an associated flow rule in the deviatoric plane may

overestimate the non-coaxial angle.

Drained test results of air-pluviated Leighton Buzzard

sand and undrained and drained test results of Toyoura

sand prepared by different methods were used to validate

the new model. Comparison results demonstrated that the

model can capture the anisotropic behaviour caused by

combined effects of loading directions, shear mode, and

initial void ratio in granular materials.

Note that the applicability of the proposed model for

tests under some complicated loading paths (e.g. those

involving continuous rotations of the principal direction of

the stress tensor and cyclic loading) is not validated. The

effects of fabric anisotropy on the dilatancy function were

ignored in this model. Further investigations on these

aspects will be carried out in the future study.
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Appendix 1: Derivatives of loading surface

According to the chain rule, we can obtain the derivatives

as follows:

fS ¼ f~q~qS þ fmmS; ð52Þ

fF ¼ f~q~qF þ fmmF ð53Þ

fp ¼ f~q~qp þ fmmp �
n

p

~q

mp

� �n

þ 1

ln r0ð Þp ; ð54Þ

fb ¼
�1

bln r0ð Þ ; ð55Þ

fp0 ¼
�1

p0ln r0ð Þ ; ð56Þ

where

f~q ¼
~q

mp

� �n

¼ n

~q

~q

mp

� �n

; fm ¼ � n

m

~q

mp

� �n

ð57Þ

~q ¼ 3=2 S� fpFð Þk k ¼ 3=2tk k; ð58Þ

~qS ¼
ffiffiffiffiffiffiffiffi
3=2

p t

tk k ; ~qF ¼ �
ffiffiffiffiffiffiffiffi
3=2

p fpt
tk k ; ~qp ¼ �

ffiffiffiffiffiffiffiffi
3=2

p ft : F
tk k
ð59Þ

mt ¼
1� l41
� �

m5

8 l1Mccð Þ4
ov
ot

; ð60Þ

mS ¼ mt;mF ¼ �fpmt;mp ¼ �fmt : F ð61Þ

ov
ot

¼ 1

tk k 3
ffiffiffi
6

p
t2 � 1

3
tr t2
� �

I

� �
� v

t

tk k

� �
ð62Þ

When the loading surface does not account for the

influence of shearing mode, m is a constant and indepen-

dent of t. Thus, there is mt ¼ 0: The derivatives fS; fF; fp
will be considerably simplified.

Appendix 2: Determination of p0i and bi

Initial values of the reference consolidation pressure p0i
and the mapping ratio bi can be deduced from initial values

of the stress state, void ratio and fabric tensor by consid-

ering a special monotonic shearing path where p is kept

constant. This special loading path will not induce elastic

volumetric strain. Under monotonic shearing without

elastic volumetric strain, integration of Eq. (26) leads to:

p0 ¼ exp eM � eð Þ= k� jð Þð Þ ð63Þ

where eM represents the void ratio when p0 ¼ 1. At the

initial void ratio, there is:

p0i ¼ exp eM � eið Þ= k� jð Þð Þ ð64Þ

and at the critical state, there is:

p0c ¼ exp eM � ec pcð Þð Þ= k� jð Þð Þ ð65Þ

Considering the critical state on the yield surface, it is

obtained that:
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1� 1

f
MF

M

� �n

þ ln pc=p0cð Þ
ln r0ð Þ ¼ 0 ð66Þ

Combining Eq. (11) with Eqs. (65) and (66) and then

eliminating eM from Eq. (65), we obtain:

p0i ¼ piexp ln r0ð Þ 1� 1

f
MF

M

� �n

þ ec pið Þ � ei

k� j

� �
ð67Þ

Once p0i is known, bi can be easily obtained from the

loading function of Eq. (32) as follows:

bi ¼
pi

p0i
exp ln r0ð Þ ~qi

Mpi

� �n� �
� 1 ð68Þ
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39:601–614

61. Rothenburg L, Kruyt NP (2004) Critical state and evolution of

coordination number in simulated granular materials. Int J Solids

Struct 41:5763–5774

62. Rowe PW (1962) The stress-dilatancy relation for static equi-

librium of an assembly of particles in contact. Proc R Soc Lond

Ser A 269:500–527

63. Schofield A, Wroth CP (1968) Critical state soil mechanics.

McGraw-Hill, London

64. Sekiguchi H (1977) Induced anisotropy and time dependency in

clays. In Murayama, S; Schofield, AN (eds) Proceeding 9th

intemational conference on soil mechanics and foundation engi-

neering, specialty session 9. Tokyo, pp 229–238

65. Sheng DC, Sloan SW, Yu HS (2000) Aspects of finite element

implementation of critical state models. Comput Mech

26:185–196

66. Shi J, Guo P (2018) Fabric evolution of granular materials along

imposed stress paths. Acta Geotech 13(6):1341–1354

67. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic

sand plasticity model. Int J Numer Anal Meth Geomech

32:915–948

68. Tatsuoka F (1999) Small strain behaviour of granular materials.

In: Oda M, Iwashita K (eds) Mechanics of granular materials: an

introduction. Balkema Publishers, Rotterdam, pp 299–308

69. Thornton C (2000) Numerical simulation of deviatoric shear

deformation of granular media. Géotechnique 50(1):43–53
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