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A B S T R A C T

Bone metastases (BM) are a common complication of cancer, whose management often requires a multi-
disciplinary approach. Despite the recent therapeutic advances, patients with BM may still experience skeletal-
related events and symptomatic skeletal events, with detrimental impact on quality of life and survival.
A deeper knowledge of the mechanisms underlying the onset of lytic and sclerotic BM has been acquired in

the last decades, leading to the development of bone-targeting agents (BTA), mainly represented by anti-re-
sorptive drugs and bone-seeking radiopharmaceuticals. Recent pre-clinical and clinical studies have showed
promising effects of novel agents, whose safety and efficacy need to be confirmed by prospective clinical trials.
Among BTA, adjuvant bisphosphonates have also been shown to reduce the risk of BM in selected breast

cancer patients, but failed to reduce the incidence of BM from lung and prostate cancer. Moreover, adjuvant
denosumab did not improve BM free survival in patients with breast cancer, suggesting the need for further
investigation to clarify BTA role in early-stage malignancies.
The aim of this review is to describe BM pathogenesis and current treatment options in different clinical

settings, as well as to explore the mechanism of action of novel potential therapeutic agents for which further
investigation is needed.

1. Introduction

Bone metastases (BM) represent a common complication of cancer,
whose incidence reaches 70–95% in multiple myeloma (MM) [1], up to
65–90% in prostate cancer (PC) and about 65–75% in breast cancer
(BC). Skeletal involvement is less frequent in other malignancies, ran-
ging from approximately 10% in colorectal tumors to 17–64% in lung
cancer (LC) [2].

Among epithelial malignancies, PC and BC are associated with the
longest median survival after BM diagnosis (12–53 and 19–25 months,

respectively) [3], reflecting the therapeutic advances of the last dec-
ades. Similarly, MM patients diagnosed after 2010 experienced im-
proved clinical outcomes, the 2-year survival rate having increased
from 69.9% in 2006 to 87.1% in 2012 [4].

Patients with BM may experience skeletal complications, such as
pathological fractures, hypercalcaemia, spinal cord injury and un-
controlled pain requiring bone surgery and/or radiotherapy, which are
collectively called skeletal-related events (SREs) [5]. In particular,
those events inducing an exacerbation of cancer-related pain have been
recently defined “symptomatic skeletal events” (SSEs) and evaluated in
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clinical trials to monitor patients’ quality of life (QoL) [6]. The major
treatment options for BM aim at symptom palliation and SRE preven-
tion, while specific anti-cancer therapies are concurrently delivered to
reduce the tumor burden at both skeletal and extra-skeletal sites [7].

Bone-targeting treatments include loco-regional and systemic ap-
proaches. The former, mainly represented by orthopedic surgery and
radiotherapy, are usually performed to control bone pain and prevent
pathological fractures. The latter include inhibitors of bone resorption,
anabolic agents and radiopharmaceuticals, whose activity is aimed at
restoring physiological bone turnover, badly impaired in bone-meta-
static patients [7]. Recently, novel therapeutic approaches have been
developed, including the bone-targeting radiopharmaceutical Radium-
223 dichloride, that has been licensed for the treatment of BM asso-
ciated with castration-resistant PC (CRPC) [6], and is under investiga-
tion in other settings.

Further studies showed the potential effectiveness of bispho-
sphonates in preventing BM from high-risk early BC (EBC) in women
with established menopause at diagnosis or receiving gonadotropin-
releasing hormone (GnRH) analogues [8,9], although no benefit was
observed in patients with other solid malignancies [10,11].

This review focuses on BM pathogenesis in solid tumors and MM;
current treatment options will be discussed, together with promising
and potentially novel approaches to be further investigated.

2. Methods

We conducted an extensive research among international literature
included in the PubMed database and published between 2008 and
2018, by using key words such as “bone metastases”, “skeletal related
events” and “bone targeting agents”, in association with “multiple
myeloma”, “breast cancer”, “prostate cancer” or “lung cancer”.

Titles and abstracts of the articles were first screened to identify the
most relevant papers; selected articles and their bibliography were then
further examined for relevancy. Articles written in languages other than
English were not taken into consideration.

Conference abstracts from the websites of relevant international
oncology meetings were also screened and included if deemed appro-
priate.

3. Pathogenesis of BM

3.1. Physiological bone turnover

Bone is made up of an extracellular matrix (ECM) surrounding os-
teoclasts, osteoblasts, osteocytes and bone marrow stromal cells
(BMSC). The ECM contains both an organic component, formed by type
I collagen, proteoglycans and glycoproteins, and inorganic ions (cal-
cium and phosphate) organized in hydroxyapatite crystals [12].

Osteoclasts derive from monocyte-macrophages and are deputed to
bone resorption. Their activation is promoted by systemic and local
factors; the former include 1,25-dihydroxyvitaminD3 and parathyroid
hormone (PTH) while the latter comprise interleukin-1 (IL-1), IL-6,
macrophage colony-stimulating factor (MCSF) and PTH related protein
(PTH-rP). Anti-osteoclastogenic factors (e.g. calcitonin, IL-4, IL-18, in-
terferon-β) prevent excessive bone resorption [13].

The receptor activator of nuclear factor-κB (NF-κB) ligand (RANK-
L)/RANK/osteoprotegerin axis plays a major role in both osteoclasto-
genesis and osteoclast activation. RANK-L is a member of the tumor
necrosis factor (TNF) family, produced by osteoblasts, stromal and ac-
tive T-cells in response to pro-osteoclastogenic stimuli. Once RANK-L
interacts with its receptor (RANK) expressed by osteoclast precursors,
these are activated via NF-kB and Jun N-terminal kinase pathways.
Osteoprotegerin, a soluble decoy receptor for RANK-L, prevents osteo-
clast hyper-activation [3].

Osteoblasts originate from mesenchymal stem cells and are deputed
to osteogenesis. Their differentiation is promoted by endothelin-1 (ET-

1), platelet-derived growth factor (PDGF), fibroblast growth factor
(FGF), bone morphogenetic proteins (BMPs) and transforming growth
factor β (TGF-β) which in turn activate the transcription factor Runx-2
[13]. Some osteoblasts are embedded in the bone matrix and become
osteocytes, cells with dendritic protrusions acting as mechano-trans-
ducers [14].

3.2. Onset of BM from solid tumors

Primary malignancies can drive the metastatic process at early
stages, stimulating BMSC to prepare the pre-metastatic niches [15].
Meanwhile, epithelial tumor cells may undergo a morphological and
functional remodeling, losing epithelial markers (i.e. E-cadherin and
cytokeratins) and features, such as polarity and intercellular junctions,
in favor of mesenchymal-like shape and markers (i.e. N-cadherin, fi-
bronectin and vimentin). This process, termed the “epithelial-to-me-
senchymal transition”, enhances cancer cell migration and invasive-
ness, which are necessary for metastasis onset [16].

In 1889, Paget [17] postulated that cancer cells (seeds) metastasize
towards a favorable microenvironment (soil), and recent studies have
provided a molecular explanation of his theory. Bone-homing tumor
cells overexpress chemokine receptors, such as C–X–C motif chemokine-
receptor-4 (CXCR-4), whose ligand C–X–C motif chemokine-ligand-12
(CXCL-12) is secreted by stromal cells, including BMSC. Other chemo-
kine axes, namely CXCR-6/CXCL-16 and CXCR-3/CXCL-10, are in-
volved in this process [18,19], while the calcium sensing receptor is
implicated in BC cell migration towards calcium-rich sites [20]. From
these metastatic niches, cancer cells may spread to other organs; in the
meantime, they enter a state of dormancy, promoted by BMPs and
growth-arrest specific-6 (GAS6) protein, secreted by mesenchymal cells
[21,22]. This quiescent state, together with the acquisition of osteoblast
and/or osteoclast markers (the so-called “osteomimicry”) permit tumor
cell escape from anti-cancer drugs and immune response [5].

Once the surrounding environment becomes suitable for cancer cell
proliferation, lytic or sclerotic BM may arise. The former (Fig. 1) un-
derlie the establishment of a vicious circle in which tumor cells secrete
pro-osteoclastogenic cytokines, increasing bone resorption. Growth
factors (GFs) physiologically stored in bone (e.g. TGF-β, PDGF, etc.) are
released during this process, and stimulate cancer cell proliferation
[23].

The mechanisms leading to sclerotic BM are less clear (Fig. 2). A
number of tumor-derived GFs (e.g. TGF-β, BMPs, FGF and Wnt) may
enhance osteoblast differentiation and activity, while ET-1 inhibits os-
teoclasts [24]. In PC, prostate specific antigen (PSA) is capable of
cleaving PTHrP, shifting bone turnover towards osteogenesis. More-
over, PC cells secrete BMP-4, that promotes an endothelial-to-osteoblast
conversion in the bone marrow [25].

In most patients with solid malignancies, lytic and sclerotic BM
coexist, suggesting a partial overlap of such mechanisms [3].

3.3. Mechanisms of BM development in MM

The pathogenesis of myeloma bone disease relies on reciprocal in-
teractions between malignant plasma cells (MPC) and bone-residing
cells, leading to the prevalence of bone resorption over osteogenesis
(Fig. 3).

MPC inhibit osteoblast differentiation through the secretion of
sclerostin and dickkopf1 (DKK1) that dysregulate Wnt signaling, which
is essential for osteoblastogenesis; moreover, MPC inhibit the tran-
scription factor Runx-2 in osteoblast precursors, further impairing their
maturation [12].

In addition, osteocyte number and viability are reduced in MM
patients due to abnormal apoptosis, first activated (via Notch signaling)
by the interaction with MPC, then sustained by tumor-derived TNF-α
[26].

The cross-talk between MPC and bone microenvironment induces
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the release of pro-osteoclastogenic factors, including RANK-L, IL-6,
Activin-A and MCSF [1,12]. Moreover, macrophage inflammatory
protein-1 alpha (MIP-1α) is secreted by MPC and binds both chemo-
kine-receptor type 1 (CCR1) and 5 (CCR5) expressed by osteoclasts,

increasing their activation. MIP-1α also stimulates MPC proliferation
and survival, through the autocrine activation of the mitogen-activated
protein kinase (MAPK) pathway [27,28].

Several studies suggested that MPC could also directly participate in

Fig. 1. The vicious circle of lytic BM in solid
malignancies. The onset of lytic BM from solid
tumors (e.g. BC) is due to the establishment of
a self-propagating vicious circle, based on the
cross-talk between cancer cells and the bone
microenvironment. Tumor cells secrete pro-
osteoclastogenic cytokines that, either directly
or indirectly (via osteoblasts), stimulate os-
teoclast differentiation and activity. This leads
to an enhanced bone resorption, and con-
sequent release of matrix-embedded growth
factors (e.g. TGF-β, PDGF and insulin-like
growth factor) which in turn promote cancer
cell proliferation.

Fig. 2. Mechanisms of sclerotic BM for-
mation: major hypotheses. The mechan-
isms leading to the onset of sclerotic BM
have not been completely elucidated.
Tumor cells secrete a number of growth
factors (e.g. TGF-β, BMP, FGF and Wnt)
which enhance the differentiation of me-
senchymal progenitors into osteoblasts
(red). In PC, tumor-derived ET-1 and PSA
are capable of inhibiting bone resorption,
shifting the balance of bone turnover to-
wards osteogenesis (green). More recently,
BMP-4 has emerged as a novel factor pro-
moting osteogenesis, through the induc-
tion of endothelial cell conversion to os-
teoblasts (blue). (For interpretation of the
references to color in this figure legend,
the reader is referred to the web version of
this article.)
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bone destruction, undergoing functional trans-differentiation into bone
resorbing cells [29–32]. In this regard, MPC may generate osteoclast-
like polykarions in vitro [30], and acquire the expression of myeloid
and osteoclast markers (e.g. RANK; TRAP; MCSF receptor, MCSFR;
vacuolar-type H+ATPase, v-ATPase), while forming erosive pits on
calcium/phosphate slices, under appropriate stimuli [30–32].

4. Therapeutic approaches to BM

4.1. Loco-regional treatments

Loco-regional approaches to BM include radiation therapy (RT) and
orthopedic surgery, whose major purposes are pain relief and man-
agement of SREs, such as pathological fractures and spinal cord com-
pression.

With respect to RT, ossification of lytic BM usually begins 3–6 weeks
after treatment delivery, reaching its highest degree within 6 months
[33]. Pain relief is achieved almost completely in 50% of patients, and
generally occurs within the first 2 weeks of treatment [7]. RT doses,
techniques and schedules vary according to patients’ features and pre-
ferences, as well as primary tumor histology and clinicians’ judgment.
In the United States, prolonged fractionated schedules are preferred
over a short-course treatment, which is more commonly delivered in
Europe and Canada [7,33].

Several randomized trials compared different fractionation sche-
dules and showed that fractionated and single-fraction treatments were
equally effective for pain control [34–36]. Re-irradiation of the same
anatomical site may be considered in case of inadequate pain relief, or
to manage pain relapse after initial clinical benefit. Single-fraction RT is
often preferred by patients and caregivers because of the shorter
duration, but it is associated with higher re-treatment rate. On the other
hand, long-course schedules are more frequently complicated by acute
toxicities than short course ones [33].

Orthopedic surgery is generally performed in case of pathological
fractures or to stabilize high-risk lesions. Treatment modality depends
upon life expectancy and metastasis site; in particular, spinal BM may
cause severe instability with consequently uncontrolled pain and high
risk of spinal cord injury [3].

Besides traditional surgery, less invasive procedures such as percu-
taneous vertebroplasty and kyphoplasty can be considered for selected
patients [37]. These options aim at the stabilization of high-risk spinal
BM by the injection of bone cement into the vertebral body, to restore
its physiological height and prevent neurological complications [38]. In
case of spinal lesions, stereotactic radio-surgery could be also per-
formed to avoid both open surgery and the bone marrow toxicity in-
duced by standard RT. However, results from randomized clinical trials
are awaited to establish its effectiveness and safety, compared to
standard irradiation [3].

Other loco-regional treatment options include radiofrequency ab-
lation and cryoablation which induce tissue heating or freezing, re-
spectively, to reduce the tumor burden in bone [3].

4.2. Systemic treatments

4.2.1. Inhibitors of bone resorption
Systemic approaches to BM include specific anti-tumor treatments,

necessary to control disease progression at both skeletal and extra-
skeletal sites, and BTA (Fig. 4), among which anti-resorptive drugs re-
present the mainstay of BM management. Several agents belong to this
category (Table 1), including approved drugs (bisphosphonates and
denosumab) and not licensed molecules (cathepsin-K inhibitors, in-
hibitors of c-Src). Among systemic anti-tumor treatments, several
agents (inhibitors of mammalian target of rapamycin, proteasome in-
hibitors, androgen modulators) have been shown to actively modulate
osteoclastogenesis and will be also discussed in this section for their
contribution to BM management.

Fig. 3. Mechanisms of BM onset in MM. In
MM, reciprocal interactions between MPC
and bone-residing cells lead both to sup-
pressed osteogenesis and increased bone
resorption.
MPC interfere with osteoblast differentia-
tion (green) through the secretion of
sclerostin and DKK1, and the inhibition of
the transcription factor Runx-2 in osteo-
blast precursors.
In addition, MPC promote the apoptosis of
osteocytes (red), whose number and via-
bility are reduced in MM patients, com-
pared to healthy controls.
Finally, the cross-talk between tumor cells
and bone microenvironment induces the
release of pro-osteoclastogenic factors, in-
cluding RANK-L, IL-6, Activin A, MCSF and
MIP-1α, with a consequent increase of os-
teoclast maturation and activity (blue).
(For interpretation of the references to
color in this figure legend, the reader is
referred to the web version of this article.)
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Approved BTA
Bisphosphonates (BPs): BPs are pyrophosphate analogues, whose

chemical structure includes a P-C-P central domain binding to bone
matrix, and a variable R’ chain [39]. According to the presence, or not,
of a nitrogen atom in R’, BPs are defined as “nitrogen-containing” (N-
BPs: zoledronate, ibandronate, etc.) or “non-nitrogen containing” (non-
N-BPs: clodronate, etidronate, etc.). The former inhibit farnesyl pyr-
ophosphate synthase, which is essential for osteoclast survival and ac-
tivity; the latter are metabolized to cytotoxic adenosine triphosphate
analogues that induce osteoclast apoptosis [2].

BPs have been shown to target several cell types including immune

cells, osteoblasts and endothelial cells [40–42], while a direct anti-
tumor activity has also been described for N-BPs, both in vitro and in
vivo [43]. BPs stimulate innate anti-cancer immune response by up-
regulating γδT-cells [44]. Moreover, zoledronate is able to generate
tumor-suppressive BMSC in murine models of BC [45].

During the late 1990s, BPs became the standard of care for BM
treatment in both solid tumors and MM, as well as the major ther-
apeutic option for SRE prevention [46].

Several clinical trials demonstrated that, among N-BPs, zoledronate
was the most effective for SRE prevention in both MM and solid tumors,
while a significant improvement of survival outcomes was reached only

Fig. 4. Mechanisms of action of common
and potential therapeutic agents for BM
management. The image shows the me-
chanisms of action of common BTA, such
as denosumab and BPs, as well as poten-
tially novel therapeutic options which
warrant further investigation. On one
hand, denosumab interacts with RANK-L,
thus interfering with its binding to RANK
on osteoclasts (OC); on the other hand, BPs
directly act on the latter, compromising
their survival and/or bone-resorbing ac-
tivity. Moreover, BPs have been shown to
exert a direct anti-tumor activity (in vitro
and in vivo), and to stimulate an anti-
cancer immune response. Other agents
(e.g. Src-inhibitors, mTOR inhibitors) in-
hibit fundamental signaling pathways in
OC, while mTOR inhibitors also exert an
anti-cancer effect. Inhibitors of cathepsin-
K, a lysosomal enzyme involved in bone
matrix degradation, have also been devel-
oped, although routine use is limited by
their toxicity. Due to their ability to in-
terfere with osteoblast (OB) differentiation
and activity, both sclerostin and DKK-1 are
under investigation as therapeutic targets
for BM management.

Table 1
Inhibitors of bone resorption for the management of BM.

Drug class Mechanism of action Experimental phase Indication for BM treatment References

BPs N-BPs: ↓ mevalonate pathway, essential
for osteoclast activity and survival;
NoneN-BPs: ↑ osteoclast apoptosis

Phase III Treatment of BM and SRE prevention in MM, BC, CRPC and other
solid tumors (if clinically indicated)

[2, 46–55]

Denosumab Anti-RANK-L mAb:
↓ osteoclast differentiation and activity

Phase III Treatment of BM and SRE prevention in BC, CRPC and other solid
tumors (if clinically indicated). Recently approved by FDA in MM
setting.

[2, 46, 56–60]

Cathepsin-K
inhibitors

↓ bone matrix degradation by osteoclasts Discontinued No indications [28,62–64]

c-Src inhibitors ↓ RANK-L-induced osteoclast
differentiation

Phase I/II No indications [28,67–71]

mTOR inhibitors ↓ osteoclast differentiation and activity; ↑
osteoclast apoptosis

Phase III in BC
Phase II in other solid
tumors
Phase I in MM

Everolimus approved in association with exemestane in advanced
HR + HER2-BC with bone-prevalent disease; BPs or Denosumab
to be associated

[2, 74–82]

Proteasome
inhibitors

↓ osteoclastogenesis;
↑ osteoblast differentiation;
↑ synthesis of collagen and BMP

Phase III in MM Bortezomib and Carfilzomib + BPs (in association, or not, with
cht, IMiDs and steroids) approved in MM

[83–87]

Abiraterone acetate ↓ osteoclastogenesis and osteoclast
activity;
↑ osteoblast differentiation;
↑ bone matrix deposition;
anti-tumor effect

Phase III in CRPC Treatment of BM and SRE prevention in CRPC [88,89,92,93]

Acronyms: BM: bone metastases; BPs: bisphosphonates; N-BPs: nitrogen-containing BPs; non-N-BPs: non-nitrogen-containing BPs; MM: multiple myeloma; BC: breast
cancer; CRPC: castration-resistant prostate cancer; receptor activator of nuclear factor-κB ligand; mAb: monoclonal antibody; SRE: skeletal related events; FDA: food
and drug administration; mTOR: mammalian target of rapamycin; cht: chemotherapy; IMiDs: immunomodulatory drugs.
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in MM setting [47–50]. With respect to PC, no significant benefit was
observed in bone-metastatic patients with castration-sensitive disease,
in terms of both median time to first SRE (31.9 months with zoledronate
vs 29.8 months with placebo, P = 0.39) and overall survival (OS)
(P = 0.29) [51]; on the other hand, in the CR setting zoledronate re-
duced the risk of SREs by 36% compared to placebo (P= 0.002), while
significantly delaying the time to first SRE (488 days vs 321 days,
P = 0.002) [52].

According to current guidelines, BPs represent a valuable treatment
option for patients with skeletal metastases. In particular, among in-
travenous agents, zoledronate is approved for BM management in both
solid tumors and MM, while pamidronate can be administered to BC
and MM patients. Ibandronate is effective in BC patients in both in-
travenous and oral formulations. Oral clodronate is another therapeutic
option for the management of lytic BM [46].

In MM and BC, BPs should be prescribed from the first radiological
confirmation of BM, regardless of the presence of symptoms; in the PC
setting this treatment should be restricted to CR patients, due to the low
risk of SREs in men with hormone-sensitive disease. In patients with BM
from other malignancies, BPs should be considered in the presence of
bone symptoms, skeletal-dominant disease, and/or complications. For
instance, among BPs zoledronate is the most effective in reducing serum
calcium levels in patients with hypercalcaemia, which is a serious and
potentially life-threatening complication of lytic BM [46].

It is recommended to administer BPs whilst clinical benefit remains
evident, but close monitoring of the patients is mandatory, due to the
risk of adverse events (AEs) such as osteonecrosis of the jaw (ONJ),
kidney failure and hypocalcemia [46].

In patients with BM zoledronate is usually administered every 3–4
weeks, but several studies have recently shown the non-inferiority of a
less intensive schedule (every 12 weeks), at least in BC, PC and MM
[53–55]. Such observations suggest that a 3-monthly schedule could be
considered to reduce the risk of AEs, without affecting treatment out-
come.

Denosumab: This agent is a fully human anti-RANK-L IgG2 antibody
that inhibits the interaction between RANK-L and RANK, to reduce
osteoclast maturation and activity [2].

A number of phase III clinical trials compared 4-weekly sub-
cutaneous 120 mg denosumab to 4-weekly intravenous 4 mg zole-
dronate, showing superiority of the former, in terms of time to first and
subsequent SREs (P < 0.05 in all instances), in patients with BM from
BC and PC [56–59]. In other bone-metastatic solid malignancies and in
MM, denosumab was not inferior to zoledronate in terms of time to first
SRE [57,60].

General guidelines for denosumab use in BM are almost identical to
BPs' [46]. In MM, the Food and Drug Administration (FDA) has recently
approved this agent on the basis of a multicenter randomized phase III
clinical trial, which demonstrated non-inferiority to zoledronate in
delaying SREs (P = 0.01), and superiority of denosumab in terms of
progression-free survival (PFS) (46.1 vs 35.4 months, P= 0.036) [60].
Moreover, in contrast to BPs, denosumab is not nephrotoxic, providing
a valid treatment alternative in patients with kidney failure. Similarly
to BPs, denosumab is generally well tolerated, with hypocalcaemia and
ONJ being the most common AEs [46].

At present, there is no evidence supporting less intensive schedules
of denosumab treatment; unlike BPs, the antibody does not accumulate
in bone and its suspension, even for a few months, could impair
treatment efficacy. Indeed, osteoporotic patients experienced a rebound
increase of both bone resorption and vertebral fractures after deno-
sumab discontinuation [61].

Non-approved agents
Cathepsin-K inhibitors: Cathepsin-K is a lysosomal proteinase pro-

duced by osteoclasts, involved in bone matrix degradation and collagen
cleavage [28].

Several antagonists of cathepsin-K have been developed, including
irreversible and reversible inhibitors of its catalytic site. The latter (e.g.

odanacatib, dutacatib and balicatib) underwent pre-clinical and clinical
investigation for the management of osteoporosis, osteoarthritis and
BC-related BM [62–64]. In particular, odanacatib was shown to inhibit
bone resorption in post-menopausal osteoporotic women [63] and re-
duce bone turnover markers (BTM) in patients with BM from BC [62].
Unfortunately, odanacatib administration was associated with the onset
of atrial fibrillation and stroke, leading to discontinuation of drug de-
velopment and clinical trial withdrawal [2].

Inhibitors of c-Src: c-Src proto-oncogene encodes a non-receptor
tyrosine kinase (TK) involved in tumor cell migration, invasiveness, and
RANK-L induced-osteoclastogenesis. c-Src knockout correlates with
osteopetrosis and defective dentition in mice [28], suggesting that
pharmacological inhibition of this kinase could suppress bone resorp-
tion in lytic BM.

Pre-clinical studies with c-Src inhibitors showed their efficacy in
preventing both bone and visceral metastases in animal models of BC,
with a favorable impact on survival [65]. Dasatinib, a dual Src/Abl
inhibitor, reduced tumor growth in murine models of MM, in synergism
with anti-myeloma agents [66].

In bone-metastatic patients with BC and CRPC, phase I/II clinical
trials demonstrated safety and tolerability of c-Src inhibitors, with
promising results in terms of bone turnover modulation [67–70].
However, the SWOG S0622 clinical trial investigated the efficacy of two
different schedules of dasatinib in metastatic BC patients with bone-
predominant disease; the study showed no significant efficacy of this
single agent in terms of both bone resorption inhibition and PFS im-
provement, suggesting the need for better patient selection and/or use
in combination with other therapeutic agents [71].

Moreover, due to c-Src expression by neurons, these agents have
been investigated for the management of cancer-related neuropathic
pain, eliciting promising results in vivo [72] that led to clinical ex-
perimentation (ClinicalTrials.gov Identifier: NCT02085603).

Anti-cancer agents modulating bone resorption
Inhibitors of mammalian target of rapamycin (mTOR): mTOR exerts

both anti-apoptotic and pro-differentiative activities in osteoclasts [2].
In pre-clinical studies, mTOR inhibition by rapamycin analogues re-
duced the number of lytic BM while increasing bone mass in tumor-
bearing mice [73]. Such observations led to several clinical trials in
bone-metastatic malignancies.

In particular, BOLERO-1 and BOLERO-2 trials evaluated the asso-
ciation of everolimus with chemotherapy or exemestane, respectively,
in advanced BC. BOLERO-2 showed improved PFS in the ex-
emestane+ everolimus arm compared to exemestane alone
(P < 0.001), leading to the combination approval for patients with
hormone receptor (HR)-positive, human epidermal growth factor re-
ceptor (HER)-2-negative advanced BC, previously treated with a non-
steroidal aromatase inhibitor [74–76]. Interestingly, everolimus ex-
erted a beneficial effect on bone turnover and skeletal disease, re-
gardless of BP administration [77].

Other clinical trials showed the efficacy and safety of everolimus, in
association with BPs, in bone-metastatic LC, kidney malignancies and
PC [78–80]. In MM, phase I clinical trials described anti-myeloma ac-
tivity of everolimus either alone or in combination with lenalidomide
[81–82].

Proteasome inhibitors (PIs): These agents reduce RANK-L-mediated
osteoclastogenesis via inhibition of NF-kB; they also exert anabolic ef-
fects on bone, by stimulating osteoblast differentiation and promoting
type I collagen and BMP synthesis [83].

The first PI licensed for MM treatment was bortezomib, thanks to its
combined anti-myeloma and anti-osteoclast activity which improved
PFS, OS and response rate [84,85]. However, mechanisms of resistance
to bortezomib have been described in MM, including drug extrusion
from tumor cells and proteasome up-regulation [83]. Several clinical
trials investigating the association of bortezomib with other treatments
have been developed, including the SWOG S0777 study which showed
a significant benefit derived from bortezomib addition to
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lenalidomide + dexamethasone treatment in patients with newly di-
agnosed MM, in terms of median PFS (43 months vs 30 months of
control, P = 0.0018) and median OS (75 months vs 64 months of
control, P= 0.0025) [84]. Second generation inhibitors have been also
developed, to overcome bortezomib limitations [86,87].

Androgen modulators: At its earliest stages, PC is an androgen-de-
pendent disease which benefits from androgen-deprivation therapies.
Even in the CR setting, modulation of androgen signaling represents the
mainstay of PC treatment, and the introduction of novel agents (i.e.
abiraterone acetate and enzalutamide) in the clinical practice led to
significant improvements of OS and PFS in both chemotherapy-naïve
and docetaxel-treated patients [88–91].

Abiraterone acetate is a cytochrome P17 irreversible inhibitor
which blocks androgen biosynthesis [89], while enzalutamide selec-
tively inhibits the androgen receptor [90]. Both these agents have been
shown to improve bone pain and delay the onset of SREs [92], although
the mechanisms underlying these bone-specific effects have not been
completely elucidated. Iuliani et al. described that non-cytotoxic con-
centrations of abiraterone significantly inhibited osteoclast maturation
and activity, while stimulating osteoblast differentiation and bone
matrix deposition in vitro [93]. On the other hand, the effects of en-
zalutamide on bone seem to correlate with its anti-cancer effects rather
than modulation of bone turnover [92].

4.2.2. Osteoblast modulators
Impaired bone formation contributes to the onset of lytic BM; on the

other hand, sclerotic BM occur as a consequence of excessive osteo-
genesis. Thus, researchers explored also the development of osteoblast
modulators for BM management (Table 2). At present, none of the
agents belonging to this group has been licensed for the prevention of
SREs. Among anti-cancer agents, TK inhibitors (TKIs) may contribute to
restore the physiological osteogenesis and showed efficacy in terms of
bone-related outcomes, so will be discussed in this section.

PTH: PTH can exert anabolic effects on bone by up-regulating genes
involved in the Wnt pathway, while down-regulating DKK-1 and
sclerostin, in osteoblasts [94]. Interestingly, PTH improved bone mi-
neral density (BMD) in murine models of MM and BC by increasing
osteoblast differentiation [95] and reducing tumor cell migration to-
wards bone [96].

However, clinical data were less encouraging, since serum PTH
≥68.3 pg/mL at diagnosis correlated with unfavorable outcome in MM
patients [97]. Moreover, a PTH analogue (teriparatide) approved for

osteoporosis treatment was shown to induce osteosarcoma in mice [98],
arousing safety concerns about PTH administration to cancer patients.

Anti-sclerostin antibodies: as a Wnt-inhibitor, sclerostin operates a
potent brake on osteoblast differentiation, whose production has been
attributed to osteocytes, MPC and BC cells [99].

Terpos et al. [100] found higher serum levels of this protein in MM
patients with fractures, as compared to those without SREs at diagnosis
(P < 0.01), while a significant correlation between high sclerostin
levels and poor survival (P = 0.031) was also described.

Pre-clinical studies analyzed the effectiveness of anti-sclerostin an-
tibodies in skeletal diseases, showing bone anabolic activity in ovar-
iectomized mice and murine models of MM, together with anti-cancer
properties [101,102]. McDonald and colleagues have recently de-
scribed that treatment with an anti-sclerostin antibody may prevent the
onset of MM-bone disease while increasing resistance to fractures in
mice, especially when administered in combination with zoledronate
[103].

Anti-sclerostin antibodies (e.g. romosozumab, blosozumab and
BPS804) have been investigated in clinical trials of benign bone dis-
eases [104,105]; however, due to its cardiotoxicity, romosozumab was
not approved by the FDA for osteoporosis treatment.

DKK-1 inhibitors: DKK-1 is another Wnt inhibitor produced by sev-
eral tumors including MM, PC and BC. Alongside sclerostin, DKK-1
reduces β-catenin levels, leading to impaired osteoblastogenesis
[2,106,107].

Pre-clinical studies on DKK-1 inhibitors showed increased bone
formation and reduced osteolysis in MM-bearing mice, associated with
reduced secretion of IL-6 by BMSC [107].

Promising results came also from a phase IB clinical trial in-
vestigating the safety and efficacy of a DKK-1 inhibitor (BHQ880) in
MM, in combination with zoledronate and anti-myeloma treatment
[108].

An open-label multicenter phase II study evaluated the effect of
BHQ880 in smoldering MM at high risk of progression; preliminary
results confirmed the bone anabolic activity of this agent, evaluated in
terms of bone strength, but showed no anti-tumor effect [109].

Another potential treatment option, currently under preclinical
evaluation, is a bi-specific antibody against sclerostin and DKK-1 [110],
that should theoretically overcome resistance to single-target in-
hibitors.

Inhibitors of activin-A: activin-A is a cytokine secreted by BMSC,
osteoblasts and osteoclasts which stimulates osteoclastogenesis in

Table 2
Modulators of osteoblast activity for the management of BM.

Drug class Mechanism of action Experimental phase Indication for BM treatment References

PTH ↑ Wnt pathway Pre-clinical No indications [94–98]
↑ osteoblast differentiation
↓sclerostin and DKK-1
↓ tumor cell migration
towards bone

Anti-sclerostin antibodies Sclerostin inhibition: Pre-clinical No indications [99–105]
↑ Wnt pathway
↑ osteoblast differentiation

DKK-1 inhibitors DKK-1 inhibition: Phase I/II No indications [106–109]
↑ Wnt pathway
↑ osteoblast differentiation

Inhibitors of activin-A ↓ osteoclastogenesis Phase I/II No indications [28,111–117]
↑ osteoblast differentiation
↓ tumor cell migration
towards bone

ET-1 antagonists ↓ osteoblast inhibition of sclerotic BM Phase II/III No indications [24,118,119]
Cabozantinib TKI; Phase III Metastatic renal cell carcinoma (with/without BM) [121–124]

Inhibition of VEGF/VEGFR pathway

Acronyms: BM: bone metastases; PTH: parathyroid hormone; DKK-1: dickkopf1; ET: endothelin; TKI: tyrosine kinase inhibitor; VEGF: vascular endothelial growth
factor; VEGFR: VEGF receptor.
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synergism with RANK-L, while inhibiting osteoblast differentiation
through the activation of SMAD-2 [28].

Increased levels of activin-A have been found in the sera of patients
with BM from MM and solid malignancies [111,112], as well as in
primary PC of men with BM [113].

Activin-A effects are mediated by its transmembrane type II serine/
threonine kinase receptor (ActRIIA), whose recombinant analogues
have been investigated in pre-clinical and clinical studies. Treatment
with these agents inhibited the onset of lytic BM, while increasing BMD,
in murine models of MM and BC [114]. A phase II clinical trial showed
improved BMD and bone pain in MM patients receiving sotatercept (a
recombinant ActRIIA ligand), in association with anti-myeloma treat-
ment and BPs [115]. Interestingly, a dose-dependent increase in hae-
moglobin levels was observed after sotatercept administration [116],
suggesting a potential role of this drug for the management of che-
motherapy-induced anemia, that has been further investigated in phase
II trials (ClinicalTrials.gov Identifiers: NCT01190644 and
NCT01284348).

The immunomodulatory drug lenalidomide, licensed for MM treat-
ment, was shown to promote activin-A production by BMSC [117];
hence, a phase I clinical trial is currently investigating safety and effi-
cacy of sotatercept in refractory MM, in combination with lenalido-
mide/pomalidomide and dexamethasone (ClinicalTrials.gov Identifier:
NCT01562405).

ET-1 antagonists: ET-1 is involved in the pathogenesis of sclerotic
BM; it is produced by PC and stimulates osteoblasts while acting as an
anti-osteoclastogenic factor [24]. A significantly increased plasma
concentration of ET-1 was found in patients with CRPC and BM, as
compared to those with localized tumors (13.2 ± 1.1 pg/ml vs
5.7 ± 0.3 pg/ml, P < 0.0001) [118].

ET-1 also stimulates cancer cell proliferation by interacting with a
G-protein coupled receptor (ET-A) that activates intracellular signaling
pathways, such as protein kinase C and MAPK ones [24].

A meta-analysis published by Qiao et al. included nine clinical trials
investigating the effectiveness of ET-A antagonists (Zibotentan and
Atrasentan) in CRPC. Although none of the agents improved OS and
PFS, compared to placebo, Atrasentan significantly delayed the increase
of PSA and BTM (P < 0.05 in both instances), while improving BM-
related pain [119]; such observations deserve further investigation on
Atrasentan to establish its role in BM management.

TKIs: osteoblast hyperactivation in PC is also stimulated by the in-
teraction between vascular endothelial growth factor (VEGF) and its
receptor (VEGFR). Moreover, the expression of VEGFR by bone marrow
precursors of both endothelial and hematopoietic cells has been cor-
related with the development of pre-metastatic niches [120]. Thus,
VEGFR targeting by TKIs has been attempted, although preliminary
studies with sunitinib and sorafenib were unsatisfactory [2].

Cabozantinib, a more selective TKI which preferentially targets
VEGFR2 and the hepatocyte GF receptor, was shown to inhibit BM in
PC animal models [121], prompting the activation of several clinical
trials.

In particular, a phase III study investigated the efficacy of cabo-
zantinib versus prednisone in heavily pre-treated CRPC patients with
BM. Despite not improving OS (11.0 months vs 9.8 months, P= 0.213),
the agent significantly ameliorated bone scan response, PFS and time to
first SRE (P < 0.001 in all instances) [122].

Interestingly, in the randomized open-label phase III METEOR trial
involving 658 patients with advanced renal cell carcinoma, cabo-
zantinib improved both OS and PFS, as compared to everolimus
(P = 0.00026 and P < 0.0001, respectively) [123]. Moreover, in
patients with BM at baseline, cabozantinib was associated with less
SREs (23 % vs 29%), longer median time to first SRE (3.7 months vs 2.5
months), improved bone scan response and greater changes in BTM
levels (P < 0.05 for bone-specific alkaline phosphatase, C-terminal
telopeptide of type I collagen and pro-collagen type 1 amino-terminal
pro-peptide after 5 weeks of treatment; P < 0.05 for bone-specific

alkaline phosphatase and C-terminal telopeptide of type I collagen after
9 weeks), as compared to the mTOR inhibitor [124].

5. Bone-targeting radiopharmaceuticals

The therapeutic role of radiopharmaceuticals has been widely in-
vestigated in this setting, since radioactive-labeled tracers can be se-
lectively delivered towards bone, sparing healthy organs from irradia-
tion. Once target cells have been reached, radionucleotides induce DNA
damage and apoptosis [3].

β-emitter radionucleotides, such as the calcium-mimetic Strontium-
89 and Samarium-153 (which is also a γ-emitter), showed their efficacy
in improving BM-related pain, but induced significant myelotoxicity
[125]. The α-emitter Radium-223 dichloride localizes in bone and
creates complexes with hydroxyapatite, thanks to its similarity to cal-
cium. Interestingly, Radium-223 emits short range (< 100 µm) high-
energy particles that exert a highly selective anti-tumor effect, with low
toxicity [125].

In the placebo-controlled ALSYMPCA trial, Radium-223 improved
median OS in CRPC patients with symptomatic BM, compared to con-
trol (14.9 vs 11.3 months, P < 0.001), and prolonged the time to first
SRE (15.6 vs 9.8 months with placebo, HR 0.66, P < 0.001). No safety
issues emerged from the trial, even when Radium-223 was given
alongside BPs [6,126]. These results led to its fast-track approval by the
FDA in this setting; clinical trials are investigating Radium-223 effec-
tiveness in other solid malignancies and MM, in combination with
standard anti-cancer treatments (ClinicalTrials.gov Identifiers:
NCT02390934, NCT02406521, NCT02258464, NCT02258451,
NCT02928029, etc.).

6. Towards BM prevention: state of the art

The evidence that BTA may interfere with different steps of BM
development led researchers to hypothesize their potential use in early-
stage tumors, in order to prevent skeletal colonization by osteotropic
cancer cells.

In this regard, positive results have been achieved in BC, especially
by ABCSG-12 and AZURE trials. The former showed that the addition of
zoledronate to standard adjuvant treatment improved disease-free
survival (DFS) in pre-menopausal women receiving GnRH analogues
(88.4 % vs 85%, P < 0.05) [9], while the latter demonstrated im-
proved invasive DFS in women with established menopause at diag-
nosis [8]. These observations raised the hypothesis that adjuvant BPs
could exert their activity in women with low circulating levels of re-
productive hormones. In agreement with these data, in the NSABP-B34
trial clodronate added to standard adjuvant treatment improved both
skeletal and extra-skeletal metastasis-free survival (P < 0.05 in both
instances) in women>50 years at study entry [127]. Moreover, a large
meta-analysis involving 22,982 patients from 36 clinical trials found
that adjuvant BPs significantly reduced distant recurrence in post-me-
nopausal women, compared with controls (18.4 % vs 21.9%). Such
effects were independent of primary tumor features, type of BPs, and
treatment schedules [8,128].

At present, both North American and European BC experts re-
commend adjuvant BPs (zoledronate, clodronate or ibandronate)
alongside vitamin D and calcium supplementation in post-menopausal
women with EBC at intermediate-high risk of recurrence, as well as in
pre-menopausal patients undergoing ovarian suppression [129,130].

As to denosumab, preliminary data suggested its potential ability to
reduce BC recurrence in bone [131]. However, results from D-CARE
trial after a median follow-up of 67 months showed no benefit deriving
from the adjuvant administration of this agent, in terms of BM-free
survival (HR 0.97, 95%CI 0.82–1.14, P = 0.70), DFS (HR 1.04, 95%CI
0.91–1.19, P = 0.57) and OS (HR 1.03, 95%CI 0.85–1.25) [132].

In LC, exploratory studies on BTA showed no benefits from zole-
dronate in terms of median PFS (9.0 months vs 11.3 months of control,
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P = 0.096), median OS (30.3 months vs 29.3 months of control) and
BM onset (15 events in zoledronate arm vs 19 events in control group)
[10], while studies with denosumab are still ongoing.

In PC, zoledronate exhibited no impact on survival in men starting
androgen deprivation therapy [133] and other studies with BPs failed
to show any benefit in terms of BM prevention [11]. Interestingly, a
placebo-controlled trial investigated the effects of denosumab in high-
risk non-metastatic CRPC patients, finding an improved BM-free sur-
vival in denosumab arm (P = 0.028) [134]. However, due to the re-
latively high incidence of ONJ (4% at 3 years) [134] denosumab did not
receive regulatory approval in this setting.

7. Conclusion and future perspectives

BM management poses one of the greatest challenges for oncolo-
gists, due not only to safety issues, but also to the significant impair-
ment of patients’ QoL and survival. A multidisciplinary approach to BM
is essential, to ensure a proper integration of local and systemic
therapies.

In the last decades, a deeper knowledge of the mechanisms under-
lying BM onset has been acquired, leading to the development of ef-
fective therapeutic agents, such as anti-resorptive drugs and bone-
seeking radiopharmaceuticals. Further clinical investigation is needed
to confirm pre-clinical evidence about potentially novel agents. These
and other observations will hopefully contribute to further improve-
ments of the clinical approach to osteotropic tumors, with the most
ambitious goals being the early identification of high-risk patients and
the prevention of skeletal metastases.
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