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Computation Offloading and Resource Allocation

for Wireless Powered Mobile Edge Computing with

Latency Constraint
Jie Feng, Qingqi Pei, F. Richard Yu, IEEE Fellow, Xiaoli Chu and Bodong Shang

Abstract—In this letter, we consider a multi-user wireless
powered mobile edge computing (MEC) system, in which a base
station (BS) integrated with an MEC server transfers energy
to wireless devices (WDs) as an incentive to encourage them to
offload computing tasks to the MEC server. We formulate an
optimization problem to contemporaneously maximize the data
utility and minimize the energy consumption of the operator
under the offloaded delay constraint, by jointly controlling
wireless-power allocation at the BS as well as offloaded data
size and power allocation at the WDs. To solve this problem, the
offloaded delay constraint is first transformed into an offloaded
data rate constraint. Then an iterative algorithm is designed to
obtain the optimal offloaded data size and power allocation at the
WDs by using Lagrangian dual method. The results are applied
to derive the optimal wireless-power allocation at the BS. Finally,
simulation results show that our algorithm outperforms existing
schemes in terms of operator’s reward.

Index Terms—Wireless powered mobile edge computing, of-
floaded delay, resource allocation.

I. INTRODUCTION

Mobile edge computing (MEC) offloads intensive comput-

ing tasks to MEC servers located in proximity to wireless

devices (WDs). Although MEC can reduce the energy con-

sumption effectively, computing tasks may be still interrupted

because of insufficient energy. This problem can be tackled

by using wireless power transfer (WPT) technique as a user

incentive for charging WDs [1].

The application of WPT to MEC has received considerable

attention recently [2]-[5]. In particular, the authors in [2]

proposed a wireless powered MEC system using cooperative

communication to minimize the access point’s (AP) transmit

energy. In [3], the problem of joint computation mode se-

lection and time allocation was studied for wireless powered

MEC network with the aim to maximize the weighted sum

computation rate. In [4], a network framework was proposed

to study the tradeoff between energy efficiency (EE) and delay.
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The authors in [5] studied the number of offloading users max-

imization problem. The existing works on wireless powered

MEC systems have only studied the performance metrics of

the system from the user’s perspective [3]-[5]. Although the

work in [2] considered the AP’s energy consumption, the MEC

server has not been taken into account the impact of energy

consumption. From the operator’s perspective, it is important

to understand the potential operational benefits from wireless

powered MEC. However, none of these works have studied

the operator’s reward in wireless powered MEC network.

Motivated by the above, this letter studies a multi-user

wireless powered MEC system controlled by an operator, in

which a multiple-antenna base station (BS) integrated with an

MEC server transfers energy to WDs. Each WD utilizes the

harvested energy to perform partial computation offloading.

We formulate an optimization problem for simultaneously

maximizing data utility and minimizing energy consumption

at the operator side, by jointly optimizing the offloaded data

size, the transmit power allocation, and the wireless-power

allocation. To solve this problem efficiently, we first transform

the offloaded delay constraint into an offloaded data rate

constraint. Then, we obtain the optimal offloaded data size

and power allocation at the WDs by using Lagrangian dual

method. The results are applied to derive the optimal wireless-

power allocation at the BS. Finally, simulation results show

that our proposed algorithm has good performance in terms

of operator’s reward.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a wireless powered MEC system consisting

of K single-antenna WDs and a multi-antenna BS, in which

the WDs are running independent and fine-grained computing

tasks, and the BS is equipped with an MEC server. The BS

employs RF signal to recharge the low-power WDs as an

incentive for performing partial computation offloading. In our

model, we employ the harvest-then-transmit model [2]. Similar

to [6], we assume that the MEC server has a certain amount

of computational resource, and we focus on a particular fixed

time period for system operation, which is divided into two

phases: one for WPT and the other for computation offloading.

In the computation offloading phase, computational tasks are

offloaded to the MEC server to execute. Data offloading is

enabled through transmissions over orthogonal channels as

allocated by the BS to WDs based on orthogonal frequency-

division multiple access (OFDMA). The time duration of data
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offloading is denoted by τ . The bandwidth is B Hz, and the

noise power is N0.

1) Wireless Power Transfer Model: The BS transfers wire-

less energy concurrently to the K WDs by pointing K narrow

radio beams to the K WDs, respectively, within a fixed

duration of T0. Let P = {Pk} and H = {hk}, where Pk

and hk are the transmit power of the corresponding beam

and the downlink large-scale channel gain from the BS to

WD k, respectively. Then, the energy harvested by WD k is

expressed as Ehav,k = µhkPkT0, where µ ∈ (0, 1) is the

energy conversion efficiency.

2) Local Computation Model: Given time-slot duration

τ , denote by Ck the number of CPU cycles required for

processing one bit of input data at WD k, and let P
′

k be

the energy consumption per cycle for local execution at this

user. Thus, the total energy consumption for local execution

at WD k is given by Elocal,k = (1 − αk)LkCkP
′

k, where

Lk (in bits) and αk represent the input data size and the

proportion of the offloaded data of WD k within the time

slot, respectively. Let Fk be the computing capacity (in CPU

cycles/s) of WD k. Then, the local execution time is given

by tlocal =
(1−αk)LkCk

Fk

≤ τ , which is the latency constraint.

As a result, the proportion of the offloaded data must meet

αk ≥ 1− τFk

CkLk

.

3) Computation Offloading Model: Let p = {pk} and G =
{gk}, where pk and gk are the transmit power and the uplink

channel gain from WD k to the BS, respectively. Then, the

transmit rate of WD k is given by Rk = B log2(1 +
pkgk
N0

).
Accordingly, the transmit time of WD k is given by

δk = αkLk

Rk

. The energy consumption of WD k is expressed

as Eoff,k = pkδk = αkLkN0

gkRk

(2
Rk

B − 1).
4) Offloaded Delay Model: The offloaded data is first stored

in buffer of WD k for transmission. Assume that the offloaded

data are served by first input first output (FIFO) scheme. The

task arrival process is independent and identically distributed

(i.i.d.) and follows Poisson distribution with arrival rate λk.

The i-th task data size of WD k, Lk(i), is i.i.d. and follows an

exponent distribution with parameter σk. Then the offloaded

delay of the i-th task in the k-th WD’s buffer is given by

toff,k(i) = Wk(i) + δk(i), where Wk(i) is the waiting time

of the i-th task of WD k before it is transmitted. We apply the

max-plus convolution principle to describe the offloaded delay,

i.e., t̂off,k(i) = Ŵk(i) + δ̂k(i). Then the waiting time of the

i-th task of WD k is Ŵk(i) = max
0≤i≤n

[
n−1∑
i=m

δ̂k(i) −
n−1∑
i=m

τk(i)],

where τk(i) is the inter-arrival time between two computing

tasks.

Due to the latency constraint, the task generated by WD

should be offloaded in a limited time span. The latency

outage probability requirement in task offloading is given by

P{t̂off,k(i) > τ} ≤ ϵk, ∀k, where ϵk is the latency outage

probability threshold.

5) Performance Metric: We consider the operator’s reward

as our performance metric. Specifically, it is the net data utility

after subtracting the energy cost. Similar to [7], the utility of

αkLk bits data performed by WD k locally is tackled by the

logarithmic function uk log(1 + αkLk), where uk is a weight

factor relaying on the type of tasks. Then the operator’s reward

is modeled as

C(α,P ,p) =

K∑

k=1

uk log(1 + αkLk)− c

K∑

k=1

PkT0

−
K∑

k=1

βkαkLkCkPk,ser, (1)

where c represents the price of unit energy in the WPT phase,

and
K∑

k=1

βkαkLkCkPk,ser is the sum energy consumption

of the CPU at the MEC server, where βk is the price of

unit energy consumed by the CPU and Pk,ser is the energy

consumption per cycle at the MEC server.

B. Problem Formulation

In this letter, we investigate the operator’s reward maxi-

mization problem in wireless powered MEC system by jointly

optimizing the offloaded data size, and the power allocation at

the WDs, as well as the wireless-power allocation at the BS.

Then, the optimization problem is formulated as

P1 : max
p,α,P

C(α,P ,p)

s.t. (C1) : 1−
τFk

CkLk

≤ αk ≤ 1, ∀k,

(C2) :
K∑

k=1

αkLkCk ≤ F,

(C3) : P{t̂off,k(i) > τ} ≤ ϵk, ∀k, (2)

(C4) : (1− αk)LkCkP
′
k +

αkLkpk
Rk

≤ µhkPkT0, ∀k,

(C5) :
K∑

k=1

Pk ≤ Pmax.

In P1, Pmax and F are the maximum transmit power

of the BS and the total computing capacity of the MEC

server, respectively. (C1) indicates the offloaded data size

constraint. (C2) is the computing capacity constraint of the

MEC server. (C3) denotes the offloaded delay requirement

constraint. (C4) is the energy consumption constraint. (C5) is

the power constraint in the WPT phase.

III. DESCRIPTION OF PROPOSED ALGORITHM

In this section, we first analyze the offloaded delay outage

probability, and then we propose an iterative algorithm to solve

P1.

A. Offloaded Delay Outage Probability

Since it is difficult to solve the offloaded delay t̂off,k(i)
directly, we need to transform (C3) into an offloaded data rate

constraint. Then, we give the following theorem. The proof of

Theorem 1 is similar to the proof of latency requirement in

[8] and is omitted for brevity.

Theorem 1. For any WD k, its transmit rate Rk satisfies the

following inequation to ensure the delay requirement.

Rk

αk

≥ R
′

k, (3)
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where R
′

k = −σk

τ
[W−1(

ϵkλkτ

1−eλkτ e
λkτ

1−e
λkτ ) + λkτ

eλkτ−1
] and

W−1(x) denotes the lower branch of the Lambert-W function

with x ∈ [−e−1, 0], i.e., yey = x then y = W−1(x).

Based on Theorem 1, P1 is rewritten as

P2 : max
p,α,P

C(α,P ,p)

s.t. (C1), (C2), (C4), (C5),

(C3) :
Rk

αk

≥ R
′

k, k = 1, 2, . . . ,K. (4)

B. Iterative Algorithm Design

Since P2 is non-convex, we introduce a new variable ωk =
αk

Rk

, and let ω = {ωk}. P2 can be rearranged as

P3 : max
ω,α,P

C(α,P ,ω)

s.t.(C1) : 1−
τFk

CkLk

≤ αk ≤ 1, ∀k,

(C2) :
K∑

k=1

αkLkCk ≤ F, ∀k,

(C3)′ : 0 ≤ ωk ≤ 1/R
′

k, k = 1, 2, . . . ,K, (5)

(C4) : (1− αk)LkCkP
′

k +
N0Lkωk

gk
(2

αk

ωkB − 1)

≤ µhkPkT0, ∀k,

(C5) :
K∑

k=1

Pk ≤ Pmax.

It is easy to prove that P3 is a convex optimization problem.

Meanwhile, we prove that P3 can be reduced to the problem

of α and ω.

1) Optimal Offloaded Data and Power Allocation: P3 is

solved as follows. Firstly, we observe that P3 is always

feasible. Next, we give a necessary condition for the optimal

solution, as specified in Theorem 2. It is easy to prove the

theorem by contradiction. The proof is omitted due to the

limited space.

Theorem 2. As result of solving P3, the optimal offloaded

data size α∗, the optimal ω∗, and the optimal wireless-power

allocation P ∗ satisfy the following:

(1− α∗
k)LkCkP

′

k +
N0Lkω

∗
k

gk
(2

α
∗

k

ω∗

k
B − 1) = µhkP

∗
kT0 (6)

Based on the equality (6), P ∗ can be rewritten as function

of α∗ and ω∗. Then, P3 is equivalently transformed into the

following problem.

P4 : max
ω,α

K∑

k=1

uk log(1 + αkLk)−
K∑

k=1

βkαkLkCkPk,ser

−c

K∑

k=1

1

µhk

[(1− αk)LkCkP
′

k +
N0Lkωk

gk
(2

αk

ωkB − 1)]

s.t. (C1), (C2), (C3)′, (7)

(C5)
′

:

K∑

k=1

1

µhk

[(1− αk)LkCkP
′

k

+
N0Lkωk

gk
(2

αk

ωkB − 1)] ≤ PmaxT0.

Since (7) is a convex optimization problem, we can obtain

its optimal solutions by Lagrangian dual method. Then the

partial Lagrangian is expressed as

L(α,ω,γ, ν,ϖ) =
K∑

k=1

−(ν + c)
1

µhk

[(1− αk)LkCkP
′

k

+
N0Lkωk

gk
(2

αk

ωkB − 1)] +

K∑

k=1

uk log(1 + αkLk) (8)

+νPmaxT0 −
K∑

k=1

γk(ωk − 1/R
′

k)−
K∑

k=1

βkαkLkCkPk,ser

+ϖ(F −
K∑

k=1

αkLkCk),

where γ ≽ 0, ϖ and ν ≥ 0 are the Lagrangian multipliers

corresponding to (C2), (C3)′ and (C5)′ in (7), respectively. To

facilitate the subsequent analysis, we define a function h(x)
as h(x) = f(x)− xf

′

(x), x > 0.

Because (7) is convex and satisfies Salters condition, the

duality gap is zero. Therefore, we can obtain the optimal

solutions of (7) by solving the following dual problem.

min
γ,ν

max
α,ω

L(α,ω,γ, ν)

= min
γ,ν

max
α

max
ω

L(α,ω,γ, ν) (9)

Observing (9), we can first obtain {ω∗
k}, with the assumption

that γ, ν and {αk} are given previously. Then, using the

standard optimization and the Karush-Kuhn-Tucker (KKT)

conditions, {ω∗
k} is equal to

ω∗
k =

αk ln 2

B[W ( γkµhkgk
(ν+c)eN0Lk

− 1
e
) + 1]

. (10)

After obtaining the optimal solution ω∗
k, we define α∗

k as

the optimal offloaded data size. Similarly, based on the KKT

conditions, we define xm
k = Xk(ν

m) as the solution to

−2
− 1

ω∗

k
BLk 2

x
m
k

ω∗

k
BLk +

gkhkµukB

(νm + c)N0(ln 2)2
1

xm
k

=
CkgkB(µhk(ϖ + βkPk,ser)− P

′

k(ν
m + c))

(νm + c)N0 ln 2
. (11)

Then, the offloaded data size is given by

αm
k =

Xk(ν
m)− 1

Lk

, (1 < Xk(ν
m) < Lk + 1) (12)

In order to solve the outer minimization problem in (9), a

subgradient method is applied to update the dual variables.

Then, the update can be expressed as

γk(l + 1) = [γk(l)− λ1(l)(1/R
′

k − ω∗
k)]

+ (13)

ϖ(l + 1) = [ϖ(l)− λ2(l)(F −
K∑

k=1

α∗
kLkCk)]

+ (14)
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ν(l + 1) = [ν(l)− λ3(l)(PmaxT0 −
K∑

k=1

1
µhk

[(1− α∗
k)

LkCkP
′

k +
N0Lkω

∗

k

gk
(2

α
∗

k

ω∗

k
B − 1)])]+ (15)

where λ1(l), λ2(l) and λ3(l) are small positive step size, which

are set λ1(l) = λ2(l) = λ3(l) = 0.1/l.
2) Optimal Wireless-power Allocation: Combining {α∗

k}
and {ω∗

k} with the optimal condition in Theorem 2 yields the

wireless-power allocation, which is given by

P ∗
k =

1

µhkT0
[(1− α∗

k)LkCkP
′

k +
N0Lkω

∗
k

gk
(2

α
∗

k

ω∗

k
B − 1)] (16)

IV. SIMULATION RESULTS

In this section, three baseline strategies are considered for

the performance comparison of the proposed scheme. The first

one is the fixed wireless-power allocation (FWPA) strategy

[4], which jointly optimizes offloaded data size and transmit

power of WD. The second one is the fixed offloaded data

allocation (FODA) strategy, which jointly optimizes transmit

power of WD and wireless-power allocation at the BS. The

third one is a binary computation offloading policy (BCOF)

[3], which jointly optimizes time allocation and mode selection

(i.e., local computing or offloading). Some preference settings

are shown below: K = 4, B = 180 KHz, Pk,ser = 10−10

J/cycle, dmax = 0.1 s, N0 = 10−9 W, λk = 0.1 bit/s [9],

σk = 103 bit, T0 = 1 s, F = 2 GHz, µ = 0.5, ϵk = 10−3, Fk,

Ck, and P
′

k follow the uniform distribution with [0.1, 1] GHz,

[500, 1500] cycle/bit, and [0, 20×10−11] J/cycle, respectively.

Note that each point in the following figures (except for Fig.1)

are based on the average values of 5000 runs.

In Fig. 1, we plot the dual variables γ = {γk} and ν
versus the number of iterations to show the convergence of

the proposed Algorithm. It is observed that it has a fast

convergence rate. Fig. 2 shows the operator’s reward vs. the

total computing capacity of the MEC server. Observe that,

the proposed strategy has better performance than the other

three. We can observe that the operator’s reward of FWPA

is the lowest. This is because the operator’s reward depends

mainly on the energy consumption of the WPT phase, and the

wireless-power allocation at the BS has a significant impact

on the system performance.

Fig. 3 plots the curve for the operator’s reward vs. the input

data size. We can observe that operator’s reward is monotone-

increasing with the enhancement of input data size. This is

because the computing capacity of the devices is limited

so that the amount of data processed by the MEC server

increases. However, the growth rate of the operator’s reward

slows down with the input data size. It indicates that increasing

a certain amount of input data size can substantially increase

the operator’s reward.

V. CONCLUSIONS

In this letter, we presented a multi-user wireless powered

MEC system and investigated a joint optimization problem of

offloaded data size, and power allocation at the WDs, as well

as wireless-power allocation at the BS in the wireless powered

MEC system, with the objective to maximize the operators

reward. More specifically, the operator encourages WDs to

offload computing tasks to the MEC server by transferring

energy to WDs as an incentive. Finally, simulation results

exhibit that the proposed algorithm has good performance in

terms of operator’s reward.
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