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Abstract 

As hot days are getting hotter and more frequent, urban dwelling is expected to increase cooling energy use in 

current and future climate. The applicability of dynamic building simulation in estimating cooling loads of a 

city’s housing stock can be limited due to lack of fine-grained on-site current and future weather inputs. For 

predicative modelling of residential cooling energy demand to aid a city's energy supply planning resilient to 

excessive heat conditions, it requires cooling energy demand projection based on a relational account of (1) 

the thermal-environmental interaction between housing stocks and urban microclimate conditions, (2) the city 

dwellers' cooling energy use behaviour, and (3) the city’s climate projections. In this paper, we introduce an 

‘archetype-in-neighbourhood’ framework to meet these requirements. Combining empirical urban data 

modelling and EngeryPlus model calibration, this framework was developed to obtain statistically a maximal 

cooling energy demand model of a city’s housing stock during yearly hottest periods. We applied the 

framework to multiple datasets selected from Seoul’s open urban data sources for the period of 2014-2017 

(2014 being the earliest year of data availability, 2017 being the end of the study period), including metered 

electricity use data of 659 apartment buildings (51,351 households) sampled from 18 city districts. The results 

show that maximal month cooling energy demand (MMCD, kWh/m2) of Seoul’s housing stock can be 

expressed as a regression function of two determinants: (1) the city's average outdoor temperature during the 

hottest month period (Tex, ˚C), and (2) estimated indoor cooling temperature set-point (Tin, ˚C) of the city’ 

housing stock during the same period. Through a k-fold (k=4) validation, the current regression model (2014-

17) was evaluated to have an overall coefficient of determination R2=.969. Assuming no housing stock 

renovation, we applied the model to generate scenarios of maximal month cooling demand in future years 

according to some of the highest summer temperatures projected for Seoul (RCP8.5 2045, RCP4.5 2047, MM5 

2071-2100). We conclude this paper with a brief discussion of the implication for cooling energy supply 

planning and further work to extend the applicability of this new framework to housing stock adaptation 

planning and design. 

 

Keywords: housing stock energy modelling; housing archetype; cooling energy demand; urban microclimate; 

EnergyPlus; cooling temperature set-point; climate projections 
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1. Introduction 

As global warming continues, there has been an increasing concern about unmet cooling energy demand in 

urban living, leading to indoor thermal discomfort, heat-related illness and mortality (De Wilde and Coley, 

2012; McMichael et al., 2006; IPCC, 2018). This is particularly impactful in the residential sector, considering 

the likely compounding effects of ageing populations, intensified urban heat islands (Aniello et al., 1995; 

Knight et al., 2010; Tomlinson et al., 2012), and increased frequency of urban heatwave episodes (Meehl and 

Tebaldi, 2004; Jones et al., 2008; Perkins et al., 2012). It can be potentially devastating to an urban population 

if cooling demand could not be met during heatwaves (Kovats and Hajat, 2008).  The heatwave in France in 

August 2003 caused 14,802 heat-related deaths in a 20-day episode (Fouillet et al., 2006). In the UK, heat-

related mortality is projected to increase by 70% in the 2020s, 260% in the 2050s and 540% in the 2080s, 

compared with the 2000s baseline of around 2,000 premature deaths, assuming no adaptation (Hajat et al., 

2014). As hot days are getting hotter and more frequent, there is a need for modelling the impact of heat 

conditions on residential cooling energy demand to inform sustainable energy supply planning. 

 

Over the past decade, researches into building stock energy modelling at various scales (neighbourhood, city, 

regional, or national) have developed the field of urban building energy modelling (Reinhart and Davila, 2016). 

Parekh (2005) introduced three basic criteria in developing ‘archetypes’ of housing stock for building energy 

simulation: building thermal characteristics, geometric configuration and operation parameters. In a bottom-

up approach, estimated energy consumption of archetypes as a statistically representative set of individual 

buildings can be extrapolated to regional and national levels (Swan and Ugursal, 2009). In studying the 

Hellenic building stock, Dascalaki et al. (2011) reported the link of residential building topologies to energy 

performance assessment. In modelling the Irish dwelling stock, Famuyibo et al. (2012) identified 13 Irish 

residential archetypes using clustering statistics. Similarly, a classification of residential building stocks using 

12 sample building typologies was proposed by Filogamo et al. (2014), which was applied to the whole 

residential building sector of Sicily. More recently, Sandberg et al. (2017) developed a segmented dynamic 

stock modelling approach to scenario analysis of future energy demand of the Norwegian dwelling stock 

towards 2050. A comprehensive review and evaluation of 29 housing stock energy models developed in the 

UK has identified several areas for improvement including transparency, accuracy, sensitivity and updatability 

(Sousa et al., 2017). Given the modelling frameworks and large urban datasets available, there are software 

platforms developed specifically for building stock energy modelling. TEASER (Remmem et al., 2018) and 

EnHub (Sousa et al., 2018), for instance, are two open-source platforms implemented for scenario analysis of 

stock change towards reduced energy demand and decarbonisation. 

 

Despite that interior temperature was identified as one of the most dominant parameters in residential energy 

use (Famuyibo et al., 2012), the aspect of indoor thermal conditions of building stock has been paid much less 

attention. Facing potential large-scale residential overheating in future climate, predicative modelling of 

cooling energy demand of housing stock can aid a city's energy supply planning. To be resilient to warm spells 
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and heatwaves, it requires a robust relational account of (1) the thermal-environmental interaction between 

housing stock and local urban microclimate conditions, (2) the city dwellers’ cooling energy use behaviour, 

and (3) the city’s future climate projections. In this paper, we introduce an ‘archetype-in-neighbourhood’ 

framework for modelling cooling energy demand of a city’s housing stock to meet these requirements.  

 

The archetype-in-neighbourhood framework starts with identifying a city’s residential areas each of which is 

a 1 km-radius circle bounded by an automatic weather station at the centre. This specifies the spatial location 

and dimension for housing stock sampling at an urban (neighbourhood) microclimate scale within which the 

local urban weather data are readily available. Then, a set of housing archetypes representative of the housing 

stock at the city scale is identified according to a classification scheme of built ages, constructional 

characteristics and floor sizes. EnergyPlus modelling of the archetypes is conducted with weather inputs from 

the local weather station data, hence ‘archetype-in-neighbourhood.’ Adopting a bottom-up hybrid approach to 

combining empirical urban data modelling and EnergyPlus model calibration, this framework was applied to 

modelling the maximal month cooling energy demand of the high-rise apartment stock in the city of Seoul. 

 

Unlike other building sectors, residential energy use highly depends on household-related factors such as socio-

economic circumstances (Schuler et al., 2000) and energy use behaviour (Bae and Chun, 2009; Yun and 

Steemers, 2011). Also, in our previous study (Yi and Peng, 2017), we observed that the correlation between 

cooling energy use and local weather data shows significant temporal and spatial variations at the micro (city-

district) level during the summer months in Seoul. Here, we first introduce the scope and sources of the open 

urban data selected for the current study, followed by a preliminary similarity analysis of building, socio-

economic and maximal month cooling energy use characteristics. We then describe the proposed ‘archetype-

in-neighbourhood’ framework that incorporates housing stock interaction with urban microclimate and 

residential cooling energy use behaviour. Based on Seoul’s open urban data (2014-2017), a maximal month 

cooling energy demand (MMCD) model of Seoul’s high-rise apartment housing stock is developed. Applying 

the MMCD model, we show estimated increases of the maximal month cooling energy demand according to 

Seoul’s climate change projections, assuming no housing stock renovation. We conclude the study with a brief 

discussion of the implications for cooling energy supply planning and further work on applying this new 

framework to extend the scope of modelling a city’s housing stock. 

 

2. Data selection 

For housing stock energy use modelling, the data selected for this study include: (1) urban weather data 

collected at the neighbourhood level; (2) residential neighbourhood energy use data; and (3) building stock 

information such as building envelop, floor area, and property price. The city of Seoul was selected for the 

study, where such urban data are openly available under Article 23 in “Multi-Family Housing Management 

Act” (MoLiT, 2016). The city of Seoul consists of 25 “Gu” (city district) and each Gu has its own automatic 

weather station (AWS). According to the Korean Statistical Information Service (KOSIS, 2017), the total 

population of Seoul in 2016 was 9,805,506 and the total number of households was 2,830,857 of which about 
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58% (1,641,383) lived in apartments. Under the country’s Article 23 (MoLiT, 2016), multi-family housing 

complex (also called apartment complex, “Danji” in South Korea) with more than 300 households are required 

to upload monthly utility energy use data to the Apartment Management Information System (AMIS), which 

has been openly accessible via the Internet since 2014 (available at http://www.k-apt.go.kr/).  

 

2.1. Data for urban microclimate and residential neighbourhood energy use 

Firstly, to account for building interaction with urban microclimate, we define an urban area within 1 km radius 

of a city-district automatic weather station (CD-AWS) as the spatial location and boundary in sampling a city’s 

housing stock. This is considered an acceptable spatial scale reflecting climatic variation in an urban climate 

zone (Oke, 2004). Stewart and Oke reported observations of thermal differentiation about 2.0 K in compact 

high-rise local climate zone and about 1.5 K in open high-rise local climate zones on average (Stewart, 2011; 

Stewart and Oke 2012). Thus, we consider that there could be similar temperature conditions affecting 

residential neighbourhoods within a city-district spatial resolution. As most of the CD-AWS sites in Seoul are 

located above the street surface level, the temperature measurements reflect to some extent the vertical 

dimension of the microclimate conditions surrounding the apartment complex neighbourhoods (Table 1). 

Urban weather data (air temperature) were selected considering the meter reading day for monthly electricity 

use data. According to the Korea Electric Power Corporation (KEPCO, 2016), 95% of apartments have the 

same meter-reading day: the 18th of each month. Thus, the weather data used in this study matched the metering 

period. 

 

Table 1. The location and height information of Seoul’s 18 City District (CD) Automatic Weather Stations 

(AWS) and size information of the apartment stock within 1 km radius of each CD-AWS site (Sources: KMA; 

AMIS, 2018). *The street surface level was estimated from the sea level with 3 m down for each floor 

CD-AWS 
Residential 
Neighbour-
hood Areas 

CD AWS Locations   Seoul’s Dwelling Stock 

Lat. Long.  Sea lv. 
(m) 

Street 
lv. (m) 

Floor lv. 
of AWS 
building 

 No. Apt. 
Complexes 

(ACs) 

Avg. Top 
floor lv. 
(storey)  

No. Apt. 
Building 

No. Apt. 
House-

hold 

CD1 37.5134 127.0470 59.6 50.6 3  7 20 42 3054 
CD2 37.5555 127.1450 56.9 47.9 3  6 17 53 4405 
CD3 37.6397 127.0257 55.7 34.7 7  3 17 15 1517 
CD4 37.5499 126.8425 79.1 64.1 5  2 18 43 2355 
CD6 37.5336 127.0853 38.0 38.0 -  3 18 12 1071 
CD8 37.4655 126.9001 41.5 29.5 4  4 21 30 2156 
CD10 37.6661 127.0295 55.5 43.5 4  1 15 7 690 
CD11 37.5846 127.0604 49.4 34.4 5  4 20 40 2587 
CD12 37.4937 126.9181 33.8 33.8 0  4 21 15 1665 
CD13 37.5655 126.9027 25.0 13.0 4  3 16 18 1192 
CD15 37.4889 127.0156 35.5 26.5 3  7 18 58 5491 
CD16 37.5472 127.0388 33.7 18.7 5  3 18 17 1429 
CD18 37.5115 127.0967 53.6 29.6 8  3 19 75 7310 
CD19 37.5296 126.8782 9.7 6.7 1  8 18 115 7176 
CD20 37.5271 126.9070 24.4 12.4 4  7 21 49 3722 
CD21 37.5204 126.9761 32.6 20.6 4  7 21 52 4681 
CD22 37.6077 126.9338 65.0 56.0 3  1 15 15 662 
CD25 37.5855 127.0868 40.2 28.2 4  1 15 3 178 
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Figure 1 shows the August (the hottest month of the year) month average temperatures of the selected 18 CD-

AWS urban areas during 2014-17. August 2016 was the hottest (Max, 30.26oC; Min, 27.08oC), August 2014 

the mildest (Max, 26.24oC; Min, 24.53oC). August 2015 and 2017 were close to the average of August 2014-

17. According to KMA (2016), August 2016 was one of the warmest summer months on record since 1908, 

while August 2014 was one of the mildest in Seoul. Therefore, the urban weather data of this study period 

present some extreme cases. 

 

 

Figure 1. External August monthly average air temperatures of 18 CD-AWS areas in Seoul, August 2014-

17. (Source: MDOP)  
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Figure 2. Locations of the 74 apartment complexes (Danji) within 1 km radius of the 18 city-district automatic 

weather stations (CD-AWS) in Seoul 

 

Secondly, energy use data was collected from the apartment management information system (AMIS), open 

data portal providing aggregate monthly utility bill data and the amount of monthly electricity use. Only the 

electricity usage data calculated by ‘lettable area’ (kWh/m2) are used in this study for estimating the energy 

used for cooling (e.g. air-conditioning, electric fans, fridges for cool drinks/food). The lettable area used in 

this study represents the main dwelling spaces where residential cooling energy uses occur. Thus, common 

areas (i.e. parking space, stair and lift) and balcony areas are not included (see also Figure 10 in Section 4.1). 

The spatial resolution of the AMIS energy use data is given at the multi-family housing complex (Danji) level, 

not at an individual household nor a building level. As the AMIS first reporting electricity use data in 2014, 

the period of 2014-17 was selected for this study (2017 being the end of the study period). Following the CD-

AWS locations and residential neighbourhood boundaries, the electricity usage data on the AMIS was first 

assessed, and 74 apartment complexes (659 apartment buildings, 51,351 apartment households) from 18 (out 

of 25) city districts of consistent data availability were identified (Figure 2). 

 

2.2. Data for other possible factors affecting residential energy use 

The AMIS also provides other types of building-related information, such as built year, total floor area, site 

area, the number of apartment households by floor area and property price. The data of built year and the 

number of apartment household by floor area in each neighbourhood were selected to obtain building physical 

characteristics such as building envelopes and floor plans. These two datasets were used as the main sources 
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for determining the building characteristics representative of Seoul’s housing stock. The property price data 

(KRW/m2) were collected from Korea Appraisal Board (KAB, 2015), which is linked to the AMIS. Figure 3 

shows an overview of the building information (building envelop, floor area, and property price) data selected 

across the 18 CD-AWS areas.  

 

 

Figure 3. (a) The number of apartment households within each CD-AWS area according to the year of building 

insulation criteria applied (R1-R7); (b) and the floor area sizes (A1-A4); and (c) the distribution of apartment 

neighbourhood property prices in each city district 

 

Most of Seoul’s apartment buildings were built during seven epochs of building regulations (R1-R7, from 

September 1979 to June 2010, Figure 3(a)) and Table 2. Each building regulation epoch adopted a set of 

building component U-values (Kim et al., 2013b). In housing unit sizes in Figure 3 (b), the range of apartment 

floor areas (m2) are of four sizes based on the lettable areas classified by AMIS: A1 ≤ 60; 60 < A2 ≤ 85; 85 < 

A3 ≤ 135; 135 < A4. As seen in Figure 3 (a) and (b), there appears a similarity of building characteristics 

within the given ranges of classifications in each city-district neighbourhood. Furthermore, Figure 3 (c) shows 

that the ranges (diversities) of property price are much reduced at the neighbourhood scale compared to 

citywide (2.2 to 9.4 million Korean Won/m2). This suggests a high probability of similarity in residential 

cooling energy use by apartment complexes within each city-district neighbourhood. The similarity may come 

from multiple factors affecting residential energy use including the homogeneity of the surrounding climate 

within the 1 km radius boundary defined in section 2.1. 

 

Table 2. Insulation criteria for Seoul’s housing stock according to the year of building regulation applied (U-

value, W/m2*K). (Source: Kim et al., 2013b) *Side wall represents the external wall without opening area, 

such as glazing 

Building 
regulation 

Base year External wall 
(Side wall) 

External/ 
Ground Floor 

External 
Roof 

Window 

R1 Sep 1979 1.05 (-) 1.05 1.05 2.56 
R2 Dec 1980 .58 (-) 1.16 .58 3.49 
R3 Dec 1984 .58 (.47) .58 .58 3.49 
R4 Jul 1987 .58 (.47) .58 .41 3.37 
R5 Jan 2001 .47 (.35) .35 .29 3.84 
R6 Nov 2008 .47 (.35) .35 .29 3.0 
R7 Jun 2010 .36 (.27) .30 .20 2.1 
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2.3. Characteristics of residential energy use during the hottest month (August) period  

Given the similarity of multiple factors, the characteristics of dwellings’ historical monthly energy use during 

the yearly hottest month (August) are investigated at neighbourhood level. Table 3 shows the distribution of 

each apartment complex’s (AC) August monthly electricity use data within each CD city-district 

neighbourhood in 2015 (close to average 2014-17 August) and 2016 (the hottest August summer year to date) 

as examples. At the macro scale (city level), the average of August electricity use in 2015 was 4.492 (kWh/m2) 

within the range from 3.129 to 6.026, while in 2016 was 5.232 within the range from 3.894 to 6.850. On the 

other hand, at the micro scale (neighbourhood level), the variance was much reduced across all CDs city-

districts in both years. This suggests that there appears a similarity of apartment complexes’ August electricity 

use within each city-district neighbourhood. Moreover, compared to 2015, the variance of 2016 was smaller 

than 2015 (10 out of 15 CDs city-districts). This means that the distribution of neighbourhoods’ August 

monthly electricity use under hot conditions is smaller than under milder conditions. 

 

Statistically to confirm the internal consistency similarity in terms of the distribution of neighbourhoods’ 

apartment complexes’ monthly electricity use within each CD city-district neighbourhood boundary, a factor 

analysis was carried out. Due to the small sample size, the case (month) was extended to include whole summer 

months, where any cooling degree day (CDD) occurred (see section 3.2.2, Figure 7): May to October for 2014-

17. The neighbourhoods where number of apartment complexes is less than three were excluded from the 

analysis, due to the fact that the factor analysis is run based on coefficients of inter-correlations among the 

variables (apartment complexes’ monthly energy use). 

 

Table 3. Descriptive variance analysis of apartment complexes’ (AC) maximal (August) monthly electricity 

use (kWh/m2) within each city-district (CD) neighbourhood in 2015 (close to average 2014-17 August) and 

2016 (the hottest August) as examples. *. CD neighbourhoods with number of ACs less than two were excluded 

from the analysis 

Neighbour- 
hood 

Monthly electricity use No. of 
ACs Min  

(kWh/m2) 
Max 

(kWh/m2) 
Mean 

(kWh/m2) 
Std. 

Dev., S 
% of S to 

Mean 

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

CD1 3.994  4.500 5.368  6.324 4.634  5.352 .540 .656 11.6 12.3 7 
CD2 3.978  4.733 5.779  6.237 4.840  5.347 .845 .648 17.5 12.1 6 
CD3 4.076  4.643 4.608  5.304 4.369  5.081 .270 .379 6.2 7.5 3 
CD4 4.336  5.181 4.554  5.387 4.445  5.284 .154 .146 3.5 2.8 2 
CD6 3.129  3.894 4.313  5.139 3.886  4.716 .658 .712 16.9 15.1 3 
CD8 3.703  4.272 5.294  4.950 4.364  4.572 .673 .312 15.4 6.8 4 
CD11 4.574  4.144 6.026  6.257 5.039  5.371 .686 .886 13.6 16.5 4 
CD12 3.995  4.826 5.748  6.668 5.037  5.887 .747 .783 14.8 13.3 4 
CD13 4.190  4.738 5.260  5.898 4.584  5.216 .588 .607 12.8 11.6 3 
CD15 3.464  4.125 5.389  6.296 4.189  4.970 .647 .752 15.4 15.1 7 
CD16 4.015  5.176 4.474  5.880 4.287  5.578 .241 .363 5.6  6.5 3 
CD18 4.197  5.154 5.723  5.761 4.906  5.527 .769 .327 15.7 5.9 3 
CD19 3.868  4.922 4.415  5.411 4.159  5.202 .184 .180 4.4 3.5 8 
CD20 3.434  4.387 4.441  5.464 3.906  4.837 .347 .445 8.9 9.2 7 
CD21 3.757 4.569 5.627  6.850 4.732  5.548 .708 .764 15.0 13.8 7 

 



9 

 

Table 4 shows the factor analysis of monthly electricity use of apartment neighbourhoods in each CD-AWS 

area. Firstly, in order to determine if the datasets used for factor analysis are suitable or not, (which is the 

preliminary assumption for factor analysis), the factorability (suitability) of the data for factor analysis was 

assessed by inspecting Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (Kaiser, 1970; 1974) and 

significance of Bartlett’s test of sphericity (Bartlett, 1954). The significance of Bartlett’s tests of all city-district 

neighbourhoods were .000 (p < .05) and KMO values were above the recommended value (.600), except CD8 

(.595) and CD18 (.590, but close to .600). Therefore, factor analysis is appropriate. Secondly, the number of 

factor extraction identified by the method of principal components analysis (PCA), that is principal component 

which explains most of the variance in the original variables, was only one in all city districts. This represents 

that the best interrelationships among the set of variables (apartment complexes’ monthly energy use) could 

be explained within the city districts. The eigenvalue also supports this, which accounts for the total amount 

of the explanatory variance of the factor extracted. In all city districts, only one factor (component) had an 

eigenvalue of 1 or more, and each component (Avg. of apartment complexes’ communalities within each city-

district) explains about 85.2% (Avg.) of the variance within the range from 66.7% (Min., CD12 an outliner) to 

up to 95.4% (Max., CD19). Furthermore, the standard deviation of communality (ranging 0 to 1) showed a 

high similarity in terms of the distribution of apartment complexes’ monthly electricity use within each city-

district neighbourhood boundary. This suggests that there appear similar (homogenous) characteristics of 

residential cooling energy use at the urban neighbourhood microclimate scale. Therefore, housing archetypes 

can be reasonably developed at this particular spatial resolution for modelling cooling energy demands of a 

city’s housing stock. 

 

Table 4. Outputs of factor analysis of apartment complex (AC) monthly (May to Oct) electricity use 2014-17 

within each neighbourhood of microclimate boundaries *. City-district neighbourhoods with number of ACs 

less than three were not included, taking into account the factorability of the data for factor analysis. 

CD-AWS 
Areas 

KMO 
value 

Sig. of 
Bartlett’s Test 

No. of factor 
extraction 

(Eigenvalue) 

Eigenvalues % 
of variance 

Std. Dev. of ACs’ 
communalities 

No. of 
ACs 

CD1 .747 .000 1 (5.983) 85.5 .209 7 
CD2 .663 .000 1 (4.713) 78.5 .164 6 
CD3 .623 .000 1 (2.570) 85.7 .100 3 
CD6 .605 .000 1 (2.499) 83.3 .126 3 
CD8 .595 .000 1 (2.970) 74.2 .167 4 
CD11 .680 .000 1 (3.133) 78.3 .166 4 
CD12 .731 .000 1 (2.666) 66.7 .431 4 
CD13 .769 .000 1 (2.853) 95.1 .017 3 
CD15 .858 .000 1 (6.191) 88.4 .061 7 
CD16 .781 .000 1 (2.826) 94.2 .008 3 
CD18 .590 .000 1 (2.552) 85.1 .091 3 
CD19 .910 .000 1 (7.633) 95.4 .039 8 
CD20 .877 .000 1 (6.545) 93.5 .055 7 
CD21 .812 .000 1 (6.211) 88.7 .083 7 

 

3. Methods 

3.1. An ‘archetype-in-neighbourhood’ framework 
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To quantify a city’s residential cooling energy demand according to climate projections, an ‘archetype-in-

neighbourhood’ modelling framework is proposed (Figure 4). Based on multiple regression analysis, we adopt 

a bottom-up approach to housing stock modelling by developing archetypes in neighbourhoods corresponding 

to the urban microclimate scale. This is to investigate how local climate conditions may affect residential 

cooling energy use. Previously, multiple regression modelling was used to identify major determinants on 

residential weather-dependent energy use. For instance, Jones and Harp (1982) identified climatic variables 

such as Heating Degree Day (HDD) a key determinant. Raffio et al. (2007) examined the relationship between 

utility bills and weather data within multiple residential areas and identified different coefficients in each of 

the residences as “energy signature”, similar to “fingerprint” in an earlier study (Hirst et al., 1986). This 

suggests that unique metered energy use occurrences determined by weather can be residence specific (Swan 

and Ugursal, 2009). This method is appropriate if regional climate change projections are not readily applicable 

for dynamic building simulation. For instance, for city of Seoul, current data available for future climate is 

limited into daily temperature and precipitation (CIP, 2017). 

 

Furthermore, to predict cooling loads under the projected changing climates, a required HVAC cooling 

temperature set-points in coming years must be given as a reference threshold for cooling. This requires present 

households’ cooling temperature set-points. However, collecting such data from citywide survey would be 

cost-prohibitive if not possible. Thus, we develop an EnergyPlus model calibration process (Figure 5) to 

estimate archetypes’ historical HVAC cooling temperature set-points (section 3.2). In turn, these estimates at 

the micro level (archetype in neighbourhood) are aggregated at a macro level as the input variables to a city’s 

housing stock energy model.  This was grounded that the history of residential cooling energy use reflects the 

interaction between buildings and local environmental conditions as well as the contingency of residents’ 

energy use behaviour. Therefore, the archetypes in neighbourhoods are defined and specified for EnergyPlus 

model calibration with known data sources, such as housing thermal characteristics, geometric configurations, 

detailed energy use profile (cooling and non-weather-dependent energy use) and on-site weather station data.  
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Figure 4. A bottom-up stock energy modelling framework for predicting maximal month cooling energy 

demands of a city’s dwelling through combined building energy modelling and statistical modelling 

 

3.2. Estimating archetypes' maximal month HVAC cooling temperature set-points 

The archetype cooling energy model calibration follows an iterative process (Raftery et al., 2011a). As there 

are no field measurement data available for internal loads of household equipment, the calibration process 

consists of two phases: (1) initial archetype non-weather-dependent (NWD) energy model calibration to 

estimate internal heat gains of household NWD equipment, and (2) archetype cooling energy model calibration 

to estimate present-day monthly HVAC cooling temperature set-points expected during the hottest month of 

the year. 

 

As shown in the upper block of Figure 5, an initial step is required to obtain estimates of internal heat gains 

from household equipment usage (i.e., lighting, cooking, machinery and others), which are then taken as inputs 

to peak cooling energy model calibration for each neighbourhood archetype (see the lower block of Figure 5). 

For the initial non-weather dependent (NWD) energy model calibration, three types of inputs (by measurement 

or by inference) are required: (a) physical properties in terms of 3D geometry and thermal property of building 

material assembly profile; (b) urban microclimate boundary specific TMY weather data; and (c) NWD energy 

usage data including NWD household equipment use profiles. We should note that the weather input used in 

this study is not a typical meteorological year (TMY) but temporally (August 2014-17) and spatially (city-
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district neighbourhoods) modified on-site weather input for archetype EnergyPlus modelling: hence, actual 

meteorological year (AMY) climate data converted to EnergyPlus wheather (EPW) file format. 

 

 

Figure 5. Model calibration process of peak cooling energy use for estimating an archetype’s cooling 

temperature set-points (˚C) 

 

Based on the initial preparation, the archetype model is updated at the zone level with inputs of occupancy 

scheduling and placement of household NWD equipment. Through iteration until the simulated NWD energy 

use outputs meet the measured NWD energy usage data, the internal loads for each archetypes’ NWD energy 

use is obtained. The calibrated internal loads are then used to estimate internal heat gains of NWD equipment 

use, such as lighting, machinery, cooking and cultural. Next, as shown in the lower block of Figure 5, cooling 

energy model calibration can be further performed by: (1) replacing the calibration data from NWD to total 

monthly August energy use data, including cooling; (2) updating operating parameters of occupancy 

scheduling and HVAC placement for cooling; and (3) inputting the internal heat gains of NWD household 

equipment use estimated previously. Finally, archetypes’ monthly cooling temperature set-points are derived 

from the iterative calibration process against the measured total amount of August energy use. 

 

3.3. Estimating input requirements for EnergyPlus model calibration 
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The purpose of EnergyPlus model calibration (Figure 5) is to determine archetypes’ August monthly (overall) 

HVAC cooling temperature set-points given the history of neighbourhoods’ monthly energy use data. This 

requires detailed archetype-specific energy use profiles such as home appliance energy use for non-weather-

dependent (NWD) and for cooling, and the related operation scheduling profiles. However, such data 

requirements are partly available in neighbourhood level of citywide. Hence, it is inevitable to estimate the 

details under the assumptions. For input requirements, archetype is first defined at neighbourhood scale in 

section 3.3.1. This includes archetypes’ thermal characteristics and geometric configurations. Then, archetypes’ 

August monthly energy use is subdivided into estimated NWD and cooling energy use in section 3.3.2. The 

occupancy scheduling profiles are configured in section 3.3.3. 

 

3.3.1 Archetype definition for the housing stock in Seoul 

For the purpose of EnergyPlus model calibration, three factors are involved in developing the archetypes of 

Seoul’s apartment stock: thermal characteristics (Ri), geometric configurations (Aj) and city-district (CDk) 

microclimate neighbourhood boundaries. An archetype is denoted as CDk[Ri/Aj](actual area, m2). For instance, 

CD12[R4/A2](82) denotes an archetype located in CD-AWS area no.12 built during building regulation epoch 

R4 (July 1987 in Table 2) with floor area type A2 (84m2 in Figure 6); actually applied floor area is 82m2 based 

on A2 floor plan. In order to calculate the actual area for each archetype in neighbourhood, the total area of 

each CD-AWS neighbourhood was divided by the number of households. 

 

 

Figure 6. Floor plans of typical apartment flats based on lettable area (solid line): A1 (59m2), A2 (84m2) and 

A3 (125m2) (Source: MoLiT, 2009; Tae et al., 2011) Note: all balcony areas are outside the floor plan boundary 

(in solid line) 

Firstly, for the building thermal characteristics of an archetype, the dominant building regulation epoch was 

chosen (Figure 3(a)) as there appears one dominant insulation regulation in each city-district neighbourhood, 

of which the adjacent do not have large differences in terms of U-values (Table 2). Thus, the archetypes’ 

thermal envelope components were fit to the insulation criteria as shown in Table 2. Secondly, to generate the 

archetypes’ geometric configurations such as floor plan, the calculated actual floor areas were used owing to 

m2-based energy use data. Then, it was referred to standard typical apartment floor plans proposed by local 

authority’s green building design guideline based on floor areas (MoLiT, 2009): 36m2 (1-bed), 46m2 (2-bed), 
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59m2 (3-bed), 84m2 (3-bed), 125m2 (4-bed) (Figure 6). Then, the archetypes’ floor plans were resized to the 

calculated actual area (m2). 

3.2.2. Estimation of detailed energy use profile 

As the energy use data selected are metered monthly electricity usage, containing not only heating/cooling 

energy use but also energy use for other home appliances, it is necessary to deduce the monthly electricity use 

data into two types: non-weather-dependent (NWD) use for operating home appliances and weather-dependent 

(WD) use for cooling or heating. This study assumes that NWD energy use is the minimum monthly electricity 

use for the study period 2014-17, and peak (August) cooling energy use can be estimated as the net of August 

total energy use minus the NWD use identified. Here, the estimated NWD energy use drawn from the 2014-

17 dataset was adopted as a constant value applied to the subsequent energy modelling of the archetypes. 

 

 

Figure 7. (a) HDD and CDD based on daily temperature dataset from the Seoul city weather station; (b) 

monthly electricity use profile from aggregated 74 apartment neighbourhoods in Seoul, 2014-16 

 

To confirm the assumption above, we analysed the relationship between cooling degree days (CDD), heating 

degree days (HDD), and monthly electricity use 2014-16. CDD and HDD were calculated by 17.1oC as the 

base temperature for Seoul (Lee et al., 2014). As shown in Figure 7 (a), the heating, cooling and mixed period 

can be clearly identified by CDD and HDD: Nov-Apr (heating); Jun-Sept (cooling); May and Oct (mixed), 

suggesting there can be no NWD months theoretically. The mixed period had a relatively small amount of 

CDD/HDD days, implying a high probability of NWD energy use occurring in both months (May and October). 

The actual energy use profile in Figure 7(b) supports this assumption: the minimum electricity use occurred 

in both May and October of each year, which is further tested with a Pearson correlation analysis.  
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If the minimum electricity use can be attributed to NWD use, it would be weak or negative for the correlation 

coefficients between CDD and monthly electricity use for May and October in explaining the relationship. 

Table 5 shows the relationship between CDD and electricity use in the cooling period (Jun-Sep) was very 

strong and positive, meaning that the monthly electricity use during the cooling period contains cooling energy 

use certainly. However, in the mixed period (May and October), there was a very strong but negative 

correlation coefficient between CDD and electricity use, suggesting that the electricity use in this period was 

determined by aspects other than CDDs. Despite the correlation analysis, this assumption can still lead to over 

or under estimate of NWD energy use due to the current limited data availability. Nonetheless, inclusion of 

weather-dependent energy use in the minimum electricity use period will be minimal. 

 

Table 5. Correlation between monthly electricity use and CDD for cooling and mixed periods. **. p<0.01 and 

*. p<0.05 

 Cooling period (Jun-Sep)  Mixed period (May and Oct) 

 CDD (sqrt) and Electricity (log)   CDD and Electricity 

Pearson-C .951**  -.887* 
Sig. .000  .018 
R squared .905  .787 
N 12 (4mon*3yr)  6 (2mon*3yr) 

 

Table 6 shows the NWD and peak cooling energy use estimated for each neighbourhood archetype. Notably, 

the archetype energy use data is not an average value of apartment complexes’ monthly (August) electricity 

use in each neighbourhood but the weighted value by each apartment complex’s total floor area. Taking CD4 

as an example, where there are two apartment complexes, each of their 2016’s August electricity uses (kWh/m2) 

are 5.387 (a) and 5.181 (a’) and of their total floor areas (m2) are 13,063 (b) and 190,886 (b’) respectively. 

Thus, the CD4’s floor-area-weighted value (kWh/m2) is 5.194, calculated by (a*b + a’*b’) / (b + b’), which is 

different from the average, 5.284. These estimates were later used in the EnergyPlus model calibration process 

to output archetypes’ HVAC cooling temperature set-points in present years (2014-17). 

 

Table 6. Archetypes’ NWD and August (hottest month period) cooling energy use data for cooling energy 

model calibration 

Archetype in 
Neighbourhood 

NWD 
electricity 

use 
(kWh/m2) 

August cooling energy use 
(kWh/m2) 

City 
District 

Type (actual 
area m2) 

2014  2015  2016  2017  

CD1 R5/A2 (94) 2.936 1.338 1.612 2.322 1.739 
CD2 R3/A2 (98) 3.083 1.478 1.704 1.998 1.280 
CD3 R3/A2 (75) 3.165 0.865 1.279 2.044 1.317 
CD4 R5/A2 (87) 3.216 0.779 1.134 1.979 1.452 
CD6 R4/A2 (100) 2.531 0.923 1.118 1.931 1.116 
CD8 R4/A2 (77) 2.985 0.794 1.140 1.606 1.373 

CD10 R4/A1 (64) 3.365 0.605 1.098 2.060 1.243 
CD11 R4/A2 (86) 3.432 1.168 1.451 1.694 1.457 
CD12 R4/A2 (82) 3.086 0.775 1.518 2.363 1.499 
CD13 R5/A2 (83) 3.186 0.920 1.127 1.859 1.550 
CD15 R3/A3 (108) 2.542 0.880 1.422 2.317 1.464 
CD16 R4/A2 (80) 3.074 0.886 1.249 2.567 1.435 
CD18 R1/A2 (89) 3.355 0.821 1.306 2.118 1.235 
CD19 R3/A2 (88) 2.733 0.866 1.325 2.425 1.304 
CD20 R4/A2 (91) 2.760 0.677 1.048 1.941 1.056 
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CD21 R4/A2 (102) 2.782 1.018 2.316 3.009 1.866 
CD22 R5/A2 (82) 3.301 0.667 1.994 2.661 1.721 
CD25 R5/A2 (84) 3.085 0.740 1.409 1.968 1.792 

 

 

 

Figure 8. (a) The relationship between neighbourhood-archetypes’ peak month (August) cooling energy use 

and external August average temperature 2014-17 in Macro (aggregated 18 neighbourhood-archetypes; (b) 

Micro (neighbourhood-archetype independently; CD1, 3, 10 as examples 

 

Following the NWD and August cooling energy use estimated for each archetype in neighbourhood, as shown 

in Table 6, Figure 8 shows the relationship between neighbourhood-archetypes’ August cooling energy use 

and the external August temperature in Macro (aggregated 18 neighbourhood-archetypes) and Micro 

(archetype-in-neighbourhood) plots. Figure 8(a) shows that all models (linear, quadratic, logarithmic) are not 

well fitted in the Macro plot with R2=.585, .580, .595 respectively; while using CD1, CD3, CD10 as examples, 

the Micro plot shows well-fit linear models (Figure 8(b)). This suggests, relatively speaking, the peak month 

cooling energy use behaviour can be better explained at the archetype-in-neighbourhood scale. Special 

attention should be paid to the different gradients (model coefficients) of each city district. As the relationship 

between the two variables indicates how the dwellings responds to external climate for peak month cooling 

energy use (hence, behaviour), there were substantial differences of peak month cooling energy use predicted 

according to the external climate. For instance, if external temperature reaches at 30oC, the estimated peak 

month cooling energy use can be dynamic: 2.693 (kWh/m2) in CD1, 2.260 in CD3, 3.014 in CD10.  

 

Given the estimated archetypes’ non-weather dependent (NWD) electricity use, the detailed archetypes’ 

household NWD equipment electricity use profiles were further investigated. In this study, they were required 

to extract internal loads for calibrating internal heat gains in EnergyPlus modelling. This is due to the fact that 

a detailed household equipment energy use profile is unavailable for Seoul’s housing stock, a certain 

proportion (%) of total NWD electricity use was estimated by referring to the household equipment energy use 

profile surveyed from both the UK (Palmer and Cooper, 2014) and Korea (Seo and Hong, 2014). This cross-
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nation referencing was to combine the limited Korean survey covering only a small sample size (30 apartment 

households) in a different city (Daegu) for a short time period (2 weeks) with the UK survey, which is of a 

national and annual scale. The actually applied percentage of total NWD electricity use for Seoul was adjusted 

by considering Seoul’s social cultural circumstances with reference to the UK and the Korean household 

equipment energy use profile. For instance, the fermentation process for long-term food preservation and 

warming of cooked rice in Korean cooking spends relatively more electricity (Kim et al., 2016). Therefore, the 

percentage for cold appliances and cooking had more weight than others. Table 7 lists the archetypes’ NWD 

household equipment energy use profiles. 

 

Table 7. Detailed amount of NWD household equipment in each neighbourhood archetype as calibration data 

in NWD energy model. * Machinery: cold and wet appliances, Cultural: consumer electronics and IT 

Archetype in 
Neighbourhood 

NWD 
elec. use 
(kWh/m2) 

Actual 
Floor 
area  
(m2) 

Total 
NWD 
elec. use 
(kWh) 

 Lighting 
(18%, 
kWh) 

Machinery 
(36%, 
kWh) 

Cultural 
(26%,  
kWh) 

Cooking 
(20%, 
kWh) City 

District 
Type (actual 
area m2) 

CD1 R5/A2 (94) 2.936 93.88 275.59  49.61 99.21 71.65 55.12 
CD2 R3/A2 (98) 3.083 97.91 301.90  54.34 108.68 78.49 60.38 
CD3 R3/A2 (75) 3.165 74.62 236.17  42.51 85.02 61.40 47.23 
CD4 R5/A2 (87) 3.216 86.60 278.49  50.13 100.26 72.41 55.70 
CD6 R4/A2 (100) 2.531 100.37 254.09  45.74 91.47 66.06 50.82 
CD8 R4/A2 (77) 2.985 77.11 230.17  41.43 82.86 59.84 46.03 
CD10 R4/A1 (64) 3.365 64.11 215.75  38.84 77.67 56.10 43.15 
CD11 R4/A2 (86) 3.432 85.74 294.27  52.97 105.94 76.51 58.85 
CD12 R4/A2 (82) 3.086 82.03 253.13  45.56 91.13 65.81 50.63 
CD13 R5/A2 (83) 3.186 82.91 264.19  47.55 95.11 68.69 52.84 
CD15 R3/A3 (108) 2.542 107.85 274.19  49.35 98.71 71.29 54.84 
CD16 R4/A2 (80) 3.074 79.72 245.09  44.12 88.23 63.72 49.02 
CD18 R1/A2 (89) 3.355 88.97 298.52  53.73 107.47 77.62 59.70 
CD19 R3/A2 (88) 2.733 88.24 241.13  43.40 86.81 62.69 48.23 
CD20 R4/A2 (91) 2.760 91.28 251.91  45.34 90.69 65.50 50.38 
CD21 R4/A2 (102) 2.782 102.22 284.33  51.18 102.36 73.93 56.87 
CD22 R5/A2 (82) 3.301 82.33 271.75  48.92 97.83 70.66 54.35 
CD25 R5/A2 (84) 3.085 83.98 259.04  46.63 93.25 67.35 51.81 

 

3.3.3 Household operation parameters and occupancy schedules 

The operation parameters in building energy modelling include detailed occupancy scheduling profiles of 

household equipment and the placement in zones. As user behaviour has been shown to be one of the key 

determinants in residential energy use (Yu et al., 2011; Yun & Steemers, 2011), accurate values of the 

operation parameters are required for model accuracy and reliability. To establish an estimated occupancy 

scheduling profile in the energy modelling for each archetype, this study first analysed hourly residential 

electricity use profile (KOSIS, 2016) and then identified relevant energy standard and guidelines for partially 

inferred scheduling profiles. Figure 9 shows the index of relative coefficient of hourly residential electricity 

use profile for July and August 2015 (the hottest months in Korea). The index was calculated by Dn/A*1000 

(n=1,2,…,24), where A is the average of all hourly electricity uses for the month, and Dn is average of specific 

hourly electricity use for the month. In this case, 1000 is used as the base reference line to differentiate high 

or low energy use by hour (KOSIS, 2016), and there are four temporal segments identified by the transition 

points of electricity use. Firstly, during the midnight segment, there may be no energy use activities other than 

operational use of essential home appliances. Secondly, the morning segment from 7 am, certain activity 
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started and increased until 9 am. Thirdly, between 9 am and 17 pm (day time), there was consistent electricity 

use near to the average, implying mixed activities occurred but there may be no or minimal cooling. Finally, 

the dramatic change and diversity occurred in the evening/night segment, implying mixed activities including 

cooling activity. 

 

 

Figure 9. Index of relative coefficient of hourly residential electricity use profile for July & August 2015 

(Source: KOSIS, 2016) 

 

Based on the analysis of hourly residential electricity use profile, this study selected a standard and guideline 

of an occupancy profile database provided by the IES VE package (IES, 2017), which is closest to the profile 

analysis shown in Table 8. Here we assume the reference occupancy profile of household equipment equally 

applicable to all archetypes. Ideally, the occupancy profile should be calibrated for the model specifically 

through the iterative model calibration process (Raftery et al., 2011b), as the occupancy profile plays a certain 

role in energy use, especially weather dependent heating and cooling energy use (Yang and Becerik-Gerber, 

2014). Finally, the air-conditioning system capacity profile was based on the IES VE system database for 

residential HVAC system: nominal coefficient of performance (COP, kW/kW) is 3.125, seasonal COP (2.500), 

and system seasonal COP (2.000). 

 

 

 

 

Table 8. Assumptions of placement of household equipment and occupancy scheduling profile in zoning 

inputs. * (a: master bedroom, b: bedrooms, c: bathroom, d: kitchen, e: living room, f: balcony) 

 Placement  Occupancy scheduling profile 

 a b c d e f   

Lighting o o o o o -  

 



19 

 

Machinery - - - o - -  

 

Cultural o o o - o -  

Cooking - - - o - -  

 
People 
(residents) 

o o o o o -  

 
Cooling o - - - o -  

 
         

Opening profile Type Openable 
area (%) 

Opening 
threshold (oC) 

Degree of opening 

External window Sliding 50 26 On continuously 
Internal window Sliding 50 - Off continuously 
Door Side hung 100 - Off continuously 

 

4. Results  

4.1. Estimated indoor cooling temperature set-points of archetypes in neighbourhoods 

The EnergyPlus modelling process was conducted using one apartment household unit located in the middle 

of an archetype building (i.e. 8th floor in 15-story tall, CD25). Also, the West located apartment was selected, 

considering the influential solar gain on indoor thermal environment than the East. Taking CD25[R5/A2](84) 

archetype apartment building as an example, Figure 10 illustrates the model details, which is R5 building 

envelop thermal property in Table 2 and A2 floor plan in Figure 6 with 84m2 of actually applied floor area. 

Firstly, archetypes’ internal loads (maximum power consumption) of household non-weather dependent 

(NWD) equipment (lighting, machinery, cooking and cultural) were estimated through the iterative calibration 

process of the initial archetype NWD energy model. As shown in Table 9, there are spatial (neighbourhood 

archetypes) variations in the estimations of each NWD equipment component energy use due to the 

differentiated NWD calibration inputs. 

 

Secondly, the internal heat gains of household NWD equipment were estimated by the determining heat gain 

ratio to the calibrated internal loads, and 25% was used as the determinant ratio in this estimation except 

lighting (Hosni et al., 1999). For the lighting, 80% was used, which is the combined radiant (37%) and 

convective heat (42%) to the total lighting load (100% including 21% of visual light) in case of fluorescent 

light (Ahn et al., 2014). In addition, for the people, low-density office (20m2 per person) with light work was 

benchmarked from CIBSE (2015, pp. 6-2): 4W/m2.  
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Figure 10. EnergyPlus modelling details of an archetype apartment building in CD25 as an example: A2 floor 

plan in Figure 6 and 84m2 of actual floor area) 

Finally, the initial archetype NWD energy model was updated to a cooling energy model through updating the 

zoning inputs, including calibration data of total August electricity use (NWD + cooling use in Table (6), 

operating parameters of occupancy cooling scheduling (Table 8), and HVAC and estimated internal heat gains 

(Table 9). Figure 11(a) shows the modelling outputs of the archetypes’ August cooling temperature set-points 

estimated for Seoul, August 2014-2017. There appears a trend that most of the highest set-points occurred in 

2016, the year of the largest cooling degree day (CDD) count, while the lowest set-points occurred in 2014 

with the lowest CDD count (see Figure 7 - August). Based on the data collected for the August months of 

2014-17, Figure 11(b) shows the relationship between indoor and external temperatures in Seoul’s 18 city-

district neighbourhoods, which we propose as a history of residential cooling set-point (RCS) 2014-17. This 

RCS history would be used later in assessing the maximal month cooling demand of Seoul's housing stock in 

future years (section 4.2).  

 

Table 9. Profiles of calibrated internal loads (maximum power consumption) and estimated internal heat gains 

of household NWD equipment based on the determining heat gain ratio (80% for lighting and 25% for others) 

to the calibrated internal loads. * People (4W/m2) is equally applied to all neighbourhood archetypes 

Archetype in 
Neighbourhood 

Calibrated internal loads (W/m2)  Internal sensible heat gain (W/m2) 

Lighting Machinery Cultural Cooking  Lighting Machinery Cultural Cooking 

CD1[R5/A2](94) 4.936 15.111 1.730 20.080  3.949 3.778 .433 5.020 
CD2[R3/A2](98) 5.185 15.872 1.817 21.091  4.148 3.968 .454 5.273 
CD3[R3/A2](75) 5.322 16.292 1.866 21.649  4.257 4.073 .466 5.412 
CD4[R5/A2](87) 5.407 16.553 1.895 21.995  4.325 4.138 .474 5.499 
CD6[R4/A2](100) 4.256 13.065 1.492 17.360  3.405 3.266 .373 4.340 
CD8[R4/A2](77) 5.019 15.365 1.759 20.417  4.015 3.841 .440 5.104 
CD10[R4/A1](64) 5.659 17.323 1.984 23.019  4.527 4.331 .496 5.755 
CD11[R4/A2](86) 5.771 17.668 2.023 23.477  4.617 4.417 .506 5.869 
CD12[R4/A2](82) 5.189 15.884 1.819 21.107  4.151 3.971 .455 5.277 
CD13[R5/A2](83) 5.358 16.402 1.878 21.795  4.286 4.101 .470 5.449 



21 

 

CD15[R3/A3](108) 4.275 12.457 1.510 16.562  3.420 3.114 .378 4.141 
CD16[R4/A2](80) 5.169 15.825 1.812 21.028  4.135 3.956 .453 5.257 
CD18[R1/A2](89) 5.642 17.271 1.978 22.950  4.513 4.318 .494 5.738 
CD19[R3/A2](88) 4.595 14.067 1.611 18.692  3.676 3.517 .403 4.673 
CD20[R4/A2](91) 4.640 14.206 1.627 18.877  3.712 3.551 .407 4.719 
CD21[R4/A2](102) 4.677 14.318 1.640 19.026  3.742 3.580 .410 4.756 
CD22[R5/A2](82) 5.550 16.991 1.946 22.577  4.440 4.248 .486 5.644 
CD25[R5/A2](84) 5.186 15.878 1.818 21.099  4.149 3.970 .455 5.275 

 

 

Figure 11. (a) Estimated August cooling temperature set-points as an indicator and (b) the relationship 

between indoor and external temperatures as Seoul’s residential cooling set-point (RCS) history based on the 

data collected for the August periods of 2014-17 

 

4.2. Seoul’s maximal month residential cooling energy demand model 

To identify key determinants affecting maximal month cooling energy use, five independent variables were 

used in further multiple regression analysis: (1) August average temperature (oC) in each city-district 

neighbourhood (Figure 1); (2) NWD household equipment energy use (kWh/m2, Table 6); (3) estimated 

present August cooling temperature set-points (oC, Figure 11(a)); (4) the collected property price (KRW/ m2) 

in Figure 3 (c); and (5) U-value (W/m2*K) of the external wall (Table 2) according to the determined 

archetypes’ thermal characteristics, Ri (section 3.3.1). Considering the current data sample scope and size, a 

decision was made to perform the multiple regression analysis at a macro-level (a bottom-up approach), that 

is, an aggregate of all city-district archetypes. Thus, total number of sample was 72, i.e. 4 years (2014-17) * 

18 archetypes-in-neighbourhoods. Table 10 shows the outputs of multiple regression analysis.  

 

Here two parameters were identified as the highest standardised coefficients (Beta) occurred in both: August 

external average temperature (Tex, oC) and August indoor cooling temperature set-points (Tin, oC). Arguably, 

the property price (employed as a socio-economic characteristic) plays a key role in residential energy use, 

which can be linked to energy affordability. However, as our previous study (Yi and Peng, 2017) showed that 
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the property price is more dominant in cooling energy use under the mild summer condition (July), while it is 

opposite in August (peak summer month). 

 

Table 10. Coefficients of multiple regression analysis to identify key determinants of August cooling energy 

use in Seoul 

 Dependent Independent B Std. 
error 

Beta Sig. 

R2 = .988, 
R2 (adj.)=.987  
p = .000 
 
N=72 (18 * 4 yrs) 
 

August 
cooling 
energy use 
(kWh/m2) 

(Constant) 1.944 .316   .000 

August external average 
temperature (oC) 

.502 .007 1.288 .000 

NWD energy use (kWh/m2) .099 .034 .050 .005 

August indoor cooling 
temperature set-points (oC) 

-.536 .013 -.826 .000 

Property Price (KRW/m2) -.001 .000 -.002 .908 

Building envelope (W/m2*K) .427 .076 .098 .000 

 

 

 

Figure 12. (a) Coefficients of modelling maximal month cooling demands (MMCD) based on the August 

average external temperature (Tex) and August indoor cooling temperature set-points (Tin); and (b) Coefficient 

of determination (R2) between the predicted and observed maximal month cooling energy use at total 

(aggregate of all four k-folds) 

 

Given the two determinants, the Seoul’s maximal month cooling energy demand (MMCD) model (kWh/m2) 

was generated (Figure 12(a)). A k-fold cross validation was applied to evaluate the model accuracy from 

individual neighbourhood to aggregate city scale. Four folds were generated as there were datasets of four 

years (2014-17). Five criteria were used in the error statistics: mean absolute error (MAE); mean square error 

(MSE); root mean square error (RMSE); mean absolute percentage error (MAPE); coefficient of determination 

(R2). The predicted data represents the output resulted from each k-fold multiple regression model while the 

observed represents the outcome estimated by NWD energy use assumption (Table 7).  
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Table 11 shows the outputs of the error statistics of each k-fold. Overall, the coefficient of determination from 

the scatter plot between the observed and the predicted was .969 (Figure 12(b)), representing about 97% of 

variance in the observed peak cooling energy use could be explained by the corresponding fourfold multiple 

regression models. Moreover, all four k-fold’s errors were near to zero, indicating no over fitting training 

datasets to the testing sets in all four cases. 

 

Table 11. Coefficients of modelling peak month cooling demands of each k-fold to evaluate model accuracy 

and the error statistics between the predicted and the observed of each k-fold. * y: maximal month cooling 

energy use (kWh/m2), x1: August average temperature (˚C), x2: cooling temperature set-points (˚C). 
k-fold model 
y(x1, x2)=a+bx1+cx2 

a b c R2 Sig. 

k=1 (2014, 15, 16) 2.488 .498 -.533 .979 .000 
k=2 (2014, 15, 17) 2.198 .472 -.496 .951 .000 
k=3 (2014, 16, 17) 2.163 .490 -.512 .980 .000 
k=4 (2015, 16, 17) 2.381 .493 -.523 .963 .000 
      

Error statistics MAE 
(kWh/m2) 

MSE 
(kWh/m2) 

RMSE 
(kWh/m2) 

MAPE 
(%) 

R2 

k=1 (testing 2017) .058 .007 .086 4.31 .930 
k=2 (testing 2016) .087 .013 .114 3.93 .921 
k=3 (testing 2015) .083 .009 .097 6.56 .939 
k=4 (testing 2014) .064 .006 .076 7.88 .918 

At total .073 .009 .093 5.67 .969 

 

To summarise, the main results of the cooling energy demand modelling are as follows: 

1. Based on Seoul’s open urban data 2014-17, the maximal month cooling energy demand (MMCD) model 

of Seoul’s apartment complex stock is expressed as:   

MMCDSeoul =2.268 + .492* Tex -.518* Tin (R
2=.974) (1) 

where MMCD is maximal month cooling energy demand (kWh/m2), Tex is August outdoor 

temperature (˚C), Tin is August indoor cooling set-point temperature (˚C). 

 

2. A regression analysis of the August cooling temperature set-points (˚C, Tin) and the August outdoor 

temperature (˚C, Tex) gives a residential cooling set-point (RCS) history 2014-17 as:  

Tin = -11.565 + 2.482*Tex -.038*Tex
2 (R2=.398) (2) 

 

 

3. Given the RCS history 2014-17, Seoul’s MMCD model can be further deduced as:  

MMCD(RCS)Seoul =8.260 - .794*Tex + .020*Tex
2 (R2=1.000) (3) 

 

4.3 Scenarios of cooling energy demand of Seoul’s housing stock in future climate 

Concerning potential summer heat events in Seoul, the MMCD model was applied to generate some scenarios 

of future cooling energy demand according to the climate projections published by the Korean Meteorological 

Administration (KMA). Based on MK-PRISM (Kim et al., 2012; Kim et al., 2013a), Seoul’s climate change 

datasets are available on the Climate Information Portal (CIP, 2017). Based on different Representative 
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Concentration Pathways (RCP), in 2050s, Seoul’s highest August temperature is set to reach 29.71oC (RCP4.5 

in 2047) and 30.60oC (RCP8.5 in 2045). The MM5 mesoscale model (2071-2100) (Grell et al., 1994) 

downscaled to South Korea (Boo et al., 2006) is set to reach 32.85oC (+5.5oC from present Mean of 2014-17, 

27.35oC).   

 

Figure 13 shows that assuming no housing stock renovation, Seoul’s residential maximal month cooling 

energy demand is estimated to increase about 56% (29.71oC, RCP4.5 2047), 81% (30.60oC, RCP8.5 2045) and 

155% (32.85oC, MM5 2071-2100) according to the MMCD(RCS)Seoul model (RCS history 2014-17, 27.35˚C, 

Mean of Augusts 2014-17). Our bottom-up ‘archetype-in-neighbourhood’ approach to housing stock cooling 

energy demand modelling seems broadly in line with a previous projection (Lee and Levermore, 2010) where 

the cooling degree days (CDDs) by the year of 2099 from 1980 were predicted to increase up to 160% while 

heating degree days (HDDs) would be reduced up to 63% in South Korea. Further modelling of the housing 

stocks in other major cities in South Korea can be carried out to test if such alignment still holds. 

 

 

Figure 13. Scenarios of future cooling energy demand of Seoul’s housing stock according to three climate 

projections (RCP8.5 2045, RCP4.5 2047, MM5 2071-2100) with reference to the residential cooling set-point 

(RCS) history 2014-17 *.26-28oC: the local (Korea) authority recommendations (MoLiT, 2017) 

 

5. Conclusion and further work 

An 'archetype-in-neighbourhood' framework is proposed to address the requirements of cooling energy 

demand modelling of a city's housing stock. This new framework takes into account building stock interaction 

with local urban microclimate and residents' cooling energy use history. As shown in the Seoul housing stock 

study, a peak month cooling energy demand model can be expressed in terms of the city's external air 

temperatures and indoor cooling temperature set-points during the hottest month period. An urban weather 
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station centric approach to housing archetype development and subsequent EnergyPlus calibration of the 

archetypes with real energy use data addresses the modelling requirements successfully. The resultant maximal 

month cooling energy demand model can be plugged in to a city's climate projections to generate future peak 

month cooling demand scenarios. At present, the future cooling demand scenarios generated do not reflect 

realistically how the existing housing stock and household composition may evolve in future decades. However, 

the “business as usual” scenarios could help with identifying targets of cooling demand reduction to be 

achieved by initiating sustainable renovation of the existing housing stock and neighbourhood environments.  

 

The empirical urban data based approach means that both the maximal month cooling demand model and the 

residential cooling set-point history need to be updated whenever new data are made available. Further work 

on developing the data processing algorithms will ensure automation of model update. Given that the frequency, 

duration and intensity of warm spells and heatwaves are likely to increase in future climate, the archetype-in-

neighbourhood modelling framework can aid planning of residential energy supply by tracking closely a city's 

climate projections and indoor thermal conditions of the housing stock. Residential energy supply planning 

should also develop more a more responsive and equitable electricity-pricing policy, alleviating plight of 

summer fuel poverty. There could be an important relationship yet to be uncovered between the energy price 

for peak summer months and energy use profiles. Residents may sacrifice their thermal comfort during those 

peak pricing periods. Our ongoing work aims to extend the scope of applicability of this new framework to 

identify effective pathways of housing stock adaptation that will reduce cooling energy demand while maintain 

the indoor thermal comfort required of the city dwellers. 
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