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Testing the ability of unmanned aerial systems
andmachine learning tomapweeds at subfield
scales: a test with the weed Alopecurus
myosuroides (Huds)

James PT Lambert,* Dylan Z Childs and Rob P Freckleton

Abstract

BACKGROUND: It is important to map agricultural weed populations to improve management and maintain future food
security. Advances in data collection and statistical methodology have created new opportunities to aid in the mapping of
weed populations. We set out to apply these new methodologies (unmanned aerial systems; UAS) and statistical techniques
(convolutional neural networks; CNN) to themappingofblack-grass, ahighly impactfulweed inwheatfields in theUK.We tested
this by undertaking extensive UAS and field-based mapping over the course of 2 years, in total collecting multispectral image
data from102fields, with 76 providing informative data.Weused these data to construct a vegetation index (VI), whichweused
to train a customCNNmodel from scratch.Weundertook a suite of data engineering techniques, such as balancing and cleaning
to optimize performance of our metrics. We also investigate the transferability of themodels from one field to another.

RESULTS: The results show that our data collectionmethodology and implementation of CNN outperform pervious approaches
in the literature. We show that data engineering to account for ‘artefacts’ in the image data increases our metrics significantly.
We are not able to identify any traits that are shared between fields that result in high scores from our novel leave one field our
cross validation (LOFO-CV) tests.

CONCLUSION: We conclude that this evaluation procedure is a better estimation of real-world predictive value when compared
with past studies. We conclude that by engineering the image data set into discrete classes of data quality we increase
the prediction accuracy from the baseline model by 5% to an area under the curve (AUC) of 0.825. We find that the temporal
effects studied here have no effect on our ability tomodel weed densities.
© 2019 The Authors. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting informationmay be found in the online version of this article.

Keywords: unmanned aerial systems; weed mapping; convolutional neural networks; black-grass; management

1 INTRODUCTION
The core objective of plant population ecology is to under-

stand changes in numbers of individuals/organisms across time

and space.1 Achieving this depends onmethods that permit plants

to be mapped and monitored at informative scales.2–4 Surveys of

plant populations have been undertaken using a variety of dif-

ferent methods such as transect sampling, quadrat sampling and

with unmanned aerial systems (UAS).5–7 Each of these methods

has an inherent trade-off between the area that can be surveyed

and the intensity atwhich the subjects in that area canbe studied.8

Transect and quadrat sampling can be used for either small area,

high-intensity studies or large area, low-intensity studies, but typ-

ically not both.9

UAS present a unique opportunity for ecological monitoring

because, potentially, they can yield data across both large spatial

areas and at high survey intensity. This bridges the gap between

local scales at which interactions matter, and larger landscape

scales at which environmental variation is important.10 UAS have

been applied in a range of ecological scenarios includingmapping

communities,11 populationmonitoring12 andmapping individuals

in small areas.13 However, few studies have focused on mapping

populations at differing times and places, or the challenges of the

homogeneous environment.

An economically important agricultural crop such as winter

wheat (Triticum aestivum L.) may be significantly impacted by

competition from weeds.14 Weed species add additional costs

to the production of crops by increasing the need for agricul-

tural inputs: e.g. in one national-scale audit, it was estimated
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that weeds cost the Australian economy $3.5 billion a year.15

Monitoring data can reduce costs by facilitating precision appli-

cation of inputs such as herbicides, or better-informed cultural

management.16 Ecological monitoring depends on being able

to locate and enumerate individuals or species within a given

environment.17 Patches ofweeds have shown tobepersistent over

10 years, thereforemapping in1 year represents apotential predic-

tor of future occurrence.18 There are many challenges in the map-

ping of weeds such as their fast growth rates, and highly variable

spatial and temporal distributions.19 Given the potential value of

monitoringdata, and thepossibility of rapid large-scale acquisition

of data usingUAS, there is clear interest by researchers and farmers

in applying this technology to measure weed populations.20

Despite thepotential for data derived fromUAS to improveweed

management, previous research has highlighted significant issues

in their use tomonitorweedpopulations.6 Specifically, images and

models calibrated to measure weeds in one environment appear

to perform poorly when transferred to another. There are several

reasons for this limited transferability, for example, variation in

weather conditions or different growth stages of the weed or

crop. As crop plants grow over the field season their phenology

changes, as does that of the weeds.21 This results in changes in

the spectral properties of the crop and weed species, both in the

visible spectrum and beyond.22,23 Moreover, common crops are

grown in many different varieties, each with their own unique

phenology and physiology.24–26 The statistical methodology of

random forests (RF) and a data set of mean pixel values from UAS

image plots, as used in our previous study of weed monitoring,

does not fully capture the extent of these variations, thus failing

to generate highly transferable models.6

Supervised machine learning is a statistical method that gener-

ates a classification output after being presented with an unclas-

sified input, having previously been trained on data consisting of

known inputs and outputs.27 All such models are trained using

‘features’. A feature is a numeric representation of the unclassi-

fied input. In the case of an image input, these can be engineered

by researchers, i.e. texture, colour, shape or they can be abstractly

and randomly defined by the model and adapted over iterations.

Here, we highlight key network methods that are used in super-

vised machine learning.

Neural networks conceptually mimic biological neurons in their

node-like structure. Each node is interconnected to others and

sends a ‘signal’ if threshold values are passed. Threshold values

are tuneable at each node and are adjusted automatically over

the course of fitting the model. An important advantage of neu-

ral networks is that they can bypass the need for domain knowl-

edge of the data set (feature engineering), allowingmore abstract

and potentially useful features to be used. This does, however,

make themodel less interpretable, as the features that are used are

selectedwithout logical justification. Aswithmost statisticalmeth-

ods, neural networks perform better when trained on more data.

Convolutional neural networks (CNN) are a type of neural net-

work specifically applied to image data sets. CNN have emerged

as the most common, and frequently best performing, model for

image classification tasks in themachine learning literature.28 CNN

learn a sparser connection between regions of an image than tra-

ditional neural networkmodels by imposing spatial dependencies

upon the pixels in the image.29 This may be of use when analysing

weed distributions because these are spatially dependant.30–32

CNN do not use user-defined features such as colour, shape or

texture to learn from the data. Instead CNN create abstract feature

maps and then through training/iterations, assign importance

to different feature maps33 representing different states in the

image. These components of a CNN make them well-suited for

mapping weed populations, but the underpinning model corre-

spondingly harder to interpret. Spatial information is retained, and

automated abstract feature identification can identify common

aspects among the classes of data that human feature selection

would otherwise miss.34

Here, we investigate how images collected from UAS can be

classified using CNN to predict weed densities in unseen images.

We explore how data engineering can be undertaken to improve

the results and account for the heterogenous nature of the envi-

ronment. We also investigate the seasonal effects of mapping on

our ability to correctly predict weed densities by comparing our

models between years and the week of survey, thus addressing

key limitations from past literature. Finally, we assess true out of

sample predictions of CNN models to assess their transferability

across populations.

2 MATERIALS ANDMETHODS
2.1 Description of data set

We studied Alopecurusmyosuroides (black-grass) in populations of

Triticum aestivum L. (winter wheat). Some 1.9 million hectares of

wheat is cultivated per year in the UK, making it the most widely

grown crop, with A. myosuroides becoming a significant problem

throughout the UK.35

Our field sites were part of an ongoing study by the Black Grass

Resistance Initiative (BGRI) into herbicide resistance levels in the

weed nationally. We surveyed 102 new fields across the arable

regions of the UK. Late seasonmonitoring (13 June to 12 August in

2016 and 2017) was chosen because previous work shows that the

weeds are distinguishable from the surrounding wheat crops at

this time.6 This represents a BBCH weed growth stage of 87–89.36

Fields were subject to a range of differing management

practices, across farms from 80 to 3000 ha. The populations of

black-grass had previously been measured in fields using the

methodology developed by Queenborough et al. and Hicks

et al.3,35 to estimate plant density states in a plot. Plots of

20× 20m were chosen as this allowed large amounts of con-

tiguous ground-truthed data on the densities of black-grass in a

field to be collected. The average field was 8 ha with 110 plots per

field, depending on the varying extents of the field. Five ordinal

density states of black-grass were denoted: absent, low, medium,

high and very high, (0, 1–160, 161–450, 451–1450 and 1451+,

plants per 20m2 respectively). This method allows for multiple

observers to be used, enabling large spatial scales to be covered

with minimal misclassification error between observers.

2.2 UAS platform

A widely available commercial UAS platform was chosen to allow

for low entry costs and high repeatability. We used the 3DR

solo UAS (‘Solo - The Smart Drone | Commercial Drone Plat-

form.’ https://3dr.com/solo-drone/. Accessed 11 January. 2018.)

because it permits third party imaging systems to be attached

and operated. The Parrot Sequoia (‘Sequoia - MicaSense.’

https://www.micasense.com/sequoia/. Accessed 11 January.

2018.) was chosen as the imaging sensor because it has been

specifically designed for use with UAS. This sensor records images

in four discrete calibrated spectral channels: green 550 nm (f g),

red 660 nm (f r), red-edge 735 nm (f re) and near infrared 790 nm

(f n) at 1.2Mp. The sensor possesses a ‘sunshine sensor’ that stan-

dardized against variable lighting conditions over the course of

wileyonlinelibrary.com/journal/ps © 2019 The Authors. Pest Manag Sci 2019; 75: 2283–2294

Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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a flight by continuously recording the light conditions in each

spectral channel and then automatically calibrating the outputs

to the absolute values.

All flights were carried out following UK rules and regulations

controlling the use of UAS for scientific research. Flights were

conducted within 2 h either side of solar noon to reduce the effect

of sun angle. The optimum flight parameters to cover each field

in the minimal amount of time were a flight height of 100m

and an image overlap of 60%.37 Each flight generated thousands

of subfield scale images that are stitched together to create a

single orthomosaic image, encompassing an entire field using

relatively few ground control points. For this Agisoft Photoscan

was used. This software also creates vegetation indices (VIs) from

the individual bands of the sequoia. The average ground sample

distance (GSD) of all the flights was 8.27 cm pixel−1.

Of the 102 fields that were flown, 76 generated data of high

enoughquality to analyse. Fields thatwere not suitable for analysis

were discarded for the following reasons: poor image quality,

significant image stitching artefacts and sensor failure.

The calibrated spectral channels of the sequoia sensor allow for

VIs tobe calculated for eachpixel. VIs are usedbecause they reduce

multiband observations to a single numerical index.38 Weused the

green normalized differential vegetation index (GNDVI; Eqn 1) to

classify images:

GNDVI =
fn − fg

fn + fg
(1)

All subsequent references to the data, refer to theGNDVI data set

(see Table A5 in the supporting information for statisticalmeasure-

ments of the GNDVI dataset).

Our choice to base our analysis on GNDVI is because high

biomass crops such aswheat cause saturation of chlorophyll levels

in the red wavelength, resulting in poor performance when using

the normalized differential vegetation index (NDVI; Eqn 2).39

NDVI =
fr − fn

fr + fn
(2)

Previous studies have focused on the NDVI owing to its corre-

lation with plant vigour and growth.40 However, when needing

to discriminate between invasive populations, vigour and growth

rates, NDVI has been shown to be uninformative in cases of high

saturation of a spectral channel.41 Analysis based on UAS imagery

has often overlooked this feature of NDVI, but it is recognized in

satellite remote sensing work.42–44

The ground-truthed density data were overlaid on each geo-

rectified orthomosaic using GIS packages in R. The orthomosaic

maps were split into 20× 20m subplots, each relating geograph-

ically to the ground-truthed observations. This creates a data

set of images at the 20× 20m scale, on which our subsequent

analysis area is based. The resulting image data set consists of

12 313 unique measurements of black-grass at a 20× 20m scale

covering the full range of black-grass densities. The densities

are not evenly distributed, however. The breakdown as follows:

Absent = 14.5%, Low = 53.1%, Medium= 17.3%, High = 8.2% and

Very High = 6.9%.

2.3 Modelling approach andmetrics

We used a CNN to train a classifier on our black-grass image

data. The model structure was taken from one of the top per-

forming methods on the industry standard image database,

ImageNet,45 called GoogLeNet.34 Although we use the structure

of GoogLeNet, it is important to note that we do not use the

pretrained model weights and biases that allowed the model to

score so highly on ImageNet. Here, we highlight four common

components of our chosen model framework, which are then

stacked together with other components such as batch nor-

malization and dropout to create a variety of different network

structures:

1. Convolution. The convolutional step involves extracting fea-

tures from an image while maintaining their spatial context,

by using a filter to pass over an image and computing the dot

product to create a generalized feature map.

2. Addition of non-linearity. Non-linearity is introduced into

the feature maps by applying a rectified linear unit (ReLU),

this speeds up the training process when compared with

tanh/sigmoid activation functions. This means that model

convergence will occur with a lower computational cost.46

3. Pooling. Pooling of the feature map is used to reduce dimen-

sionality. This reduces the parameter number in the network,

a key stage in preventing overfitting. Pooling also makes the

network more stable to distortions in the training images.47

4. Fully connected final layer. This combines all the neurons of the

previous layer and applies an activation function to determine

the final classification of an image. The most common form of

activation function is SoftMax and the predictions always sum

to 1.48

CNN have been applied successfully to many data sets similar to

ImageNet through a process known as transfer learning, whereby

only the weights of the connected final layer of a pretrained

model are altered.49 Wedo not use the process of transfer learning

because our proposed data set is significantly different from that

of ImageNet. Instead, we use the GoogleLeNet structure and

independently train all layers of our model.

Three data sets are needed to model a CNN: training, valida-

tion and test sets. Each data set comprises pairs of input images

and target vectors. Target vectors act as a labelling method

and are what the model tries to predict when given a new

image. In our example, the input image is a 20× 20m image

plot and the target vector represents the five different ordinal

density states. CNN are trained using a variety of parameters.

From our initial exploration of the modelling, we settled on using

the following as our standards: a decaying momentum begin-

ning at 0.1 and halving every 32 000 steps as our optimizer, cat-

egorical cross entropy as our loss function, and a batch size

of 128.

We report, where appropriate, three metrics for our models;

these are multiclass AUC, Cohen’s kappa and weighted Cohen’s

kappa. AUC refers to the area under the receiver operating char-

acteristic (ROC) curve, that is the true positive rate (sensitivity)

against the true negative rate (specificity). AUC is used for its ability

to differentiate between two groups, and is equal to the probabil-

ity that the classifier will rank a randomly chosen positive example

higher than a randomly chosen negative example.50 AUC values

range from 0 to 1. We plot a diagonal line from (x = 0, y = 1) to

(x = 1, y = 0) known as the line of equality or the random chance

line.51 Points that fall below this line represent non-informative

models where random classificationwould perform better. For the

x-axis in our AUC plots we use 1 – Specificity.

The categorical predictions of a model and ground-truthed

observations can be viewed as different raters. This allows us to

assess the degree to which they agree or disagree and utilize

Pest Manag Sci 2019; 75: 2283–2294 © 2019 The Authors. wileyonlinelibrary.com/journal/ps
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 1. Example of a Very High, 20× 20m plot with significant
non-black-grass ‘artefacts’, reducing the signal in the image coming from
the Very High level of black-grass that was observed on the ground in this
plot. The grid overlay represents the subsampling methodology used to
break each image into 16 smaller representations of the entire plot. The
subplots are referenced by their position relative to the bottom left-hand
corner (1,1) and top right-hand corner (4,4).

Cohen’s kappa statistic52 (Eqn 3):

𝜅 =

po − pe

1 − pe
(3)

Where 𝜌o is the observed agreement and 𝜌e is agreement due to

chance. This results in a range from 1 indicating complete agree-

ment between raters, to 0 indicating that agreement is only due to

random allocation and −1 indicating complete disagreement.

AUC and kappa do not consider the ordinal structure of our

data, with observations ranging from Absent to Very High in

incrementing ordered categories. Therefore, an observation of

Absent and a prediction of Low is closer to agreeing than if the

prediction were Very High. We therefore used weighted Cohen’s

kappa (Eqn 4):

𝜅w = 1 −

∑ k

i = 1

∑ k

j = 1
𝜔ijxij

∑ k

i = 1

∑ k

j = 1
𝜔ijmij

(4)

Where 𝜅 is the number of categories, and 𝜔ij, 𝜒 ij andmij represent

the weight from thematrix. This allows us to count disagreements

differently.53 The weighted kappa is on the same scale and distri-

bution as the base Cohen’s kappa. We use a squared weighting

matrix of 1, 4, 9, 16 and 25 ranging from agreement to significant

disagreement, to penalize significantly wrong agreements.

Figure 2. Baseline, receiver operating characteristic (ROC) plot of a convolutional neural network (CNN) trained using 90% of the data set and used to
predict the multiclass black-grass density state of the completely withheld random 10% of data.

wileyonlinelibrary.com/journal/ps © 2019 The Authors. Pest Manag Sci 2019; 75: 2283–2294

Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 3. Receiver operating characteristic (ROC) plot of a convolutional neural network (CNN) trained using 90% of the balanced data set used to predict
the multiclass black-grass density state of the completely withheld random 10% of balanced data.

2.4 Model refinement: data balancing

We checked the performance of the model in several respects.

First, we analysed the effect of balancing the data in terms of the

distribution of observations among density states. This is impor-

tant because the data set is heavily weighted towards the Low

density state, comprising over 50% of the data set. Such imbal-

anced distributions can lead to lazy or biased classifiers, whereby

themodel can default to predicting themajority class but will nev-

ertheless still score well in many metrics such as error or accuracy

rate. To investigate this, we created balanced data sets and use

metrics as outlined above. In our data set, the Very High class had

the smallest representationwith only 565 examples in the training

set.We therefore randomly sampled565of each remainingdensity

states, to create a balanced training set of 2825 images. The same

balancing processwas repeated for the validation and testing data

sets resulting in 800 and 575 images, respectively.

2.5 Model refinement: data cleaning

It is important to consider the quality of imaging data. Specifi-

cally, many of our 20× 20m aerial plots contain ‘artefacts’ that

were not accounted for in our ground observations. Figure 1

shows examples of three such types of artefacts. In Fig. 1, an over-

hanging tree, the tramline and the field hedgerow in the top

right-hand corner introduce significant noise into the image that

does not represent either wheat or black-grass. It is this excess

noise/uncategorized data that we aimed to remove.

To achieve this, we subsampled each individual 20× 20m plot

into 16 smaller images. Figure 1 demonstrates the outline of this

subsampling grid. This yielded a data set of 197 008 images. We

thenmanually examined this data set and set aside all subsamples

that we determined to contain artefacts. In the case of Fig. 1, only

two subplots of ‘pure wheat’ remained, (1, 2) and (1, 3), which

were subsequently used in what we refer to as the Clean data set.

This created a Clean data set of 101 907 images and an Artefact

data set of 95 101 images. The training and test sets were the

same as the previous experiments, but now ‘cleaned’. We use

the Clean and Artefact data sets to build models and predict on

the test data of the other data set, e.g. clean model on artefact

test data, and vice versa. This allows us to test the influence of data

cleaning.

To make a comparison with our ground observations, we must

upscale the subplot predictions back to the 20× 20m scale at

which groundobservationswere recorded. There is often variation

in density within each plot, but this is not recorded. In a hypo-

thetical situation this could mean that the model is fitting the

subplot test data perfectly, but then being penalized because we

are unable to ascertain the observed level of black-grass in that

specific subplot, only the entire 20× 20m plot. We therefore take

the median prediction from each subplot of one 20× 20m plot as

themodel observation. This gives us a prediction of only the areas

of the imagewith wheat and/or black-grass in them, at a scale that

allows for comparison with our ground-truthed data.

2.6 Model transferability: field level cross validation

To test out-of-sample/new field performance, we conducted

leave-one-field-out cross validation (LOFO-CV) trails and created

Pest Manag Sci 2019; 75: 2283–2294 © 2019 The Authors. wileyonlinelibrary.com/journal/ps
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 4. Receiver operating characteristic (ROC) plot of a convolutional neural network (CNN) trained using 90%of the entire Clean subplot data set used
to predict themulticlass black-grass density state of the completely withheld random 10% of Clean data. The subplot predictions are then scaled back up
to 20× 20m plots for comparison with our ground observations.

76 models, i.e. one per field. Each model was trained using

the baseline model parameters and cleaned upscaled subplots

from all the fields. One field was withheld from the training data

set to become the test set in each new model. We report back

metrics at field level (i.e. not 20× 20m plot level) because not all

fields have the full five density states present.

2.7 Modelling workflow: baselinemodel

Having created the relevant data sets for each question,we trained

a model using our standard parameters. We began the analysis

with a simple baseline test of how the models perform when 10%

of the entire data is randomly selected as the test set. The model

was then used to predict the ground-truthed observations of the

relevant test set. We then calculated all relevant metrics and plot

a ROC curve where appropriate. This assessed the performance

of the CNN and established a baseline against which further

analysis could be benchmarked. We investigated the effect of data

balancing, data engineering and LOFO-CV against the baseline

model.

To account for possible differences owing to variation in the date

or survey or between years, we grouped the LOFO-CV models by

years with 38 and 43 fields in 2016 and 2017 respectively, and

took the mean values of the AUC for each year. Each field season

lasted6 weeks andaveraged the samenumber of fields eachweek.

Consequently, we grouped the LOFO-CV models by week and

took the mean values of AUC. Owing to the design of our field

season, we begin in the south and move north over the course of

the season, so latitudinal effects will also be present but are not

accounted for.

3 RESULTS
3.1 Baselinemodel

We find that the baseline model gives an AUC of 0.78, a weighted

kappa of 0.59 and an averagemisclassification rate across all states

of 17.8%, as seen in Fig. 2. We see that the Very High and Absent

density states show the AUCs closest to x = 1, y = 1. This means

that these density states are easier to distinguish for the model

than the states in between.

3.2 Data balancing

The same training and evaluation parameters were used to train a

model for the data in which the proportions of the density states

were balanced. We see that by balancing the data set we slightly

reduced the AUC and Cohen’s kappa of the model (see Fig. 3 for

the ROC plot), while increasing slightly the weighted kappa and

increasing the misclassification rate to 22.4%. This is most likely a

consequence of the reduced number of training samples, leading

to a poorer ability of the model to generalize features unique to

each class. Tables in the supporting information section A1–A4

present statistical analysis on the differences between curves.54

The results in Table A1 (supporting information) show that when

the curves from Fig. 2 (baseline model) are compared with those

of Fig. 3 (data balanced) all but the Low density state curve are

wileyonlinelibrary.com/journal/ps © 2019 The Authors. Pest Manag Sci 2019; 75: 2283–2294

Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 5. Receiver operating characteristic (ROC) plots showing how the percentage cover of the subplots in the Clean data set affects performance
(measured as area under the curve, AUC, and kappa).

statistically non-significantly different. Balancing the data set or

not does not affect the predictive performance of the models. We

therefore continue to use the unbalanced data set for the rest of

our analysis.

3.3 Data cleaning

To examine how the data cleaning process (Fig. 1) affects our

models, a new model was trained using the same parameters

as the baseline model, but using the unbalanced, Clean data

set. Figure 4 shows that the AUC increased by 4.6%, a significant

improvement with a similar misclassification rate to the baseline

of 17.5%. Table A2 presents the statistical breakdown of the indi-

vidual comparisons of AUC to the baseline.

The images vary greatly in quality, with some having a large

amount of high-quality coverage, whereas in other cases only

a small amount of the image is of good quality. We therefore

divided the data set according to only the percentage cover of

good quality data of the original 20× 20m plots remaining after

cleaning, regardless of black-grass level. Five equal categories of

coverage of the 16 subplots, ranging from < 20% (approximately

Pest Manag Sci 2019; 75: 2283–2294 © 2019 The Authors. wileyonlinelibrary.com/journal/ps
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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Figure 6. Receiver operating characteristic (ROC) plot of a convolutional neural network (CNN) trained using 90% of the artefact subplot data set used to
predict the multiclass black-grass density state of the completely withheld random 10% of artefact data.

three subplots) to> 80% (13–16 subplots) were established. Look-

ing at the multiclass AUC values for each plot in Fig. 5, we see

there is an ∼ 6% difference in the lowest (0.67, < 20%) and high-

est values (0.73, 60%–80%). We highlight the statistical differ-

ences between the categories with the highest and lowest AUCs in

Table A3. Showing that although the individual density states lines

are not significantly different, the overall graphs are significant in

conjunction with Fig. 5.

3.4 Analysis artefact data

Having shown in Fig. 4 that cleaning and upscaling the data result

in improved metrics from the baseline, we next investigated the

predictive performanceofmodels fitted to the ‘artefact’ images. To

do this,weused the95 101artefact images set aside from the train-

ing set, predicted on the artefact images from cleaning the test

data and then upscaled. Figure 6 suggests that the artefact plots

still have features within them that allow us to classify black-grass

as accurately as the Clean model (Fig. 4). It also shows that with a

higher weighted kappa and lower misclassification rate of 15.5%,

it does better at not making large ordinal disagreements, e.g. Very

High observation versus Absent prediction, when compared with

the Clean model. The Clean model predicted Absent when a Very

High was observed in 8.75% of cases, compared with the artefact

model predicting only 6.3% of such cases.

As shown in Fig. 7, the clean model can predict the black-grass

levels in the Artefact data set with some degree of accuracy,

with an AUC of 0.61 and misclassification rate of 17.1%. How-

ever, the model for the artefact data is not able to predict the

clean test data set accurately, with an AUC of 0.463, a misclas-

sification rate of 42.1% and the AUC for all density states were

significantly different as shown in Table A4. This suggests that

the features used by the artefact model are not conducive to

black-grass identification. Therefore, the features in the model for

Fig. 6 must not be directly related to black-grass. This also sug-

gests that our manual screening of the data may have been overly

strict, and we are thereby missing data that could increase the

ability of the model to generalize features for the identification of

black-grass.

3.5 Out of sample predictions: LOFO-CV

Here, we examine the true out of sample prediction for the data

set. In all our previous models we used an initial random 10%

as our test data set, as described in our initial test set. Therefore,

the model has been trained on a large sample of each individual

field, allowing it to generalize features specific to that field,making

it more sensitive to outliers. Thus, our reported results to date are

not truly out of sample and may have limited repeatability in fur-

ther studies, even when using the standardized data collection

methodology described here.

Figure 8 shows that the mean AUC of the fields is 0.54 with a

range of 0.38–0.81. Thismeans that LOFO-CV predictions for these

models are frequently no better than random. The kappa metrics

were not used here because most of our out of sample fields

did not contain the full range of black-grass densities and so are

penalized for lack of agreementwhen there are no observations of

a level.

3.6 Temporal effects

To investigate temporal effects on the results of our out of sample

predictions, we studied whether the year or the week we visited

the field had any effect on the AUC. Figure 9 shows the mean and

standard errors of theAUC for each year andweek. Neither year nor

week has a significant effect on themodel performancemeasured

by the AUC of the model, with adjusted R2 values of −0.011 and

0.008 respectively. This means that the temporal variation in the

time surveying has not influenced our results.

4 DISCUSSION
We set out to predict distributions of weed densities using UAS

imagery and CNN.We have devised a standardized and repeatable

UAS data collection methodology, applied it over multiple years
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Figure7. (a) Receiver operating characteristic (ROC) plot of amodel trained
using the Clean training set, then used to predict the five density level
states in the artefact test set. (b) ROC plot of a model trained using the
artefact training set, then used to predict the five density level states in
the cleaned test set. The predictions are upscaled to plot level.

across themajor arable areas of the UK and utilized data engineer-

ing techniques to increase the quality of our data sets. Although

the weeds were shown to be detectable, it is by no means a

simple task, because both species are grasses with many simi-

lar traits. Our main conclusion is that data engineering increases

the performance of our metrics the most, relative to other meth-

ods attempted when given a sample of known states in a field.

Increases in performance such as these are not common for CNN

in the computer vision literature. There was no evidence that tem-

poral factors such as year or time of sampling affects the perfor-

mance of the out of sample predictions.

However, when predicting on fields with no previous

ground-truthing (i.e. true out of sample data), the success as

Figure 8. Area under the curve (AUC) of each field’s out of sample
prediction. Each point represents a separate model that was trained on
all but the Field ID in question which is used as the test set. Field ID is a
randomized ordering of the field names across both survey years.

revealed by our metrics was highly variable. This may be due to

the problem of data set shift.55 Data set or covariate shift occurs

when there is a change in the distribution of the classes between

the training and test data sets. We know from our ground obser-

vations that on an individual field-by-field basis, it is rare to find

fields with the full five density state distribution and there are

no cases where all five are present in an equal distribution. One

way of counteracting this issue in the literature is by construct-

ing a density estimation of the labels in the test data set and

reweighting the training data set accordingly.56 This approach is

not applicable in a fully automated UAS system for the prediction

of density states, because it is still dependant on ground-truthed

observations from skilled observers.

Our study is the first to use repeated UAS surveys and deep

learning statistical methodology to assess the impact of the sig-

nificant heterogeneity in conditions across time and space on

automated monitoring of weed densities. Anderson and Gaston57

outline many areas in which UAS can be used in ecology and

emphasize the need for temporally resolved studies, allowing

for scale-appropriate measurements using UAS that can be at

user-defined times and locations. This is a change in precedent

from remote sensing work using satellite data, where data were

available only at set times, resolutions and spectral frequencies.

However, many previous studies using UAS have focused on

repeated visits to one single site over time58 ormultiple sites at one

time point.59 The use of trial plots in some studies does allow for

a more detailed assessment of certain variables.60 However, in real

world applications of methodologies and management decisions

developedunder these controlled settings,muchmore spatial and

temporal variability when applied in agronomic use cases will be

encountered, thus reducing the transferability and scope of the

studies.61 Therefore, our focus on using only ‘live’ uncontrolled

agronomic scenarios does result in reduced reported metrics, but

allows our work to be applied with a more realistic understanding

of the results that would be seen in the field.

Neural networks have previously been used and compared with

other statistical methods, to classify the state of weed populations

at a range of spatial scales.62–64 Barrero et al.,13 trained a neural

network with a user-defined texture feature derived from NDVI

to identify a weed species among a single rice paddy. They

reported a 99% precision on test data, with no reported recall

score. This is most likely an overstatement of the model perfor-

mance and approach. However, this study focused on only the

binary classification issue of presence/absence of a weed, a much

simpler and less informative on-farm metric, and considered only

Pest Manag Sci 2019; 75: 2283–2294 © 2019 The Authors. wileyonlinelibrary.com/journal/ps
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Figure 9. (a) Mean area under the curve (AUC) for every model in each year. (b) Mean AUC for every model in each week.

predictions from a single field at a single time point, suggesting

that the performance is being overstated with no LOFO-CV being

attempted. It is to be expected that our metrics (AUC, Cohen’s

kappa andweighted Cohen’s kappa) are lower than the equivalent

ones reported in the neural network study, due to our focus on

multiple fields spanning a wide variety crop conditions and for

themore advanced use of density state predictions. Therefore, our

results are more representative and transferable than these stud-

ies due to our LOFO-CV analysis, for methodologies involving UAS

and machine learning to map weed populations going forward.

However, our results indicate a more extensive and controlled

analysis of the transferability of models is still needed.

The process of manually screening the data sets for artefacts is

a slow and non-reproducible or scalable task. In the future, we

propose to train a classifier to automatically partitionanentiredata

set into clean and artefact sections. This approach is comparable

with work that quantifies the data quality of video using a CNN.65

This would allow us to expand our analysis into other VIs by

improving and standardizing the data processing pipeline.

With the Artefact data set predicting to the same if not higher

standards in ourmetrics than theCleandata set, it stands to reason

that a composite modelling approach could be undertaken to

channel the clean and artefact subplots to their respectivemodels

and then recombined at the upscaling stage. This is a concept

similar to ensemble-based classifiers, where multiple differing

model types are trained on the same data set and aggregate their

predictions for the test set.66 Our approach described here would

use this concept but instead of differing model types on the same

data set, we propose the same model on differing data sets and

aggregating their predictions. This would reduce the amount of

data loss and combine the differing feature sets of the models to

aid in the detection of arable weeds.

4.1 Concluding remarks

Wehavedemonstratedherehowdata engineeringofUAS imagery

anduseofCNNcanbeused to classifyweeddensities.Wehighlight

the methodological improvements resulting in increased predic-

tion accuracy compared with past research using a variety of met-

rics, statistics and data collection procedures that provide a more

detailed assessment of true model performance. All our mod-

els apart from the LOFO-CV are composed of a random 10%

of individual subplots for the test set. This means that the mod-

els will have most likely been exposed to some in-field examples

of the test set, and therefore can generate features that are spe-

cific and not generalized to detection of the weed. We can con-

clude that when considering only the images of a new field and no

other data, we cannot be highly confident in the ability of most

of our models to map the black-grass in the field. Although we do

not show a significant improvement in LOFO-CV testing with no

apparent factors that make an individual field be predicted well or

poorly.Webelieve that the robustness of this evaluationprocedure

is a greater estimation of real-world predictive value when com-

pared with past studies, which consequently overestimate their

applicability. Therefore, themethodology set out in this paper rep-

resents a new standard in the area of weedmappingwith UAS due

to the expanded capabilities of data collection, statistical methods

and evaluation procedures.
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