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Abstract—The target localization problem for distributed sen-
sor array networks where a sub-array is placed at each receiver
is studied, and under the compressive sensing (CS) framework,
a group sparsity based two-dimensional localization method is
proposed. Instead of fusing the separately estimated angles of
arrival (AOAs), it processes the information collected by all
the receivers simultaneously to form the final target locations.
Simulation results show that the proposed localization method
provides a significant performance improvement compared with
the commonly used maximum likelihood estimator (MLE).

Index Terms—Distributed sensor array network, group spar-
sity, localization, angle of arrival, compressive sensing.

I. INTRODUCTION

The angle of arrival (AOA) based target localization (also

known as the bearing only localization), where the synchro-

nization across distributed receivers is not required compared

with the received signal strength (RSS) based localization

[1] and the time of arrival (TOA) based localization [2],

has attracted increasing attentions in distributed sensor array

networks [3]–[5], and it has been widely applied in radar,

sonar, massive MIMO, and wireless sensor networks [3]–[8].

In AOA based localization, the AOAs are obtained at

independent distributed receivers using a sub-array, where tra-

ditional DOA estimation methods can be employed to acquire

the AOA information, such as the subspace based methods

including MUSIC [9], ESPRIT [10], and their extensions.

On the other hand, the compressive sensing (CS) framework

has been introduced for DOA estimation [11]–[14], with

the ℓ1-SVD method based on singular value decomposition

(SVD) proposed in [15] and ℓ1-SRACV based on a sparse

representation of array covariance vectors presented in [16].

For wideband DOA estimation, apart from the typical methods

such as the incoherent signal subspace method (ISSM) [17],

the coherent signal subspace method (CSSM) [18], and the

test of orthogonality of projected subspaces (TOPS) method

[19], the group sparsity concept can be employed under the

CS framework [20]–[22] by exploiting all the information

This work was partially supported by the National Natural Science Foun-
dation of China (61801028).

across the frequencies of interest simultaneously to form a

more effective solution.

These AOA measurements obtained from individual re-

ceivers are then fused together to localize the target with

reference to the distributed sensor array network [5], [7],

[23]. The maximum likelihood estimator (MLE) is the most

commonly used fusion method, where the total errors of the

AOA measurements is minimized under the least square sense

through a direct grid search method [24], [25]. A number of

iterative methods [26] and closed-form location estimators [8],

[27] have been proposed for complexity reduction. However,

all the aforementioned fusion methods employ the maximum

likelihood (ML) criteria based on the AOA measurements

processed independently at receivers.

In this paper, we focus on the target localization problem

in a distributed sensor array network, and a linear sub-array

is placed at each receiver. Although the targets are near-field

compared to the entire network, they are far-field as observed

from each linear sub-array at receivers. Instead of fusing pre-

processed AOAs together for localization, we propose a novel

two-dimensional group sparsity based localization method,

where the collected information at all receivers are exploited

simultaneously by applying the group sparsity concept under

the CS framework to estimate the target locations directly, and

a better performance can be achieved by the proposed solution

compared with the commonly used MLE.

This paper is structured as follows. The distributed sensor

array network is introduced in Section II, and the devel-

oped group sparsity based two-dimensional target localization

method is proposed in Section III. Simulation results are

provided in Section IV, and conclusions are drawn in Section

V.

II. SYSTEM MODEL

Consider a general distributed sensor array network as

shown in Fig. 1, where there are M receivers with positions

Um(xm, ym), m = 1, 2, . . . ,M , and K targets located at

Tk(xTk
, yTk

), k = 1, 2, . . . ,K.

For each receiver, a linear sub-array with Lm sensors is

employed, as shown in Fig. 2, and the set of sensor positions
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Fig. 1. A typical localization geometry for a distributed sensor array network.
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Fig. 2. A general array structure for the m-th sub-array carried by the
corresponding receiver.

at each receiver is expressed as

Sm = {~ml d, 0 ≤ l ≤ Lm − 1, l ∈ Z} , (1)

where Z is the set of all integers, ~ml d is the position of the

l-th sensor, and the spacing between adjacent physical sensors

d ≤ λ/2 with λ being the signal wavelength.

We use φm,k to represent the angle measured between the

direction from the k-th target to the m-th receiver and the

y-axis, given by

φm,k = arctan 2(∆xm,k,∆ym,k)

=



































arctan(
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), ∆ym,k > 0,

arctan(
∆xm,k

∆ym,k
) + π, ∆xm,k ≥ 0,∆ym,k < 0,

arctan(
∆xm,k

∆ym,k
)− π, ∆xm,k < 0,∆ym,k < 0,

+π
2 , ∆xm,k > 0,∆ym,k = 0,

−π
2 , ∆xm,k < 0,∆ym,k = 0,

undefined, ∆xm,k = 0,∆ym,k = 0,
(2)

where ∆xm,k = xTk
− xm, and ∆ym,k = yTk

− ym.

arctan 2(a, b) ∈ (−π, π] is the four-quadrant inverse tangent

of a and b, with arctan(a
b
) returning the inverse tangent of a

b
,

Define ϕm (measured between the end-fire direction of the

linear sub-array and the x-axis) as the rotation angle of the

m-th sub-array. Clearly, the incident angle of the received

signal from the k-th target based on the m-th sub-array is

θm,k = φm,k + ϕm. Then we denote xm[i] as the Lm × 1

observed signal vector at the m-th sub-array after sampling

with a frequency fs, and we have

xm[i] = Am(θm)sm[i] + n̄m[i] , (3)

where sm(t) = [sm,1[i], sm,2[i], . . . , sm,K [i]]
T

is the sig-

nal vector with sm,k[i] representing the signal from the

k-th target received at the m-th sub-array, and {·}T de-

notes the transpose operation. n̄m[i] is the noise vec-

tor at the corresponding sub-array, while Am(θm) =
[am(θm,1),am(θm,2), . . . ,am(θm,K)] is the steering matrix,

with the steering vector a(θm,k, t) corresponding to the k-th

target expressed as

am(θm,k) =

[

e−j
2π~

m
0

d

λ
sin(θm,k), . . . , e−j

2π~
m
Lm−1

d

λ
sin(θm,k)

]T

.

(4)

III. GROUP SPARSITY BASED TWO-DIMENSIONAL

TARGET LOCALIZATION

A. AOA Estimation Based on Sparse Representation of Array

Covariance Vectors for a Single Sub-Array

Based on the signal model at each receiver in (3), we

calculate the covariance matrix as

Rxm
= E

{

xm[i]xH
m[i]

}

= Am(θm)RsmAH
m(θm) + σ2

mILm
,

(5)

where E{·} is the expectation operator, and {·}H is the

Hermitian transpose. σ2
m represents the noise power at the m-

th receiver, Rsm = E
{

sm[i]sHm[i]
}

is the covariance matrix

of sm[i], and ILm
is the identity matrix with size of Lm×Lm.

By defining Pm = RsmAH
m(θm), the covariance matrix

can be rewritten as

Rxm
= Am(θm)Pm + σ2

mILm
. (6)

To estimate the AOA results under the CS framework, we

first generate an overcomplete representation of the steering

matrix based on a search grid of Kg (Kg ≫ K) potential

incident angles θg,0, θg,1, . . . , θg,Kg−1, given as

Am(θg) =
[

am(θg,0),am(θg,1) . . . ,am(θg,Kg−1)
]

. (7)

Then, we construct a Kg × Lm matrix Pg,m consisting of

all entries to be estimated, and p
kg
m is used to represent the

kg-th row vector of Pg,m. Denote

pg,m =
[∥

∥p0
m

∥

∥

2
,
∥

∥p1
m

∥

∥

2
, . . . ,

∥

∥pKg−1
m

∥

∥

2

]T
, (8)

where ‖·‖2 is the ℓ2 norm.

The AOA estimation method based on sparse representation

of array covariance vectors (ℓ1-SRACV) [16] can be expressed

as

min
Pg,m,σ2

m

∥

∥p◦

g,m

∥

∥

1

subject to
∥

∥Rxm
−Am(θg)Pg,m − σ2

mILm

∥

∥

F
≤ ε ,

(9)

where ‖·‖1 is the ℓ1 norm, ‖·‖F is the Frobenius norm, p◦

g,m =
[pT

g,m, σ2
m]T , and ε is the allowable error bound.



It is noted the entries in pg,m are the corresponding AOA

estimation results over the Kg search grids, while the noise

power σ2
m is also considered as unknown variable to be

estimated. It is also noted that the AOA results obtained from

solving the optimization problem in (9), i.e., θ̃m, can be

converted to the predefined Cartesian coordinate system by

φ̃m = θ̃m − ϕm.

B. Proposed Method Employing the Group Sparsity Concept

For each target located at Tk(xTk
, yTk

), a unique incident

angle θm,k can be obtained and triangulation can be applied

for localization. To form a more effective solution, we propose

a group sparsity based two-dimensional localization method,

referred to as GS-Localization, where a common sparse struc-

ture across all the receivers is enforced and therefore the

information collected by all sub-arrays can be processed as

a whole.

Without loss of generality, we assume that the area of

interest in the predefined Cartesian coordinate system is a

square shape. It is divided into KxKy grids with Kx and

Ky being the number of grid points along the x-axis and

the y-axis, respectively. G(xkx
, yky

) (kx = 0, 1, . . . ,Kx − 1
and ky = 0, 1, . . . ,Ky − 1) is used to represent the location

of the (kx, ky)-th search grid, and the angle θg,m(kx, ky)
corresponding to the grid G(xkx

, yky
) and the m-th sub-array

is obtained by

θg,m(kx, ky) = arctan 2(∆xm,kx
,∆ym,ky

) + ϕm , (10)

where

∆xm,kx
= xkx

− xm ,

∆ym,ky
= yky

− ym .
(11)

Then for each sub-array, we can obtain its array model under

the CS framework in the two-dimensional case, expressed as

Rxm
= Am(θ̃g,m)P̃g,m + σ2

mILm
, (12)

where P̃g,m is a KxKy×Lm matrix consisting of all variables

to be estimated, and its each row vector corresponds to the grid

at the same row in θ̃g,m. θ̃g,m is a KxKy × 1 column vector

including incident angles at all potential grids, given by

θ̃g,m =
[

θg,m(0, 0), θg,m(0, 1), . . . , θg,m(0,Ky − 1),

θg,m(1, 0), θg,m(1, 1), . . . , θg,m(1,Ky − 1),

. . . . . .

θg,m(Kx − 1, 0), . . . , θg,m(Kx − 1,Ky − 1)
]T

.
(13)

Based on the array output models, target localization can

be performed by forcing the common sparsity in the area

of interest among all receivers due to the uniqueness of the

incident angle group for each grid G(xkx
, yky

).
By vectorizing the signal covariance matrix Rxm

in (6), we

obtain

z̃m = vec {Rxm
} = vec

{

Am(θm)Pm + σ2
mILm

}

. (14)

Then, based on the array signal model under the CS

framework in (12), we generate a KxKyL× 1 column vector

b̃g and a KxKy × L matrix Ũg as

b̃g =
[

b̃T
g,1, b̃

T
g,2, . . . , b̃

T
g,M

]T

,

Ũg =
[

P̃g,1, P̃g,2, . . . , P̃g,M

]

,
(15)

where

b̃g,m = vec
{

Am(θ̃g,m)P̃g,m + σ2
mILm

}

, (16)

and row vector ũ
kg

g , 0 ≤ kg ≤ KxKy − 1, is the kg-th row of

Ũg.

All the elements in ũ
kg

g with kg = kx·Kx+ky are associated

with the same grid G(xkx
, yky

), sharing the same spatial

support in the Cartesian coordinate system, and therefore the

group sparsity concept can be applied for target localization.

Finally, the group sparsity based two-dimensional target

localization method (GS-Localization) is formulated as

min
Ũg,σ2

m

∥

∥ũ◦

g

∥

∥

1

subject to

∥

∥

∥
z̃− b̃g

∥

∥

∥

2
≤ ε ,

(17)

where the matrix Ũg as well as all the noise terms are

considered as unknown variables to be estimated, and

z̃ =
[

z̃T1 , z̃
T
2 , . . . , z̃

T
M

]T
,

ũ◦

g =
[

∥

∥ũ0
g

∥

∥

2
,
∥

∥ũ1
g

∥

∥

2
, . . . ,

∥

∥ũ
KxKy−1
g

∥

∥

2
, σ̃2

n̄

]T

,
(18)

with

σ̃2
n̄ =

∥

∥

[

σ2
1 , σ

2
2 , . . . , σ

2
M

]
∥

∥

2
. (19)

Remark 1: The first KxKy elements of the column vector

ũ◦

g are the corresponding localization results over the prede-

fined search grids, and the optimization problem in (17) can

be solved using the CVX package [28], [29]. Compared with

the MLE where the AOA measurements separately estimated

at receivers are combined together to obtain the final locations

under the least square sense, the information acquired by all

the sub-arrays in the distributed sensor array network can

be processed jointly in our proposed method, and therefore

improved performance can be achieved.

Remark 2: Furthermore, to reduce the computational com-

plexity, a grid refining strategy can be employed, where in the

first step, a search grid with a large step size is employed in the

GS-Localization method to find a coarse position estimation of

the targets, i.e., T̃k(x̃Tk
, ỹTk

), in the area of interest, followed

by a refined search grid covering much smaller areas around

the positions T̃k(x̃Tk
, ỹTk

) while a small step size is applied.

IV. SIMULATION RESULTS

A distributed sensor array network consisting of M = 3
receivers is considered, where a uniform linear sub-array with

Lm = 4 (m = 1, 2, 3, 4) sensors is equipped at each receiver,

and the spacing between adjacent physical sensors is set as d =
λ/2. The three receivers are placed at locations U1(10,−40),



(a) Localization results for the first step.

(b) Localization results for the second step.

Fig. 3. Localization results obtained by the proposed GS-Localization
method.

U2(30, 10), and U3(−80, 90), while their rotation angles ϕm

are 5◦, 100◦, and −115◦, respectively. There are K = 2 targets

located at T1(−10,−10) and T2(0, 10). Here all the location

coordinates are measured in meters. The allowable error bound

ε is chosen to give the best estimation results through trial-

and-error in every experiment, and the MLE with direct grid

search method is employed as a comparison.

The square area of −20m ≤ x ≤ 20m and −20m ≤ y ≤
20m is of interest for this target localization problem. In the

first step, 1m is the step size for search grid generation within

the entire area of interest, and T̃k(x̃Tk
, ỹTk

), k = 1, 2, . . . ,K
are the estimated locations. Then, a smaller step size of 0.05

m is utilized to generate the search grid in a refined area of

x̃Tk
− 1 ≤ x ≤ x̃Tk

+ 1 m and ỹTk
− 1 ≤ y ≤ ỹTk

+ 1 m for

localization with high accuracy.

For the first set of simulations, the input signal to noise

ratio (SNR) is set to 0 dB and the number of snapshots

involved is 1000. Figs. 3(a) and 3(b) give the target localization

results obtained by the proposed GS-Localization method in

two steps, where the two peaks resolved in the predefined

Cartesian coordinate system represent the estimated locations

of the targets. Obviously, the proposed method can localize

the targets effectively, with the estimated results close to the

actual target locations.

For the second set of simulations, we compare the root mean

Fig. 4. RMSE results versus input SNRs.

Fig. 5. RMSE results versus the number of snapshots.

square error (RMSE) results of the MLE and the proposed GS-

Localization method with respect to the input SNRs, as shown

in Fig. 4, where the number of snapshots is fixed at 1000.

Both methods are capable of localizing the targets over a wide

range of input SNRs, with a better performance achieved by

the proposed GS-Localization method especially for low input

SNRs.

Finally, as shown in Fig. 5, we analyze the RMSE results of

different localization methods versus the number of snapshots.

It is clear that the proposed method outperforms the MLE

consistently by a big margin, which again verifies the superior

performance the proposed group sparsity based solution due

to joint simultaneous exploitation of the data acquired by all

receivers.

V. CONCLUSIONS

In this paper, the target localization problem for distributed

sensor array networks has been studied. Unlike previous solu-

tions where the separately obtained angle of arrival estimates

were fused under the least square case, a group sparsity

based two-dimensional target localization method was pro-

posed, where target locations are obtained directly by jointly

processing the received signals across all sub-arrays. It has

been shown by simulations that this proposed method works

effectively over a wide range of input SNRs and number of

snapshots, and it outperforms the existing MLE consistently.



REFERENCES

[1] C. Liu, D. Fang, Z. Yang, H. Jiang, X. Chen, W. Wang, T. Xing, and
L. Cai, “Rss distribution-based passive localization and its application
in sensor networks,” IEEE Trans. Wireless Commun., vol. 15, no. 4, pp.
2883–2895, Apr. 2016.

[2] I. Guvenc and C.-C. Chong, “A survey on toa based wireless localization
and nlos mitigation techniques,” IEEE Communications Surveys &

Tutorials, vol. 11, no. 3, Aug. 2009.

[3] M. Gavish and A. J. Weiss, “Performance analysis of bearing-only target
location algorithms,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3,
pp. 817–828, Jul. 1992.

[4] G. Destino and G. Abreu, “On the maximum likelihood approach for
source and network localization,” IEEE Trans. Signal Process., vol. 59,
no. 10, pp. 4954–4970, Oct. 2011.

[5] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network
localization techniques,” Computer networks, vol. 51, no. 10, pp. 2529–
2553, 2007.

[6] T. Lv, F. Tan, H. Gao, and S. Yang, “A beamspace approach for
2-d localization of incoherently distributed sources in massive mimo
systems,” Signal Processing, vol. 121, pp. 30–45, 2016.

[7] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and
M. Coulon, “Direct localization for massive mimo,” IEEE Trans. Signal

Process., vol. 65, no. 10, pp. 2475–2487, May 2017.

[8] H.-J. Shao, X.-P. Zhang, and Z. Wang, “Efficient closed-form algorithms
for AOA based self-localization of sensor nodes using auxiliary vari-
ables.” IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2580–2594,
2014.

[9] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar.
1986.

[10] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal

Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[11] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289 – 1306, 2006.

[12] Q. Shen, W. Liu, W. Cui, and S. Wu, “Underdetermined DOA estimation
under the compressive sensing framework: A review,” IEEE Access,
vol. 4, pp. 8865–8878, 2016.

[13] P. Stoica, P. Babu, and J. Li, “Spice: A sparse covariance-based estima-
tion method for array processing,” IEEE Trans. Signal Process., vol. 59,
no. 2, pp. 629–638, Feb. 2011.

[14] Q. Shen, W. Liu, W. Cui, and S. Wu, “Extension of co-prime arrays
based on the fourth-order difference co-array concept,” IEEE Signal

Process. Lett., vol. 23, no. 5, pp. 615–619, May 2016.
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