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Léa Simone Adele Darnet,

Sabine Renninger, Michael Orger,

Leon Lagnado

Correspondence
l.lagnado@sussex.ac.uk

In Brief

Predictive coding prevents transmission

of redundant information by sensory

systems. Johnston et al. show how this

computation is implemented and

adjusted by the neural circuitry of the

retina as it processes signals

representing the orientation of visual

features.
c.

mailto:l.lagnado@sussex.ac.�uk
https://doi.org/10.1016/j.neuron.2019.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2019.04.002&domain=pdf


Neuron

Article
A Retinal Circuit Generating
a Dynamic Predictive Code for Oriented Features
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SUMMARY

Sensory systems must reduce the transmission of
redundant information to function efficiently. One
strategy is to continuously adjust the sensitivity of
neurons to suppress responses to common features
of the input while enhancing responses to new ones.
Here we image the excitatory synaptic inputs and
outputs of retinal ganglion cells to understand how
such dynamic predictive coding is implemented in
the analysis of spatial patterns. Synapses of bipolar
cells become tuned to orientation through presynap-
tic inhibition, generating lateral antagonism in the
orientation domain. Individual ganglion cells receive
excitatory synapses tuned to different orientations,
but feedforward inhibition generates a high-pass
filter that only transmits the initial activation of these
inputs, removing redundancy. These results demon-
strate how a dynamic predictive code can be imple-
mented by circuit motifs common to many parts of
the brain.

INTRODUCTION

A general principle in understanding the design of sensory sys-

tems is the need to encode information efficiently which, in

turn, requires removal of redundancies in the signal received

from the outside world (Barlow, 1961; Fairhall et al., 2001; Srini-

vasan et al., 1982; Sterling and Laughlin, 2015). This principle

helps us understand why the retina does not operate simply

like a camera conveying a stream of intensity values for each

pixel. Natural images contain a large amount of redundant infor-

mation because pixels nearby in space and/or time tend to be

correlated (Atick and Redlich, 1992; Masland, 2012; van Hat-

eren, 1992). Rather than continuously transmitting the presence

of an unchanging visual input, many retinal neurons preferentially

signal deviations from the local image statistics, such as regions

of contrast or the sudden movement of an object. Such compu-

tations are direct reflections of spatial receptive fields with

antagonistic surrounds and temporal receptive fields signaling

changes in light intensity. Representing information by ignoring
Neuron 102, 1211–1222, June
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statistical regularities to highlight unusual components is termed

predictive coding, an approach widely used in informatics to, for

instance, compress images (Kingston and Autrusseau, 2008).

Examples of predictive coding have been identified throughout

the brain, including the circuits involved in vision (Ekman et al.,

2017; Hosoya et al., 2005; Nirenberg et al., 2010; Sharpee

et al., 2006), hearing (Smith and Lewicki, 2006; Sohoglu and

Chait, 2016), and touch (Peyrache et al., 2015), encoding of

reward in the midbrain (Parker et al., 2016; Schultz, 2016) and

of space in the hippocampus and entorhinal cortex (Hindy

et al., 2016; Stachenfeld et al., 2017). Although a number of

models have been proposed for the neural implementation of

predictive codes (Bastos et al., 2012; Hosoya et al., 2005; Rao

and Ballard, 1999), the circuit mechanisms have not been clearly

identified.

Predictive coding can be a dynamic process, consistent with

the animal’s need to adjust to sensory environments with

different statistics (Sharpee et al., 2006; Smith and Lewicki,

2006). For instance, the retina can adjust within seconds to

changes in the variance in light intensity (contrast), and this oc-

curs through changes in the strength of both excitatory and inhib-

itory synapses (Kastner and Baccus, 2011; Nikolaev et al., 2013;

Kastner and Baccus, 2014). Another example of adaptation oc-

curs in response to changes in spatial correlations within the vi-

sual input generated by objects of different size and orientation

(Benucci et al., 2013; Dragoi et al., 2000; M€uller et al., 1999). Neu-

rons that signal and adapt to orientation are observed in the retina

(Nath and Schwartz, 2017; Venkataramani and Taylor, 2016) and

visual cortex (Hubel and Wiesel, 1959; Iacaruso et al., 2017;

Kondo and Ohki, 2016; Ohki et al., 2005). Further, some retinal

ganglion cells (RGCs) implement a dynamic predictive code

(DPC) by rapidly altering their sensitivity to orientation in response

to changes in the distribution of spatial correlations, becoming

less sensitive to orientations that are common features of the

input andmore sensitive to orientations that are uncommon (Gol-

lisch and Meister, 2010; Hosoya et al., 2005; Lesica et al., 2007).

The neural circuitry by which the visual system implements a

DPC is not understood, either in the retina (Kastner and Baccus,

2014) or in the cortex (Benucci et al., 2013; Rao and Ballard,

1999). One model proposes construction of a modifiable pattern

detector that is fed by an array of excitatory subunits, each one

tuned to a different stimulus pattern; when one of these detector

subunits is driven strongly, it depresses and makes a smaller
19, 2019 Crown Copyright ª 2019 Published by Elsevier Inc. 1211
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contribution to the activity of the output neuron, which therefore

becomes more sensitive to other, rarer, patterns (Bastos et al.,

2012; Gollisch and Meister, 2010; Graham, 2001; Hosoya et al.,

2005). This model is attractive but is not thought to operate in

the retina because bipolar cells providing excitatory inputs to

RGCs do not appear to be sensitive to orientation (Hosoya

et al., 2005). An alternative hypothesis of ‘‘network plasticity’’

has therefore been proposed, in which the locus of the adaptive

changes are the synapses RGCs receive from the inhibitory ama-

crine cells, with these synapses obeying an anti-Hebbian plas-

ticity rule that strengthens them when they are co-activated with

the RGC (Hosoya et al., 2005). In this scheme, a vertically orien-

tated stimulus will strengthen inhibitory inputs above and below

the RGC, making it more sensitive to horizontal orientations.

To identify the circuit mechanisms generating dynamic predic-

tive coding of spatial patterns, we used an optical approach

based on the fluorescent glutamate sensor iGluSnFR (Marvin

et al., 2013) to compare the synaptic output from individual

RGCs with the excitatory synaptic inputs they receive from an

array of bipolar cells. We probed these synapses using gratings

of different orientations and found that many are strongly tuned

to orientation through lateral antagonism in the orientation

domain. Further, a subset of RGCs was driven by a mixture of

excitatory synapses tuned to different orientations, providing

the basic connectivity for a modifiable pattern detector. The nul-

ling of a constant input is then generated through at least two

mechanisms: depression of excitatory synapses and fast feedfor-

ward inhibition (FFI). The basic features of this circuit are found in

many other parts of the brain and may provide a general design

for the dynamic tuning of neurons and removal of redundancy.

RESULTS

Imaging the Input and Output from Individual Retinal
Ganglion Cells
The signals RGCs deliver to the brain depend on the integration

of a variety of synaptic inputs, often with mixed properties.

Understanding how the activity of these inputs determines the

output of the neuron has been difficult because individual synap-

ses on a dendrite cannot be isolated using electrophysiology

(Branco and H€ausser, 2011; Schmidt-Hieber et al., 2017). To

overcome this problem, we used in vivo imaging in larval zebra-

fish expressing iGluSnFR over the surface of subsets of RGCs

(Figure 1A). Visual stimuli generated ‘‘hotspots’’ of iGluSnFR

fluorescence on dendrites (Figure 1B), and these displayed

many of the functional properties expected of glutamate release

from the synapses of bipolar cells, such as adaptation to

contrast (Marvin et al., 2013; Figure 2). The axons of these

same RGCs could then be tracked to monitor the signal deliv-

ered in the optic tectum, also by release of glutamate (Figure 1A).

iGluSnFR signals in the tectum were abolished when the cell

body in the retina was ablated, demonstrating that they reflected

the synaptic release of glutamate from the imaged neuron rather

than spillover from neighboring cells (Figure S1).

We explored changes in tuning to orientation by presenting

gratings that continuously reversed contrast at 5 Hz and then

switching the orientation from horizontal (90�) to vertical (0�)
every 5–10 s. In 144 of 148 RGCs, the first presentation of
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the grating elicited a strong and transient output simply

because of the increase in contrast (Figure 1C; Figure S2). Sub-

sequent shifts in orientation did not elicit a response in 39 of the

cells (Figure 1F), but in 107 RGCs it did (Nikolaou et al., 2012).

For instance, the upper red trace in Figure 1E shows a neuron

generating a strong response to the vertical grating (R0) but

very weak responses to the horizontal grating alone (R90),

whereas the lower red trace is a neuron that responds to the

horizontal but not the vertical. Of the RGCs whose response

varied with orientation, 61 exhibited relatively static tuning, re-

sponding more strongly to one orientation and adapting incom-

pletely or not at all (Figure 1E, red traces). These statically

tuned RGCs had an orientation-selective index (OSI), defined

as jR0-R90j/(jR0j+jR90j), that averaged 0.69 (Figure 1D). The

remaining 46 RGCs were qualitatively different in generating a

transient glutamatergic output at both the horizontal-to-

vertical and vertical-to-horizontal transitions, and three exam-

ples are shown by the black traces in Figure 1E.

RGCs Dynamically Tuned to Different Orientations
Are RGCs transmitting a signal to the tectum at each change in

stimulus orientation becoming retuned, or might they simply be

responding to local changes in luminance when the grating is

rotated within their receptive field? To distinguish between these

possibilities, we carried out two tests. First, responses to

changes in orientation were measured at two spatial phases of

the grating shifted by 45�, and then thesewere comparedwith re-

sponses to changes in phase (steps of 45�) at a fixed orientation.

The example traces in Figure 1E show that recovery of sensitivity

to the orthogonal stimulus was very similar at different phases

and that a phase change alone usually elicited no response, or

else a much smaller response, than the orthogonal stimulus

(dashed blue box). The averaged synaptic output to this protocol

across all 42 RGCs tested in this way is provided in Figure S2.

Again, a subset of RGCs responded to orthogonal stimuli irre-

spective of phase and in these cells phase changes alone elicited

much smaller responses. These results confirm that RGCs re-

sponding to all changes in stimulus orientation were dynamically

altering their tuning to this feature of the stimulus.

Among the46RGCs thatwere dynamically tuned, the response

to a shift in orientation depressed by 92.0% ± 0.1%within 0.26 ±

0.31 s, effectively suppressing the transmission of redundant in-

formation. Within �9 s of this profound adaptation, the neurons

had become re-tuned to allow signaling of a future change in

stimulus orientation, demonstrating the ability to generate a dy-

namic predictive code (Hosoya et al., 2005; Sharpee et al.,

2006; Smith and Lewicki, 2006). Together, the results in Figure 1

demonstrate that the retina of zebrafish informs the brain of orien-

tated features in the visual world through two functionally distinct

groups of RGCs, either dynamically or statically tuned.

Detection of Spatial Patterns Originates in the Synaptic
Compartment of Bipolar Cells
To investigate how some RGCs dynamically alter their tuning to

spatial patterns, we began by asking whether their excitatory in-

puts might be sensitive to orientation. Electrical recordings in the

somata of bipolar cells have not yet revealed any orientation

selectivity (Hosoya et al., 2005), but it is known that inhibitory



Figure 1. Imaging the Input and Output from

Individual Retinal Ganglion Cells

(A) Maximum intensity projection of an RGC labeled

with iGluSnFR imaged in vivo and its axon terminal

in the optic tectum.

(B) Top: a single plane imaged through an RGC.

Center: a raster plot showing the time series of the

iGluSnFR signal along a dendrite (red line) in

response to changes in full-field luminance. Bottom:

time course of the iGluSnFR signal at the point

indicated by the blue arrow (corresponding to the

dashed blue line above).

(C) Raster plot of the responses of 106 retinal gan-

glion cell terminals to a full-field grating reversing

contrast- at 5 Hz. The grating appears at time zero

at an orientation of 90� and then switches orienta-

tion between 90� and 0� at 10 s intervals. Neurons

0–27 only responded to changes in contrast. Neu-

rons exhibiting a dynamic predictive code (72–96)

responded with transient increases in glutamate at

each change in stimulus orientation.

(D) Histogram of the OSI for the 66 RGCs in (D)

showing significant orientation selectivity.

(E) Top (black): examples of output from three RGCs

displaying DPC. The black trace shows changes in

orientation of the grating, which were applied at

three different spatial phases of the grating (0�, 45�,
and 90�) shown by the dashed blue trace. Note that

responses to a change in orientation were similar at

all phases, while a change in phase alone generated

a small response in just one of the three neurons

(blue dashed box). Bottom (red): examples of output

from two RGCs with static tuning to orientation.

(F) Examples of output from two RGCs insensitive to

orientation: the lowermost was inhibited by an in-

crease in contrast.
inputs to the synaptic compartment can dramatically modify the

electrical signal that drives their output (Asari and Meister, 2012;

Nikolaev et al., 2013). By imaging iGluSnFR, we directly as-

sessed the signal transmitted by bipolar cells. The raster plot in

Figure 2A shows iGluSnFR signals from 606 synaptic inputs

onto the dendrites of 27 RGCs; 47% of these synapses dis-

played significant orientation selectivity and individual examples

are shown in Figure 2B. The distribution of OSIs measured for bi-

polar cell synapses displayed two distinct populations; the

smallest group (30%) had amedian OSI of 0.3, but the remaining

70% were almost perfectly selective for one orientation over the

orthogonal (Figure 2C). We confirmed this finding by surveying

the whole population of bipolar cell synapses using zebrafish ex-

pressing a fast version of GCaMP6 fused to synaptopyhsin

(Johnston et al., 2014); �25% of these displayed orientation

selectivity when tested with either moving bars (Figure S3) or

the grating stimulus (Figure S4), and there was a clear preference

for vertically oriented stimuli (Figure 3F). These results demon-
N

strate that the analysis of orientation within

the zebrafish visual system begins within

the synaptic compartment of bipolar cells.

The kinetics of the signals encoding

orientation within the retina and the optic

tectumwereprofoundlydifferent. Figure 2D
compares the averaged output of RGCs displaying dynamic

predictive coding (black) with the subset of bipolar cell synapses

tuned to the horizontal (red). Bipolar cell outputs declined by

an average of 49% over a 10 s period, in general agreement

with the kinetics of contrast adaptation at the bipolar cell

synapse measured using electrophysiology in slices (Jarsky

et al., 2011) or the optical reporter sypHy in vivo (Nikolaev et al.,

2013; Odermatt et al., 2012). In contrast, the output of RGCs

adapted completely with a dominant time constant of between

0.17 s and 0.25 s. Although depression intrinsic to bipolar cell

synapses will also contribute to nulling the output to a constant

signal (Gollisch and Meister, 2010), this process is too slow and

incomplete to account for the extent of adaptation in the signal

delivered to the tectum (Figure 2D). The rapid ‘‘zeroing’’ of the

retinal output in the face of an unchanging visual input is key to

removing redundancy in the signal transmitted to the brain, and

these results demonstrate that the retina carries out this opera-

tion after the bipolar cell synapse.
euron 102, 1211–1222, June 19, 2019 1213



Figure 2. The Output from Individual Bipolar

Cells Displays Orientation Selectivity but

Not Dynamic Predictive Coding

(A) Raster plot showing the iGluSnFR signal of 606

bipolar cell inputs to 27 retinal ganglion cells in

response to a full-field grating that switched orien-

tation from 90� to 0� (stimulus as in Figure 1). The

alternating blue and orange bars on the left indicate

different RGCs. None of the synapses were acti-

vated at each change in orientation.

(B) Activity at five example synapses on RGC den-

drites. The first is not sensitive to orientation,

whereas the lower four were stably tuned, preferring

either the vertical or horizontal. All scale bars, 50%

DF/F.

(C) Histogram of the OSIs for the orientation-selec-

tive inputs measured in (A). Note the two distinct

populations.

(D) A comparison of the glutamatergic output of

bipolar cell synapses tuned to 90� (red, n = 151) and

RGCs displaying dynamic predictive coding (black,

n = 23). Shaded areas show ± SEM. Note the dif-

ferences in the time course of adaptation. Solid blue

lines are double exponential fits of the form y = yo +

A1((t – to)/t1) + A2((t – to)/t2). The time constants of

depression for the bipolar synapses were 0.21 s and

4.2 s and accounted for 61% and 39% of the decay,

respectively. In contrast, the output of RGCs in the

tectum was dominated by a fast process of adap-

tation in which 90% of the decay occured with a

time constant of 0.18 s.
Intrinsic and Extrinsic Mechanisms Generating
Orientation Tuning in Bipolar Cell Synapses
How do bipolar cell outputs become tuned to orientation? Two

potential mechanisms that might operate together are shown

in Figure 3A. The first involves synapses with asymmetric recep-

tive field centers causing features aligned with the longer axis to

generate larger responses than those at other angles. We inves-

tigated this possibility by measuring calcium signals within bipo-

lar cell terminals using SyGCaMP6f and mapping their receptive

fields using the technique of filtered back projection (Johnston

et al., 2014). Consistent with the dendritic field shapes of zebra-

fish bipolar cells (Li et al., 2012), the large majority of terminals

had receptive fields displaying some degree of ellipticity (Fig-

ure 3B). The median ellipticity was 0.30 (Figure 3C), providing a

simple explanation for the population of synapses with an OSI

centered around 0.31. The shape of receptive field centers could

not, however, explain the second population of synapses with

OSIs approaching 1 (Figure 2C).

The second potential mechanism for generating pattern-de-

tecting synapses invokes lateral inhibition from amacrine cells

(Figure 3A), which contact bipolar cell terminals through

GABAergic connections (Masland, 2012). The first evidence to

support this model camewhenwemeasured OSIs using gratings

of different spatial frequency and found that the receptive field

centers of bipolar cell synapses were 4-fold smaller than the

spatial patterns that they signaled most strongly (Figure 3D; Fig-

ure S4). The obvious candidates for neurons within the inner

retina with large receptive fields are wide-field amacrine cells,

so we tested their role by injecting a mixture of gabazine and
1214 Neuron 102, 1211–1222, June 19, 2019
strychnine into the intravitreal chamber to antagonize

GABAergic and glycinergic receptors. With inhibition blocked,

only 10% of 1,173 terminals displayed orientation selectivity,

compared to 24.4% of 1,053 terminals with inhibition intact (Fig-

ure 3F; FigureS5). Notably, thepopulationof bipolar cell terminals

with OSIs around 1 was almost completely abolished (Figure 3E),

indicating that they were indeed generated by lateral inhibition.

Blocking inhibition also flattened the distribution of preferred ori-

entations from one in which terminals tuned to the vertical were

strongly overrepresented to one in which horizontal orientations

were represented at slightly higher frequencies (Figure 3F).

Further evidence for the idea that inhibitory inputs contribute to

the tuningof bipolar cell synapses is shown inFigure 4,whichplots

SyGCaMP6f responses in terminals displayingdiffering degrees of

selectivity for the vertical and horizontal. In synapses with an OSI

of 1, a grating orthogonal to the preferred orientation often caused

a significant decrease in calcium below the baseline, indicating

that a stimulus at the non-preferred orientation activated a coun-

teracting inhibitory signal. These antagonistic responses de-

pended on the spatial frequency of the stimulus (Figure S5) and

were observed in 29% of terminals using a grating of 0.03 cycles

per degree but only 9% of terminals using 0.121 cycles per de-

gree, again indicating the involvement of amacrine cells with larger

dendritic fields. When inhibition was blocked using gabazine and

strychnine, responseswith decreases in calcium for the null direc-

tionwere completely abolished (data not shown), and the distribu-

tion of preferred orientations was flattened (Figure 3F).

Direct evidence for the idea that amacrine cells can also be

orientation-selective was obtained by measuring their synaptic



Figure 3. Intrinsic and Extrinsic Factors Generating Orientation

Selectivity in Bipolar Cell Synapses

(A) Two mechanisms potentially generating orientation selectivity. In model 1,

the synapse has an elongated receptive field center (red), which would lead to

an orientation preference (for vertical stimuli in this example). Model 2 shows a

synap receptive field (red) receiving inhibitory inputs that are stronger along the

horizontal axis, which would also lead to vertical selectivity in the bipolar cell

synapse.

(B) Examples of receptive field centers mapped in synapses of two separate

bipolar cells. Yellow lines show a fit with a 2D Gaussian used to estimate the

lengths of their major and minor axes.

(C) Histogram of the receptive field ellipticity measured from 442 bipolar cell

synapses.

(D) The OSI as a function of spatial frequency in bipolar cell synapses (red, n =

819) compared with the OSI predicted from the receptive field dimensions

assuming linearity (black, n = 442), displayed as mean ± SD.

(E) Comparison of the distributions of OSI under normal conditions (black, n =

257) and that remaining after disrupting inhibition with intravitreal injection of

gabazine and strychnine (red, n = 127).

(F) Top: distribution of preferred orientations under normal conditions (black)

and with inhibition disrupted (red). Bottom: distribution of preferred orienta-

tions of 274 amacrine cell synapses showing significant OS (orientation

selective). On average, amacrine cells were activated more strongly by the

vertical (0�) compared to the horizontal.
activity using SyGCaMP3.5 under the ptf1a promoter (Nikolaev

et al., 2013). Across a population of 982 synapses, 274 displayed

a significant degree of orientation selectivity with an overrepre-

sentation of tuning to the vertical (Figure 3F, bottom). Amacrine

cells are excited solely through bipolar cells, so one possibility

is that they inherit their orientation selectivity from these inputs.

If this mechanism were common across the population of ama-

crine cells, then they would be expected to exhibit an average

distribution of preferred orientations similar to bipolar cells,

and this was the observation (compare top and bottom in Fig-

ure 3F). The distribution of preferred orientations in amacrine

cells was, however, significantly broader than in bipolar cell syn-

apses, likely reflecting the contribution of other factors, such as

intrinsic asymmetries in amacrine cell dendritic trees (Antinucci

et al., 2016). Together, the results in Figures 3 and 4 demonstrate

that lateral antagonism in the orientation domain helps generate

bipolar cell synapses with the highest degree of orientation

selectivity.

The Wiring of Spatial Pattern Detectors to Retinal
Ganglion Cells
A key element of the pattern detector hypothesis is that individ-

ual RGCs receive inputs with a variety of tunings (Gollisch and

Meister, 2010; Hosoya et al., 2005; Lesica et al., 2007). To inves-

tigate whether such RGCs exist in the retina of zebrafish, we

used iGluSnFR to make a functional assessment of the rules

governing bipolar cell-to-RGC connectivity. We sampled 27

RGCs, measuring from an average of 22 synaptic inputs in

each, distributed over several focal planes. For each RGC, we

tested whether the pattern of inputs of different types might

reflect random sampling. First, each bipolar cell synapse in our

complete sample of 1,053 recordedwith SyGCaMP6f (Figure S3)

was classified as being either tuned or untuned to orientation

(STAR Methods). Next, the observed distribution of inputs to

an RGC from which N synapses were imaged was compared

with the distribution predicted by chance (estimated by
Neuron 102, 1211–1222, June 19, 2019 1215



Figure 4. Lateral Antagonism in the Orientation Domain, Acting on

Bipolar Cell Synapses

Shown are examples of presynaptic calcium transients measured in bipolar

cell synapses using SyGCaMP6f. The stimulus is the same as used in Figures 1

and 2. The OSI for the top four terminals was 1. The upper two exhibited a fall in

calcium, reflecting hyperpolarization (red arrows), when the stimulus switched

to the non-preferred orientation, indicating increased inhibition. Note that this

measurement cannot distinguish increased inhibition from decreased excita-

tion unless the inhibition is sufficient to decrease presynaptic calcium below

basal levels. All scale bars show 50% DF/F.
taking N synapses from the 1,053 at random and repeating

100,000 times). Twenty-three of the 27 RGCs had distributions

of tuned and untuned inputs occurring with a probability of less

than 1% compared with chance, indicating specific rather than

random connectivity.

To explore connectivity patterns in more detail, we calculated

for each RGC the ratio of inputs with a vertical preference to

those with a horizontal preference (R0/90), and the distribution

is shown in Figure 5A. Two general patterns were observed.

RGCs either received inputs weighted toward one orientation

(the two extremes in the distribution; n = 19), or they received a

mixture of excitation tuned to a variety of different orientations

or none (the middle group in the distribution; n = 8). RGCs

strongly selective for one of the two cardinal orientations, such

as the example shown in Figure 5B, are likely to account for

the population that provides outputs to the tectum that are stat-

ically tuned (Figure 1E, red). Two RGCs did not show any verti-

cal-to-horizontal preference because none of the inputs were

tuned, as shown by the example in Figure 5C, but the remaining

6 RGCs with R0/90 around 0.5 received inputs of mixed tuning.

Two examples of this last group of RGCs are shown in Figures

5D and 5E; these display the basic wiring proposed by the

pattern detector hypothesis—convergence of input signals en-

coding different orientations. Averaging across all synapses

sampled on each cell (gray traces in Figures 5D and 5E)

again demonstrated that these driving signals were slow to
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adapt and could not, therefore, account for the rapid suppres-

sion of the output measured in the tectum.

A High-Pass Filter in Retinal Ganglion Cells
To investigate further the transformation of the visual signal within

individual RGCs, we used iGluSnFR to compare inputs at their

dendrites with the output transmitted from their axons. The sim-

ilarity between the two signals was first quantified as a correlation

(R2) value, as would be used to assess a linear regression model.

In 3 cells, the excitatory input alone was a very good predictor of

axon output, accounting for �66% of the variance, and two ex-

amples are shown in Figure 6A. It appears that inhibitory signals

received by these RGCs, either within the retina or tectum, play a

relatively minor role in shaping the final output. In the remaining

five RGCs, R2 averaged just 0.102 (Figure 6B), and the output

resembled a high-pass-filtered version of the excitatory input;

two examples are shown in Figures 6D and 6F. These RGCs

signaled changes in orientation strongly but attenuated the sus-

tained component as well as the 5 Hz flicker, as shown by the

spectrograms in Figures 6E and 6G. A second indicator that a

high-pass filter operation occurred in RGCs was observed

when comparing the time to peak of the input and output signals

elicited by a change in orientation; the output reached a peak

200 ms before the input (Figure 6C). Such a phase lead is a basic

characteristic of a high-pass filter (Saggio, 2014).

Might the high-pass filter operating in some RGCs reflect their

connectivity to the other key element of the inner retina, the ama-

crine cells? A general feature of the retinal connectome is local

feedforward inhibition (FFI), in which a bipolar cell excites both

an RGC and an amacrine cell that inhibits the same RGC, often

on the same dendrite (Chen et al., 2010; Diamond, 2017; John-

ston and Lagnado, 2015; Figure 7A). FFI is also a fundamental

feature of the hippocampus and neocortex, where it controls

the temporal window for firing in pyramidal neurons (Isaacson

and Scanziani, 2011; Pouille et al., 2009) and can generate a

high-pass filter (Milstein et al., 2015). Unfortunately, testing the

role of FFI by pharmacological manipulation was confounded

by the simultaneous block of lateral inhibition, which caused

large increases in the gain of excitation through bipolar cells.

We therefore used a combination of electrophysiology and

modeling to assess the potential role of FFI. In model 1 (red),

FFI was introduced as a high-pass filter, and rectification in the

signal transmitted from bipolar cells to output of RGCswas intro-

duced as a static threshold followed by a linear function. It is also

possible that processes within the RGC, such as spike genera-

tion, introduce a threshold followed by a supra-linear scaling

(Schwartz and Rieke, 2011; Turner and Rieke, 2016). We there-

fore also investigated model 2, in which the static non-linearity

comprised a threshold followed by a power function (blue in Fig-

ure 7A, where the power is two).

The high-pass filter in model 1 was estimated using a multi-

compartment model of a simplified RGC into which we

integrated the properties of excitation and inhibition measured

electrophysiologically in RGCs from goldfish (Johnston and Lag-

nado, 2015). Figure 7Bi shows how excitation in the model RGC

became briefer as the strength of the inhibitory input was

increased. The ratio of inhibitory to excitatory synapses varies

between RGCs, so we used the mean ratio of 2:1 measured



Figure 5. The Wiring of Bipolar Cell Synapses and Retinal Gan-

glion Cells

(A) Distribution of values of R0/90, the ratio of inputs with a vertical preference to

those with a horizontal preference (n = 27 RGCs).
experimentally (Johnston and Lagnado, 2015; Figure 7Bii). A key

assumption of this model was that the excitatory current injected

into the RGC dendrite is directly proportional to the iGluSnFR

signal, which has been confirmed experimentally (Marvin et al.,

2013). The only parameter that was not empirically determined

was the threshold for the non-linearity. In tests of the model,

we set this threshold to be 3 times the noise in the baseline.

Model 1, based on a high-pass filter, succeeded in two as-

pects where model 2 failed. First, it predicted that the output

from an RGC has an earlier time to peak than the synaptic input,

as observed experimentally (Figures 6C, 6D, and 6F). In contrast,

model 2, based on a power function, predicted a peak output

that was delayed. When this power was two, the median delay

was 0.23 s relative to the actual measurement (Figures 7A and

7E), and adjustments of both the threshold and exponent of

the nonlinearity failed to account for the phase lead in RGC

output. Second, and more qualitatively, the FFI model high-

lighted transients in the input more clearly. For instance, Fig-

ure 7C shows an example RGC (statically tuned) in which the

glutamatergic input fluctuates rapidly (black trace); these fluctu-

ations are apparent in the measured output (gray) and are also

predicted by the FFI model (red) but not by a squaring non-line-

arity (blue).

An example of the output of the models for an RGC receiving a

mixture of inputs tuned to different orientations is shown in Fig-

ure 7D; model 1 predicted a clear output signal at each change in

orientation, as observed in RGCs displaying a predictive code,

but model 2 did not. Furthermore, although the decay time con-

stant of the initial response in model 2 could be shortened to

match the RGC output by tuning the threshold and exponent

of the nonlinearity, this was always at the expense of reducing

or eliminating transients evoked by subsequent orientation

changes, as is evident in Figures 7A and 7D. We conclude that

a high-pass filter, most likely generated by FFI, is a key mecha-

nism by which maintained excitation received by RGCs is nulled

to prevent the transmission of unchanging signals to the tectum.

DISCUSSION

A basic constraint in the design of neural circuits is the need to

transmit information in an energy-efficient manner, and removing

redundancies from incoming signals is one of the most important

ways to achieve this (Barlow, 1961; Niven and Laughlin, 2008; Sri-

nivasan et al., 1982; Sterling and Laughlin, 2015). In this study we

have delineated a circuit that allows individual neurons to signal
(B) An example of the synaptic inputs to one of 19 retinal RGCs that were

selectively wired to synapses tuned to a similar orientation. The gray trace

shows the average of these 24 inputs; the OSI averaged 0.98.

(C) An example of the synaptic inputs to one of 2 RGCs in which none of the

inputs were orientation-selective. The gray trace shows the average of these

19 inputs.

(D) An example of an RGC receiving a mix of excitatory inputs tuned to 0� (8),
90� (4), and non-OS (10).

(E) Another example of an RGC receiving a mix of excitatory inputs tuned to

0� (13), 90� (7), and non-OS (9). Note that the average excitatory drive to these

cells shows a transient increase at each change in orientation.

All image scale bars, 5 mm; all DF/F scale bars, 50%.

Neuron 102, 1211–1222, June 19, 2019 1217



Figure 6. A High-Pass Filter Operates in Some RGCs

(A) Examples of the averaged excitatory input (blue) and glutamatergic output (orange) of two RGCs in which input and output were strongly correlated (stimulus

as in Figures 1 and 2). The RGC on the right was statically tuned (OSI = 1).

(B) R2 values for the correlation between the total excitatory drive and output for 8 different RGCs. The cells in (A) are marked in red, and output closely resembled

input. The cells marked in black (which includes those in D–F) are those in which the output was markedly different from the input.

(C) Comparison of the latency between a switch in the orientation of the stimulus and the first peak in the iGluSnFR signal on the dendrites (input, blue) and at the

axon (output, orange). On average, the output leads the input by �200 ms, indicative of a high-pass filter.

(D and F) Two examples of RGCs showing low degrees of correlation (R2) between excitatory input and output. The dashed box for each cell is enlarged on the

right, illustrating the filtering out of the sustained component of the input. The inputs were more strongly orientation-selective in (F) compared to (D).

(E and G) Spectrogram showing the power in the signals in (D) and (F) as a function of frequency (ordinate) and time (abscissa). Note that that the outputs in the

tectum contain less power over a range of frequencies up to 5 Hz.
changes in spatial patterns while strongly suppressing the trans-

mission of unchanging and, therefore, redundant information.

This implementation of a dynamic predictive code involves re-tun-

ing of orientation-selective RGCs, as proposed by Hosoya et al.

(2005), by the circuit shown in Figure 8. The basic elements of

this circuit are: (1) bipolar cell synapses acting as pattern detec-

tors because of their intrinsic orientation selectivity (Figure 2; Fig-

ureS3) and because of inhibitory inputs that act presynaptically to

generate lateral antagonism in the orientation domain (Figures 3

and 4); (2) a proportion of amacrine cells reflecting the orientation

tuning of the bipolar cells that drive them (Figure 3F); (3) individual

RGCs receiving a mixture of excitatory inputs tuned to different

orientations (Figure 5D), and (4) FFI through amacrine cells onto

RGCs to generate a high-pass filter (Figures 6 and 7).

The basic features of the circuit shown in Figure 8 are recapit-

ulated in other parts of the brain that are thought to carry out
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some form of dynamic predictive coding, such as the primary vi-

sual and auditory cortices (Bock et al., 2011; Priebe, 2016; Smith

and Lewicki, 2006), the hippocampus (Mori et al., 2007), and the

optic tectum (Luksch et al., 2004), and it may therefore reflect a

general strategy by which excitatory and inhibitory neurons are

connected to highlight transient inputs while nulling steady sig-

nals. For instance, individual pyramidal cells in the primary visual

cortex (V1) also receive excitatory synaptic inputs tuned to a va-

riety of different orientations (Iacaruso et al., 2017), and their tun-

ing shifts dynamically as they adapt to the distribution of orienta-

tions within a recent period of stimulation (Benucci et al., 2013). It

is less clear whether changes in orientation tuning within V1

reflect primarily depression within excitatory synapses (M€uller

et al., 1999) or the additional effects of inhibition (Priebe, 2016).

In the retina, synaptic depression and FFI both reduce the net

excitation caused by an input of a particular orientation but



Figure 7. Feedforward Inhibition Can Account for the Transient Outputs of RGCs Generating a Dynamic Predictive Code

(A) Comparison of two models. In model 1, an RGC (G) receives excitatory inputs from bipolar cells (B), which also activate local FFI through amacrine cells (A)

contacting the same dendrite. The input to the model is the average excitatory input measured using iGluSnFR (black trace), which is convolved with the high-

pass filter calculated in (Bii) (green) and then passed through a static non-linearity (orange). The output of the model (red) can be compared with the output of the

same RGC, measured using iGluSnFR (gray). In model 2, there is no high-pass filter, and the input instead passes through a squaring static non-linearity (blue). In

this example, the non-linearity is a threshold followed by squaring. Note that the transients in the measured output are reproduced by model 1 but not model 2.

The initial parts of the traces enclosed by the dashed boxes are enlarged below; the time-to-peak in the output is predicted by model 1 but not model 2.

(Bi) The membrane potential of an RGC in response to step activation of the excitatory and inhibitory synapses modeled in NEURON. Increasing the strength of

inhibition makes the response more transient.

(Bii) The impulse response of the temporal filter caused by FFI shown by the red trace in (B). This filter assumed a 2:1 ratio of inhibitory to excitatory synapses.

(C) Examples of the output of model 1 (red) and model 2 (blue) for an RGC receiving inputs tuned to a similar orientation (average synaptic iGluSnFR signal are

shown in black).

(D) An example of the output of themodels for an RGC receiving amixture of inputs tuned to different orientations. Model 1 predicted a clear signal at each change

in orientation but model 2 did not.

(E) The difference between the measured and predicted time to peak of the transient, measured after a change in orientation. Each point represents a different

RGC. The median difference of model 1 was zero, whereas model 2, incorporating a power of two, was significantly delayed, with a median of 0.23 ± 0.28 s

(Wilcoxon signed-rank test, p = 0.002). Error bars show median absolute difference.
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Figure 8. A Retinal Circuit Generating aDynamic Predictive Code for

Orientated Features

The RGC (G) receives a mixture of bipolar cell inputs tuned to different ori-

entations, including those preferentially signaling the vertical (dark blue) and

horizontal (light blue). Bipolar cell synapses tuned to orientation receive lateral

inhibition (LI) from amacrine cells (green) along their orthogonal orientation.

Amacrine cells provide FFI onto RGC dendrites, generating a high-pass filter

that nulls unchanging signals. Excitatory synapses are represented by solid

circles and inhibitory synapses by open circles.
with very different timescales; presynaptic depression usually

decreases the gain of an input over timescales of several sec-

onds (Figure 2D; Nikolaev et al., 2013), whereas FFI acts in a frac-

tion of a second (Milstein et al., 2015). Another key variable is the

strength of the FFI received by the neuron acting as the pattern

detector. We found a distinct subset of RGCs that did not act

as high-pass filters (Figure 6B), consistent with the idea that

the FFI they receive is weak or non-existent. With variations,

therefore, the basic circuit shown in Figure 8 could act with vary-

ing efficiency and on different timescales to alter tuning and sup-

press transmission of maintained signals.

We found that most RGCs in zebrafish do not completely sup-

press an unchanging input and, therefore, operate with an

appreciable degree of redundancy. Similarly, a survey of the ret-

inas of salamanders and rabbits found that only half of the RGCs

adapt to an orientated stimulus, with gain changes averaging a

factor of about two (Hosoya et al., 2005). The lack of more com-

plete adaptation can now be understood in terms of the excit-

atory inputs RGCs receive from bipolar cells, which depress

incompletely and relatively slowly while a stimulus is maintained

(Figure 2). Modeling basic features of connectivity in the inner

retina indicates that the steady excitatory input is only nulled

effectively and rapidly in the subset of RGCs that additionally

receive FFI (Figures 6 and 7). The tectum, therefore, receives in-

formation about spatial patterns in at least two ways; some

RGCs signal changes toward a preferred orientation and are sta-

bly tuned, whereas others signal changes in any orientation and

retune rapidly (Figure 1E).

How are these different signaling modes used by downstream

circuits? Answering such questions will be aided by measuring

the distribution of spatial correlations in the orientation space a

zebrafish is encountering in its normal environment of shallow,

slow-moving streams. Among the first pattern detectors, the bi-

polar cell synapses, there is an overrepresentation of vertical ori-

entations (Figure 2F) that might, for instance, reflect the impor-

tance of detecting vegetation growing upward toward sunlight.
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It is also possible that RGCs generating a dynamic predictive

code for orientation serve to alert the animal to rotations of its

body axis relative to the surrounds, in particular relative to the

preferred (vertical) orientation. It is known that the righting reflex

is driven by inputs from the visual system aswell as the vestibular

and somatosensory systems (Kalueff et al., 2013), and signaling

sudden changes in spatial patterns may serve to detect changes

in body roll.

The integration of anatomical and physiological studies of neu-

ral circuits has been termed ‘‘functional connectomics’’ (Seung,

2011), and this idea has generally been framed in terms of

defining the rules that relate the functional properties of neurons

with the synaptic connections they make. The present study

highlights the importance complementing this information with

an understanding of the signals that are actually transmitted

within circuits. The use of fluorescent reporters of synaptic

activity, such as iGluSnFR, provides a promising approach for

understanding one of the most basic aspects of any neural

circuit: the input-output relations of the neurons within it.
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Strychnine Tocris Cat. No. 2785

Alexa 594 ThermoFisher Scientific A10438

Experimental Models: Organisms/Strains

Zebrafish expressing SyGCaMP6 in retinal

bipolar cells

Laboratory of Leon Lagnado Tg(-1.8ctbp2:SyGCaMP6)

Zebrafish expressing SyGCaMP3 in retinal

amacrine cells

Laboratory of Leon Lagnado Tg(ptf1a:gal4; UAS:SyGCaMP3)

Zebrafish containing the UAS:iGluSnFR

transgene

Laboratory of Michael Orger Tg(10xUAS:iGluSnFRccu003t)

Zebrafish homozygous for the roy;nacre

double mutant

Laboratory of Leon Lagnado Casper
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Plasmid: 14xUAS:MCS in pT2KXIGin Herwig Baier N/A

Plasmid: P5E-HuC (elavl3) Henry Roehl Lab N/A

Plasmid: pCH-MCS-KalTA4GI Herwig Baier N/A

Plasmid: IsceI Ribeye:SyGCaMP6.10.500-
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Software and Algorithms

Shapeshifter: Software for delivering visual

stimuli

Jamie Johnston https://github.com/JohnstonLab/

Shapeshifter
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Leon

Lagnado (L.Lagnado@sussex.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish
All animal procedures were performed in accordance with UK Home Office guidelines and with the approval of the University of

Sussex Animal Work Ethical Review Board.

Tg(-1.8ctbp2:SyGCaMP6) and Tg(ptf1a:gal4; UAS:SyGCaMP3) fish were generated as described previously (Odermatt et al.,

2012). The Tg(10xUAS:iGluSnFRccu003t) was generated as follows. DNA coding for iGluSnFR (Marvin et al., 2013), in the Gateway

destination vector pDestTol2pA (http://tol2kit.genetics.utah.edu/index.php/Main_Page; Kawakami, 2007), was cloned downstream

of ten repeats of the Upstream Activation Sequence (10xUAS) using LR Gateway recombination. 12 ng/ml plasmid DNA and 40 ng/ml

Tol2 transposase mRNA with 0.02% phenol red was injected into 1-cell stage embryos heterozygous for Isl2b:Gal4 (Ben Fredj et al.,

2010). Transient and mosaic iGluSnFR-expression was achieved by injection of the HuCKalTA4 plasmid in combination with Tol2

transposase (Kawakami, 2007) into 1-cell stage embryos derived from in crosses of Tg(10xUAS:iGluSnFRccu003t) which have been

previously outcrossed to wild-type fish in order to split them from the Isl2b:Gal4 transgene. The concentration of the DNA and

mRNA in the injection mix each were adjusted to 12.5 ng/ ml.

Fish were raised and maintained under a 14 h light/10 h dark cycle and standard conditions as described previously (Johnston

et al., 2014). To aid imaging through the eye, fish used for 2-photon imaging were either heterozygous or homozygous for the casper

mutations, which results in hypopigmentation due to the lack of melano- and iridophores. To further suppress pigmentation fish were

treated with 1-phenyl-2-thiourea (200 mMfinal concentration; Sigma) from 1 day post fertilization to reduce pigmentation further. Fish

were used at 6-8 days post fertilization.
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METHOD DETAILS

Molecular Biology
The HuCKalTA4 plasmid was generated via the Gibson Assembly Cloning method. The plasmid features the HuC promoter that

drives expression of the optimized transcriptional activator KalTA4 in most neurons in the brain, including amacrine cells and

RGCs in the zebrafish retina. The optimization of Gal4 has been described previously (Distel et al., 2009). The plasmid contains a

second small promotor (cmcl2) which drives expression of the mcherry fluorophore in the heart, this approach is commonly used

in order to enable for phenotypic screening of transgenes that are not visible. Plasmid details are given in the Key Resources Table.

Visual stimuli
Visual stimuli were generated using Shapeshifter software (Johnston et al., 2014) written inMATLAB (MathWorks, Natick, MA, U.S.A.)

utilizing Psychophysics Toolbox (Brainard, 1997). Stimuli were presented using an Optoma PK320 pico-projector (Optoma, Watford,

Hertfordshire, UK), modified so that only the red LED was used for projection (Johnston et al., 2014). The mean irradiance of the

screen was 12.7 nWmm�2 and fish were positioned so that they viewed the center of the screen and were adapted to themean lumi-

nance forR 10 mins. Square wave grating stimuli had an amplitude from �100% to +100% contrast and were designed so that the

center of a bar was always aligned with the center of the screen, rather than an edge. For the spatial frequency tuning in Figure S4 and

Figure 3D each frequency was presented separately and in a pseudorandom order, the resulting videos were then concatenated in

order of spatial frequency. For themoving bar experiments visual stimuli consisted of�100%contrast bars with a width 4.1� of visual
angle which traversed the screen at 18.6� s�1 in 8 different directions, thus giving stimuli of 8 directions and 4 orientations. The bar

height spanned the full size of the screen and stimuli were spaced 6 s apart. The sequence of 8 directions was presented in a pseudo

random order then repeated 5 times. Visual stimulation was synchronized with imaging via Shapeshifter and a U3 LabJack digital-to-

analog converter (Labjack, Lakewood, CO, U.S.A.).

Two-photon imaging
Fish were immobilised in 3% low melting point agar (Biogene, Kimbolton, Cambs, UK) with one eye pointing at the middle of the

screen. Ocular muscles were paralyzed by injection of a-bungarotoxin around the eye. Bipolar and amacrine cell terminals and

RGCdendrites in the central region of the retina were imaged at 10-20 Hz in vivo using a Scientifica 2-photonmicroscope (Scientifica,

Uckfield, East Sussex, UK) equipped with a mode-locked Chameleon Ti-sapphire laser tuned to 915 nm (Coherent Inc., Santa Clara,

CA, U.S.A.) with an Olympus XLUMPLANFL 203water dipping objective (NA 1, Olympus, Tokyo, Japan). Emitted fluorescence was

captured through the objective. Scanning and image acquisition were controlled under ScanImage v.3.8 software (Pologruto et al.,

2003). Locating the axon terminals of identified RGCs in fishwithmore than one labeled RGCwas aided by the retinotopic distribution

of RGC axons in the tectum (Robles et al., 2014) where dorso-temporal RGCs project to the ventro-anterior region of the tectum. We

also confirmed that the axon terminal belonged to the identified RGC by laser ablating the RGC to check that the axon terminals

stopped responding (Figure S1), this was done by parking the beam over the cell body with the laser power at maximum

(800 nm), laser delivery was terminated as fluorescence dramatically increased, this coincided with destruction of the cell body.

Drug application
To administer inhibitory antagonists to the retina in vivo, we injected �4 nL of a solution containing 10 mM gabazine and 10 mM

strychnine. We confirmed that these drugs gained access by including 1 mM Alexa 594 in the injection needle, within 5 mins of in-

jection the dye could be detected within the inner plexiform layer of the retina (Figure S5A). However, the drugs do not distribute

evenly within the eye, as can be seen in the accumulation of Alexa 594 in the intravitreal space.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image segmentation
Regions of interest (ROIs) corresponding to synapses were segmented from the registered time series using an iterative method,

similar to (Portugues et al., 2014). Initially we determined a local correlation map by cross correlating the time series of each pixel

(x0) with its 8 neighbors (x1-8), with pixel x0 then being replaced by the maximum correlation value. This local correlation map

was then used to seed the ROIs. The pixel with the highest value in the local correlation map provided the first ROI seed. This pixel

had 8 nearest neighbors, each was tested for correlation with the seed and if a threshold was reached they were added to the ROI.

This process was iterated for the neighbors of all pixels added to the ROI, when no further pixels were added the ROI was

complete. The next ROI seed is chosen as the highest value from the remaining pixels in the local correlation map. Threshold values

were chosen by the experimenter and were consistent across all fish analyzed for a particular protocol. Only terminals that had re-

sponses > 4*SD of the base line were included for subsequent analysis. For segmentation of iGluSNFR signals in the tectum: the

same approach was used however care was taken to join ROIs whose time series were strongly correlated. This ensured that we

did not attribute the output of one RGC giving rise to multiple synaptic terminals to outputs from multiple RGCs, but may mean

that we underestimated the frequency of some responses types if separate cells generated two similar response types.
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Classification of retinal ganglion cells
Cells were classified as ‘‘dynamic predictive coding’’ if they responded with a transient on each transition that was greater than the

steady state of the previous response by at least 4 standard deviations. RGCswere classified as orientation selective if the responses

to the final two gratings differed by 4 standard deviations of their steady-state responses.

Quantifying orientation selectivity
Wherever stated the orientation selectivity index (OSI) was calculated using Equation 1, where a and b are the responses to the last

two orthogonal angles thus avoiding any contrast dependent adaptation (‘‘responses’’ are defined below).

OSI=
ja� bj
jaj+ jbj (Equation 1)

A response was only considered to have occurred at any given orientation if the signal differed by 4 times the median absolute de-

viation (MAD) of the preceding 15 s baseline. The value of a response was then determined in the following way: 1st we determined if

the response was transient by comparing the maximum value measured within 0.5 s after the transition, if this was > 4*MAD of the

median response over the whole 10 s then the maximum value was used as the response, otherwise the response wasn’t considered

transient and themedian value was used. To prevent noise from generating spurious orientation selectivity, synapses were only clas-

sified as orientation selective if the responses to orthogonal orientations differed by greater than a multiple of the noise in the steady-

state response which was taken as 4*MAD for tectal responses and 3* MAD for bipolar cell synapses.

Equation 1 was used to define OSI for SyGCaMP measurements from bipolar cell in response to gratings. The amplitudes of the

latter two grating where compared where ‘‘a’’ was themedian amplitude during 10 s at 90� and ‘‘b’’ was the median amplitude during

10 s at 0�. Responses were only assigned an OSI if the difference between a and b was greater than twice the MAD of the smaller

response.

Analysis of responses to moving bars
For SyGCaMP6 measurements from BPC and amacrine terminals we classified terminals as orientation-selective by computing a

vector sum in orientation space for each of the 10 trials, terminals were then classified as OS based on the result of Moore’s version

of Rayleigh’s test, with the critical value set to give a false positive rate of 1%. This critical value was determined by performing the

same analysis on all terminals with the angle information shuffled; we then used the critical value that classified 1%of terminals as OS

in this condition. Similar to previous reports in mouse, we did not find any significant direction preference in bipolar cell terminals

(Yonehara et al., 2013), so responses to the same orientation were pooled.

Receptive field reconstruction
The receptive fields of bipolar cell terminals were mapped as described previously (Johnston et al., 2014), briefly a �100% contrast

bar was flashed onto the retina with 3.2� spacing and at 5 angles ranging from 0� to 144�. Bars were presented in a pseudo random

order and for 0.5 swith a 2 s duty cycle. These responses allowed the receptive fields to be accurately recoveredwith the filtered back

projection method (Johnston et al., 2014).

Modeling the contribution of RF ellipticity to OSI
Phenomenological models were constructed in Igor Pro (Wavemetrics, Oregon, U.S.A.). 404 bipolar cell receptive fields were con-

structed as normalized 2D Gaussians with the major axis, minor axis, and theta determined from fits to the 404 measured receptive

fields (Figure 3B). Each model 2D Gaussian was first multiplied by a matrix representing a single grating stimulus, then the sum of all

elements from the resulting matrix was rectified to give the response to a single grating. This was then repeated for the orthogonal

orientation and Equation 1 was used to calculate the OSI. This was repeated for all the spatial frequencies tested and the results

shown in Figure 3D are the mean ± SD for all 404 receptive fields.

Modeling the filter resulting from feedforward inhibition
We used the equations that fit previous measurements of the excitatory and inhibitory conductances from (Johnston and Lagnado,

2015) and placed a single excitatory and inhibitory synapse at the same point of a single dendrite of the simplified NEURON model

used in Figure 7B. The conductance of the excitatory synapse was set to 0.0005 nS and the conductance of the inhibitory synapse

was varied from 0 to twice the magnitude of the excitatory synapse. To calculate the temporal filter resulting from the feed-forward

inhibitory synapse we used normalized-least-mean-squares adaptive filtering with a filter length set to 750 ms. The filter was fit to

804 s of data generated by the simplified NEURONmodel which contained 1600 randomly timed synaptic events of varying duration.
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