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Abstract

Allowing for the existence of irrelevant covariates, we study the problem of es-

timating a conditional quantile function nonparametrically with mixed discrete and

continuous data. We estimate the conditional quantile regression function using the

check-function-based kernel method and suggest a data-driven cross-validation (CV)

approach to simultaneously determine the optimal smoothing parameters and re-

move the irrelevant covariates. When the number of covariates is large, we first use

a screening method to remove the irrelevant covariates and then apply the CV cri-

terion to those that survive the screening procedure. Simulations and an empirical

application demonstrate the usefulness of the proposed methods.
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1 Introduction

Nonparametric estimation of conditional mean and/or quantile functions has received

increasing attention among econometricians and statisticians in recent decades (c.f., Fan

and Gijbels, 1996; Ghysels and Ng, 1998; Pagan and Ullah, 1999; Cai, 2002; Ai and Chen,

2003; Fan and Yao, 2003; Belloni, Chernozhukov and Fernández-Val, 2011; Fan and Park,

2012; Fan and Liu, 2016). Compared with a conditional mean regression function, a con-

ditional quantile regression function, when evaluated at different quantiles, can provide

a more comprehensive picture of the impact of covariates on the response variable and

thus reveal an entire distributional relationship between the covariates and the response

variable. Among various nonparametric estimation techniques, the kernel-based smooth-

ing method is probably the most commonly-used one for applied researchers. It is well

known that the numerical performance of nonparametric kernel estimation relies on the

choice of smoothing (or bandwidth) parameters. Hence, there has been a large literature

on data-driven methods to select optimal smoothing parameters in estimating conditional

mean functions and conditional density functions, see Hall and Marron (1987), Härdle,

Hall and Marron (1988), Marron, Jones and Sheather (1996) and Hall, Racine and Li (2004),

among others.

In contrast, there is relatively sparse literature on developing data-driven methods to

select optimal smoothing parameters in estimating conditional quantile functions, which

seems more challenging than that in estimating conditional mean functions. This is partly

due to that the check-function-based conditional quantile estimation involves minimiza-

tion of a non-smooth objective function and the resulting estimation lacks a closed form.

One may avoid the problem of non-smooth objective function by first estimating a con-

ditional cumulative distribution function (CDF) and then inverting the conditional CDF

to obtain the conditional quantile function (e.g., Cai, 2002; Li, Lin and Racine, 2013). The

optimal smoothing parameters can be selected in the first step of nonparametric CDF es-

timation according to certain data-driven criterion. However, the smoothing parameters

chosen in this way are usually not optimal for the conditional quantile estimation, see

the simulation studies in Li, Li and Li (2018). In addition, such an inverted-CDF-based

method is difficult to be extended to a more general setting in particular when one is in-

terested in estimating derivatives of the conditional quantile function. The latter issue is

addressed in a recent paper by Li, Li and Li (2018) which uses the local linear smoothing

method in minimizing the non-smooth objective function and then obtains the condi-

tional quantile function estimation. They introduce a data-driven cross-validation (CV)
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method to directly select the smoothing parameters for the nonparametric quantile re-

gression estimation and derive the asymptotical optimality property for the CV selected

smoothing parameters.

However, Li, Li and Li (2018)’s paper restricts attention to the case that all the dis-

crete and continuous covariates are relevant in the sense that they all significantly affect

the conditional quantile function. Such an assumption becomes inappropriate when one

faces a large number of candidate covariates in econometric modelling, which is not un-

common in practical applications. It is likely that some of the covariates are redundant

in the sense that they do not have any impact on the response variable, and should be

removed to improve the estimation efficiency. Hall, Racine and Li (2004) and Hall, Li

and Racine (2007) explore this issue in the context of conditional density function estima-

tion and conditional mean function estimation, where they show that, through the least

squares CV method, the “irrelevant covariates” can be removed by over-smoothing. For

other relevant developments on the CV model selection in parametric, nonparametric

and semiparametric models, we refer to Zhang (1991), Shao (1993), Gao and Tong (2004),

Gao et al (2017) and the references therein.

Most of the aforementioned literature focuses on the CV method to remove the irrele-

vant covariates and select the optimal smoothing parameters associated with the signifi-

cant ones within the conditional mean regression framework. It remains an open problem

to develop a completely data-driven method to simultaneously select optimal smoothing

parameters and remove redundant covariates in nonparametric conditional quantile re-

gression. The current paper fills this gap. We use the local constant check-function-based

method to estimate the conditional quantile regression function, where the discrete and

continuous kernel functions are combined to deal with the mixed discrete and continuous

regressors. A completely data-driven CV approach is applied to jointly determine the op-

timal smoothing parameters and remove the irrelevant covariates (via over-smoothing).

Under some mild conditions, the CV selected smoothing parameters are proved to be

asymptotically optimal with convergence rates comparable to those obtained by Racine

and Li (2004). In addition, the irrelevant covariates (which can be either continuous or

discrete) are over-smoothed and thus removed with probability approaching one, indi-

cating the consistency of covariate selection. The asymptotic normal distribution of the

local kernel quantile estimation using the CV selected smoothing parameters is also es-

tablished, complementing the results derived in Li and Li (2010). Furthermore, we gen-

eralize the model setting and methodology to the case when the dimension of covariates

is large (growing with the sample size n) and introduce a two-step procedure: (i) use a
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kernel-based quantile screening technique to remove the irrelevant continuous and dis-

crete covariates, and (ii) apply the CV criterion to those that survive in the first step of

screening and further select the significant covariates and determine the optimal smooth-

ing parameters. Note that the existing literature on variable or feature selection in high-

dimensional quantile regression only considers the case of purely continuous covariates

(e.g., He, Wang and Hong, 2013; Ma, Li and Tsai, 2017; Xia, Li and Fu, 2018). The present

paper considers a more general setting which contains both the discrete and continuous

covariates. Our simulation studies show that the proposed procedure has a reasonably

good small-sample performance. In the empirical application, we apply the developed

method to analyze the data taken from the National Longitudinal Survey of Youth 1997,

and find that while men’s dating experience is positively correlated with their median

wage, women’s dating experience is smoothed out after using the CV method, indicating

that women’s dating experience is irrelevant to their median wage.

The rest of the paper is organized as follows. The local constant check-function-based

estimation method and the CV method are introduced in Section 2. The technical assump-

tions and the main asymptotic results are given in Section 3. Methodology and theory for

the case of high-dimensional covariates are presented in Section 4. Section 5 reports the

simulation results and Section 6 presents an empirical application. Section 7 concludes

the paper. The proofs of the main results are given in Appendix A, and the proofs of the

technical lemmas are provided in Appendix B contained in a supplemental document.

2 Conditional Quantile Estimation

In this section, we describe the nonparametric kernel-based smoothing method to esti-

mate the conditional quantile regression function with mixed discrete and continuous

covariates, and then introduce the CV method to select the optimal bandwidth param-

eters. Since the seminal paper by Koenker and Bassett (1978), the parametric and non-

parametric quantile regression modelling has experienced rapid developments (c.f., Jones

and Hall, 1990; Yu and Jones, 1998; Cai, 2002; Chernozhukov and Hong, 2002; Koenker,

2005; Angrist, Chernozhukov and Fernández-Val, 2006; Koenker et al, 2017; Racine and

Li, 2017; Li, Li and Li, 2018). In this paper, we suppose that
(
Yi, X̄c

i , X̃c
i , X̄d

i , X̃d
i

)
, i =

1, · · · ,n, are independent and identically distributed as
(
Y, X̄c, X̃c, X̄d, X̃d

)
, where Y is

univariate, X̄c =
(
X̄c

1 , X̄c
2 , · · · , X̄c

d1

)⊺
is a d1-dimensional relevant continuous covariate
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vector, X̃c =
(
X̃c

1 , X̃c
2 , · · · , X̃c

d2

)⊺
is a d2-dimensional irrelevant continuous covariate vec-

tor, X̄d =
(
X̄d

1 , X̄d
2 , · · · , X̄d

d3

)⊺
is a d3-dimensional relevant discrete covariate vector and

X̃d =
(
X̃d

1 , X̃d
2 , · · · , X̃d

d4

)⊺
is a d4-dimensional irrelevant discrete covariate vector. Without

loss of generality, we assume that X̄d
j ∈ D̄j

def
= {0, 1, · · · , c̄j − 1} for j = 1, · · · ,d3 and

X̃d
j ∈ D̃j

def
= {0, 1, · · · , c̃j − 1} for j = 1, · · · ,d4, where c̄j and c̃j are bounded positive inte-

gers. Let S = S̄× S̃ with S̄ and S̃ being the compact supports of X̄c and X̃c, respectively. In

this section, we consider the simple case when all the dimensions, di, 1 6 i 6 4, are fixed.

Extension of methodology to the more general setting with diverging dimensions will be

studied in Section 4.

The irrelevant covariates are assumed to be independent of the response variable and

the relevant covariates, i.e., (
Y, X̄c, X̄d

)
⊥
(
X̃c, X̃d

)
, (2.1)

where the notation A ⊥ B means that A and B are independent with each other. Note that

the condition (2.1) implies that, for any fixed

x̄0 =

(
x̄c

0

x̄d
0

)
and x̃0 =

(
x̃c

0

x̃d
0

)
,

we have F(y|x̄0, x̃0) = F(y|x̄0), where F(y|x̄0) is the conditional CDF of the response variable

Y (evaluated at y) given the covariates X̄c = x̄c
0 and X̄d = x̄d0 , where x̄c

0 ∈ S̄, x̃c
0 ∈ S̃,

x̄d
0 ∈

∏d3

j=1 D̄j and x̃d
0 ∈

∏d4

j=1 D̃j are vectors of dimensions d1, d2, d3 and d4, respectively.

For given 0 < τ < 1, we use Qτ(x̄
c
0 , x̄d

0 ) to denote the conditional τ-quantile function of

the response variable Y given X̄c = x̄c
0 and X̄d = x̄d

0 , i.e.,

Qτ(x̄
c
0 , x̄d

0 ) = inf
{
y ∈ R : F(y|x̄c

0 , x̄d
0 ) > τ

}
, (2.2)

or equivalently,

Qτ(x̄
c
0 , x̄d

0 ) = arg min
a∈R

E
[
ρτ(Y − a)

∣∣X̄c = x̄c
0 , X̄d = x̄d

0

]
, (2.3)

where ρτ(·) is the check function ρτ(y) = y [τ− I(y < 0)], and I(A) is the indicator func-

tion of the event A.

In practice, the prior information on the irrelevant covariates X̃c and X̃d is usually un-

known. Hence, we have to use the full sample containing both the relevant and irrelevant

covariates in the initial local kernel-based estimation of the quantile regression function.

For notational simplicity, let

Xi =

(
Xc

i

Xd
i

)
, Xc

i =

(
X̄c

i

X̃c
i

)
, Xd

i =

(
X̄d

i

X̃d
i

)
,
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and accordingly

x0 =

(
xc

0

xd
0

)
, xc

0 =

(
x̄c

0

x̃c
0

)
, xd

0 =

(
x̄d

0

x̃d
0

)
.

Let h =
(
h̄, h̃

)
and λ =

(
λ̄, λ̃
)
, where h̄, h̃, λ̄ and λ̃ are row vectors of smoothing pa-

rameters with dimensions d1, d2, d3 and d4, respectively. These smoothing parameters

correspond to the covariate vectors X̄c, X̃c, X̄d and X̃d, respectively. Since there are both

the continuous and discrete covariates, we need to use different types of kernel functions

to smooth them. For the continuous covariates, we use the product kernel defined by

Kh(X
c
i − xc

0) =

d1∏

s=1

h̄−1
s k

(
X̄c
is − x̄c0s
h̄s

) d2∏

s=1

h̃−1
s k

(
X̃c
is − x̃c0s
h̃s

)
, (2.4)

where k(·) is a univariate kernel function, X̄c
is and x̄c0s are the s-th element of X̄c

i and x̄c
0 ,

respectively, X̃c
is and x̃c0s are defined similarly, h̄ =

(
h̄1, · · · , h̄d1

)
and h̃ =

(
h̃1, · · · , h̃d2

)
.

For the discrete covariates, we use a different kernel function which is defined by

Λλ(X
d
i , xd

0 ) =

d3∏

s=1

λ̄
I(X̄d

is 6=x̄d
0s)

s

d4∏

s=1

λ̃
I(X̃d

is 6=x̃d
0s)

s , (2.5)

where X̄d
is and x̄d0s are the s-th element of X̄d

i and x̄d
0 , respectively, X̃d

is and x̃d0s are defined

similarly, λ =
(
λ̄, λ̃
)
=
(
λ̄1, · · · , λ̄d3

, λ̃1, · · · , λ̃d4

)
∈ [0, 1]d3+d4 are the bandwidth parame-

ters for the discrete covariates, and the convention of 00 = 1 is used.

The local kernel estimate of the quantile regression function Qτ(x̄
c
0 , x̄d

0 ) is obtained as

the minimizer to the following kernel-weighted objective function:

Ln(α; xc
0 , xd

0 ) =
1

n

n∑

i=1

ρτ(Yi − α)Kh(X
c
i − xc

0)Λλ(X
d
i , xd

0 ). (2.6)

We denote the minimizer to the objective function Ln(α; xc
0 , xd

0 ) (with respect to α) by

Q̂τ(x
c
0 , xd

0 ;h, λ) = Q̂τ(x0;h, λ). When λ, the smoothing parameter vector in the discrete

kernel, is chosen as a vector of zeros, the quantile estimator above reduces to the con-

ventional local constant quantile estimator (c.f., Jones and Hall, 1990), splitting the full

sample into many groups or sub-samples according to different values of the discrete co-

variates. On the other hand, if the j-th element of λ is chosen as one, the corresponding

discrete covariate would not have any influence on the response variable. Such a discrete

covariate is deemed to be irrelevant and should be deleted (c.f., Hall, Li and Racine, 2007).

Therefore, we restrict the range for each component of the discrete smoothing parameter

vector to be [0, 1], i.e., 0 6 λ̄j 6 1 for all j = 1, · · · ,d3, and 0 6 λ̃j 6 1 for all j = 1, · · · ,d4.
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We next introduce the CV method to determine the optimal values for the smooth-

ing parameter vectors h and λ involved in the local constant kernel smoothing. Let

Q̂(−j)(Xj;h, λ) be the leave-one-out local constant estimate of Qτ(Xj) = Qτ(X̄
c
j , X̄d

j ) with

bandwidths h and λ, which can be obtained as a minimizer to (2.6) with x0 and
∑n

i=1

being replaced by Xj and
∑n

i=1,i 6=j, respectively. We suggest choosing the bandwidth pa-

rameters (h, λ) by minimizing the following CV objective function:

CV(h, λ) =
1

n

n∑

j=1

ρτ

(
Yj − Q̂(−j)(Xj;h, λ)

)
W(Xj), (2.7)

where W(·) is a weight function that trims out boundary observations to avoid the well-

known boundary effect in kernel-based estimation. Throughout the paper, we use h∗ and

λ∗ to denote the CV selected bandwidths that minimize CV(h, λ) defined in (2.7).

3 Asymptotic Theory

In this section, we state the main asymptotic results for the methods proposed in Section

2. Let fe(v|x̄) and Fe(v|x̄) denote the conditional density function and CDF of ei
def
= Yi −

Qτ(X̄i) evaluated at ei = v given X̄i = x̄, respectively. We start with some regularity

conditions which are needed to derive the asymptotic theory.

ASSUMPTION 1. (i) The random vectors (Yi, X
⊺

i)
⊺

, i = 1, · · · ,n, are independent and identically

distributed (i.i.d.).

(ii) The conditional density function of X̄c
i = x̄c given X̄d

i = x̄d, f(x̄c|x̄d), is continuous

and bounded away from infinity and zero for x̄c ∈ S̄ and x̄d ∈ D̄, where S̄ is the compact

support of the relevant continuous covariates X̄c
i and D̄ =

∏d3

j=1 D̄j is the support of the

relevant discrete covariates X̄d
i .

ASSUMPTION 2. (i) For each x̄ ∈ S̄ × D̄, the conditional density function fe(·|x̄) is strictly

positive and has continuous first-order derivative at point zero.

(ii) Both fe(v|x̄) and Fe(v|x̄) are positive and continuous with respect to x̄c, where v is in a

small neighborhood of 0. In addition, Fe(0|x̄) = τ for all x̄ ∈ S̄× D̄.

ASSUMPTION 3. (i) The conditional quantile function Qτ(·, x̄d) is twice continuously differen-

tiable on S̄ for all x̄d ∈ D̄.
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(ii) The weight function W(x) = W(xc, xd) is bounded with W(xc, xd) = 0 if xc is in a

given small neighborhood of the boundary points of S, where S is the compact support of the

continuous covariates.

ASSUMPTION 4. (i) The univariate kernel function k(·) is a Lipschitz continuous and symmetric

probability density function with a compact support, and k(0) > ck > 0.

(ii) Let h̄s → 0 for s = 1, · · · ,d1, and there exists a bounded constant c > 0 such that

n−c < h̃s < nc for s = 1, · · · ,d2.

(iii) Defining H =
∏d1

s=1 h̄s

∏d2

s=1(h̃s∧1), nǫ−1 6 H 6 n−ǫ with 0 < ǫ < 1/(d1+d2+4),

where ∧ denotes minimum. In addition, there exists a sequence of positive numbers {mn}

such that mn >
√

logn, m2
n = o(nH), and

(nH)

(
d1∑

s=1

h̄4
s +

d3∑

s=1

λ̄2
s

)
= O(m2

n). (3.1)

(iv) Let λ̄s → 0, s = 1, · · · ,d3, and λ̃s ∈ [0, 1], s = 1, · · · ,d4.

REMARK 3.1. Assumption 1(i) imposes the i.i.d. condition on the random observations,

which has been commonly used in the literature on nonparametric kernel estimation (c.f.,

Härdle, Hall and Marron, 1988; Marron, Jones and Sheather, 1996; Racine and Li, 2004).

Note that there is no moment condition on ei to estimate the conditional quantile func-

tion, indicating that the heavy-tail distribution for ei is allowed. Assumption 1(ii) im-

poses mild restriction on the conditional density function of the relevant continuous co-

variates given the relevant discrete covariates. Assumptions 2 and 3 give some smooth-

ness conditions on the (conditional) density function, CDF function and the conditional

quantile functions, respectively, which are standard assumptions for kernel smoothing

estimation of the conditional quantile function. In particular, Assumption 3(ii) ensures

that the random observations with observed values of continuous covariates very close

to the boundary points would be automatically trimmed out in the CV method, circum-

venting the well-known boundary effect in the kernel estimation. Assumption 4(i) im-

poses some mild conditions on the kernel function k(·), which can be satisfied by sev-

eral commonly-used kernel functions such as the uniform kernel and the Epanechnikov

kernel. Assumption 4(ii)–(iv) further imposes some restrictions on the smoothing param-

eters. For the relevant continuous and discrete covariates, all the associated smoothing

parameters converge to 0 as n → ∞. However, for the irrelevant continuous covariates,

the associated smoothing parameters take values in a larger range which may be either
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convergent to 0 or divergent to ∞ as n → ∞. For the irrelevant discrete covariates we

only need that λ̃s ∈ [0, 1] for all s = 1, · · · ,d4 without any further restriction. The con-

dition (3.1) in Assumption 4(iii) is mainly used to control the bias term and derive the

uniform convergence results, where mn is usually chosen as
√

logn.

Before presenting the main results, we need to introduce some further notation. Let

x̄cs and x̄ds be the s-th elements of the vectors x̄c and x̄d, respectively. For s = 1, · · · ,d1, let

Q
(s)
τ (x̄) and f

(s)

X̄
(x̄) be the first-order derivative functions of Qτ(·) and fX̄(·) with respect

to x̄cs, respectively, and let Q
(ss)
τ (x̄) be the second-order derivative function of Qτ(·) with

respect to the x̄s. Define

b(X̄i; h̄, λ̄) =
µ2

2

d1∑

s=1

h̄2
s

[
Q(ss)

τ (X̄i) + 2Q(s)
τ (X̄i)ξ

(s)(X̄i)/ξ(X̄i)
]
+

∑

x̄d∈D̄

ξ(X̄c
i , x̄d)

ξ(X̄i)

d3∑

s=1

λ̄sIs(x̄
d, X̄d

i )
[
Qτ(X̄

c
i , x̄d) −Qτ(X̄i)

]
, (3.2)

where µ2 =
∫
u2k(u)du, ξ(x̄) = fX̄(x̄)fe(0|x̄), ξ

(s)(x̄) is the first-order derivative of ξ(x̄)

with respect to x̄cs, Is(x̄
d, X̄d

i ) = I
(
X̄d
is 6= x̄ds

)∏d3

k=1, 6=s I
(
X̄d
ik = x̄dk

)
and D̄ is defined in As-

sumption 1(ii). Let

σ2(X̄i; h̄) =
1

nH̄

τ(1 − τ)ν0

fX̄(X̄i)f2
e(0|X̄i)

, (3.3)

where H̄ = h̄1 · · · h̄d1
and ν0 =

[∫
k2(u)du

]d1 . We will show in Appendix A that b(·; h̄, λ̄)

is the leading estimation bias term, whereas σ2(·; h̄) is the leading estimation variance

term which does not rely on λ̄. Define the estimation mean squared error (MSE) as

MSE(h, λ) =
1

n

n∑

i=1

[
Qτ(X̄i) − Q̂(−i)(X̄i; h̄, λ̄)

]2

W(Xi)fe(0|X̄i). (3.4)

Through the proofs in Appendix A, we show that the leading term of MSE(h, λ) is

MSEL(h̄, λ̄) = E
{[

b2(X̄i; h̄, λ̄) + σ2(X̄i; h̄)
]
W̄(X̄i)fe(0|X̄i)

}

=

∫

S̄×D̄

[
b2(x̄; h̄, λ̄) + σ2(x̄; h̄)

]
W̄(x̄)fe(0|x̄)fX̄(x̄)dx̄, (3.5)

where W̄(x̄) =
∫

S̃×D̃
W(x)fX̃(x̃)dx̃, fX̃(·) is the density function of X̃i, S̃ is the compact

support of the irrelevant continuous covariates X̃c
i and D̃ =

∏d3

j=1 D̃j is the support of the

irrelevant discrete covariates X̃d
i . Choosing h̄ = ā · n−1/(d1+4) and λ̄ = b̄ · n−2/(d1+4) with

ā = (ā1, · · · , ād1
) and b̄ =

(
b̄1, · · · , b̄d3

)
, and letting

MSE⋆

L(ā, b̄) =

∫

S̄×D̄

[
b2(x̄; ā, b̄) +

1

ā1 · · · ād1

τ(1 − τ)ν0

fX̄(x̄)f2
e(0|x̄)

]
W̄(x̄)fe(0|x̄)fX̄(x̄)dx̄,
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we readily have that

MSEL(h̄, λ̄) = n−4/(d1+4) ·MSE⋆

L(ā, b̄). (3.6)

Let h0
s = a0

s · n
−1/(d1+4), s = 1, · · · ,d1, and λ0

s = b0
s · n

−2/(d1+4), s = 1, · · · ,d3, where

a0 =
(
a0

1, · · · ,a0
d1

)
and b0 =

(
b0

1, · · · ,b0
d3

)
are the minimizers to MSE⋆

L(ā, b̄). In the context

of local constant mean regression estimation, Li and Zhou (2005) discuss some sufficient

conditions for existence and uniqueness of a0 and b0. Their conditions are applicable

to the nonparametric quantile regression setting with some minor modification. Letting

{h̄∗
s}

d1
s=1, {h̃∗

s}
d2
s=1, {λ̄∗

s}
d3

s=1 and {λ̃∗
s}

d4
s=1 denote the CV selected smoothing parameters defined

in Section 2, we next present their asymptotic optimality property.

THEOREM 3.1. Suppose Assumptions 1–4 are satisfied, and mn = o(nι) for any ι > 0.

(i) When d1 = 1, we have

h̄∗
1 − h0

1

h0
1

= OP

(
m2

nn
−1/10

)
, (3.7)

λ̄∗
s − λ0

s = OP

(
m2

nn
−1/2

)
, s = 1, · · · ,d3, (3.8)

P
(
h̃∗
s > C

)
→ 1 for all C > 0, s = 1, · · · ,d2, (3.9)

λ̃∗
s = 1 + oP(1), s = 1, · · · ,d4. (3.10)

(ii) When d1 > 2, we have (3.9), (3.10),

h̄∗
s − h0

s

h0
s

= OP

(
m5/2

n n−1/(d1+4)
)

, s = 1, · · · ,d1, (3.11)

λ̄∗
s − λ0

s = OP

(
m5/2

n n−3/(d1+4)
)

, s = 1, · · · ,d3. (3.12)

REMARK 3.2. We prove Theorem 3.1 under the assumption that the irrelevant covariates

satisfy (2.1). A weaker condition would be to assume that

conditional on (X̄c, X̄d), the covariables (X̃c, X̃d) and Y are independent. (3.13)

Though (3.13) is more appealing than (2.1), condition (3.13) creates technical hurdles, so

we are only able to prove our main results under (2.1). However, simulations reported in

Section 5 (see Table 3) show that our methodology works in finite samples under (3.13).

The convergence results in (3.7), (3.8), (3.11) and (3.12) show the asymptotic optimality

of h̄∗ =
(
h̄∗

1 , · · · , h̄∗
d1

)
and λ̄∗ =

(
λ̄∗

1 , · · · , λ̄∗
d3

)
associated with the relevant continuous and

discrete covariates, respectively. The convergence rates in Theorem 3.1 are comparable to

those in the literature derived for optimal bandwidth selection in kernel density or mean

9



regression estimation. For the case of d1 = 1, letting mn =
√

logn, the convergence rate

in (3.7) is close to the rates OP(n
−1/10) obtained by Hall and Marron (1987) (for kernel

density estimation) and Racine and Li (2004) (for kernel mean regression estimation). It

is nearly optimal up to a logarithmic factor. The convergence rate in (3.8) is comparable

to that in Theorem 2.2(i) of Racine and Li (2004). However, the convergence rates shown

in (3.11) and (3.12) when d2 > 2 are a bit slower than those in the literature. For example,

Racine and Li (2004) obtain the rates OP(n
−2/(d1+4)) and OP(n

−4/(d1+4)) for the estimated

smoothing parameters associated with the relevant continuous and discrete covariates,

respectively. The slower convergence rates in Theorem 3.1(ii) are mainly due to the fact

that the kernel quantile regression estimation does not have a closed form and the ap-

proximation rate in the uniform Bahadur presentation (see Lemma A.1 in Appendix A)

affects the convergence rates of the CV selected optimal smoothing parameters. Similarly

to some existing results in the context of conditional mean regression estimation with

irrelevant covariates (e.g., Theorem 2.1 in Hall, Li and Racine, 2007), (3.9) and (3.10) in-

dicate that the irrelevant continuous and discrete covariates can be smoothed out with

probability approaching one, achieving the consistency of variable selection.

We next give the asymptotic distribution theory for the kernel quantile estimation with

the data-dependent CV selected smoothing parameter vectors h∗ and λ∗ as in Li and Li

(2010).

THEOREM 3.2. Suppose Assumptions 1–4 are satisfied. Then, we have

√
nH̄∗

[
Q̂τ(x0;h∗, λ∗) −Qτ(x̄0) − b(x̄0; h̄∗, λ̄∗)

]
d

−→ N
[
0,σ2

∗(x̄0)
]

, (3.14)

where H̄∗ = h̄∗
1 . . . h̄∗

d1
, b(x̄0; h̄∗, λ̄∗) is defined as in (3.2) but with X̄i, h̄ and λ̄ replaced by x̄0, h̄∗

and λ̄∗, respectively, and σ2
∗(x̄0) =

τ(1−τ)ν0

f2
e(0|x̄0)fX̄(x̄0)

.

REMARK 3.3. Theorem 3.2 above extends the distribution result in Example 4.3 of Li

and Li (2010) to a more general setting with mixed discrete and continuous regressors,

and extends Theorem 2.2 in Hall, Li and Racine (2007) from mean regression to quan-

tile regression. Although we use the full sample containing the irrelevant covariates in

the kernel mean regression estimation procedure, the optimal smoothing parameters via

the CV method could automatically smooth out the irrelevant covariates, making the de-

veloped quantile estimation weakly converge to Qτ(x̄0) (only dependent on the relevant

covariates) with the conventional normal limit distribution.
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4 Extension to High-Dimensional Setting

In practical applications, it may be the case that the number of candidate covariates in

quantile regression is large or even exceeds the sample size. The so-called sparsity as-

sumption is usually imposed on the model structure in order to develop feasible esti-

mation and inferential methodologies. The sparsity assumption means that the number

of significant covariates in high-dimensional quantile regression is relatively small (ei-

ther fixed or divergent to infinity at a slow rate). Variable or feature selection in high-

dimensional linear quantile regression has been extensively studied in the literature and

various shrinkage and screening techniques have been introduced to identify these sig-

nificant covariates(e.g., Belloni and Chernozhukov, 2011; Wang, Wu and Li, 2012; Fan,

Fan and Barut, 2014; Zheng, Peng and He, 2015; Ma, Li and Tsai, 2017). For extensions to

high-dimensional nonparametric quantile regression, we refer to Belloni, Chernozhukov

and Fernández-Val (2011), He, Wang and Hong (2013) and Xia, Li and Fu (2018). In this

section, we consider a general nonparametric quantile regression setting which contains

high-dimensional mixed continuous and discrete covariates. To the best of our knowl-

edge, this topic has not been tackled in the literature.

Recall that Xc
i and Xd

i denote the vectors of continuous and discrete covariates, re-

spectively. Let Xc
is and Xd

is be the s-th element of Xc
i and Xd

i , respectively. Note that the

local quantile regression estimation method and the CV smoothing parameter selection

criterion proposed in Section 2 are only applicable to the low-dimensional case, i.e., di,

1 6 i 6 4, are fixed. When the dimension of covariates is large, we need to first screen out

many irrelevant covariates and reduce the number of continuous and discrete covariates

to a size which is feasible to implement the methods developed in Section 2. A natural

idea is to rank the importance of each covariate by evaluating its marginal effect on the

response. If Yi and Xc
is are independent, we readily have that

Qc
τ,s(X

c
is) = Qτ a.s. ∀ 0 < τ < 1,

where Qc
τ,s(X

c
is) is the τ-th marginal quantile regression of Yi given the s-th continuous

covariate Xc
is, Qτ is the τ-th unconditional quantile of Yi and a.s. denotes “almost surely”.

Let Q̂c
τ,s(x) be the local kernel estimate of Qc

τ,s(x) obtained by minimizing the kernel-

weighted objective function:

Lc
n,s(α) =

1

nb1

n∑

i=1

ρτ(Yi − α)k

(
Xc
is − x

b1

)
(4.1)
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with respect to α, where k(·) is a kernel function satisfying Assumption 4(i) and b1 is a

bandwidth. We then calculate the following weighted L1-quantity for the s-th continuous

covariate:

D̂c
τ,s =

1

n

n∑

i=1

∣∣∣Q̂c
τ,s(X

c
is) − Q̂τ

∣∣∣ws(X
c
is), (4.2)

where Q̂τ is the τ-th sample quantile function using only the response observations and

ws(·) is a univariate positive weight function trimming out boundary observations of the

s-th continuous covariate. The construction in (4.2) is similar to that in He, Wang and

Hong (2013) who use the sieve quantile estimation method and an L2-distance measure.

With D̂c
τ,s, we define the following index set which is the estimate of the index set con-

taining all the indices corresponding to the significant continuous covariates in the τ-th

quantile regression:

M̂c
τ =

{

1 6 s 6 d1 + d2 : D̂
c
τ,s > γc

n

}

, (4.3)

where γc
n is a pre-determined thresholding parameter.

The same screening procedure can also be applied to the discrete covariates. Let

Qd
τ,s(x) be the τ-th marginal quantile regression of Yi given the s-th discrete covariate

Xd
is = x. We estimate Qd

τ,s(x) by Q̂d
τ,s(x), which is obtained by minimizing

Ld
n,s(α) =

1

n

n∑

i=1

ρτ(Yi − α) · b
I(Xd

is 6=x)

2 (4.4)

with respect to α, where b2 is a smoothing parameter. With the kernel quantile estimates

Q̂d
τ,s(X

d
is), we may construct

D̂d
τ,s =

1

n

n∑

i=1

∣∣∣Q̂d
τ,s(X

d
is) − Q̂τ

∣∣∣ , (4.5)

and consequently obtain the following estimated index set for significant discrete covari-

ates:

M̂d
τ =

{

1 6 s 6 d3 + d4 : D̂
d
τ,s > γd

n

}

, (4.6)

where γd
n is a pre-specified thresholding parameter. In order to save computational bur-

den in the above kernel screening procedure, we select the smoothing parameters via the

rule of thumb, i.e., b1 = α1 · n
−1/5 and b2 = α2 · n

−2/5, where α1 and α2 are two posi-

tive constants. Such a choice of smoothing parameters is theoretically sensible following

Theorem 3.1(i).
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Let

Dc
τ,s =

∫

Ss

∣∣Qc
τ,s(x) −Qτ

∣∣ fcs(x)ws(x)dx (4.7)

and

Dd
τ,s =

∑

xi∈Ds

∣∣Qc
τ,s(xi) −Qτ

∣∣pd
s (xi), (4.8)

where fcs(·) is the marginal density function of the s-th continuous covariate, pd
s (·) is the

probability mass function of the s-th discrete covariate, Ss and Ds denote the supports for

the s-th continuous and discrete covariates, respectively. Throughout this section, we use

Mc
τ and Md

τ to denote the index sets for significant continuous and discrete covariates,

respectively. In order to derive the well-known sure screening property, we need the

following technical assumptions.

ASSUMPTION 5. (i) For each s = 1, · · · ,d1 + d2, the marginal quantile regression function

Qc
τ,s(x) has continuous second-order derivative. In addition, their first and second-order

derivative functions are bounded uniformly over s.

(ii) For any x ∈ Ss, s = 1, · · · ,d1 + d2, the conditional density function of ecis
def
= Yi −

Qc
τ,s(X

c
is) given Xc

is = x, fce,s(·|x), is strictly positive and has continuous first derivative at

point zero. For v in a small neighborhood of 0 and s = 1, · · · ,d1 + d2, fce,s(v|x) is positive

and continuous with respect to x. In addition, the marginal density function of Xc
is, fcs(·), is

strictly positive and has continuous first derivative.

(iii) For any x ∈ Ds, s = 1, · · · ,d3 + d4, the conditional density function of edis
def
=

Yi−Qd
τ,s(X

d
is) given Xd

is = x, fde,s(·|x), is strictly positive and has continuous first derivative

at point zero. In addition, when v is in a small neighborhood of 0, Qd
τ,s(x) and fde,s(v|x) are

uniformly bounded over x ∈ Ds and s = 1, · · · ,d3 + d4.

(iv) The weight functions ws(·) is bounded uniformly over s = 1, · · · ,d1 + d2, and, in

addition, ws(x) = 0 when x is in a given small neighborhood of the boundary points of Ss.

ASSUMPTION 6. (i) There exists a positive constant ν such that di = O(nν) for i = 1, · · · , 4.

(ii) Letting ̟n > 0 satisfy n−2/5
√

logn = o(̟n),

min
s∈Mc

τ

Dc
τ,s > ̟n, min

s∈Md
τ

Dd
τ,s > ̟n.

REMARK 4.1. The smoothness conditions in Assumption 5 are similar to those in As-

sumptions 2 and 3, and are necessary to derive the uniform consistency of the marginal
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quantile regression estimation. Assumption 6(i) shows that the dimensions diverge to

infinity at a polynomial rate of n, and may exceed the sample size when ν > 1. In fact,

by slightly modifying the proofs, the methodology and theory developed in this section

are still applicable when di diverges at a slow exponential rate of n. Assumption 6(ii) is

crucial to distinguish between the relevant and irrelevant covariates and allows Dc
τ,s and

Dd
τ,s to be close to zero at an appropriate rate.

The following theorem gives the sure screening property, i.e., Mc
τ ⊂ M̂c

τ and Md
τ ⊂ M̂d

τ

hold with probability approaching one.

THEOREM 4.1. Suppose that Assumption 1(i), 4(i), 5 and 6 are satisfied. Choosing γc
n = γd

n =

̟n/2, and letting b1 = α1 · n−1/5 and b2 = α2 · n−2/5 with α1 and α2 being two positive

constants, we have

P
(
Mc

τ ⊂ M̂c
τ, Md

τ ⊂ M̂d
τ

)
→ 1. (4.9)

The above theorem complements some existing sure screening properties in high-

dimensional quantile estimation (c.f., He, Wang and Hong, 2013; Ma, Li and Tsai, 2017;

Xia, Li and Fu, 2018). An alternative kernel screening procedure is to conduct the leave-

one-out kernel estimation for each marginal quantile regression and then use the data-

driven CV method to determine the optimal smoothing parameter. From (3.9) and (3.10)

in Theorem 3.1, if the optimal bandwidth for the continuous covariate exceeds a pre-

determined sufficiently large positive constant or the optimal smoothing parameter for

the discrete covariate is very close to 1, we expect that the corresponding covariate is irrel-

evant and should be removed. However, due to computational burden of implementing

the CV method, such a screening method would be very time-consuming in particular

when the dimension of the candidate covariates is very large.

5 Monte-Carlo Studies

In this section, we use Monte-Carlo simulations to investigate the finite-sample perfor-

mance of the methods proposed in Sections 2 and 4, and compare our methods with some

existing methods. We first examine the numerical performance of some kernel-based

quantile estimation methods when the dimension of covariates is fixed, followed by the

performance of kernel-based dimension reduction and estimation with high-dimensional
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covariates, and finally compare our modelling method with a semiparametric partially

linear modelling method.

5.1 Low-Dimensional Nonparametric Quantile Estimation

Consider the following data generating process

DGP1 : Yi = 3 cos(X̄c
i ) +

1

2
X̄d
i +

1

2
(X̄c

i )
2 · ui, i = 1, · · · ,n,

where X̄c
i ∼ Uniform(−2, 2) , X̄d

i ∼ B(2, 0.5) (sum of 2 Bernoulli trials with success prob-

ability 0.5 for each trial), i.e., X̄d
i ∈ {0, 1, 2} with P(X̄d

i = 0) = 0.52 = 1/4, P(X̄d
i = 1) =

2(0.5)2 = 1/2, P(X̄d
i = 2) = (0.52) = 1/4. We consider two distributions for the error

term ui: the standard normal distribution N(0, 1), and the student’s t-distribution with

5 degrees of freedom denoted by t(5). The conditional quantiles to be estimated in our

simulation are at τ = 0.10, 0.25, 0.50, 0.75 and 0.90. The sample sizes are n = 100, 200, 400,

and the number of replications for each setup is 1000.

In this simulation study, we compare our method proposed in Section 2 with the tra-

ditional check-function-based kernel quantile estimation which only smoothes the con-

tinuous covariate X̄c
i (thus splitting the full sample into cells according to the three differ-

ent values of the discrete covariate X̄d
i ), and the nonparametric inverted-CDF estimation

with the bandwidths chosen by the method suggested in Li, Lin and Racine (2013). Ta-

bles 1 and 2 (corresponding to the standard normal distribution and t-distribution for

ui, respectively) report the simulation results of the average MSE over 1000 replications

under DGP1. For each panel in the two tables, the first row reports the results of the pro-

posed estimator that smoothes both the continuous and discrete covariates (denote it as

“Check (smooth)”); the second row gives the results of the check-function-based condi-

tional quantile estimator that does not smooth the discrete covariate (denote it as “Check

(non-smooth)”); and the third row presents the results of the inverted-CDF approach in-

troduced by Li, Lin and Racine (2013) (denote it as “Inverted-CDF”). From Tables 1 and 2,

we find that our method that smoothes over both the continuous and discrete covariates

performs significantly better than the naive method which only smoothes the continuous

covariate but not the discrete covariate. This is similar to the finding in the context of con-

ditional mean function estimation (c.f., Hall, Li and Racine, 2007). The main reason is that

smoothing a discrete covariate can borrow the data information from neighborhoods to

reduce estimation variance while introducing only mild estimation bias. Consequently,
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the finite-sample MSE can be reduced. Meanwhile, we also find from Tables 1 and 2

that the proposed estimation method with the CV selected smoothing parameters out-

performs the inverted-CDF method, especially at the extreme quantiles, analogous to the

findings in Li, Li and Li (2018).

Table 1: Average MSE in DGP1 with normal distribution errors

Method τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

n = 100

Check (smooth) 0.486 0.306 0.223 0.237 0.281

Check (non-smooth) 0.658 0.425 0.299 0.296 0.297

Inverted-CDF 0.529 0.339 0.240 0.244 0.290

n = 200

Check (smooth) 0.342 0.205 0.144 0.148 0.201

Check (non-smooth) 0.423 0.260 0.182 0.175 0.208

Inverted-CDF 0.368 0.215 0.157 0.164 0.237

n = 400

Check (smooth) 0.233 0.129 0.086 0.094 0.118

Check (non-smooth) 0.260 0.144 0.101 0.104 0.122

Inverted-CDF 0.237 0.130 0.098 0.107 0.160

5.2 Nonparametric Dimension Reduction and Estimation

We next examine the numerical performance of the proposed nonparametric dimension

reduction methods in both low- and high-dimensional settings. In the low-dimensional

setting, we show the ability of the proposed CV method to smooth out the irrelevant

covariates; and in the high-dimensional setting, we demonstrate that the proposed kernel
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Table 2: Average MSE in DGP1 with t-Distribution errors

Method τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

n = 100

Check (smooth) 0.845 0.397 0.279 0.323 0.515

Check (non-smooth) 1.151 0.595 0.396 0.429 0.580

Inverted-CDF 0.946 0.466 0.289 0.375 0.691

n = 200

Check (smooth) 0.569 0.238 0.162 0.184 0.314

Check (non-smooth) 0.808 0.325 0.205 0.231 0.362

Inverted-CDF 0.732 0.262 0.168 0.229 0.539

n = 400

Check (smooth) 0.392 0.159 0.096 0.118 0.190

Check (non-smooth) 0.509 0.182 0.114 0.134 0.199

Inverted-CDF 0.463 0.161 0.104 0.134 0.352

screening method can correctly identify the relevant covariates with high probability. We

consider the following data generating process

DGP2 : Yi = 2 ln(1 + (X̄c
i )

2 + 2X̄d
i ) + exp(X̄d

i − (X̄c
i )

2)ui, i = 1, · · · ,n,

where X̄c
i ∼ Uniform(−2, 2) , X̄d

i ∼ B(1, 0.5) (1 Bernoulli trial with success probability 0.5),

i.e., X̄d
i ∈ {0, 1} with P(X̄d

i = 0) = P(X̄d
i = 1) = 0.5, and ui ∼ N(0, 1). In addition to the

relevant variables, we add two irrelevant variables into our dataset: X̃c
i and X̃d

i , following

the same distributions with X̄c
i and X̄d

i , respectively. We consider two situations: (i) the

four covariates, X̄c
i , X̄d

i , X̃c
i , X̃d

i , are independent with each other; (ii) X̄d
i and X̃d

i are inde-

pendent with other covariates but X̄c
i and X̃c

i are correlated with correlation coefficient

0.5. We consider three sample sizes, n = 100, 200, 400, and the number of replications

is 500. The conditional quantile regression functions are estimated at τ = 0.25, 0.50 and

0.75.
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We use the CV method to select the optimal smoothing parameters h̄∗, h̃∗, λ̄∗, λ̃∗ for

X̄c
i , X̃c

i , X̄d
i , X̃d

i , respectively. Table 3 reports both means and standard deviations (in paren-

thesis) of the CV-selected bandwidths over 500 replications for τ = 0.5. The upper block

of Table 3 corresponds to situation (i) when X̄c
i and X̃c

i are independent, while the lower

block of Table 3 corresponds to situation (ii) when X̄c
i and X̃c

i are correlated. For both

cases (i) and (ii), we observe that h̄∗ and λ̄∗ decrease to 0 as sample size increases, while

h̃∗ diverges and λ̃∗ approaches 1. Thus, our simulations suggest that the CV method can

detect and remove irrelevant covariates under the weak condition (3.13) even though we

can only prove the theory under assumption (2.1). When τ = 0.25 or 0.75, the results on

the CV-selected bandwidths are similar to those in Table 3, and thus we omit them to save

space.

Table 3: Mean and standard deviation of the CV-selected bandwidths

h̄∗ h̃∗ λ̄∗ λ̃∗

X̄c
i and X̃c

i are independent

n = 100 0.22 (0.10) 73.10 (71.35) 0.23 (0.22) 0.68 (0.31)

n = 200 0.20 (0.07) 115.84 (108.95) 0.13 (0.10) 0.72 (0.30)

n = 400 0.16 (0.06) 144.31 (130.69) 0.06 (0.05) 0.75 (0.27)

X̄c
i and X̃c

i are correlated

n = 100 0.21 (0.09) 63.21 (62.06) 0.20 (0.17) 0.67 (0.29)

n = 200 0.19 (0.07) 102.44 (95.60) 0.12 (0.10) 0.70 (0.30)

n = 400 0.15 (0.06) 137.98 (126.95) 0.06 (0.06) 0.77 (0.25)

In order to conduct high-dimensional variable selection in simulation, we next con-

sider DGP2 in situation (i), but replace one irrelevant continuous variable X̃c
i in the above

simulation by a set of 50 i.i.d. irrelevant continuous variables
{
X̃c
i,1, X̃c

i,2, · · · , X̃c
i,50

}
and

replace one irrelevant categorical variable X̃d
i by a set of 50 i.i.d. irrelevant categorical

variables
{
X̃d
i,1, X̃d

i,2, · · · , X̃d
i,50

}
. We employ the kernel screening method proposed in Sec-

tion 4 to rank the importance of the continuous/categorical variables, according to the

values of D̂c
τ,s and D̂d

τ,s defined in (4.2) and (4.5), respectively. To evaluate the finite-

sample performance of the proposed screening method, we compute the following two
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frequencies (out of 500 replications): (i) the true significant continuous/categorical co-

variate ranks as “first” among all continuous/categorical variables; (ii) the true signifi-

cant continuous/categorical covariate ranks as “top 2” among all continuous/categorical

variables.

Table 4 reports the relevant results. The upper and lower panels correspond to the

continuous and categorical variable selection, respectively. From the table, we find that

as the sample size increases, the frequency of detecting significant covariates approaches

1, supporting the sure screening property derived in Section 4. Note that the marginal

effects of X̄c
i and X̄d

i on the conditional quantile depend on the quantile τ. Among the

three quantiles (0.25, 0.50 and 0.75) being estimated, X̄c
i has the largest absolute marginal

effect when τ = 0.25, whereas X̄d
i has the largest absolute marginal effect when τ = 0.75.

Table 4: Frequencies of selecting significant covariates

τ = 0.25 τ = 0.50 τ = 0.75

Continuous covariate selection

First Top 2 First Top 2 First Top 2

n = 100 0.994 1 0.994 1 0.672 0.754

n = 200 1 1 1 1 0.914 0.952

n = 400 1 1 1 1 0.996 0.998

Categorical covariate selection

First Top 2 First Top 2 First Top 2

n = 100 0.850 0.898 0.988 0.996 0.998 1

n = 200 0.986 0.998 1 1 1 1

n = 400 1 1 1 1 1 1
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5.3 Comparison with Semiparametric Quantile Regression

We next compare our kernel-based nonparametric quantile regression method with the

semiparametric partially linear quantile regression (c.f., Cai and Xiao, 2012). When the

categorical variables enter into the DGP in the additive and linear form, we may write

the quantile regression function as

Qτ(X) = Qc
τ(X

c) + βτXd,

where βτ is a vector of unknown coefficients for Xd. The above partially linear model

structure enables us to apply some commonly-used variable selection methods, such as

LASSO, to deal with irrelevant categorical variables. We expect that the partially linear

quantile regression is more efficient than the nonparametric quantile regression when the

partially linear model assumption holds, since it utilizes the semiparametric functional

structure. However, if the partially linear assumption fails, the semiparametric partially

linear quantile regression estimation becomes inconsistent.

We consider the following two DGPs:

DGP3 : Yi = sin
[
(X̄c

i )
2
]
X̄d
i + ui, i = 1, · · · ,n,

DGP4 : Yi = sin
[
(X̄c

i )
2
]
+ X̄d

i + ui, i = 1, · · · ,n,

where X̄c
i ∼ Uniform(−2, 2) , X̄d

i ∈ {−1, 1} with P(X̄d
i = −1) = P(X̄d

i = 1) = 0.5, and

ui ∼ N(0, 1). DGP3 has a non-separable regression form while DGP4 has a partially linear

structure. There are 50 irrelevant categorical variables X̃d
i,1, X̃d

i,2, · · · , X̃d
i,50, independently

following the same distribution as X̄d
i . There is no irrelevant continuous covariate in-

volved. As in the previous two subsections, the sample sizes are n = 100, 200 and 400.

The conditional quantile is estimated at τ = 0.5, and the number of replications is 500.

We compare the performance between (i) partial linear quantile regression combined

with LASSO variable selection and (ii) our nonparametric quantile regression combined

with kernel-based screening method. The first step is to reduce the dimension of cat-

egorical variables from 51 to 2, using LASSO and the screening method, respectively.

The second step is to estimate the conditional quantile regression based on the low di-

mensional dataset, using the semiparametric partially linear quantile regression and our

nonparametric quantile regression, respectively.

Table 5 reports the MSEs for both the nonparametric and semiparametric quantile re-

gression estimation. The proposed nonparametric method performs similarly between

DGP3 and DGP4 with the MSEs decreasing as the sample size increases. For DGP3, the
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semiparametric partially linear quantile estimation method has much larger estimation

MSE than the nonparametric method (especially when n is large), which is not surprising

as the partially linear model is misspecified in DGP3. In contrast, for DGP4, the semi-

parametric partially linear method outperforms the nonparametric method, indicating

that the correct semiparametric functional structure helps improve estimation efficiency

in finite samples.

Table 5: MSE comparison between nonparametric and semiparametric partially linear methods

DGP3 DGP4

Nonparametric Semiparametric Nonparametric Semiparametric

n = 100 0.259 0.390 0.219 0.194

n = 200 0.147 0.289 0.137 0.101

n = 400 0.079 0.244 0.079 0.053

All the simulated data in this section are generated following some location-scale con-

ditional quantile functions whose representation may be restrictive. Alternatively, as sug-

gested by a referee, one can use the so-called Skorohod’s representation to define a (possi-

bly) non-separable nonlinear conditional quantile regression function, making use of the

equivalent representation: F(Y|X) = U|X with U being distributed as uniform [0, 1]. In

fact, through some small-scale simulations with data generated via the Skorohod’s repre-

sentation, we obtain numerical results similar to those in Section 5.1. To save space, we

do not report the detailed results in the paper. They are available from the authors upon

request.

6 An Empirical Application

In this section, we apply the proposed methods to study the effect of dating experience

on wages for men and women. The gender gap in wages has drawn significant atten-

tion from economists, and has been extensively studied in the literature. Blau and Kahn

(1996) analyze microdata from ten industrialized nations and claim that the wage struc-
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ture plays an important role in gender gap. O’Neill and Polachek (1993) examine the

factors underlying the narrowing gender gap during the 1980s and find that around one

third to one half of the narrowing can be explained by the converging work-related char-

acteristics. Bagues and Esteve-Volart (2010) study the gender composition of recruiting

committee and find that a job candidate’s probability to be hired is negatively affected

if the majority of the committee members are within the same gender membership as

the candidate. The gender gap is due to the fundamental difference between men and

women. This empirical application aims to shed some lights on such a difference.

We use the data from the National Longitudinal Survey of Youth 1997 (NLSY97) in

our empirical study. NLSY97 is a nationally representative data set of approximately

9000 American youths aged between 12 and 17 years when first interviewed in 1997.

The survey interviewed these youths annually from 1997 to 2011 and biennially after

2011. The survey includes standard demographic information and ASVAB1 math and

verbal score percentile information. It also asks whether respondents had been on a date

during 2007 to 2008 (when the respondents were between 23 and 26 years old and not

married), their total income in 2013, and their total working hours in 2013. With the

survey information, we generate the continuous response variable, hourly wage (in 2013),

and the discrete explanatory variable, ever date (during 2007 to 2008). The continuous

explanatory variable, ability, is measured by the ASVAB percentile. Because income is

highly correlated with age, we restrict our sample to respondents who were 29, 30, and

31 years old by the (survey) year of 2013. The sample size is 765. In order to isolate the

dating effect, we apply our method separately to men and women. Table 6 presents the

summary statistics of the variables: hourly wage, ever date, ability and gender.

Table 6: Summary statistics for the real data

Variables Hourly Wage Ever Date Ability Gender

Mean 18.73 0.52 48.13 0.55

Standard Deviation 16.29 0.50 30.15 0.50

We estimate a conditional median function (τ = 0.5) of hourly wage given the covari-

1The Armed Services Vocational Aptitude Battery (ASVAB) measures the respondent’s knowledge and

skills in the topical areas including math and reading.
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ates ability and ever date for men and women separately. First we use the proposed CV

method to select the smoothing parameters with the result given in Table 7, where ĉ∗ is

related to ĥ∗ via ĥ∗ = ĉ∗san
−1/5 with sa being the sample standard error of the contin-

uous covariate ability. In Table 7, we can see that for women, the ever date covariate

is smoothed out, indicating that women’s median income in 2013 does not depend on

whether a woman had the dating experience during 2007 to 2008 or not. However, there

is a different story for men: the ever date covariate is not smoothed out, so it is deemed to

be a relevant covariate for determining men’s conditional median income. These results

show that the dating experience plays a significant role in determining wages for men in

later years but not for women.

Table 7: The CV selected smoothing parameters

Men Women

Covariate Bandwidth Covariate Bandwidth

Ability ĉ∗ = 1.92 Ability ĉ∗ = 1.18

Ever Date λ̂∗ = 0.55 Ever Date λ̂∗ = 1
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Figure 2: Median income for women
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Figures 1 and 2 show the estimated median wage for both men and women with the

smoothing parameters selected by the CV method. For men, we see that individuals with

dating experience have higher wages than those without dating experience, and the wage

gap between ever-dating and never-dating is large when the cognitive test percentile is

around 50%. As the cognitive test percentile approaches 100%, the gap tends to vanish.

The fact that the ever-dating covariate plays a positive role in determining men’ median

wages suggests that the male individuals with dating experience are likely to be more

sociable or more out-going than those without such experience, and these characteristics

are positively correlated with wage. Thus, the ever date covariate may serve as a proxy for

an individual’s sociability and can be used to help predict men’s future wage. For women,

because the CV selected smoothing parameter for the ever date covariate takes an upper

bound of 1, it implies that the ever date covariate is unrelated to women’s median wage.

Therefore, the two curves for ever-dating and never-dating coincide with each other (they

become one identical curve) for women. Finally as expected, for both men and women,

we see an upward-sloping curve for median wage versus the cognitive ability.

7 Conclusions

In this paper, we study the problem of nonparametrically estimating a conditional quan-

tile regression function, where the covariates include both continuous and discrete com-

ponents. Unlike the recent paper by Li, Li and Li (2018), our paper allows the presence

of irrelevant discrete and continuous covariates. We combine the quantile check function

and the local smoothing technique with the mixed continuous and discrete kernel func-

tions to directly estimate the conditional quantile function. In order to select the optimal

smoothing parameters, we use the data-driven CV method, which can also automatically

detect and remove the irrelevant covariates by over-smoothing them. The CV selected

smoothing parameters are proved to be asymptotically optimal (with convergence rates)

and the irrelevant covariates can be smoothed out asymptotically (with probability ap-

proaching one). Furthermore, we establish the asymptotic normal distribution theory

for the proposed conditional quantile estimator with data-dependent smoothing param-

eters, generalizing the existing results that only deal with the case of relevant covariates

in quantile regression. In the high-dimensional setting when the number of covariates

is comparable to (or exceeds) the sample size, we suggest using a kernel-based quantile
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screening method to remove the irrelevant continuous and discrete covariates and then

apply the CV method to those that survive the kernel screening procedure. Simulation

studies provide a numerical examination of the finite-sample behavior of the proposed

method as well as its comparison with some existing methods. An empirical application

using the NLSY97 data to study the relationship between dating experience and median

income suggests that women’s dating experience is independent of their median wage as

the dating experience covariate is automatically removed by the data-driven CV method.
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Appendix A: Proofs of the Asymptotic Results

In this appendix, we give the detailed proofs of the main asymptotic results in Sec-

tions 3 and 4. The proofs of the technical lemmas are available in a supplemental doc-

ument. Throughout the proof, we use an ≈ bn to denote that an = bn(1 + o(1)). For

notational simplicity, we let Kh,λ(Xi, x) = Kh(X
c
i − xc)Λλ(X

d
i , xd), H̄ =

∏d1

s=1 h̄s and

H̃ =
∏d2

s=1(h̃s ∨ 1), where ∨ denotes maximum. We start with two technical lemmas,

which are key to the proof of Theorem 3.1. The first lemma gives the Bahadur represen-

tation for the kernel quantile regression estimation uniformly over x and (h, λ), which is

of independent interest and complements the results derived by Su and White (2012) and

Kong and Xia (2017) both of which only consider the case of continuous regressors.

LEMMA A.1. Let Qτ(x̄) be the conditional τ-quantile regression function evaluated at x̄ and

Q̂τ(x;h, λ) be the corresponding local kernel estimate using the smoothing parameters h and λ.

Suppose that Assumptions 1, 2, 3(i) and 4 are satisfied. Then we have

(nH)1/2
[
Q̂τ(x;h, λ) −Qτ(x̄)

]
=
[
V(x; h̃, λ̃)

]−1 [
(nH)1/2H̃ ·Un(x;h, λ)

]
+OP(m

3/2
n (nH)−1/4)

(A.1)

uniformly over x ∈ S⋆ ×D and (h, λ) satisfying Assumption 4(ii)–(iv), where S⋆ ⊂ S such that
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W(xc, xd) 6= 0 for xc ∈ S⋆, mn and H are defined as in Assumption 4(iii),

V(x; h̃, λ̃) = fX̄(x̄)fe(0|x̄) · E
[
H̃ · K̃h̃,λ̃(X̃i, x̃)

]

with K̃h̃,λ̃(X̃i, x̃) =
∏d2

s=1 h̃
−1
s k

(
X̃c

is−x̃c
0s

h̃s

)∏d4

s=1 λ̃
I(X̃d

is 6=x̃d
0s)

s , and

Un(x;h, λ) =
1

n

n∑

i=1

ηi(x̄)Kh,λ(Xi, x),

with ηi(x̄) = τ− I (Yi −Qτ(x̄) < 0).

LEMMA A.2. Suppose that Assumptions 1–4 are satisfied. Then, we have

CV(h, λ) = CV1 +
1

2n

n∑

i=1

[
b2(X̄i; h̄, λ̄) + σ2

⋄(Xi;h, λ)
]
W(Xi)fe(0|X̄i)

+OP

(
m5/2

n /(nH)5/4 +m2
n/(nH

1/2)
)

(A.2)

uniformly over (h, λ) satisfying Assumption 4(ii)–(iv), where

CV1
def
=

1

n

n∑

i=1

ρτ(ei)W(Xi)

is unrelated to the smoothing parameters h and λ, b2(X̄i; h̄, λ̄) is defined in (3.2),

σ2
⋄(Xi;h, λ) =

1

nH̄
·

τ(1 − τ)ν0

fX̄(X̄i)f2
e(0|X̄i)

· R(X̃i; h̃, λ̃)

with R(X̃i; h̃, λ̃) = E
[
K̃2

h̃,λ̃
(X̃j, X̃i)|X̃i

]
/E2

[
K̃h̃,λ̃(X̃j, X̃i)|X̃i

]
.

Using the above two lemmas, we next prove the main theoretical results in Section 3.

PROOF OF THEOREM 3.1. Note that σ2
⋄(Xi;h, λ) = σ2(X̄i, h̄)R(X̃i; h̃, λ̃). The smoothing pa-

rameters for the irrelevant covariates, h̃ and λ̃, only appear in the term R(X̃i; h̃, λ̃). Since

σ2(X̄i, h̄) is always non-negative, to minimize σ2(Xi;h, λ), we first choose h̃ and λ̃ to min-

imize R(X̃i; h̃, λ̃). Recall that R(X̃i; h̃, λ̃) = E
[
K̃2

h̃,λ̃
(X̃j, X̃i)|X̃i

]
/E2

[
K̃h̃,λ̃(X̃j, X̃i)|X̃i

]
, and

note that E
[
K̃2

h̃,λ̃
(X̃j, X̃i)|X̃i

]
in the numerator is the conditional expectation of K̃2

h̃,λ̃
(X̃j, X̃i),

while E2
[
K̃h̃,λ̃(X̃j, X̃i)|X̃i

]
in the denominator is the squared conditional expectation of

K̃h̃,λ̃(X̃j, X̃i). It is straightforward to show that

E
[
K̃2

h̃,λ̃(X̃j, X̃i)|X̃i

]
> E2

[
K̃h̃,λ̃(X̃j, X̃i)|X̃i

]
a.s.,
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indicating that

R(X̃i; h̃, λ̃) > 1 a.s.

uniformly over i. It is easy to see that R(X̃i; h̃, λ̃) reaches the minimum value 1 if and only

if h̃s → ∞ for all s = 1, · · · ,d2, and λ̃s → 1 for all s = 1, · · · ,d4 as n → ∞, which are

feasible due to Assumption 4(ii)(iv). Therefore, we prove (3.9) and (3.10) in Theorem 3.1.

With (3.9) and (3.10), we replace R(X̃i; h̃, λ̃) and H by 1 and H̄, respectively, in the

subsequent proof. By Lemma A.2, we have

CV(h, λ) = CV1 +
1

2
CV⋆(h̄, λ̄) +OP(χn) (A.3)

uniformly over (h̄, λ̄) satisfying Assumption 4(ii)–(iv), where χn = m
5/2
n /(nH̄)5/4+m2

n/(nH̄
1/2),

CV⋆(h̄, λ̄) =
1

n

n∑

i=1

[
b2(X̄i; h̄, λ̄) + σ2(X̄i; h̄)

]
W(Xi)fe(0|X̄i).

Letting κn =
∑d1

s=1 h̄
2
s +

∑d3

s=1 λ̄s, we note that

CV⋆(h̄, λ̄) = E
{[

b2(X̄i; h̄, λ̄) + σ2(X̄i; h̄)
]
W(Xi)fe(0|X̄i)

}
+OP

(
n−1/2

(
κ2
n + (nH̄)−1

))

=

∫

S×D

[
b2(x̄; h̄, λ̄) + σ2(x̄; h̄)

]
W(x)fe(0|x̄)fX(x)dx + oP(χn)

=

∫

S̄×D̄

[
b2(x̄; h̄, λ̄) + σ2(x̄; h̄)

]
fe(0|x̄)fX̄(x̄)

[∫

S̃×D̃

W(x)fX̃(x̃)dx̃

]
dx̄ + oP(χn)

=

∫

S̄×D̄

[
b2(x̄; h̄, λ̄) + σ2(x̄; h̄)

]
W̄(x̄)fe(0|x̄)fX̄(x̄)dx̄ + oP(χn)

def
= MSEL(h̄, λ̄) + oP(χn). (A.4)

By (A.3) and (A.4), we readily have that

CV(h, λ) = CV1 +
1

2
MSEL(h̄, λ̄) +OP

(
m5/2

n /(nH̄)5/4 +m2
n/(nH̄

1/2)
)

(A.5)

uniformly over (h̄, λ̄) satisfying Assumption 4(ii)–(iv). This shows that the CV selected

smoothing parameters h̄∗ and λ̄∗ asymptotically minimize MSEL(h̄, λ̄) as CV1 is not re-

lated to the smoothing parameters. When d = 1, as m
5/2
n /(nH̄)5/4 = o

(
m2

n/(nH̄
1/2)
)

with

h̄1 ≈ h0
1, using (A.5), we have

CV(h, λ) = CV1 +
1

2
MSEL(h̄, λ̄) +OP

(
m2

nH̄
1/2 ·MSEL(h̄, λ̄)

)
. (A.6)

From (3.6) and (A.6), we may show that when d1 = 1,

h̄∗
1 − h0

1 = OP

(
h0

1 ·m
2
nn

−1/10
)

; (A.7)
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and

λ̄∗
s − λ0

s = OP

(
m2

nn
−1/2

)
, s = 1, · · · ,d3. (A.8)

When d > 2, as mn → ∞, we have m2
n/(nH̄

1/2) = o
(
m

5/2
n /(nH̄)5/4

)
with h̄s ≈ h0

s, which

indicates that

CV(h, λ) = CV1 +
1

2
MSEL(h̄, λ̄) +OP

(
m5/2

n (nH̄)−1/4 ·MSEL(h̄, λ̄)
)

. (A.9)

From (3.6) and (A.9), we can prove that when d1 > 2,

h̄∗
s − h0

s = OP

(
h0
s ·m

5/2
n n−1/(d1+4)

)
, s = 1, · · · ,d1; (A.10)

and

λ̄∗
s − λ0

s = OP(m
5/2
n n−3/(d1+4)), s = 1, · · · ,d3. (A.11)

By (A.7), (A.8), (A.10) and (A.11), we can complete the proof of Theorem 3.1. �

PROOF OF THEOREM 3.2. From the stochastic equicontinuity argument in Li and Li (2010)

and Theorem 3.1, it suffices to prove Theorem 3.2 with the CV selected smoothing pa-

rameters h̄∗ and λ̄∗ being replaced by the corresponding non-random optimal smoothing

parameters h̄0 and λ̄0 that minimize MSEL(h̄, λ̄) defined in (3.5). By (3.9) and (3.10) in

Theorem 3.1, the irrelevant continuous and discrete covariates are smoothed out. Conse-

quently, Ln(α; xc
0 , xd

0 ) defined in (2.6) can be simplified to

Ln(α; x̄c
0 , x̄d

0 ) =
1

n

n∑

i=1

ρτ(Yi − α)Kh̄0(X̄c
i − x̄c

0)Λλ̄0(X̄d
i , x̄d

0 ),

where

Kh̄0(X̄c
i − x̄c

0) =

d1∏

s=1

1

h̄0
s

k

(
X̄c
is − x̄c0s
h̄0
s

)
, Λλ̄0(X̄d

i , x̄d
0 ) =

d3∏

s=1

(λ̄0
s)

I(X̄d
is 6=x̄d

0s).

Letting Q̂τ(x̄0; h̄0, λ̄0) be the minimizer to Ln(α; x̄c
0 , x̄d

0 ) with respect to α, we next prove

that √
nH̄0

[
Q̂τ(x̄0; h̄0, λ̄0) −Qτ(x̄0) − b(x̄0; h̄0, λ̄0)

]
d

−→ N
[
0,σ2

∗(x̄0)
]

, (A.12)

where H̄0 = h̄0
1 · · · h̄

0
d1

. Let

V(x0) = fX̄(x̄0)fe(0|x̄0) = ξ(x̄0)

and

Un(x̄0) =
1

n

n∑

i=1

ηi(x̄0)Kh̄0(X̄c
i − x̄c

0)Λλ̄0(X̄d
i , x̄d

0 ).
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By Lemma A.1, we have

√
nH̄0

[
Q̂τ(x̄0; h̄0, λ̄0) −Qτ(x̄0)

]
= ξ−1(x̄0)

[√
nH̄0 ·Un(x̄0)

]
+ oP(1). (A.13)

From (A.13), in order to prove (A.12), we only need to derive the limiting distribution of

Un(x̄0).

Let U⋆

n(x̄0) be defined as Un(x̄0) but with ηi = ηi(x̄0) replaced by η⋆

i = τ − I(ei < 0).

Then, we have

Un(x̄0)−E [Un(x̄0)] = U⋆

n(x̄0)−E [U⋆

n(x̄0)]+Un(x̄0)−U⋆

n(x̄0)−E [Un(x̄0) −U⋆

n(x̄0)] . (A.14)

Similarly to the proof of Theorem 4.1 in Li, Li and Li (2018), we may show that

Var [Un(x̄0) −U⋆

n(x̄0)] 6 E
{

[Un(x̄0) −U⋆

n(x̄0)]
2
}

= o
(
(nH̄0)−1

)
. (A.15)

From the classical central limit theorem for the i.i.d. random variables, we have

√
nH̄0 {U⋆

n(x̄0) − E [U⋆

n(x̄0)]}
d

−→ N (0, τ(1 − τ)fX̄(x̄0)ν0) . (A.16)

In view of (A.14)–(A.16), we have

√
nH̄0 {Un(x̄0) − E [Un(x̄0)]}

d
−→ N (0, τ(1 − τ)fX̄(x̄0)ν0) . (A.17)

It remains to derive the asymptotic bias term of the local kernel quantile estimation.

By the smoothness condition in Assumptions 2(ii) and 3(i), we have

E [Un(x̄0)] = E
{
[τ− I (ei < −δi(x̄0))]Kh̄0(X̄c

i − x̄c
0)Λλ̄0(X̄d

i , x̄d
0 )
}

= E
{[
Fe(0|X̄i) − Fe(−δi(x̄0)|X̄i)

]
Kh̄0(X̄c

i − x̄c
0)Λλ̄0(X̄d

i , x̄d
0 )
}

≈ E
[
fe(0|X̄i)δi(x̄0)Kh̄0(X̄c

i − x̄c
0)Λλ̄0(X̄d

i , x̄d
0 )
]

≈ ξ(x̄0)b(x̄0; h̄0, λ̄0), (A.18)

where δi(x̄0) = Qτ(X̄i)−Qτ(x̄0), and b(x̄0; h̄0, λ̄0) is defined as in (3.2). Therefore, we have

√
nH̄

[
Un(x̄0) + ξ(x̄0)b(x̄0; h̄0, λ̄0)

] d
−→ N (0, τ(1 − τ)fX̄(x̄0)ν0) . (A.19)

By (A.13) and (A.19), we prove the asymptotic normal distribution in (A.12), complet-

ing the proof of Theorem 3.2. �

The next lemma is on the uniform consistency for the marginal quantile estimation,

which is crucial to prove the sure screening property in Theorem 4.1.
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LEMMA A.3. Suppose that Assumptions 1(i), 4(i), 5 and 6(i) are satisfied. Then we have

max
16s6d1+d2

sup
x∈S⋆

s

∣∣∣Q̂c
τ,s(x) −Qc

τ,s(x)
∣∣∣ = OP

(
n−2/5

√
logn

)
(A.20)

and

max
16s6d3+d4

sup
x∈Ds

∣∣∣Q̂d
τ,s(x) −Qd

τ,s(x)
∣∣∣ = OP

(
n−2/5

√
logn

)
, (A.21)

where S⋆

s ⊂ Ss such that ws(x) 6= 0 for x ∈ S⋆

s, Ss and Ds denote the supports for the s-th

continuous and discrete covariates, respectively.

PROOF OF THEOREM 4.1. Note that the conventional τ-th sample quantile function Q̂τ is

root-n consistent, i.e.,

Q̂τ −Qτ = OP

(
n−1/2

)
. (A.22)

By (A.20)–(A.22), we readily have that

max
16s6d1+d2

∣∣∣D̂c
τ,s −Dc

τ,s

∣∣∣ = OP

(
n−2/5

√
logn

)
, (A.23)

and

max
16s6d3+d4

∣∣∣D̂d
τ,s −Dd

τ,s

∣∣∣ = OP

(
n−2/5

√
logn

)
. (A.24)

By (A.23) and (A.24) as well as the assumption that n−2/5
√

logn = o(̟n) and γc
n = γd

n =

̟n/2, we have

P
(
Mc

τ ⊂ M̂c
τ, Md

τ ⊂ M̂d
τ

)

= P

(
min
s∈Mc

τ

D̂c
τ,s > γc

n, min
s∈Md

τ

D̂d
τ,s > γd

n

)

> P

(
min
s∈Mc

τ

Dc
τ,s − max

16s6d1+d2

∣∣∣D̂c
τ,s −Dc

τ,s

∣∣∣ > γc
n, min

s∈Md
τ

Dd
τ,s − max

16s6d3+d4

∣∣∣D̂d
τ,s −Dd

τ,s

∣∣∣ > γd
n

)

> 1 −

[
P

(
min
s∈Mc

τ

Dc
τ,s − max

16s6d1+d2

∣∣∣D̂c
τ,s −Dc

τ,s

∣∣∣ 6 γc
n

)

+P

(
min
s∈Md

τ

Dd
τ,s − max

16s6d3+d4

∣∣∣D̂d
τ,s −Dd

τ,s

∣∣∣ 6 γd
n

)]

> 1 −

[
P

(
max

16s6d1+d2

∣∣∣D̂c
τ,s −Dc

τ,s

∣∣∣ > ̟n/2

)
+ P

(
max

16s6d3+d4

∣∣∣D̂d
τ,s −Dd

τ,s

∣∣∣ > ̟n/2

)]

= 1 − [o(1) + o(1)] = 1 + o(1), (A.25)

completing the proof of Theorem 4.1. �
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Supplementary Document to “Nonparametric Estimation
of Conditional Quantile Functions in the Presence of

Irrelevant Covariates”

Appendix B: Proofs of the Technical Lemmas

In this appendix, we provide the detailed proofs of the technical lemmas which have been

used in the main proofs in Appendix A. Letting

Un(x,h, λ, δ) =
1

n

n∑

i=1

ηi(x̄, δ)Kh,λ(Xi, x)

with ηi(x̄, δ) = τ − I
(
Yi −Qτ(x̄) − (nH)−1/2δ < 0

)
, it is easy to find that Un(x,h, λ, 0) =

Un(x,h, λ) defined in Lemma A.1. Let

δi(x̄) = Qτ(X̄i) −Qτ(x̄) and δ̂(x)
def
= δ̂(x;h, λ) = (nH)1/2

[
Q̂τ(x;h, λ) −Qτ(x̄)

]
.

The proof of Lemma A.1 is similar to the proof of Theorem 3.1 in Su and White (2012).

Lemmas B.1–B.3 below are crucial to derive the uniform Bahadur representation in Lemma

A.1.

LEMMA B.1. Suppose that Assumptions 1, 2, 3(i) and 4 are satisfied. Then, we have

(nH)1/2 |Un(x,h, λ)| = OP

(
mnH̃

−1
)

(B.1)

uniformly over x ∈ S⋆ ×D and (h, λ) ∈ H, where H and mn are defined as in Assumption 4(iii),

H̃ =
∏d2

s=1(h̃s ∨ 1), and H denotes a set of (h, λ) satisfying Assumption 4(ii)–(iv).

PROOF OF LEMMA B.1. As the dimensions d3 and d4 are fixed, the set D only contains

a finite number of distinct points. Hence, in order to prove (B.1), we only have to show

that (B.1) holds uniformly over xc ∈ S⋆ and (h, λ) ∈ H for each xd ∈ D. Similarly to the

arguments in the proof of (A.18) in Appendix A, we have

E [Un(x,h, λ)] = E {Kh,λ(Xi, x)E [ηi(x̄)|Xi]}

= E
{
Kh,λ(Xi, x)

[
τ− Fe

(
−δi(x̄)|X̄i

)]}

= O
(
κnH̃

−1
)

with κn =
∑d1

s=1 h̄
2
s +

∑d3

s=1 λ̄s, and consequently

(nH)1/2 |E [Un(x,h, λ)]| = O
(
(nH)1/2κnH̃

−1
)
= O

(
mnH̃

−1
)

(B.2)
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by Assumption 4(iii). With (B.2), we only need to prove that

(nH)1/2H̃ |Un(x,h, λ) − E [Un(x,h, λ)]| = OP (mn) (B.3)

uniformly over xc ∈ S⋆ and (h, λ) ∈ H.

Consider covering the compact set S⋆ by some disjoint sets S⋆(k), k = 1, · · · ,K1, and

covering the set H by some disjoint sets H(k), k = 1, · · · ,K2. Denote the center points of

S⋆(k) and H(k) by xc(k) and [h(k), λ(k)], respectively. Let the radius of S⋆(k) be of order

mnn
−(1−ǫ)/2−2ι, and

‖h− h(k)‖ 6 mnn
−(1−ǫ)/2−2ι, ‖λ− λ(k)‖ 6 mnn

−(1−ǫ)/2−ι, (h, λ) ∈ Hk

where ι > c∨ (1− ǫ) is a bounded constant such that h̄s > n−ι for all s = 1, · · · ,d1, c and

ǫ are defined in Assumption 4 (ii) and (iii), respectively. Note that

sup
xc∈S

sup
(h,λ)∈H

(nH)1/2H̃ |Un(x,h, λ) − E [Un(x,h, λ)]| (B.4)

6 max
16k16K1

max
16k26K2

(nH(k2))
1/2

H̃(k2) |Un(x(k1),h(k2), λ(k2)) − E [Un(x(k1),h(k2), λ(k2))]|+

max
16k16K1

max
16k26K2

sup
xc∈S⋆(k1)

sup
(h,λ)∈H(k2)

∣∣∣(nH)1/2H̃ ·Un(x,h, λ) − (nH(k2))
1/2

H̃(k2) ·Un(x(k1),h(k2), λ(k2))
∣∣∣+

max
16k16K1

max
16k26K2

sup
xc∈S⋆(k1)

sup
(h,λ)∈H(k2)

∣∣∣(nH)1/2H̃ · E [Un(x,h, λ)] − (nH(k2))
1/2

H̃(k2) · E [Un(x(k1),h(k2), λ(k2))]
∣∣∣ ,

where H(k) and H̃(k) are defined similarly to H and H̃ but with the components in h

replaced by those in h(k), and

x(k) =

(
xc(k)

xd

)
, xc(k) ∈ S⋆(k), xd ∈ D.

By the smoothness condition on k(·) in Assumption 4(i) and following standard cal-

culation, we may show that

max
16k16K1

max
16k26K2

sup
xc∈S⋆(k1)

sup
(h,λ)∈H(k2)

∣∣∣(nH)1/2H̃ ·Un(x,h, λ) − (nH)
1/2

H̃ ·Un(x(k1),h(k2), λ(k2))
∣∣∣

= OP(mn)

and

max
16k16K1

max
16k26K2

sup
(h,λ)∈H(k2)

∣∣∣
[
(nH)1/2H̃− (nH(k2))

1/2
H̃(k2)

]
Un(x(k1),h(k2), λ(k2))

∣∣∣
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= OP(mn),

leading to

max
16k16K1

max
16k26K2

sup
xc∈S⋆(k1)

sup
(h,λ)∈H(k2)

∣∣∣(nH)1/2H̃ ·Un(x,h, λ) − (nH(k2))
1/2 H̃(k2) ·Un(x(k1),h(k2), λ(k2))

∣∣∣

= OP(mn). (B.5)

Similarly, we also have that

max
16k16K1

max
16k26K2

sup
xc∈S⋆(k1)

sup
(h,λ)∈H(k2)

∣∣∣(nH)1/2H̃ · E [Un(x,h, λ)] − (nH(k2))
1/2

H̃(k2) · E [Un(x(k1),h(k2), λ(k2))]
∣∣∣

= O(mn). (B.6)

On the other hand, by the Bernstein inequality for independent sequence (e.g., van

der Vaart and Wellner, 1996) and noting that both K1 and K2 are divergent to infinity at a

polynomial rate of n, we can prove that

P

(
max

16k16K1

max
16k26K2

(nH(k2))
1/2

H̃(k2) |Un(x(k1),h(k2), λ(k2)) − E [Un(x(k1),h(k2), λ(k2))]| > c1mn

)

6

K1∑

k1=1

K2∑

k2=1

P
(
(nH(k2))

1/2
H̃(k2) |Un(x(k1),h(k2), λ(k2)) − E [Un(x(k1),h(k2), λ(k2))]| > c1mn

)

6 O (K1 · K2 · exp {−c⋆1 logn}) = o(1),

where c⋆1 would be a sufficiently large positive constant if c1 is large enough. Hence, we

have

max
16k16K1

max
16k26K2

(nH(k2))
1/2

H̃(k2) |Un(x(k1),h(k2), λ(k2)) − E [Un(x(k1),h(k2), λ(k2))]| = OP(mn).

(B.7)

By (B.4)–(B.7), we can prove (B.3), completing the proof of Lemma B.1. �

LEMMA B.2. Suppose that Assumptions 1, 2(i) and 4 are satisfied. Then, we have

(nH)1/2H̃
∣∣Ūn(x,h, λ, δ) − E

[
Ūn(x,h, λ, δ)

]∣∣ = OP

(
m3/2

n (nH)−1/4
)

(B.8)

uniformly over x ∈ S⋆ ×D, (h, λ) ∈ H and |δ| 6 c2mn, where

Ūn(x,h, λ, δ) = Un(x,h, λ, δ) −Un(x,h, λ, 0) = Un(x,h, λ, δ) −Un(x,h, λ)
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and c2 is a sufficiently large positive constant.

PROOF OF LEMMA B.2. As in the proof of Lemma B.1, we only need to prove

(nH)3/4H̃
∣∣Ūn(x,h, λ, δ) − E

[
Ūn(x,h, λ, δ)

]∣∣ = OP

(
m3/2

n

)
(B.9)

uniformly over xc ∈ S⋆, (h, λ) ∈ H and |δ| 6 c2mn for each xd ∈ D. The main techniques

are similar to those used in the proof of Lemma B.1. Consider covering the compact set

S⋆ by some disjoint sets S̄⋆(k), k = 1, · · · , K̄1, and covering the set H by some disjoint

sets H̄(k), k = 1, · · · , K̄2. Let Ī(k), k = 1, · · · , K̄3, be the disjoint intervals covering the

closed interval [−c2mn, c2mn]. Denote the center points of S̄⋆(k), H̄(k) and Ī(k) by xc(k),

[h(k), λ(k)] and δ(k), respectively. In addition, we let the radius of S̄⋆(k) and Ī(k) be of

orders m
1/2
n n−(1−ǫ)/4−2ι and m

3/2
n n−(1−ǫ)/4−ι, respectively, and

‖h− h(k)‖ 6 m1/2
n n−(1−ǫ)/4−2ι, ‖λ− λ(k)‖ 6 m1/2

n n−(1−ǫ)/4−ι, (h, λ) ∈ H̄(k),

where ι is defined in the proof of Lemma B.1. Following the proofs of (B.5) and (B.6), we

may show that

sup
xc∈S⋆

sup
(h,λ)∈H

sup
|δ|6c2mn

(nH)3/4H̃
∣∣Ūn(x,h, λ, δ) − E

[
Ūn(x,h, λ, δ)

]∣∣

6 max
16k16K̄1

max
16k26K̄2

max
16k36K̄3

Ūn(k1,k2,k3) +OP(m
3/2
n ), (B.10)

where

Ūn(k1,k2,k3) = (nH(k2))
3/4 H̃(k2)

∣∣Ūn(x(k1),h(k2), λ(k2), δ(k3)) − E
[
Ūn(x(k1),h(k2), λ(k2), δ(k3))

]∣∣ .

Finally, using the Bonferroni and Bernstein inequalities, we can prove that

P

(
max

16k16K̄1

max
16k26K̄2

max
16k36K̄3

Ūn(k1,k2,k3) > c⋄2m
3/2
n

)

6

K̄1∑

k1=1

K̄2∑

k2=1

K̄3∑

k3=1

P
(
Ūn(k1,k2,k3) > c⋄2m

3/2
n

)

6 O
(
K̄1 · K̄2 · K̄3 · exp {−c⋆2 logn}

)
= o(1),

where c⋆2 > 0 would be sufficiently large if c⋄2 > 0 is large enough. Hence, we have

max
16k16K̄1

max
16k26K̄2

max
16k36K̄3

Ūn(k1,k2,k3) = OP(m
3/2
n ), (B.11)

which together with (B.10), leads to (B.9), completing the proof of Lemma B.2. �
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LEMMA B.3. Suppose that Assumptions 1(ii), 2 and 4 are satisfied. Then, we have

(nH)1/2H̃ · E
[
Ūn(x,h, λ, δ)

]
= −V(x, h̃, λ̃)δ+ o

(
m3/2

n (nH)−1/4
)

(B.12)

uniformly over x ∈ S⋆ × D, (h, λ) ∈ H and |δ| 6 c2mn, where V(x, h̃, λ̃) is defined in Lemma

A.1.

PROOF OF LEMMA B.3. Let δi(x̄) = Qτ(X̄i) − Qτ(x̄) as above. By Assumptions 2 and 4,

we readily have that

E
[
Ūn(x,h, λ, δ)

]
=

1

n

n∑

i=1

E {[ηi(x̄, δ) − ηi(x̄, 0)]Kh,λ(Xi, x)}

= −(nH)−1/2δ · E
[
Kh,λ(Xi, x)fe(−δi(x̄)|X̄i)

]
+O

(
δ2(nH)−1

)

= −(nH)−1/2δ · fX̄(x̄)fe(0|x̄) · E
[
K̃h̃,λ̃(X̃i, x̃)

]
+O

(
|δ|κn(nH)−1/2 + δ2(nH)−1

)

= −(nH)−1/2δ · fX̄(x̄)fe(0|x̄) · E
[
K̃h̃,λ̃(X̃i, x̃)

]
+ o

(
m

3/2
n (nH)−3/4

)
(B.13)

uniformly over x ∈ S⋆ ×D, (h, λ) ∈ H and |δ| 6 c2mn, where we have used the facts of

|δ|κn = O(mnκn) = O
(
m2

n(nH)−1/2
)
= o

(
m3/2

n (nH)−1/4
)

and

δ2(nH)−1 = O
(
m2

n(nH)−1
)
= o

(
m3/2

n (nH)−3/4
)

due to Assumption 4(iii). �

PROOF OF LEMMA A.1. Following the proofs of Lemma A2 in Ruppert and Carroll (1980)

and Lemma A.5 in Su and White (2012), we may show that

(nH)1/2H̃ ·Un

(
x,h, λ, δ̂(x)

)
= OP

(
(nH)−1/2

)
= oP

(
m3/2

n (nH)−1/4
)

(B.14)

uniformly over x ∈ S⋆ ×D and (h, λ) ∈ H, where δ̂(x) = Q̂τ(x;h, λ) −Qτ(x̄). By Lemmas

B.2 and B.3, we readily have that

∣∣(nH)1/2H̃ [Un(x,h, λ, δ) −Un(x,h, λ)] + V(x, h̃, λ̃)δ
∣∣ = OP

(
m3/2

n (nH)−1/4
)

(B.15)

uniformly over x ∈ S⋆ ×D, (h, λ) ∈ H and |δ| 6 c2mn.

For notational simplicity, we next let “supx,(h,λ)” denote “supx∈S⋆×D
sup

(h,λ)∈H
”. Note

that

P

(
sup

x,(h,λ)

inf
|δ|=c2mn

−δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ)

]
< c2c3m

2
n

)
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6 P

(
sup

x,(h,λ)

inf
|δ|=c2mn

−δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ)

]
< c2c3m

2
n, Ωn1

)
+ P (Ωc

n1) ,(B.16)

where Ωn1 denotes the event that

sup
x,(h,λ)

inf
|δ|=c2mn

{
−δ
[
−V

(
x, h̃, λ̃

)
δ+ (nH)1/2H̃ ·Un(x,h, λ)

]}
> 2c2c3m

2
n,

and Ωc
n1 is the complement of Ωn1. Note that there exists a constant c > 0 such that

V
(
x, h̃, λ̃

)
> c, and thus

sup
x,(h,λ)

inf
|δ|=c2mn

{
−δ
[
−V

(
x, h̃, λ̃

)
δ+ (nH)1/2H̃ ·Un(x,h, λ)

]}

> −c2mn · sup
x,(h,λ)

(nH)1/2H̃ · |Un(x,h, λ)|+ cc2
2m

2
n.

Consequently, Ωc
n1 indicates that

−c2mn · sup
x,(h,λ)

(nH)1/2H̃ · |Un(x,h, λ)|+ cc2
2m

2
n < 2c2c3m

2
n,

and

P(Ωc
n1) 6 P

(
sup

x,(h,λ)

(nH)1/2H̃ · |Un(x,h, λ)| > (cc2 − 2c3)mn

)
→ 0 (B.17)

by letting c2 be large enough. On the other hand, when

sup
x,(h,λ)

inf
|δ|=c2mn

−δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ)

]
< c2c3m

2
n

and the event Ωn1 jointly hold, we must have

sup
x,(h,λ)

sup
|δ|=c2mn

{
δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ) − (nH)1/2H̃ ·Un(x,h, λ) + V

(
x, h̃, λ̃

)
δ
]}

> c2c3m
2
n.

This, together with (B.15) and the condition of m2
n = o(nH) in Assumption 4(iii), implies

that

P

(
sup

x,(h,λ)

inf
|δ|=c2mn

−δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ)

]
< c2c3m

2
n, Ωn1

)

6 P

(
sup

x,(h,λ)

sup
|δ|=c2mn

{

δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ) − (nH)1/2H̃ ·Un(x,h, λ) + V

(
x, h̃, λ̃

)
δ
]}

> c2c3m
2
n

)

6 P

(
sup

x,(h,λ)

sup
|δ|=c2mn

∣∣∣(nH)1/2H̃ · [Un(x,h, λ, δ) −Un(x,h, λ)] + V
(
x, h̃, λ̃

)
δ
∣∣∣ > c3mn

)
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6 P

(
sup

x,(h,λ)

sup
|δ|=c2mn

∣∣∣(nH)1/2H̃ · [Un(x,h, λ, δ) −Un(x,h, λ)] + V
(
x, h̃, λ̃

)
δ
∣∣∣ > c⋆3m

3/2
n (nH)−1/4

)

→ 0, (B.18)

where c⋆3 is a sufficiently large positive constant. With (B.16)–(B.18), we prove that

P

(
sup

x,(h,λ)

inf
|δ|=c2mn

−δ
[
(nH)1/2H̃ ·Un(x,h, λ, δ)

]
< c2c3m

2
n

)
→ 0, (B.19)

by choosing c2 > 0 sufficiently large.

We next consider a general case of |δ| > c2mn. Note that −δUn(x,h, λ,̟δ), when

treated as a function of ̟, is non-decreasing for ̟ > 1. For |δ| > c2mn, we let δ⋆ = δ/̟⋆

with ̟⋆ = |δ|/(c2mn). It is easy to find that |δ⋆| = c2mn,

−δ⋆Un(x,h, λ, δ) = −δ⋆Un(x,h, λ,̟⋆δ⋆) > −δ⋆Un(x,h, λ, δ⋆)

and consequently

|Un(x,h, λ, δ)| >
−δ⋆Un(x,h, λ, δ⋆)

c2mn

.

Then, by (B.19), we may show that

P

(
sup

x,(h,λ)

inf
|δ|>c2mn

∣∣(nH)1/2H̃ ·Un(x,h, λ, δ)
∣∣ < c3mn

)

6 P

(
sup

x,(h,λ)

inf
|δ⋆|=c2mn

−δ⋆
[
(nH)1/2H̃ ·Un(x,h, λ, δ⋆)

]
< c2c3m

2
n

)
→ 0 (B.20)

by letting c2 > 0 be large enough.

Note that

P

(
sup

x,(h,λ)

(nH)1/2
∣∣∣Q̂τ(x;h, λ) −Qτ(x̄)

∣∣∣ > c2mn

)

6 P

(
sup

x,(h,λ)

(nH)1/2
∣∣∣Q̂τ(x;h, λ) −Qτ(x̄)

∣∣∣ > c2mn,Ωn2

)
+ P (Ωc

n2) , (B.21)

where Ωn2 denotes the event that

sup
x,(h,λ)

∣∣∣(nH)1/2H̃ ·Un

(
x,h, λ, δ̂(x)

)∣∣∣ < c3mn.

By (B.14), we readily have that

P (Ωc
n2) = P

(
sup

x,(h,λ)

∣∣∣(nH)1/2H̃ ·Un

(
x,h, λ, δ̂(x)

)∣∣∣ > c3mn

)
→ 0. (B.22)
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On the other hand, by (B.20), we may prove that

P

(
sup

x,(h,λ)

(nH)1/2
∣∣∣Q̂τ(x;h, λ) −Qτ(x̄)

∣∣∣ > c2mn,Ωn2

)

= P

(
sup

x,(h,λ)

inf
|δ|>c2mn

∣∣(nH)1/2H̃ ·Un(x,h, λ, δ)
∣∣ < c3mn

)
→ 0. (B.23)

By (B.21)–(B.23), we show that δ̂(x) = Q̂τ(x;h, λ) − Qτ(x) = OP(mn) uniformly over

x ∈ S⋆×D and (h, λ) ∈ H, which together with (B.14) and (B.15), proves (A.1), completing

the proof of Lemma A.1. �

PROOF OF LEMMA A.2. The main idea to be used in the proof is similar to that in the

proof of Proposition 3.1 in Li, Li and Li (2018). In order to simplify the notation, through-

out this proof, we let Wi = W(Xi) and ζi(Xi) = Q̂(−i)(Xi) − Qτ(X̄i) with Q̂(−i)(Xi) =

Q̂(−i)(Xi;h, λ). Note that the CV function can be rewritten as

CV(h, λ) =
1

n

n∑

i=1

ρτ

(
Yi − Q̂(−i)(Xi)

)
Wi

=
1

n

n∑

i=1

ρτ

(
ei +Qτ(X̄i) − Q̂(−i)(Xi)

)
Wi

=
1

n

n∑

i=1

ρτ(ei)Wi +
1

n

n∑

i=1

[ρτ (ei − ζi(Xi)) − ρτ(ei)]Wi

def
= CV1 + CV2(h, λ). (B.24)

Using (B.24) and noting that CV1 does not rely on h and λ, to complete the proof of Lemma

A.2, we only need to derive the asymptotic leading term for CV2(h, λ).

Using the following identity equality from Knight (1998):

ρτ(x− y) − ρτ(x) = y [I(x 6 0) − τ] +

∫y

0

[I(x 6 z) − I(x 6 0)]dz, (B.25)

we have

ρτ (ei − ζi(Xi)) − ρτ(ei) = ζi(Xi) [I(ei 6 0) − τ] +

∫ζi(Xi)

0

[I(ei 6 z) − I(ei 6 0)]dz (B.26)

by choosing x = ei and y = ζi(Xi) in (B.25). By (B.26), CV2(h, λ) in (B.24) can be decom-

posed as

CV2(h, λ) = CV21(h, λ) + CV22(h, λ), (B.27)
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where

CV21(h, λ) =
1

n

n∑

i=1

Wi

∫ζi(Xi)

0

[I(ei 6 z) − I(ei 6 0)]dz,

CV22(h, λ) =
1

n

n∑

i=1

ζi(Xi) [I(ei 6 0) − τ]Wi.

We next show that CV21(h, λ) is the asymptotic leading term of CV2(h, λ) uniformly

over (h, λ) ∈ H, while CV22(h, λ) is asymptotically negligible. By Lemma B.4 below, we

have

CV21(h, λ) =
1

2n

n∑

i=1

[ζ∗i (Xi;h, λ)]2 Wife(0|X̄i) +OP

(
m5/2

n /(nH)5/4 +m2
n/(nH

1/2)
)

(B.28)

uniformly over (h, λ) ∈ H, where

ζ∗i (Xi;h, λ) =
[
V(Xi, h̃, λ̃)

]−1 [
H̃ ·U(−i)(Xi;h, λ)

]
, (B.29)

V(Xi, h̃, λ̃) is defined in Lemma A.1,

U(−i)(Xi;h, λ) =
1

n

n∑

j=1,6=i

ηj(X̄i)Kh,λ(Xj, Xi)

with ηj(X̄i) = τ−I
(
ej 6 −δj(X̄i)

)
. Letting η⋆

j = τ−I(ej 6 0), we can rewrite U(−i)(Xi;h, λ)

as

U(−i)(Xi;h, λ) =
1

n

∑

j 6=i

[
ηj(X̄i) − η⋆

j

]
Kh,λ(Xj, Xi) +

1

n

∑

j 6=i

η⋆

jKh,λ(Xj, Xi)

def
= U(−i),1(Xi;h, λ) +U(−i),2(Xi;h, λ). (B.30)

Defining

B(Xi;h, λ) =
[
V(Xi, h̃, λ̃)

]−1 [
H̃U(−i),1(Xi;h, λ)

]

and

T(Xi;h, λ) =
[
V(Xi, h̃, λ̃)

]−1 [
H̃U(−i),2(Xi;h, λ)

]
,

by (B.29) and (B.30), we have

1

n

n∑

i=1

[ζ∗i (Xi;h, λ)]2 Wife(0|X̄i) =
1

n

n∑

i=1

B2(Xi;h, λ)Wife(0|X̄i) +
1

n

n∑

i=1

T 2(Xi;h, λ)Wife(0|X̄i) +
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2

n

n∑

i=1

B(Xi;h, λ)T(Xi;h, λ)Wife(0|X̄i). (B.31)

We next consider the three terms on the right hand side of (B.31) separately. Observe

that

1

n

n∑

i=1

B2(Xi;h, λ)Wife(0|X̄i)

=
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
H̃2

∑

j 6=i

∑

k6=i

[
ηj(X̄i) − η⋆j

]
Kh,λ(Xj, Xi)Kh,λ(Xk, Xi)

[
ηk(X̄i) − η⋆k

]
Wife(0|X̄i)

=
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
H̃2

∑

j 6=i

∑

k6=i,j

[
ηj(X̄i) − η⋆j

] [
ηk(X̄i) − η⋆k

]
Kh,λ(Xj, Xi)Kh,λ(Xk, Xi)Wife(0|X̄i)

+
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
H̃2

∑

j 6=i

[
ηj(X̄i) − η⋆j

]2
K2

h,λ(Xj, Xi)Wife(0|X̄i)

def
= Πn1(h, λ) + Πn2(h, λ).

For Πn1(h, λ), letting

ηj(Xi;h, λ) =
[
ηj(X̄i) − η⋆

j

]
Kh,λ(Xj, Xi) =

[
I(ej 6 0) − I(ej 6 −δj(X̄i))

]
Kh,λ(Xj, Xi),

by Lemma B.5, we have

H̃2
∑

j 6=i

∑

k 6=i,j

[
ηj(X̄i) − η⋆

j

] [
ηk(X̄i) − η⋆

k

]
Kh,λ(Xj, Xi)Kh,λ(Xk, Xi)

= H̃2
∑

j 6=i

∑

k 6=i,j

E
[
ηj(Xi;h, λ)

∣∣Xi

]
· E
[
ηk(Xi;h, λ)

∣∣Xi

]
+OP

(
n3/2κ2

nmnH
−1/2

)

= nH̃2
∑

j 6=i

E2
[
ηj(Xi;h, λ)

∣∣Xi

]
+OP

(
n3/2κ2

nmnH
−1/2

)

= nH̃2
∑

j 6=i

E2
{[

Fe(0|X̄j) − Fe(−δj(X̄j)|X̄j)
]
Kh,λ(Xj, Xi)|Xi

}
+OP

(
n3/2κ2

nmnH
−1/2

)

= nH̃2
∑

j 6=i

E2
[
δj(X̄i)fe(0|X̄j)Kh,λ(Xj, Xi)

∣∣Xi

]
+OP

(
n3/2κ2

nmnH
−1/2

)

uniformly over i = 1, · · · ,n and (h, λ) ∈ H, which indicates that

Πn1(h, λ) =
1

n2

n∑

i=1

[ξ(Xi)]
−2

Wife(0|X̄i)
∑

j 6=i

E2
[
δj(X̄i)fe(0|X̄j)K̄h̄,λ̄(X̄j, X̄i)

∣∣X̄i

]
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+OP

(
(nH)−1/2κ2

nmn

)
. (B.32)

When dealing with δj(X̄i), we need to consider two possible cases. In case (i), X̄c
j 6= X̄c

i

but X̄d
j = X̄d

i . For this case, using Assumption 3(i) and the Taylor’s expansion for the

quantile regression function Qτ(·) (with respect to the continuous components), we may

show that

[ξ(X̄i)]
−1E

[
δj(X̄i)fe(0|X̄j)K̄h̄,λ̄(X̄j, X̄i)|X̄i

]

= ξ(X̄i)
−1

∫

S̄×D̄

ξ(x̄)δj(x̄)K̄h̄,λ̄(x̄, X̄i)dx̄

=
1

2
µ2

d1∑

s=1

h̄2
s

[
Q(ss)

τ (X̄i) + 2Q(s)
τ (X̄i)ξ

(s)(X̄i)/ξ(X̄i)
]
+OP(κ

2
n), (B.33)

where ξ(x̄) = fX̄(x̄)fe(0|x̄) as in Section 3 and

K̄h̄,λ̄(X̄i, x̄) =

d1∏

s=1

h̄−1
s k

(
X̄c
is − x̄cs
h̄s

) d3∏

s=1

λ̄
I(X̄d

is 6=x̄d
s )

s .

In case (ii), X̄d
js 6= X̄d

is. Then, we have

ξ−1(X̄i)E
[
fe(0|X̄j)δj(X̄i)K̄h̄,λ̄(X̄j, X̄i)|X̄i

]

=
∑

x̄d∈D̄

ξ(X̄c
i , x̄d)

ξ(X̄i)

d3∑

s=1

λ̄sIs(x̄
d, X̄d

i )
[
Qτ(X̄

c
i , x̄d) −Qτ(X̄i)

]
+OP(κ

2
n), (B.34)

where Is(x̄
d, X̄d

i ) is defined as in (3.2). Combing (B.32)–(B.34), we readily have

Πn1(h, λ) =
1

n

n∑

i=1

b2(X̄i; h̄, λ̄)Wife(0|X̄i) +OP

(
κ3
n + (nH)−1/2κ2

nmn

)
(B.35)

uniformly over (h, λ) ∈ H.

For Πn2(h, λ), using the argument in the proof of Lemma B.5 below, we have

Πn2(h, λ) =
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
Wife(0|X̄i)H̃

2
∑

j 6=i

[
ηj(X̄i) − η⋆

j

]2
K2

h,λ(Xj, Xi)

=
1

n2

n∑

i=1

[ξ(Xi)]
−2

Wife(0|X̄i)E
[(
ηj(X̄i) − η⋆

j

)2
K̄2

h̄,λ̄(X̄j, X̄i)|X̄i

]

+OP

(
(nH)−3/2κ2

nmn

)

= OP

(
κ2
n/(nH) + (nH)−3/2κ2

nmn

)
= OP

(
κ2
n/(nH)

)
(B.36)

46



uniformly over (h, λ) ∈ H. By (B.35), (B.36) and noting that κ3
n = O

(
(nH)−1/2κ2

nmn

)
by

Assumption 4(iii), we readily have that

1

n

n∑

i=1

B2(Xi;h, λ)Wife(0|X̄i) =
1

n

n∑

i=1

b2(X̄i; h̄, λ̄)Wife(0|X̄i)+OP

(
(nH)−1/2κ2

nmn

)
(B.37)

uniformly over (h, λ) ∈ H.

For the second term on the right hand side of (B.31), we have

1

n

n∑

i=1

T 2(Xi;h, λ)Wife(0|X̄i)

=
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
Wife(0|X̄i)H̃

2
∑

j 6=i

∑

k 6=i

η⋆

jη
⋆

kKh,λ(Xj, Xi)Kh,λ(Xk, Xi)

=
1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
Wife(0|X̄i)H̃

2
∑

j 6=i

∑

k 6=i,j

η⋆

jη
⋆

kKh,λ(Xj, Xi)Kh,λ(Xk, Xi) +

1

n3

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
Wife(0|X̄i)H̃

2
∑

j 6=i

(η⋆

j )
2K2

h,λ(Xj, Xi)

def
= Πn3(h, λ) + Πn4(h, λ).

For Πn4(h, λ), using the argument in the proof of Lemma B.5 and similar to the proof

of (B.36), we have

Πn4(h, λ) =
1

n2

n∑

i=1

[
V(Xi; h̃, λ̃)

]−2
Wife(0|X̄i)H̃

2 · E
[
(η⋆j )

2K2
h,λ(Xj, Xi)|Xi

]
+OP

(
(nH)−3/2mn

)

=
1

n2

n∑

i=1

[
fX̄(X̄i)fe(0|X̄i)

]−2
Wife(0|X̄i)E

[
(η⋆j )

2K̄2
h̄,λ̄(X̄j, X̄i)|X̄i

]
R(X̃i; h̃, λ̃)

+OP

(
(nH)−3/2mn

)

=
1

n

n∑

i=1

1

nH̄

τ(1 − τ)ν0

fX̄(X̄i)f2
e(0|X̄i)

R(X̃i; h̃, λ̃)Wife(0|X̄i) +OP

(
(nH̄)−1κn + (nH)−3/2mn

)

=
1

n

n∑

i=1

σ2
⋄(Xi;h, λ)Wife(0|X̄i) +OP

(
(nH̄)−1κn + (nH)−3/2mn

)
(B.38)

uniformly over (h, λ) ∈ H, where

σ2
⋄(Xi;h, λ) =

1

nH̄
·

τ(1 − τ)ν0

fX̄(X̄i)f2
e(0|X̄i)

· R(X̃i; h̃, λ̃) with R(X̃i; h̃, λ̃) =
E
[
K̃2

h̃,λ̃
(X̃j, X̃i)|X̃i

]

E2
[
K̃h̃,λ̃(X̃j, X̃i)|X̃i

] .
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For Πn3(h, λ), by Lemma B.6, we have

Πn3(h, λ) = OP

(
mn/(nH

1/2)
)

uniformly over (h, λ) ∈ H, which together with (B.38) and the fact of (nH̄)−1κn = O
(
(nH)−3/2mn

)
,

leads to

1

n

n∑

i=1

T 2(Xi;h, λ)Wife(0|X̄i) =
1

n

n∑

i=1

σ2
⋄(Xi;h, λ)Wife(0|X̄i)+OP

(
(nH)−3/2mn +mn/(nH

1/2)
)

(B.39)

uniformly over (h, λ) ∈ H.

In addition, following the argument in the proofs of Lemmas B.5 and B.6, we may

show that
1

n

n∑

i=1

B(Xi;h, λ)T(Xi;h, λ)Wife(0|X̄i) = OP

(
n−1/2κnmn

)
(B.40)

uniformly over (h, λ) ∈ H. Using (B.28), (B.31), (B.37), (B.39) and (B.40), and noting that

n−1/2κnmn +mn/(nH
1/2) = o

(
m2

n/(nH
1/2)
)

and

(nH)−1/2κ2
nmn + (nH)−3/2mn = o

(
m5/2

n /(nH)5/4
)

,

we can show that CV21(h, λ) have the following uniform asymptotic representation:

CV21(h, λ) =
1

2n

n∑

i=1

[
b2(X̄i; h̄, λ̄) + σ2

⋄(Xi;h, λ)
]
Wife(0|X̄i) +OP

(
m

5/2
n /(nH)5/4 +m2

n/(nH
1/2)

)
.

(B.41)

It remains to derive the asymptotic order of CV22(h, λ). Using Lemma A.1 and follow-

ing the argument in the proof of (B.41), CV22(h, λ) has the following asymptotic leading

term:

CV⋆

22(h, λ) = −
1

n

n∑

i=1

[
V(Xi; h̃, λ̃)

]−1 [
H̃U(−i)(Xi;h, λ)

]
η⋆

iWi

= −
1

n

n∑

i=1

[
V(Xi; h̃, λ̃)

]−1 [
H̃U(−i),1(Xi;h, λ)

]
η⋆

iWi

−
1

n

n∑

i=1

[
V(Xi; h̃, λ̃)

]−1 [
H̃U(−i),2(Xi;h, λ)

]
η⋆

iWi
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def
= CV⋆

22,1(h, λ) + CV⋆

22,2(h, λ),

where U(−i),1(Xi;h, λ) and U(−i),2(Xi;h, λ) are defined in (B.30). By the argument similar

to the analysis of Πn1(h, λ), we have

CV⋆

22,1(h, λ) = OP

(
n−1/2κnmn

)
= oP

(
m2

n/(nH
1/2)
)

uniformly over (h, λ) ∈ H. On the other hand, using the argument in the proofs of Lem-

mas B.5 and B.6, we may show that

CV⋆

22,2(h, λ) = OP

(
mn/(nH

1/2)
)
= oP

(
m2

n/(nH
1/2)
)

uniformly over (h, λ) ∈ H. Combining the above results, we can prove that

CV22(h, λ) = CV⋆

22(h, λ)(1 + oP(1)) = OP

(
n−1/2κnmn +mn/(nH

1/2)
)
= oP

(
m2

n/(nH
1/2)
)

(B.42)

uniformly over (h, λ) ∈ H. By (B.24), (B.27), (B.41) and (B.42), we prove (A.2), completing

the proof of Lemma A.2. �

LEMMA B.4. Suppose that Assumptions 1(i) and 2–4 are satisfied. Then (B.28) holds uniformly

over (h, λ) ∈ H.

PROOF OF LEMMA B.4. Throughout this proof, we let Xn be a σ-field generated by Xi,

i = 1, · · · ,n. With standard calculation, we may show that, uniformly over (h, λ) ∈ H,

E
[
CV21(h, λ)

∣∣Xn

]
=

1

n

n∑

i=1

Wi

∫ζi(Xi;h,λ)

0

[
Fe(z|X̄i) − Fe(0|X̄i)

]
dz

=
1

2n

n∑

i=1

ζ2
i(Xi;h, λ)Wife(0|X̄i) +OP

(
1

n

n∑

i=1

ζ3
i(Xi;h, λ)

)
,(B.43)

where ζi(Xi;h, λ) = ζi(Xi), making its dependence on h and λ explicitly. Following the

proof of Lemma A.1, we have

max
16i6n

sup
(h,λ)∈H

(nH)1/2 |ζi(Xi;h, λ)| = OP(mn), (B.44)

which together with (B.43), indicates that

E
[
CV21(h, λ)

∣∣Xn

]
=

1

2n

n∑

i=1

ζ2
i(Xi;h, λ)Wife(0|X̄i) +OP

(
m3

n/(nH)3/2
)
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=
1

2n

n∑

i=1

ζ2
i(Xi;h, λ)Wife(0|X̄i) + oP

(
m5/2

n /(nH)5/4
)

. (B.45)

Furthermore, by the uniform Bahadur representation in (A.1), we have

(nH)1/2ζi(Xi;h, λ) = (nH)1/2ζ∗i (Xi;h, λ) +OP(m
3/2
n (nH)−1/4) (B.46)

and consequently,

E
[
CV21(h, λ)

∣∣Xn

]
=

1

2n

n∑

i=1

[ζ∗i (Xi;h, λ)]2 Wife(0|X̄i) +OP

(
m5/2

n /(nH)5/4
)

. (B.47)

By (B.47), we only need to show

CV21(h, λ) = E
[
CV21(h, λ)

∣∣Xn

]
+OP

(
m5/2

n /(nH)5/4 +m2
n/(nH

1/2)
)

(B.48)

uniformly over (h, λ) ∈ H.

By (B.44) and (B.46), we readily have that

max
16i6n

sup
(h,λ)∈H

(nH)1/2 |ζ∗i (Xi;h, λ)| = OP(mn). (B.49)

Letting CV∗
21(h, λ) be defined similarly to CV21(h, λ) but with ζi(Xi;h, λ) replaced by ζ∗i (Xi;h, λ),

by (B.46) and (B.49), we can prove that

CV21(h, λ) − CV∗
21(h, λ) − E

[
CV21(h, λ) − CV∗

21(h, λ)
∣∣Xn

]
= OP

(
m5/2

n /(nH)5/4
)

(B.50)

uniformly over (h, λ) ∈ H. We next prove that

CV∗
21(h, λ) = E

[
CV∗

21(h, λ)
∣∣Xn

]
+OP

(
m2

n/(nH
1/2)
)

(B.51)

uniformly over (h, λ) ∈ H. Let Ωn3 be the event defined as

max
16i6n

sup
(h,λ)∈H

(nH)1/2 |ζ∗i (Xi;h, λ)| 6 c4mn.

By (B.49), it is easy to prove that P (Ωc
n3) → 0 by choosing c4 > 0 to be sufficiently large.

Hence, to prove (B.51), we next only show that

P

(
sup

(h,λ)∈H

∣∣CV∗
21(h, λ) − E

[
CV∗

21(h, λ)
∣∣Xn

]∣∣ > c5m
2
n/(nH

1/2), Ωn3

)
→ 0, (B.52)

where c5 is a sufficiently large positive constant. The proof of (B.52) is similar to the proof

of Lemma B.1. Details are omitted here to save the space. �
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LEMMA B.5. Suppose that Assumptions 1, 2(i), 3(i) and 4 satisfied. Define

ηj(Xi;h, λ) =
[
ηj(X̄i) − η⋆

j

]
Kh,λ(Xj, Xi).

Then, we have

∑

j 6=i

∑

k6=i,j

ηj(Xi;h, λ) {ηk(Xi;h, λ) − E [ηk(Xi;h, λ)|Xi]} = OP

(
n3/2κ2

nmnH
−1/2H̃−2

)
(B.53)

uniformly over i = 1, · · · ,n and (h, λ) ∈ H.

PROOF OF LEMMA B.5. It is sufficient for us to show that

∑

j 6=i

{
ηj(Xi;h, λ) − E

[
ηj(Xi;h, λ)|Xi

]} ∑

k<j,6=i

{ηk(Xi;h, λ) − E [ηk(Xi;h, λ)|Xi]} = OP

(
nκ2

nmnH
−1H̃−2

)

(B.54)

and

∑

j 6=i

E [ηj(Xi;h, λ)|Xi]
∑

k<j, 6=i

{ηk(Xi;h, λ) − E [ηk(Xi;h, λ)|Xi]} = OP

(
n3/2κ2

nmnH
−1/2H̃−2

)
.

(B.55)

We next only prove (B.54) as the proof of (B.55) is similar.

Let

Rj(Xi;h, λ) = {ηj(Xi;h, λ) − E [ηj(Xi;h, λ)|Xi]}
∑

k<j,6=i

{ηk(Xi;h, λ) − E [ηk(Xi;h, λ)|Xi]}

Fj(i) = σ {Xi, (Xk : k 6 j+ 1), (ek : k 6 j)}. It is easy to verify that {Rj(Xi;h, λ),Fj(i)}j 6=i is

a sequence of martingale differences with mean zero. As in the proof of Lemma B.1, we

cover the set H by some disjoint sets H̃(k), k = 1, · · · , K̃. Let the center point of H̃(k) be[
h̃(k), λ̃(k)

]
and the size of the set H̃(k) guarantee that

max
16i6n

max
16k6K̃

sup
(h,λ)∈H̃(k)

∣∣∣∣∣
∑

j 6=i

Rj(Xi;h, λ) −
∑

j 6=i

Rj(Xi; h̃(k), λ̃(k))

∣∣∣∣∣ = OP

(
nκ2

nmnH
−1H̃−2

)
.

(B.56)

On the other hand, using the expoential-type inequality for martingale differences (e.g.,

Theorem 1.2A in de la Peña, 1999), we may show that

P

(
max

16i6n
max

16k6K̃

∣∣∣∣∣
∑

j 6=i

Rj(Xi; h̃(k), λ̃(k))

∣∣∣∣∣ > c6nκ
2
nmnH

−1H̃−2

)
→ 0 (B.57)
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by choosing c6 > 0 to be sufficiently large. With (B.56) and (B.57), we complete the proof

of (B.54). �

LEMMA B.6. Suppose that Assumptions 1, 2(i), 3(ii) and 4 are satisfied. Then we have

n∑

i=1

[V(Xi;h, λ)]−2Wife(0|X̄i)
∑

j 6=i

∑

k 6=i,j

η⋆

jη
⋆

kKh,λ(Xj, Xi)Kh,λ(Xk, Xi) = OP

(
mnn

2H−1/2H̃−2
)

uniformly over i = 1, · · · ,n and (h, λ) ∈ H.

PROOF OF LEMMA B.6. The proof is similar to the proof of Lemma B.5 with some modifi-

cation. It is sufficient to show that

n∑

j=1

η⋆

j

∑

i<j

[V(Xi;h, λ)]−2Wife(0|X̄i)Kh,λ(Xj, Xi)
∑

k<j, 6=i

η⋆

kKh,λ(Xk, Xi) = OP

(
mnn

2H−1/2H̃−2
)

(B.58)

uniformly over i = 1, · · · ,n and (h, λ) ∈ H. Define

R⋆

j (h, λ) = η⋆

j

∑

i<j

[V(Xi;h, λ)]−2Wife(0|X̄i)Kh,λ(Xj, Xi)
∑

k<j,6=i

η⋆

kKh,λ(Xk, Xi)

and let F⋆

j = σ {(Xk : k 6 j+ 1), (ek : k 6 j)}. It is easy to verify that
{
R⋆

j (h, λ),F⋆

j

}
is a

sequence of martingale differences with mean zero. As in the proof of Lemma B.5, we

cover the set H by some disjoint sets H̆(k), k = 1, · · · , K̆. Let
[
h̆(k), λ̆(k)

]
be the center

point of H̆(k). In addition, the size of the set H̆(k) can ensure that

max
16k6K̆

sup
(h,λ)∈H̆(k)

∣∣∣∣∣

n∑

j=1

R⋆

j (h, λ) −
n∑

j=1

R⋆

j (h̆(k), λ̆(k))

∣∣∣∣∣ = OP

(
mnn

2H−1/2H̃−2
)

. (B.59)

Using the exponential-type inequality for martingale differences, we may show that

P

(
max

16k6K̆

∣∣∣∣∣

n∑

j=1

R⋆

j (h̆(k), λ̆(k))

∣∣∣∣∣ > c7nmnn
2H−1/2H̃−2

)
→ 0 (B.60)

by choosing c7 > 0 to be sufficiently large. By (B.59) and (B.60), we prove (B.58), complet-

ing the proof of Lemma B.6. �

The proof of Lemma A.3 is very similar to the proof of Lemma A.1 above, and need the

following three technical lemmas to obtain the uniform Bahadur representation. Define

Uns(x, δ) =
1

nb1

n∑

i=1

ηis(x, δ)k

(
Xc
is − x

b1

)
, Uns(x) = Uns(x, 0) =

1

nb1

n∑

i=1

ηis(x)k

(
Xc
is − x

b1

)
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with ηis(x, δ) = τ−I
(
Yi −Qc

τ,s(x) − (nb1)
−1/2δ < 0

)
and ηis(x) = τ−I

(
Yi −Qc

τ,s(x) < 0
)
,

and

δis(x) = Qc
τ,s(X

c
is) −Qc

τ,s(x) and δ̂s(x) = (nb1)
1/2
[
Q̂c

τ,s(x) −Qc
τ,s(x)

]
.

LEMMA B.7. Suppose that Assumptions 1(i), 4(i), 5(i)(ii) and 6(i) are satisfied. Then, we have

max
16s6d1+d2

sup
x∈S⋆

s

|Uns(x)| = OP

(
n−2/5

√
logn

)
(B.61)

when b1 = α1 · n
−1/5 and S⋆

s ⊂ Ss such that ws(x) 6= 0 for x ∈ S⋆

s.

PROOF OF LEMMA B.7. Similarly to the proof of (A.18) in Appendix A, by Assumption

5(i)(ii), we readily have that

E [Uns(x)] = O(b2
1) = O(n−2/5) = o

(
n−2/5

√
logn

)
(B.62)

uniformly over 1 6 s 6 d1 + d2 and x ∈ S⋆

s. By (B.62), we only need to prove that

max
16s6d1+d2

sup
x∈S⋆

s

|Uns(x) − E [Uns(x)]| = OP

(
n−2/5

√
logn

)
. (B.63)

As in the proof of Lemma B.1, we cover the compact set S⋆

s by some disjoint sets S⋆

s(k),

k = 1, · · · ,K⋆. Denote the center point of S⋆

s(k) by xs(k) and let the radius of S⋆

s(k) be of

order n−4/5
√

logn. Note that

max
16s6d1+d2

sup
x∈S⋆

s

|Uns(x) − E [Uns(x)]|

6 max
16s6d1+d2

max
16k6K⋆

|Uns(xs(k)) − E [Uns(xs(k))]|+

max
16s6d1+d2

max
16k6K⋆

sup
x∈S⋆

s(k)

|Uns(x) −Uns(xs(k))|+

max
16s6d1+d2

max
16k6K⋆

sup
x∈S⋆

s(k)

|E [Uns(x)] − E [Uns(xs(k))]| . (B.64)

By the smoothness condition on k(·) in Assumption 4(i), we may show that

max
16s6d1+d2

max
16k6K⋆

sup
x∈S⋆

s(k)

|Uns(x) −Uns(xs(k))| = OP

(
n−2/5

√
logn

)
(B.65)

and

max
16s6d1+d2

max
16k6K⋆

sup
x∈S⋆

s(k)

|E [Uns(x)] − E [Uns(xs(k))]| = O
(
n−2/5

√
logn

)
. (B.66)
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By the Bernstein inequality for independent sequence (e.g., van der Vaart and Wellner,

1996) and noting that both K⋆ and d1 + d2 are divergent to infinity at a polynomial rate of

n, we can prove that, for c8 > 0 sufficiently large

P

(
max

16s6d1+d2

max
16k6K⋆

|Uns(xs(k)) − E [Uns(xs(k))]| > c8n
−2/5

√
logn

)

6

d1+d2∑

s=1

K⋆

∑

k=1

P
(
|Uns(xs(k)) − E [Uns(xs(k))]| > c8n

−2/5
√

logn
)

6 O ((d1 + d2) · K
⋆ · exp {−c⋆8 logn}) = o(1),

where c⋆8 would be a sufficiently large positive constant when c8 is large enough. Hence,

we have

max
16s6d1+d2

max
16k6K⋆

|Uns(xs(k)) − E [Uns(xs(k))]| = O
(
n−2/5

√
logn

)
(B.67)

By (B.64)–(B.67), we can complete the proof of Lemma B.7. �

LEMMA B.8. Suppose that Assumptions 1(i), 4(i), 5(ii) and 6(i) are satisfied. Then, we have

max
16s6d1+d2

sup
x∈S⋆

s

sup
|δ|6c9 log1/2 n

|Uns(x, δ) −Uns(x) − E [Uns(x, δ) −Uns(x)]| = OP

(
n−3/5 log3/2 n

)
,

(B.68)

where c9 is a sufficiently large positive constant.

PROOF OF LEMMA B.8. Following the same line as in the proof of Lemma B.2, we can

prove (B.68). Details are omitted here to save the space. �

LEMMA B.9. Suppose that Assumptions 4(i) and 5(ii) are satisfied. Then, we have

max
16s6d1+d2

sup
x∈S⋆

s

sup
|δ|6c9 log1/2 n

∣∣E [[Uns(x, δ) −Uns(x)]] + (nb1)
−1/2Vc

s (x)δ
∣∣ = o

(
n−3/5 log3/2 n

)
.

(B.69)

where Vc
s (x) = fcs(x)f

c
e,s(0|x) with fcs(·) and fce,s(0|·) defined in Assumption 5(ii).

PROOF OF LEMMA B.9. The proof of (B.69) is similar to the proof of Lemma B.3. Details

are omitted here to save the space. �

PROOF OF LEMMA A.3. To save the space, we only prove (A.20) in details for the case of

continuous covariates, and sketch the main idea for the proof of (A.21). Using Lemmas

B.8 and B.9 as well as the argument in the proof of Lemma A.1, we may show that

max
16s6d1+d2

sup
x∈S⋆

s

sup
|δ|6c9 log1/2 n

∣∣Uns(x, δ) −Uns(x) + (nb1)
−1/2Vc

s (x)δ
∣∣ = OP

(
n−3/5 log3/2 n

)

(B.70)
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and

max
16s6d1+d2

sup
x∈S⋆

s

Uns

(
x, δ̂s(x)

)
= oP

(
n−3/5 log3/2 n

)
, (B.71)

where δ̂s(x) = (nb1)
1/2
[
Q̂c

τ,s(x) −Qc
τ,s(x)

]
.

Note that

P

(
max

16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

−δ ·Uns(x, δ) < (c9c10)n
−2/5 logn

)

6 P

(
max

16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

−δ ·Uns(x, δ) < (c9c10)n
−2/5 logn, Ωn4

)
+ P (Ωc

n4) ,

(B.72)

where c10 is a positive constant and Ωn4 denotes the event that

max
16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

{
−δ
[
−(nb1)

−1/2Vc
s (x)δ+Uns(x)

]}
> 2(c9c10)n

−2/5 logn.

By Assumption 5(ii), there exists a constant c⋆ > 0 such that

min
16s6d1+d2

inf
x∈S

Vc
s (x) > c⋆,

indicating that

max
16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

{
−δ
[
−(nb1)

−1/2Vc
s (x)δ+Uns(x)

]}

> −c9 log1/2 n · max
16s6d1+d2

sup
x∈S⋆

s

|Uns(x)|+ c⋆c
2
9n

−2/5 logn.

Hence, if Ωc
n4 holds, we must have that

−c9 log1/2 n · max
16s6d1+d2

sup
x∈S⋆

s

|Uns(x)|+ c⋆c
2
9n

−2/5 logn < 2(c9c10)n
−2/5 logn,

leading to

P(Ωc
n4) 6 P

(
max

16s6d1+d2

sup
x∈S⋆

s

|Uns(x)| > (c⋆c9 − 2c10)n
−2/5 log1/2 n

)
→ 0 (B.73)

by letting c9 be large enough. On the other hand, when the event

max
16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

−δ ·Uns(x, δ) < (c9c10)n
−2/5 logn
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and Ωn4 jointly hold, we must have

max
16s6d1+d2

sup
x∈S⋆

s

sup
|δ|=c9 log1/2 n

{
δ
[
Uns(x, δ) −Uns(x) + (nb1)

−1/2Vc
s (x) δ

]}
> (c9c10)n

−2/5 logn.

This, together with (B.70), implies that

P

(
max

16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

−δ ·Uns(x, δ) < (c9c10)n
−2/5 logn, Ωn4

)
→ 0. (B.74)

Combining (B.72)–(B.74), we can prove that

P

(
max

16s6d1+d2

sup
x∈S⋆

s

inf
|δ|=c9 log1/2 n

−δ ·Uns(x, δ) < (c9c10)n
−2/5 logn

)
→ 0, (B.75)

by choosing c9 > 0 sufficiently large. Using the argument in the proof of (B.20), we may

strengthen (B.75) to

P

(
max

16s6d1+d2

sup
x∈S⋆

s

inf
|δ|>c9 log1/2 n

|Uns(x, δ)| < c10n
−2/5 log1/2 n

)
→ 0. (B.76)

Observe that

P

(
max

16s6d1+d2

sup
x∈S⋆

s

∣∣∣Q̂c
τ,s(x) −Qc

τ,s(x)
∣∣∣ > c9n

−2/5 log1/2 n

)

6 P

(
max

16s6d1+d2

sup
x∈S⋆

s

∣∣∣Q̂c
τ,s(x) −Qc

τ,s(x)
∣∣∣ > c9n

−2/5 log1/2 n,Ωn5

)
+ P (Ωc

n5) ,(B.77)

where Ωn5 denotes the event that

max
16s6d1+d2

sup
x∈S⋆

s

Uns

(
x, δ̂s(x)

)
< c10n

−2/5 log1/2 n.

By (B.71), we have that for any c10 > 0

P (Ωc
n5) = P

(
max

16s6d1+d2

sup
x∈S⋆

s

Uns

(
x, δ̂s(x)

)
> c10n

−2/5 log1/2 n

)
→ 0. (B.78)

On the other hand, by (B.76), we may prove that

P

(
max

16s6d1+d2

sup
x∈S⋆

s

∣∣∣Q̂c
τ,s(x) −Qc

τ,s(x)
∣∣∣ > c9n

−2/5 log1/2 n,Ωn5

)
→ 0. (B.79)

By (B.77)–(B.79), we complete the proof of (A.20).

The proof of (A.21) for the case of discrete covariate is very similar (and indeed sim-

pler) as the involvement of the discrete kernel only affects the asymptotic bias term of the

kernel quantile estimation, which has the order of O(b2) = O(n−2/5) by the choice of b2.

Details are omitted here to save the space. �
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