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a b s t r a c t 

This paper presents a scaled reformulation of a robust second-order Discontinuous Galerkin (DG2) solver for 
the Shallow Water Equations (SWE), with guiding principles on how it can be naturally extended to fit into the 
multiresolution analysis of multiwavelets (MW). Multiresolution analysis applied to the flow and topography data 
enables the creation of an adaptive MWDG2 solution on a non-uniform grid. The multiresolution analysis also 
permits control of the adaptive model error by a single user-prescribed parameter. This results in an adaptive 
MWDG2 solver that can fully exploit the local (de)compression of piecewise-linear modelled data, and from 

which a first-order finite volume version (FV1) is directly obtainable based on the Haar wavelet (HFV1) for local 
(de)compression of piecewise-constant modelled data. The behaviour of the adaptive HFV1 and MWDG2 solvers 
is systematically studied on a number of well-known hydraulic tests that cover all elementary aspects relevant 
to accurate, efficient and robust modelling. The adaptive solvers are run starting from a baseline mesh with a 
single element, and their accuracy and efficiency are measured referring to standard FV1 and DG2 simulations 
on the uniform grid involving the finest resolution accessible by the adaptive solvers. Our findings reveal that 
the MWDG2 solver can achieve the same accuracy as the DG2 solver but with a greater efficiency than the 
FV1 solver due to the smoothness of its piecewise-linear basis, which enables more aggressive coarsening than 
with the piecewise-constant basis in the HFV1 solver. This suggests a great potential for the MWDG2 solver 
to efficiently handle the depth and breadth in resolution variability, while also being a multiresolution mesh 
generator. Accompanying model software and simulation data are openly available online. 

1. Introduction 

Explicit Godunov-type finite volume schemes ( Toro and Garcia- 
Navarro, 2007 ) have become standard in hydraulic models ( Teng et al., 
2017 ). In essence, the Finite Volume (FV) foundation uses a piecewise- 
constant representation of flow variables over a local mesh element in 
a first-order accurate framework (FV1). Piecewise-constant data can be 
evolved element-wise driven by spatial flux exchange through element 
boundaries, while only needing data from adjacent neighbours to com- 
plete Riemann flux calculations. This locality in storage and evolution 
of piecewise constant data offers practical advantages such as suitability 
for parallelisation ( Lacasta et al., 2013, Sanders et al., 2010 ) and makes 
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wetting and drying a lot easier to handle ( Hou et al., 2013, Medeiros 
and Hagen, 2013 ). However, the FV1 approach suffers from excessive 
numerical diffusion, which can only be alleviated by using fine reso- 
lution meshes, often leading to unacceptable computational costs and 
meshing inflexibilities over large spatial domains. Attempts to incorpo- 
rate classical adaptive mesh refinement strategies within the FV1 ap- 
proach are shown to cause adverse effects, such as keeping a coarsest 
mesh resolution that is fine enough, increasing model sensitivity to tun- 
ing many adaptivity parameters, and impacting overall conservativeness 
( Zhou et al., 2013, Kesserwani and Liang, 2015, Liang et al., 2015, Donat 
et al., 2014 ). These adverse effects are not alleviated with higher-order 
FV methods that involve non-local interpolation of piecewise-constant 
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data ( Li, 2010, An and Yu, 2014 ). A numerical modelling strategy is still 
desired that can inherently automate and initialise mesh resolution and 
improve runtime efficiency within the FV1 approach. 

The Discontinuous Galerkin (DG) method extends the foundation 
of the FV1 approach by shaping local piecewise-polynomial solutions 
from a discrete (element-wise) formulation of the conservative model 
equation(s). DG methods significantly reduce numerical diffusion even 
on very coarse meshes (e.g. at a grid resolution exceeding 10 m 2 ) and 
have excellent conservation properties ( Minatti et al., 2016, Kesserwani, 
2013, Kesserwani and Wang, 2014, Bokhove, 2005 ). Compared to a FV 
counterpart, the DG method has a much larger cost per mesh element in 
terms of data storage and computing time, and such cost is proportional 
to the desired order-of-accuracy. Even with a simplified second-order 
DG (DG2) method for practical conveniences ( Kesserwani et al., 2018 ), 
runtime costs on uniform meshes are 7-15 times greater than with first- 
and second-order accurate FV alternatives ( Kesserwani, 2013, Kesser- 
wani and Wang, 2014 ). Classical adaptive mesh refinement strategies 
with DG methods do not seem a practical way forward because they 
still suffer from many of the adverse effects reported for the FV1 method 
( Kesserwani and Liang, 2015, Kesserwani and Liang, 2012 ). A sparse nu- 
merical modelling strategy, which can make DG2 as efficient as FV1, is 
thus highly desired to increase accuracy and coverage in handling high- 
resolution modelled data. 

Adaptive wavelet-based schemes offer an attractive route to over- 
come many of the adverse effects observed in classical adaptive mesh 
refinement methods ( Liang et al., 2015, Donat et al., 2014, Li, 2010, 
An and Yu, 2014, Kesserwani and Liang, 2012, Liang and Borthwick, 
2009 ). When applied to the reformulation of FV1 models, these schemes 
introduce a multiresolution analysis to (de)compress piecewise-constant 
modelled data mapped by the Haar wavelet from within the local ba- 
sis of the FV1 method ( Harten, 1995, Cohen et al., 2003, Müller, 2002, 
Minbashian et al., 2017, Archibald et al., 2011, Wang et al., 2016 ). We 
term this Haar-wavelet variant of FV1 the HFV1 method. Haleem et al. 
(2015) were the first to propose an HFV1 approach for solving the 
shallow water equations (SWE) with irregular topography and wet-dry 
fronts, demonstrating that HFV1 directly inherits the robustness proper- 
ties of the underlying FV1 scheme. However, Haleem et al. (2015) did 
not fully leverage the local (de)compressibility property of wavelets. 
Instead, their HFV1 approach retained some of the aforementioned ad- 
verse effects, by still relying on an extrinsic gradient sensor alongside its 
extra user-specified parameter and use of relatively fine initial meshes 
with very few resolution levels ( Haleem et al., 2015 ). 

More recently, adaptive multiwavelet-based schemes have been de- 
vised based on a multiresolution analysis implemented using multi- 
wavelets (MW) within the local basis of DG methods ( Hovhannisyan 
et al., 2014, Gerhard et al., 2015, Gerhard et al., 2015, Gerhard and 
Müller, 2014 ). Adaptive MWDG schemes have also been proposed 
for the solution of the SWE in the works of Gerhard et al. (2015) , 
Kesserwani et al. (2015) , Caviedes-Voullième and Kesserwani (2015) , 
who have highlighted the ability of these approaches to: 

• Achieve resolution refinement and coarsening driven by a single 
user-prescribed parameter; 

• Rigorously transfer and recover data between disparate resolution 
levels, thereby allowing arbitrarily large resolution gaps and any de- 
gree of mesh coarsening; and, 

• Readily preserve accuracy, conservation and robustness properties 
of the underlying DG scheme. 

Starting with a robust DG2 hydrodynamic model, MW can be intro- 
duced subject to appropriate scaling of the DG2 local basis functions to 
form an MWDG2 scheme in which piecewise-linear modelled data can 
be analysed, scaled and assembled into an adaptive solution. Compared 
to the HFV1 adaptive solver, which relies on piecewise-constant mod- 
elled data, MW allow greater compression rates. However, the strength 
of this property relating to standard FV1 and DG2 models is not yet 

identified from consistent MWDG2 and HFV1 schemes that fully exploit 
local (multi)wavelet compression of data. 

This paper studies the behaviour of (multi)wavelets integrated 
within robust FV1 and DG2 solvers, and identifies the extent of their 
benefits and limitations for hydraulic modelling. In Section 2 , a practi- 
cal implementation of an MWDG2 solver is presented that fully exploits 
local MW compression of data, and in which an HFV1 solver is obtained 
by direct simplification from the MWDG2 formulation ( Section 2.4 ). 
Section 2 includes also the formulation of a scaled DG2 solver 
( Section 2.1 ) with guiding principles on how it readily fits into the mul- 
tiresolution analysis of MW ( Section 2.2 ) to form the so-called adap- 
tive MWDG2 scheme ( Section 2.3 ). In Section 3 , the adaptive HFV1 and 
MWDG2 solvers are systematically tested and compared in the simula- 
tion of well-known hydraulic tests that cover elementary aspects rele- 
vant to accurate, efficient and robust hydraulic modelling. The adaptive 
solvers are run starting from an initial mesh with a single element span- 
ning the entire domain, and the accuracy and efficiency of the adap- 
tive solvers are quantified in relation to standard FV1 and DG2 sim- 
ulations on the uniform grid involving the finest resolution accessible 
to the adaptive solvers. In Section 4 , key findings and conclusions of 
this work are summarised. Numerical simulation data ( Shaw and Kesser- 
wani, 2018 ) and a Fortran 2003 implementation of the HFV1/MWDG2 
shallow flow models ( Shaw et al., 2018 ) are available to download from 

Zenodo. Instructions for running the models and interpreting the data 
are provided in Appendix 1 . 

2. Adaptive MWDG2 scheme 

This section outlines the implementation details of an MWDG2 solver 
for the conservative form of the standard SWE with source terms over a 
1D domain Ω, written as: 

𝜕 𝑡 𝐔 + 𝜕 𝑥 𝐅 ( 𝐔 ) = 𝐒 ( 𝐔 ) (1) 

where 𝜕 t and 𝜕 x represent partial derivatives with respect to t and x , 
U ( x, t ) is the vector of the state variables at a location x and time t , F ( U ) 
is the spatial flux vector and S ( U ) is a vector including bed and friction 
slope terms. These vectors are given by: 

𝐔 = 

[ 
ℎ 

𝑞 

] 
, 𝐅 = 

[ 
𝑞 

𝑞 2 

ℎ 
+ 𝑔 

ℎ 2 

2 

] 
and 𝐒 = 

[ 
0 

𝑆 𝑏 + 𝑆 𝑓 

] 
(2) 

where g (m/s 2 ) is gravity, h (m) is the water height, q = hv (m 2 /s) is the 
flow discharge per unit width with v (m/s) being the velocity, and z ( x ) is 
the topography function in the bed slope source term S b = − gh 𝜕 x z . The 
term S f = − C f v | v | represents the energy loss due to friction effects with 
𝐶 𝑓 = 𝑔 𝑛 2 

𝑀 
∕ ℎ 1∕3 in which n M is the Manning’s bed roughness coefficient. 

2.1. Scaled DG2 formulation 

The 1D domain Ω is divided into a set of M elements 
{ I i } i = 1, …, M by means of M + 1 interface points [ x i − 1/2 ] i = 1, …, M + 1 such 
that I i = [ x i − 1/2 , x i + 1/2 ] is a segment with Ω = ∪𝑀 

𝑖 =1 
𝐼 𝑖 and 𝐼 𝑖 

⋂
𝐼 𝑖 +1 = 

{ 𝑥 𝑖 +1∕2 } . An element I i has the centre 𝑥 𝑖 = 
1 
2 
( 𝑥 𝑖 +1∕2 + 𝑥 𝑖 −1∕2 ) and size 

Δx = x i + 1/2 − x i − 1/2 . I i can be mapped into a reference element [ − 1, 1] 
by the following change of variable 𝜉( x ) = 2( x − x i )/ Δx ; therefore 𝜉( x ), 
such that x ( 𝜉) = x i + 𝜉 Δx /2, can be used to position I i onto [ − 1, 1]. 

2.1.1. Finite element weak form 

By multiplying Eq. (1) by a test function 𝜈( x ), integrating by parts to 
remove 𝜕 x on the flux term, and moving the flux terms to the RHS, the 
following weak form can be obtained ( Cockburn and Shu, 2001 ): 

∫Ω 𝜕 𝑡 𝐔 ( 𝑥, 𝑡 ) 𝜈( 𝑥 ) 𝑑𝑥 = − 

{ 

[ 𝐅 ( 𝐔 ( 𝑥, 𝑡 ) ) 𝜈( 𝑥 ) ] 𝜕Ω − ∫Ω 𝐅 ( 𝐔 ( 𝑥, 𝑡 ) ) 𝜕 𝑥 𝜈( 𝑥 ) 𝑑𝑥 

− ∫Ω 𝐒 ( 𝐔 ( 𝑥, 𝑡 ) ) 𝜈( 𝑥 ) 𝑑𝑥 

} 

(3) 
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It is worth noting that, in Eq. (3) , the incorporation of appropri- 
ate local bases functions (orthonormal, compactly-supported and dis- 
continuous) as choices for the test function 𝜈( x ) and for expanding an 
approximate solution U h = [ h h q h ] 

T to U are key ingredients to designing 
an adaptive MWDG scheme ( Hovhannisyan et al., 2014, Gerhard et al., 
2015 ). These choices are needed in order to: 

(i) Embed local resolution variability into the basis functions shap- 
ing the DG spatial operators via a dual basis ; 

(ii) Expand a local DG approximate solution that is compatible with 
multi-scale decomposition offered by MW via a primal basis ; and, 

(iii) Get the identity matrix as the only multiplier of the time deriva- 
tive term 𝜕 t U in the LHS of Eq. (3) via deploying bi-orthonormal 
primal and dual bases . 

The key concepts relevant to these basis functions are introduced 
next as appropriate. 

2.1.2. Choice of bi-orthonormal bases 
The starting point is to consider the Legendre basis of polynomials up 

to first-order within the scope of designing a DG2 scheme ( Cockburn and 
Shu, 2001 ). This basis is denoted by P = [ P 0 P 1 ] T with P 0 ( 𝜉) = 1 and 
P 1 ( 𝜉) = 𝜉. As such, it is compactly-supported on [ − 1, 1], inherently 
discontinuous at 𝜉 = ± 1, and orthogonal for the L 2 -norm defined by the 
following inner product: 

⟨𝑓, 𝑔 ⟩ = ∫Ω 𝑓 ( 𝜉) 𝑔 ( 𝜉) 𝑑𝜉 (4) 

The basis P is normalised for the L 2 -norm to produce the L 2 - 
orthonormal basis 𝐏̂ = [ ̂𝑃 0 𝑃 1 ] T , such that ⟨𝑃 𝐾 , 𝑃 𝐾 ′⟩ = 𝛿𝐾 𝐾 ′ where 
𝛿KK ′ = 1 for 𝐾 = 𝐾 ′ and 𝛿KK ′ = 0 otherwise. The components of the or- 
thonormal basis 𝐏̂ are ( Alpert et al., 2002 ): 

𝑃 𝐾 ( 𝜉) = 

√ 
2 𝐾 + 1 

2 
𝑃 𝐾 ( 𝜉) ( 𝐾 = 0 , 1 and 𝜉 ∈ [ −1 , 1 ] ) (5) 

From the orthonormal basis components 𝑃 0 and 𝑃 1 , the local pri- 
mal and dual bases can be defined over I i , which are denoted as 𝝓𝑖 = 

[ 𝜑 0 
𝑖 ( 𝑥 ) 𝜑 1 

𝑖 ( 𝑥 ) ] 
T and 𝝓̃𝑖 = [ ̃𝜑 0 

𝑖 ( 𝑥 ) 𝜑̃ 1 
𝑖 ( 𝑥 ) ] 

T with: 

𝜑 
𝐾 
𝑖 ( 𝑥 ) = 

√
2 𝑃 𝐾 ( 𝜉( 𝑥 ) ) 

(
𝐾 = 0 , 1 and 𝑥 ∈ 𝐼 𝑖 

)
(6) 

𝜑̃ 𝐾 
𝑖 ( 𝑥 ) = 

𝜑 𝐾 
𝑖 ( 𝑥 ) 

Δ𝑥 

(
𝐾 = 0 , 1 and 𝑥 ∈ 𝐼 𝑖 

)
(7) 

Each of the primal and the dual bases is compactly-supported, or- 
thogonal and discontinuous at the interfaces x i ± 1/2 of the element I i . 
These bases are bi-orthonormal since the following relationship holds: 

⟨ 
𝜑 

𝐾 
𝑖 , ̃𝜑 

𝐾 ′

𝑖 ′

⟩ 
= 𝛿𝑖𝑖 ′𝛿𝐾 𝐾 ′ (8) 

2.1.3. DG2 operators 
By choosing the test function 𝜈( x ) as the components of the dual basis 

𝜑̃ 𝐾 
𝑖 ( 𝑥 ) in Eq. (7) and exploiting their orthogonality and compact-support 
properties, the weak form in Eq. (3) becomes: 

∫
𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝜕 𝑡 𝐔 𝜑̃ 𝐾 
𝑖 ( 𝑥 ) 𝑑𝑥 = 𝐋 𝐾 

𝑖 ( 𝐔 ) ( 𝐾 = 0 , 1 ) (9) 

where 𝐋 𝐾 
𝑖 ( 𝐔 ) are operators involving spatial evaluations of flux and 

source terms, given by: 

𝐋 𝐾 
𝑖 = − 

{ [
𝐅 ( 𝐔 ) 𝜑̃ 𝐾 

𝑖 ( 𝑥 ) 
]𝑥 𝑖 +1∕2 
𝑥 𝑖 −1∕2 

− ∫
𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝐅 ( 𝐔 ) 𝜕 𝑥 ̃𝜑 𝐾 
𝑖 ( 𝑥 ) 𝑑𝑥 

− ∫
𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝐒 ( 𝐔 ) ̃𝜑 𝐾 
𝑖 ( 𝑥 ) 𝑑𝑥 

} 

(10) 

U is replaced by an approximate solution U h expressed in terms of 
the primal basis as: 

𝐔 ℎ ( 𝑥, 𝑡 ) 
||𝐼𝑖 = 

1 ∑
𝐾=0 

𝐔 𝐾 
𝑖 ( 𝑡 ) 𝜑 𝐾 

𝑖 ( 𝑥 ) = 𝐔 0 
𝑖 ( 𝑡 ) + 

√
3 𝜉( 𝑥 ) 𝐔 1 

𝑖 ( 𝑡 ) (11) 

in which 𝐔 0 
𝑖 ( 𝑡 ) and 𝐔 1 

𝑖 ( 𝑡 ) are expansion coefficients, or modes, represent- 
ing an average and a slope characterising the local linear approximation 
of U h over I i . The initial state of the coefficients at the RHS of Eq. (11) , 
𝐔 𝐾 

𝑖 (0) , is obtained by projecting a given initial condition U 0 ( x ) = U ( x , 
0) onto the dual basis as follows: 

𝐔 𝐾 
𝑖 ( 0 ) = 

⟨
𝐔 0 , ̃𝜑 𝐾 

𝑖 

⟩
= ∫

𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝐔 0 ( 𝑥 ) 𝜑̃ 𝐾 
𝑖 ( 𝑥 ) 𝑑𝑥 (12) 

which, once mapped into the reference element [ − 1, 1] for applying 
( K + 1) Gauss–Legendre quadrature rules and then manipulated to in- 
volve interface evaluations ( Kesserwani et al., 2010 ), yield the follow- 
ing expressions for initialising the initial average and slope coefficients: 

𝐔 0 
𝑖 ( 0 ) ≈

1 

2 

[
𝐔 0 

(
𝑥 𝑖 +1∕2 

)
+ 𝐔 0 

(
𝑥 𝑖 −1∕2 

)]
(13) 

𝐔 1 
𝑖 ( 0 ) ≈

1 

2 
√
3 

[
𝐔 0 

(
𝑥 𝑖 +1∕2 

)
− 𝐔 0 

(
𝑥 𝑖 −1∕2 

)]
(14) 

Now, considering Eqs. (9) –(10) with U h instead of U , and exploiting 
the bi-orthonormality property, via Eq. (8) , the system of PDEs is locally 
decoupled to solve for two independent ODEs over I i : 

𝜕 𝑡 𝐔 𝐾 
𝑖 ( 𝑡 ) = 𝐋 𝐾 

𝑖 

(
𝐔 ℎ 

)
( 𝐾 = 0 , 1 ) (15) 

The time derivative in Eq. (15) is solved using an explicit two- 
stage Runge–Kutta (RK2) time-stepping scheme (e.g. as described in 
Kesserwani et al., 2010 ), which requires evaluation of the spatial DG2 
operators 𝐋 𝐾 

𝑖 ( 𝐔 ℎ ) to evolve 𝐔 𝐾 
𝑖 ( 𝑡 ) over I i over each RK2 stage. For sim- 

plicity, the local DG2 operators 𝐋 𝐾 
𝑖 ( 𝐔 ℎ ) is denoted hereafter by 𝐋 𝐾 

𝑖 , 
which can be expressed as: 

𝐋 
𝐾 
𝑖 = − 

{ 

𝐅 
(
𝐔 ℎ 

(
𝑥 𝑖 +1∕2 , 𝑡 

))
𝜑̃ 

𝐾 
𝑖 

(
𝑥 𝑖 +1∕2 

)

− 𝐅 
(
𝐔 ℎ 

(
𝑥 𝑖 −1∕2 , 𝑡 

))
𝜑̃ 𝐾 

𝑖 

(
𝑥 𝑖 −1∕2 

)
− ∫

𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝐅 
(
𝐔 ℎ ( 𝑥, 𝑡 ) 

)
𝜕 𝑥 ̃𝜑 𝐾 

𝑖 ( 𝑥 ) 𝑑𝑥 

− ∫
𝑥 𝑖 +1∕2 

𝑥 𝑖 −1∕2 

𝐒 
(
𝐔 ℎ ( 𝑥, 𝑡 ) 

)
𝜑̃ 𝐾 

𝑖 ( 𝑥 ) 𝑑𝑥 

} 

(16) 

Adopting discontinuous basis functions allows U h to be discon- 
tinuous at the element interfaces x i ± 1/2 . To incorporate both limits, 
𝐔 − 

ℎ 
( 𝑥 

𝑖 ±1∕2 
, 𝑡 ) and 𝐔 + 

ℎ 
( 𝑥 

𝑖 ±1∕2 
, 𝑡 ) in the flux evaluation therein, a numerical 

flux function 𝐅̃ ( ⋅, ⋅) is introduced as is usually done in Godunov-type fi- 
nite volume methods ( Toro and Garcia-Navarro, 2007, Toro, 2001 ). By 
further mapping 𝐋 𝐾 

𝑖 onto the reference element where ( K + 1) Gauss–
Legendre quadrature rules can be applied to approximate volume inte- 
gral terms of the flux and source terms, and by considering only the bed 
slope source term S b = [0 S b ] 

T , Eq. (16) becomes: 

𝐋 0 
𝑖 = − 

1 

Δ𝑥 

{
𝐅̃ 𝑖 +1∕2 − 𝐅̃ 𝑖 −1∕2 − Δ𝑥 𝐒 𝑏 

(
𝐔 0 

𝑖 , 𝜕 𝑥 𝑧 ℎ 
)}

(17) 

𝐋 1 
𝑖 = − 

√
3 

Δ𝑥 

{ 
𝐅̃ 𝑖 +1∕2 + 𝐅̃ 𝑖 −1∕2 − 

[
𝐅 
(
𝐔 0 

𝑖 + 𝐔 1 
𝑖 

)
+ 𝐅 

(
𝐔 0 

𝑖 − 𝐔 1 
𝑖 

)]
− 

Δ𝑥 

2 
√
3 

[
𝐒 𝑏 
(
𝐔 0 

𝑖 + 𝐔 1 
𝑖 , 𝜕 𝑥 𝑧 ℎ 

)
− 𝐒 𝑏 

(
𝐔 0 

𝑖 − 𝐔 1 
𝑖 , 𝜕 𝑥 𝑧 ℎ 

)]
} 

(18) 

In Eq. (18) , 𝐅̃ 𝑖 +1∕2 = 𝐅̃ ( 𝐔 − 
𝑖 +1∕2 

, 𝐔 + 
𝑖 +1∕2 

) represents a flux evaluation 

at 𝑥 
𝑖 +1∕2 

via a two-argument numerical flux function 𝐅̃ based on the 

Harten, Lax and van Leer approximate Riemann solver ( Toro, 2001 ). 
𝐔 − 

𝑖 +1∕2 
= 𝐔 ℎ ( 𝑥 𝑖 +1∕2 , 𝑡 ) |𝐼 𝑖 and 𝐔 + 

𝑖 +1∕2 
= 𝐔 ℎ ( 𝑥 𝑖 +1∕2 , 𝑡 ) |𝐼 𝑖 +1 denote the limits 

of U h at both sides from 𝑥 
𝑖 +1∕2 

, which are known as Riemann states, 

at which wetting and drying considerations occur (as outlined later in 
Section 2.3.3 ). These limits can obtained from Eq. (11) as follows: 

𝐔 − 
𝑖 +1∕2 = 𝐔 0 

𝑖 ( 𝑡 ) + 

√
3 𝐔 1 

𝑖 ( 𝑡 ) and 𝐔 + 
𝑖 +1∕2 

= 𝐔 0 
𝑖 +1 ( 𝑡 ) − 

√
3 𝐔 1 

𝑖 +1 ( 𝑡 ) (19) 
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The bed slope discretisation in S b is performed by expanding z h lo- 
cally over I i onto the primal basis, consistently with the shaping of the 
local approximate solution ( Eqs. (11) –(14) ): 

𝑧 ℎ ( 𝑥 ) |𝐼 𝑖 = 𝑧 0 
𝑖 + 

√
3 𝜉( 𝑥 ) 𝑧 1 

𝑖 (20) 

with 𝑧 0 
𝑖 and 𝑧 

1 
𝑖 being time-independent modes for the topography term 

approximation, which can be initialised as in Eqs. (13) –(14) , by: 

𝑧 0 
𝑖 ≈

1 

2 

[
𝑧 
(
𝑥 𝑖 +1∕2 

)
+ 𝑧 

(
𝑥 𝑖 −1∕2 

)]
(21) 

𝑧 1 
𝑖 ≈

1 

2 
√
3 

[
𝑧 
(
𝑥 𝑖 +1∕2 

)
− 𝑧 

(
𝑥 𝑖 −1∕2 

)]
(22) 

The discretisation is then completed by extracting an approximate 
partial derivative while mapping from the reference element: 

𝜕 𝑥 𝑧 ℎ |𝐼 𝑖 = 
2 
√
3 

Δ𝑥 
𝑧 1 
𝑖 (23) 

Therefore, the expressions of the bed slope source terms involved in 
Eqs. (17) and (18) become: 

𝐒 𝑏 
(
𝐔 ℎ ( 𝑥, 𝑡 ) , 𝜕 𝑥 𝑧 ℎ 

)
= 

2 
√
3 

Δ𝑥 𝑖 

[ 
0 

− 𝑔 ℎ ℎ ( 𝑥, 𝑡 ) 𝑧 
1 
𝑖 

] 
(24) 

Substituting Eq. (24) into Eqs. (17) and (18) , the DG2 operators can 
be further simplified to: 

𝐋 0 
𝑖 = − 

1 

Δ𝑥 

{ 

𝐅̃ 𝑖 +1∕2 − 𝐅̃ 𝑖 −1∕2 + 

[ 
0 

2 𝑔 
√
3 ℎ 0 

𝑖 𝑧 
1 
𝑖 

] } 

(25) 

𝐋 1 
𝑖 = − 

√
3 

Δ𝑥 

{ 

𝐅̃ 𝑖 +1∕2 + 𝐅̃ 𝑖 −1∕2 − 𝐅 
(
𝐔 0 

𝑖 + 𝐔 1 
𝑖 

)
− 𝐅 

(
𝐔 0 

𝑖 − 𝐔 1 
𝑖 

)
+ 

[ 
0 

2 𝑔ℎ 1 
𝑖 𝑧 

1 
𝑖 

] } 

(26) 

2.1.4. Extension to multiresolution bases 
From the same L 2 -orthonormal basis 𝐏̂ , a series of child bases 

{ ̂𝐏 ( 𝑛 ) } 𝑛 can be defined given its property of being a refinable function 
( Alpert et al., 2002, Keinert, 2004, Alpert, 1993 ) – where n is a pos- 
itive integer indicating the refinement level, which will hereafter be 
used as a bracketed superscript to avoid notation confusion with other 
indexes. These child bases arise from the father basis 𝐏̂ (0) = 𝐏̂ and pre- 
serve its properties. The supports of these child bases at any refine- 
ment level ( n ) can be associated with a grid g ( n ) based on n dyadic sub- 
divisions of the support [ − 1, 1] of 𝐏̂ . Hence, g ( n ) spans [ − 1, 1] such 
that 𝑔 ( 𝑛 ) = ∪2 𝑛 −1 

𝑗=0 
𝐼 
( 𝑛 ) 
𝑗 , where { 𝐼 

( 𝑛 ) 
𝑗 } 𝑗=0 , 1 , …, 2 𝑛 −1 is a set of non-overlapping 

sub-divisions of [ − 1, 1]. Moreover, a sub-division 𝐼 ( 𝑛 ) 
𝑗 can be regarded 

as a sub-element of [ − 1, 1], taking the following form: 

𝐼 
( 𝑛 ) 
𝑗 = 

[
𝜒𝑗−1∕2 , 𝜒𝑗+1∕2 

]
(27) 

with 𝜒𝑗−1∕2 = −1 + 
2 
2 𝑛 

𝑗 are interface points forming sub-elements 

{ 𝐼 
( 𝑛 ) 
𝑗 } 𝑗=0 , 1 , …, 2 𝑛 −1 , and the index j = 0, 1, …, 2 n − 1 representing the po- 

sition of 𝐼 ( 𝑛 ) 
𝑗 in g ( n ) , on which the components 𝐏̂ ( 𝑛 ) 

𝑗 of the basis 𝐏̂ ( 𝑛 ) = 

[ ̂𝐏 
( 𝑛 ) 
𝑗 ] 𝑗 can be obtained by translation and dilatation of 𝐏̂ , as follows: 

𝐏̂ 
( 𝑛 ) 
𝑗 ( 𝜒) = 

(√
2 
)𝑛 

𝐏̂ ( 2 𝑛 ( 𝜒 + 1 ) − 2 𝑗 − 1 ) 
(
𝜒 ∈ 𝐼 

( 𝑛 ) 
𝑗 

)
(28) 

From the compact-support and L 2 -orthonormality properties of 
{ ̂𝐏 ( 𝑛 ) } 𝑛 , the grids { g 

( n ) } n form a hierarchy spanning [ − 1, 1], i.e. ∪𝑛 𝑔 
( 𝑛 ) = 

[ −1 , 1 ] , and are globally nested across all refinement levels while having 
local and non-overlapping support at each level ( n ). 

Similarly, on a mesh element I i = [ x i − 1/2 , x i + 1/2 ] a hierarchy of 

nested grids { 𝑔 
( 𝑛 ) 
𝑖 } 𝑛 can be defined such that 𝑔 

( 𝑛 ) 
𝑖 = ∪2 𝑛 −1 

𝑗=0 
𝐼 
( 𝑛 ) 
𝑗,𝑖 with 

{ 𝐼 
( 𝑛 ) 
𝑗,𝑖 } 𝑗=0 , 1 , …, 2 𝑛 −1 now denoting sub-divisions of I i , with 𝐼 

( 𝑛 ) 
𝑗,𝑖 represent- 

ing a sub-element of I i at a position j relative to refinement level ( n ), 
namely: 

𝐼 
( 𝑛 ) 
𝑗,𝑖 = 

[
𝑥 
( 𝑛 ) 
𝑗−1∕2 ,𝑖 

, 𝑥 
( 𝑛 ) 
𝑗+1∕2 ,𝑖 

]
(29) 

In Eq. (29) , 𝑥 ( 𝑛 ) 
𝑗−1∕2 ,𝑖 

= 𝑥 𝑖 −1∕2 + Δ𝑥 ( 𝑛 ) 𝑗 are interface points forming sub- 

elements { 𝐼 ( 𝑛 ) 
𝑗,𝑖 } 𝑗=0 , 1 , …, 2 𝑛 −1 and Δx 

( n ) = Δx /2 n is the grid spacing relative 

to grid 𝑔 ( 𝑛 ) 
𝑖 with positions j such that j = 0, 1, …, 2 n − 1. For convenience 

of presentation, sub-elements 𝐼 ( 𝑛 ) 
𝑗,𝑖 will hereafter be denoted by 𝐼 

( 𝑛 ) 
𝑒 where 

index “e ” is shorthand for “j, i ” to position sub-elements in I i . Thereby, 
sub-elements 𝐼 ( 𝑛 ) 𝑒 can be linked to 𝐼 ( 𝑛 ) 

𝑗 by translation into [ − 1, 1]. This 
also makes it easy to keep consistent with the notation associated with 
the DG2 method presented previously ( Sections 2.1.1 –2.1.3 ) for appli- 
cation at sub-elements 𝐼 ( 𝑛 ) 𝑒 , which take the following form: 

𝐼 ( 𝑛 ) 
𝑒 = 

[
𝑥 
( 𝑛 ) 
𝑒 −1∕2 

, 𝑥 
( 𝑛 ) 
𝑒 +1∕2 

]
(30) 

with 𝑥 ( 𝑛 ) 𝑒 and Δ𝑥 
( 𝑛 ) 
𝑒 being the centre position and the size of a sub-element 

𝐼 
( 𝑛 ) 
𝑒 , respectively. On 𝐼 

( 𝑛 ) 
𝑒 ∈ 𝑔 

( 𝑛 ) 
𝑖 bi-orthonormal dual and primal bases, 

denoted by 𝝓
𝑒 and 𝝓̃𝑒 , can be defined via the refined bases [ ̂𝐏 

( 𝑛 ) 
𝑗 ] 𝑗 by 

analogy (recall Eqs. (6) –(7) , and take the form: 

𝝓( 𝑛 ) 
𝑒 ( 𝑥 ) = 

√
2 𝐏̂ 

( 𝑛 ) 
𝑗 ( 𝜒) 

(
𝑥 ∈ 𝐼 ( 𝑛 ) 

𝑒 ⊂ 𝐼 𝑖 
)

(31) 

𝝓̃
( 𝑛 ) 
𝑒 ( 𝑥 ) = 

𝝓( 𝑛 ) 
𝑒 ( 𝑥 ) 

Δ𝑥 ( 𝑛 ) 

(
𝑥 ∈ 𝐼 ( 𝑛 ) 

𝑒 ⊂ 𝐼 𝑖 
)

(32) 

where 𝜒( 𝑥 ) = 2( 𝑥 − 𝑥 
( 𝑛 ) 
𝑒 )∕Δ𝑥 

( 𝑛 ) 
𝑒 is a change of variable used to map the 

position 𝑥 ∈ 𝐼 
( 𝑛 ) 
𝑒 into 𝐼 ( 𝑛 ) 

𝑗 . Adopting the local basis functions in Eqs. 
(31) –(32) , and reworking the steps in Section 2.1.3 , yield similar DG2 
operators for any sub-element 𝐼 ( 𝑛 ) 𝑒 ∈ 𝑔 

( 𝑛 ) 
𝑖 , which are similar to Eqs. (25) –

(26) but with index e instead of i and the grid spacing Δx ( n ) of 𝑔 ( 𝑛 ) 
𝑖 in- 

stead of Δx . Such DG2 operators can be applied to evolve DG2 modes 
𝐔 0 

𝑒 ( 𝑡 ) and 𝐔 1 
𝑒 ( 𝑡 ) , spanning local flow solutions 𝐔 ℎ ( 𝑥, 𝑡 ) |𝐼 ( 𝑛 ) 𝑒 

over any sub- 

element 𝐼 ( 𝑛 ) 𝑒 ∈ { 𝑔 
( 𝑛 ) 
𝑖 } 𝑛 , starting from initial flow modes as described in 

Eqs. (13) and (14) with index e instead of i . Similarly, topography modes, 
𝑧 0 
𝑒 and 𝑧 

1 
𝑒 on 𝐼 

( 𝑛 ) 
𝑒 , can be initialised as in Eqs. (21) and (22) for use in 

the DG2 operators on 𝐼 ( 𝑛 ) 𝑒 . 
To ease the presentation in the following sections, DG2 flow and to- 

pography modes ( 𝐔 0 
𝑒 ( 𝑡 ) , 𝐔 1 

𝑒 ( 𝑡 ) , 𝑧 
0 
𝑒 and 𝑧 

1 
𝑒 ) will be considered component- 

wise, and the scalar variable u ∈ { h, q, z } will be used to represent any 
physical quantities in U = [ h q ] T and z . Since each u has DG2 modes, 
which are actually its spectral components in terms of average and slope 
coefficients, DG2 modes of any physical quantity u on sub-elements 
𝐼 
( 𝑛 ) 
𝑒 ∈ { 𝑔 

( 𝑛 ) 
𝑖 } 𝑛 will be denoted as 𝒖 

( 𝑛 ) 
𝑒 = [ 𝑢 

0 , ( 𝑛 ) 
𝑒 𝑢 

1 , ( 𝑛 ) 
𝑒 ] . 

2.2. Multiresolution analysis 

From the same L 2 -orthonormal basis 𝐏̂ , child bases { ̂𝐏 ( 𝑛 ) } 𝑛 and multi- 
wavelet bases { 𝚿( n ) } n can be defined. This allows multiresolution anal- 
ysis to be performed, which is summarised in this section with a view 

to presenting how it is directly applicable to analysing the behaviour of 
the DG2 modes on multiresolution bases. 

2.2.1. Relationship between the scaling bases { ̂𝑷 
( 𝑛 ) 
} 𝑛 

From the properties of the scaling bases { ̂𝐏 ( 𝑛 ) } 𝑛 defined on the hier- 
archy of grids { g ( n ) } n , it is possible to produce a recurrence relationship 
for binary merging of two adjacent components of the bases belonging 
to g ( n + 1) to form the components of the bases in g ( n ) . Without loss of 
generality, it suffices to outline the relationship linking an elementary 
father basis [ ̂𝐏 ( 𝑛 ) 

𝑗 ] and its child bases [ ̂𝐏 
( 𝑛 +1 ) 
2 𝑗 

𝐏̂ 
( 𝑛 +1 ) 
2 𝑗+1 

] , in particular for the 

case between g (0) and g (1) where n = j = 0. This relationship between the 
scaling bases can be achieved by involving the so-called low-pass filter 
matrices H 0 and H 1 ( Alpert et al., 2002, Alpert, 1993 ), which allow 𝐏̂ 

( 𝑛 ) 
𝑗 

to be expressed as linear combination of 𝐏̂ ( 𝑛 +1 ) 
2 𝑗 

and 𝐏̂ ( 𝑛 +1 ) 
2 𝑗+1 

: 

𝐏̂ 
( 𝑛 ) 
𝑗 = 𝐇 

0 𝐏̂ 
( 𝑛 +1 ) 
2 𝑗 

+ 𝐇 
1 𝐏̂ 

( 𝑛 +1 ) 
2 𝑗+1 

(33) 
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𝐇 0 = 

[⟨ 
𝐏̂ 
( 𝑛 ) 
𝑗 , ̂𝐏 

( 𝑛 +1 ) 
2 𝑗 

⟩ ]
= 

[ 
1∕ 
√
2 0 

− 
√
6 ∕4 

√
2 ∕4 

] 
(34) 

𝐇 1 = 

[⟨ 
𝐏̂ 
( 𝑛 ) 
𝑗 , ̂𝐏 

( 𝑛 +1 ) 
2 𝑗+1 

⟩ ]
= 

[ 
1∕ 
√
2 0 √

6 ∕4 
√
2 ∕4 

] 
(35) 

2.2.2. Multiwavelet bases and their relationship to the scaling bases 
Now reconsidering the father basis 𝐏̂ , a mother basis of wavelets 

𝚿, or multiwavelets ( Alpert et al., 2002 ), can be defined on g (0) = [ − 1, 
1], which represents the encoded ( L 2 -orthonormal) difference between 
𝐏̂ = 𝐏̂ 

(0) 
0 
and the components of its two child bases [ ̂𝐏 (1) 

0 
𝐏̂ 
(1) 
1 
] supported 

on g (1) = [ − 1, 0] ∪ [0, 1]. In essence, 𝚿 represents the ( L 2 -orthonormal) 
complement of 𝐏̂ (0) 

0 
= 𝐏̂ in g (1) . Therefore, 𝚿 is one refinement level 

higher than 𝐏̂ (0) 
0 

and spans g (0) ∩ g (1) , taking the form ( Alpert et al., 
2002 ): 

𝚿( 𝜒) = 

[
𝜓 

( 0 ) 
0 

( 𝜒) 𝜓 
( 0 ) 
1 

( 𝜒) 
]

(36) 

𝜓 
( 0 ) 
0 

( 𝜒) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

− 

√ 
3 
2 
( 2 𝜒 + 1 ) 𝜒 ∈ 𝐼 

( 1 ) 
0 

+ 

√ 
3 
2 
( 2 𝜒 − 1 ) 𝜒 ∈ 𝐼 

( 1 ) 
1 

and 𝜓 
( 0 ) 
1 

( 𝜒) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

√ 
1 
2 
( 3 𝜒 + 2 ) 𝜒 ∈ 𝐼 

( 1 ) 
0 √ 

1 
2 
( 3 𝜒 − 2 ) 𝜒 ∈ 𝐼 

( 1 ) 
1 

(37) 

with 𝐼 (1) 
0 

= [ −1 , 0 ] and 𝐼 (1) 
1 

= [ 0 , 1 ] denoting the two shifts forming g (1) , 
for generality relating to Eq. (27) . Note that 𝚿 admits a discontinuity 
at 𝜒 = 0, which offers an advantage for the analysis of signals with dis- 
continuities. Moreover, 𝚿 and 𝐏̂ are bi-orthonormal with the former 
inheriting the properties of the latter. Hence, a series of child multi- 
wavelets { 𝚿( n ) } n can be defined on the hierarchy of grids { g 

( n ) } n by 
translation and dilatation of 𝚿, such that on a grid 𝑔 ( 𝑛 ) = ∪2 𝑛 −1 

𝑗=0 
𝐼 
( 𝑛 ) 
𝑗 , 

𝚿( 𝑛 ) = [ 𝚿
( 𝑛 ) 
𝑗 ] 𝑗=0 , 1 , …, 2 𝑛 −1 where each 𝚿

( 𝑛 ) 
𝑗 takes the following form: 

𝚿
( 𝑛 ) 
𝑗 ( 𝜒) = 

(√
2 
)𝑛 

𝚿( 2 𝑛 ( 𝜒 + 1 ) − 2 𝑗 − 1 ) 
(
𝜒 ∈ 𝐼 

( 𝑛 ) 
𝑗 

)
(38) 

From the scaling bases, binary merging of two adjacent components 
belonging to g ( n + 1) can be achieved to produce the components of the 
multiwavelet bases in g ( n ) . Again, it suffices to outline the relationship 
linking an elementary multiwavelet basis [ 𝚿( 𝑛 ) 

𝑗 ] in g 
( n ) to the scaling 

bases [ ̂𝐏 ( 𝑛 +1 ) 
2 𝑗 

𝐏̂ 
( 𝑛 +1 ) 
2 𝑗+1 

] in g ( n + 1) for n = j = 0. This relationship can be ex- 

pressed by using the so-called high-pass filter matrices G 0 and G 1 , which 
allow 𝚿

( 𝑛 ) 
𝑗 to be derived as linear combination of 𝐏̂ 

( 𝑛 +1 ) 
2 𝑗 

and 𝐏̂ ( 𝑛 +1 ) 
2 𝑗+1 

: 

𝚿
( 𝑛 ) 
𝑗 = 𝐆 0 𝐏̂ 

( 𝑛 +1 ) 
2 𝑗 

+ 𝐆 1 𝐏̂ 
( 𝑛 +1 ) 
2 𝑗+1 

(39) 

𝐆 0 = 

[⟨ 
𝚿

( 𝑛 ) 
𝑗 , ̂𝐏 

( 𝑛 +1 ) 
2 𝑗 

⟩ ]
= 

[ 
0 −1∕ 

√
2 √

2 ∕4 
√
6 ∕4 

] 
(40) 

𝐆 
1 = 

[⟨ 
𝚿

( 𝑛 ) 
𝑗 , ̂𝐏 

( 𝑛 +1 ) 
2 𝑗+1 

⟩ ]
= 

[ 
0 1∕ 

√
2 

− 
√
2 ∕4 

√
6 ∕4 

] 
(41) 

2.2.3. Single-scale vs. multi-scale expansions 
The definition of scaling and multiwavelet bases on the hierarchy 

of grids { g ( n ) } n allows for two interchangeable ways to approximate a 
given scalar signal s ( 𝜉) defined on [ − 1, 1]. Given a grid 𝑔 ( 𝑛 ) = ∪2 𝑛 −1 

𝑗=0 
𝐼 
( 𝑛 ) 
𝑗 

associated with the scaling bases 𝐏̂ ( 𝑛 ) = [ ̂𝐏 
( 𝑛 ) 
𝑗 ] 𝑗=0 , 1 , …, 2 𝑛 −1 , an approxima- 

tion s h ( 𝜉) of the signal s ( 𝜉) can be obtained by expanding it onto the 
bases 𝐏̂ ( 𝑛 ) as follows ( Alpert et al., 2002 ): 

𝑠 ℎ ( 𝜉) = 

2 𝑛 −1 ∑
𝑗=0 

𝑠 ℎ ( 𝜒) |𝐼 ( 𝑛 ) 
𝑗 

(42) 

in which 𝑠 ℎ ( 𝜒) |𝐼 ( 𝑛 ) 
𝑗 
is a piecewise-linear expansions onto each basis 𝐏̂ ( 𝑛 ) 

𝑗 

that is compactly-supported on the sub-element 𝐼 ( 𝑛 ) 
𝑗 . The signal approx- 

imation can therefore be expressed as: 

𝑠 ℎ |𝐼 ( 𝑛 ) 
𝑗 

= 

⟨ 
𝒔 
( 𝑛 ) 
𝑗 , 𝐏̂ 

( 𝑛 ) 
𝑗 

⟩ 
= 𝑠 

0 , ( 𝑛 ) 
𝑗 𝑃 

0 , ( 𝑛 ) 
𝑗 + 𝑠 

1 , ( 𝑛 ) 
𝑗 𝑃 

1 , ( 𝑛 ) 
𝑗 (43) 

where 𝒔 ( 𝑛 ) 
𝑗 = [ 𝑠 

0 , ( 𝑛 ) 
𝑗 𝑠 

1 , ( 𝑛 ) 
𝑗 ] denotes local scale coefficients expanding 

𝑠 ℎ ( 𝜒) |𝐼 ( 𝑛 ) 
𝑗 
onto the basis ̂𝐏 ( 𝑛 ) 

𝑗 , which can be initialised as 𝑠 
𝐾, ( 𝑛 ) 
𝑗 = ⟨𝑠, 𝑃 𝐾, ( 𝑛 ) 

𝑗 ⟩
with K = 0, 1. This type of description, i.e. in Eqs. (42) and (43) , is called 
single-scale expansion as it only involves scale coefficicents from the grid 
g ( n ) , at a single-scale refinement level ( n ). 

Another way to expand s h ( 𝜉) is to involve the multiwavelet bases. 
By doing so, the single-scale description of in Eqs. (42) –(43) can be re- 
cursively decomposed to produce a so-called multi-scale expansion . This 
form of description sums up the features of s h ( 𝜉), via wavelet coeffi- 
cients, throughout grids g (0) ,…, g ( n − 1) to its background information at 
its coarsest level (i.e. the scale coefficients on g (0) ). Hence, the multi- 
scale expansion takes the form ( Alpert et al., 2002 ): 

𝑠 ℎ ( 𝜉) = 𝑠 ℎ ( 𝜉) |𝐼 ( 0 ) 
0 

+ 

𝑛 −1 ∑
𝑙=0 

⎛ ⎜ ⎜ ⎝ 

2 𝑙 −1 ∑
𝑗=0 

⟨ 
𝒅 
( 𝑙 ) 
𝑗 ( 𝜒) , 𝛙 

( 𝑙 ) 
𝑗 ( 𝜒) 

⟩ ⎞ ⎟ ⎟ ⎠ 
(44) 

⟨ 
𝒅 
( 𝑙 ) 
𝑗 , 𝛙 

( 𝑙 ) 
𝑗 

⟩ 
= 𝑑 

0 , ( 𝑛 ) 
𝑗 𝜓 

0 , ( 𝑙 ) 
𝑗 + 𝑑 

1 , ( 𝑛 ) 
𝑗 𝜓 

1 , ( 𝑙 ) 
𝑗 (45) 

with 𝒅 ( 𝑙) 
𝑗 = [ 𝑑 

0 , ( 𝑙) 
𝑗 𝑑 

1 , ( 𝑙) 
𝑗 ] denoting the local details also known as detail 

coefficients or wavelet coefficients . They can be initialised as 𝑑 𝐾 , ( 𝑙) 
𝑗 = 

⟨𝑠, 𝜓 
𝐾, ( 𝑙) 
𝑗 ⟩ with K = 0, 1. The multi-scale expansion in Eqs. (44) and 

(45) clearly distinguishes the details of s h ( 𝜉) between successively higher 
resolution, which become increasingly significant with increasing levels 
of non-smoothness in s h ( 𝜉) while remaining negligible where s h ( 𝜉) is 
smooth. Therefore, it provides a mechanism to analyse, decompose and 
reconstruct the approximate signal s h ( 𝜉) across the grids in the hierarchy 
{ g ( n ) } n . 

2.2.4. Two-scale transformations between coefficients 
From the link between the high- and low-pass filter matrices 

Alpert et al., 2002 ) outlined previously in Eqs. (34) –(35) and (40) –(41) , 
relationships for scaling up or down (recurrently) relevant coefficients 
between subsequent resolution levels ( n ) and ( n + 1) can be produced, 
namely: 
{ 

𝒔 
( 𝑛 ) 
𝑗 = 𝐇 0 𝒔 

( 𝑛 +1 ) 
2 𝑗 

+ 𝐇 1 𝒔 
( 𝑛 +1 ) 
2 𝑗+1 

𝒅 
( 𝑛 ) 
𝑗 = 𝐆 0 𝒔 

( 𝑛 +1 ) 
2 𝑗 

+ 𝐆 1 𝐬 
( 𝑛 +1 ) 
2 𝑗+1 

(46) 

{ 
𝒔 
( 𝑛 +1 ) 
2 𝑗 

= 
[
𝐇 0 
]T 

𝒔 
( 𝑛 ) 
𝑗 + 

[
𝐆 0 
]T 

𝒅 
( 𝑛 ) 
𝑗 

𝒔 
( 𝑛 +1 ) 
2 𝑗+1 

= 
[
𝐇 1 
]T 

𝒔 
( 𝑛 ) 
𝑗 + 

[
𝐆 1 
]T 

𝒅 
( 𝑛 ) 
𝑗 

(47) 

Eq. (46) is useful to encode (or extract) the scale and detail coef- 
ficients 𝑠 ( 𝑛 ) 

𝑗 and 𝑑 ( 𝑛 ) 
𝑗 at a sub-element 𝐼 ( 𝑛 ) 

𝑗 ∈ 𝑔 ( 𝑛 ) from the scale coef- 

ficients 𝑠 ( 𝑛 +1 ) 
2 𝑗 

and 𝑠 ( 𝑛 +1 ) 
2 𝑗+1 

of its two child sub-elements { 𝐼 ( 𝑛 +1 ) 
2 𝑗 

, 𝐼 
( 𝑛 +1 ) 
2 𝑗+1 

} ∈

g ( n + 1) . It applies in a descending order across refinement levels start- 
ing from sub-elements on the finest grid g ( L ) with ( L ) being a maximum 

refinement level prescribed by a user. This results in a multi-scale ex- 
pansion, as in Eq. (44) , compressing the details across the whole hier- 
archy { g ( n ) } n = 0, 1, …, L . Eq. (47) is used in the opposite sense to decode 

(or combine) scale and wavelet coefficients at any 𝐼 ( 𝑛 ) 
𝑗 ( n = L − 1, …, 1, 

0) to generate their scale coefficients located one resolution higher, i.e. 
the scale coefficients on the two sub-elements 𝐼 ( 𝑛 +1 ) 

2 𝑗 
and 𝐼 ( 𝑛 +1 ) 

2 𝑗+1 
. Given 

a multi-scale expansion, Eq. (47) can successively be applied in an as- 
cending order, starting from the information available at the coarsest 
grid g (0) , to retrieve a single-scale expansion, as in Eq. (42) , up to any 
refinement level ( n ), 0 ≤ n ≤ L . 

2.2.5. Extension of the analysis for the DG2 modes on multiresolution bases 
To extend the validlity of the analysis in Sections 2.2.1 –2.2.4 from 

bases { ̂𝐏 ( 𝑛 ) } 𝑛 , spanning [ − 1, 1], to the multiresolution bases { 𝝓( 𝑛 ) 
𝑒 } 𝑛 , 

spanning I i , it suffices to consider Eq. (31) and the notation adopted 
in Section 2.1.4 . Now, Eqs. (42) –(45) can be reused for any physical 
component u , with 𝑢 ℎ |𝐼 𝑖 being its expansion on I i by coefficients [ 𝒖 ( 𝑛 ) 𝑒 ] 𝑛,𝑒 , 

as in Eq. (42) . Each 𝒖 ( 𝑛 ) 𝑒 contains the expansion coefficients of a local 
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linear DG2 solution on sub-elements 𝐼 ( 𝑛 ) 𝑒 ⊂ 𝐼 𝑖 , as in Eq. (43) , or DG2 
modes as 𝒖 ( 𝑛 ) 𝑒 = [ 𝑢 

0 , ( 𝑛 ) 
𝑒 𝑢 

1 , ( 𝑛 ) 
𝑒 ] . 

Over a selected grid 𝑔 ( 𝑛 ) 
𝑖 = ∪2 𝑛 −1 

𝑒 =0 
𝐼 
( 𝑛 ) 
𝑒 of the hierarchy of grids { 𝑔 ( 𝑛 ) 

𝑖 } 𝑛 , 

DG2 modes [ 𝒖 ( 𝑛 ) 𝑒 ] 𝑒 =0 , 1 , …, 2 𝑛 −1 can be initialised for the single-scale expan- 
sion 𝑢 ℎ |𝐼 𝑖 , which actually represents an assembled DG2 solution on grid 
𝑔 
( 𝑛 ) 
𝑖 . Alternatively, a multi-scale expansion is also possible as in Eqs. (44 ) 
and (45) , which is actually a compressed MWDG2 solution allowing to ac- 
cess the details [ 𝒅 ( 𝑙) 

𝑒 ] 𝑙,𝑒 , with 𝒅 
( 𝑙) 
𝑒 = [ 𝑑 

0 , ( 𝑙) 
𝑒 𝑑 

1 , ( 𝑙) 
𝑒 ] , living on lower resolu- 

tion grids { 𝑔 ( 𝑙) 
𝑖 } 𝑙= 𝑛 −1 , …, 1 , 0 . These details can be initialised from the DG2 

modes on 𝑔 ( 𝑛 ) 
𝑖 for the physical components u ∈ { h + z, q, z } as explained 

later in Section 2.3.1 . With this change of bases and variable, the two- 
scale transformation formulae in Eqs. (46) –(47) should be re-scaled by √
2 to make them relevant to the DG2 modes and their associated de- 

tails, leading to modified formulae: 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝒖 
( 𝑛 ) 
𝑒 = 

1 √
2 

(
𝐇 0 𝒖 

( 𝑛 +1 ) 
2 𝑒 

+ 𝐇 1 𝒖 
( 𝑛 +1 ) 
2 𝑒 +1 

)

𝒅 ( 𝑛 ) 
𝑒 = 

1 √
2 

(
𝐆 0 𝒖 

( 𝑛 +1 ) 
2 𝑒 

+ 𝐆 1 𝑢 
( 𝑛 +1 ) 
2 𝑒 +1 

) (48) 

⎧ ⎪ ⎨ ⎪ ⎩ 

𝒖 
( 𝑛 +1 ) 
2 𝑒 

= 
√
2 
([
𝐇 0 
]T 

𝒖 
( 𝑛 ) 
𝑒 + 

[
𝐆 0 
]T 

𝒅 ( 𝑛 ) 
𝑒 

)

𝒖 
( 𝑛 +1 ) 
2 𝑒 +1 

= 
√
2 
([
𝐇 1 
]T 

𝒖 
( 𝑛 ) 
𝑒 + 

[
𝐆 1 
]T 

𝒅 ( 𝑛 ) 
𝑒 

) (49) 

As detailed later in Section 2.3 , Eqs. (48) –(49) can be directly de- 
ployed within the scaled DG2 method, as needed, to encode informa- 
tion via Eq. (48) , i.e. binary merging of DG2 modes on 𝑔 ( 𝑛 +1 ) 

𝑖 to gen- 

erate coarser modes and/or their details on 𝑔 ( 𝑛 ) 
𝑖 , or decode information 

via Eq. (49) , i.e. adding up the details and modes on 𝑔 ( 𝑛 ) 
𝑖 to generate 

the DG2 modes on 𝑔 ( 𝑛 +1 ) 
𝑖 . Encoding is key to produce, scan and distin- 

guish the details across successive refinement levels from within the 
compressed MWDG2 solution , whereas decoding is key to generate an as- 
sembled DG2 solution from a set of carefully-selected DG2 modes relative 
to sub-elements with non-uniform size Δx ( n ) . 

2.3. Multiresolution scaled DG2 adaptive solution 

This section describes how multiresolution analysis ( Section 2.2 ) can 
be used directly within the scaled DG2 formulation ( Section 2.1 ) to pro- 
duce the so-called adaptive MWDG2 numerical solution. The starting 
point is to set a desired maximum refinement level ( L ) and thereby re- 
fine the coarsest discretisation of the domain Ω = ∪𝑀 

𝑖 =1 
𝐼 𝑖 to be at the finest 

uniform resolution allowable (a uniform mesh with 2 L M sub-elements). 
Now, each element 𝐼 

𝑖 has 2 
L sub-elements { 𝐼 ( 𝐿 ) 𝑒 } 𝑒 =0 , 1 , …, 2 𝐿 −1 such that 

𝐼 𝑖 = 𝑔 
( 𝐿 ) 
𝑖 = ∪2 𝐿 −1 

𝑒 =1 
𝐼 
( 𝐿 ) 
𝑒 . Given that the combined MWDG2 functioning can 

be applied element-wise, we hereafter assume that the coarsest grid 
spanning Ω is made by a single element, hence we take M = 1 without 
loss of generality. Now 𝑔 

( 𝐿 ) 
𝑖 represents the finest uniform discretisation 

for Ω, which is made of sub-elements { 𝐼 ( 𝐿 ) 𝑒 } 𝑒 =0 , 1 , …, 2 𝐿 −1 . On each sub- 

element 𝐼 ( 𝐿 ) 𝑒 , DG2 modes, 𝒖 
( 𝐿 ) 
𝑒 = [ 𝑢 

0 , ( 𝐿 ) 
𝑒 𝑢 

1 , ( 𝐿 ) 
𝑒 ] with u ∈ { h, q, z } can be 

initialised in terms of flow and topography data ( Section 2.1.4 ), form- 
ing an assembled DG2 solution on the finest grid 𝑔 ( 𝐿 ) 

𝑖 for initial pre- 
processing ( Section 2.3.1 ). 

2.3.1. Pre-processing: generation of initial detail coefficients (t = 0 s) 
Initially, DG2 modes [ 𝒖 ( 𝐿 ) 𝑒 ] 𝑒 =0 , 1 , …, 2 𝐿 −1 of the flow and topography are 

only available on 𝑔 ( 𝐿 ) 
𝑖 . From these modes, details [ 𝒅 ( 𝑛 ) 

𝑒 ] 𝑛,𝑒 living on the 

lower resolution grids { 𝑔 ( 𝑛 ) 
𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 can be encoded. This is achieved 

by successive application of Eq. (48) in a descending order, starting from 

refinement level ( L − 1) until reaching the coarsest level (0) where both 
the coarsest modes 𝒖 (0) 

0 
and details 𝒅 (0) 

0 
become available. Moreover, de- 

tails representing the water height h were encoded based on the DG2 
modes representing the free-surface elevation h + z , which was found 
necessary to avoid producing misinformative details for h when the to- 
pography is very steep. In what follows, the details [ 𝒅 ( 𝑛 ) 

𝑒 ] 𝑛,𝑒 will be ac- 
tually associated with components u ∈ { h + z, q, z }. 

From the details [ 𝒅 ( 𝑛 ) 
𝑒 ] 𝑛,𝑒 , an alternative set of normalised detail mag- 

nitudes , denoted by [ ̌𝑑 ( 𝑛 ) 𝑒 ] 𝑛,𝑒 , can be generated. This set is needed to en- 
able measuring the significance of all detail coefficents combined , regard- 
less of which physical quantity u they represent. Namely, a normalised 
detail magnitude 𝑑 ( 𝑛 ) 𝑒 is a scalar evaluated from from its detail 𝒅 ( 𝑛 ) 

𝑒 as 
( Gerhard et al., 2015 ): 

𝑑 ( 𝑛 ) 
𝑒 = 

𝑚𝑎𝑥 

(|||𝑑 
0 , ( 𝑛 ) 
𝑒 

|||, 
|||𝑑 

1 , ( 𝑛 ) 
𝑒 

|||
)

𝑚𝑎𝑥 

( 

1 , 
||||𝑚𝑎𝑥 

([
𝑢 
0 , ( 𝐿 ) 
𝑒 

]
𝑒 

)||||
) (50) 

where 𝑚𝑎𝑥 ( [ 𝑢 
0 , ( 𝐿 ) 
𝑒 ] 𝑒 ) is the maximum of the average coefficients of the 

DG2 modes on 𝑔 ( 𝐿 ) 
𝑖 – also across the hierarchy { 𝑔 ( 𝑛 ) 

𝑖 } 𝑛 = 𝐿, …, 1 , 0 due to vari- 
ational boundness across refinement levels. 

Note that, at the starting time, all details [ 𝒅 ( 𝑛 ) 
𝑒 ] 𝑛,𝑒 for all variables 

u ∈ { h + z, q, z } are fully accessible on { 𝑔 ( 𝑛 ) 
𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 . They can be 

ascendingly summed upon the coarsest DG2 modes, 𝒖 (0) 
0 
, on I i to form a 

compressed MWDG2 solution on { 𝑔 ( 𝑛 ) 
𝑖 } 𝑛 = 𝐿, …, 1 , 0 , which is as accurate as the 

assembled DG2 solution on 𝑔 ( 𝐿 ) 
𝑖 . Later, when t > 0, details [ 𝒅 ( 𝑛 ) 

𝑒 ] 𝑛,𝑒 of the 
flow variables u ∈ { h + z, q } are subjected to constant change given the 
time-dependent nature of h + z and q ( Section 2.3.4 ), while the details 
of z do not change with time. 

2.3.2. Prediction, regularisation and decoding: adaptive solution generation 
(t ≥ 0 s) 

By analysing the magnitude of the normalised details in the hierar- 
chy { 𝑔 ( 𝑛 ) 

𝑖 } 𝑛 = 𝐿, …, 1 , 0 , an adaptive grid at a present time t , denoted by 𝑔 
𝐴 
𝑖 ( 𝑡 ) , 

can be formed by selecting certain sub-elements: 

𝑔 𝐴 
𝑖 ( 𝑡 ) ⊂

{ 

𝐼 ( 𝑛 ) 
𝑒 ∈

{ 

𝑔 
( 𝑛 ) 
𝑖 

} 

𝑛 
, 0 ≤ 𝑛 ≤ 𝐿, 0 ≤ 𝑒 ≤ 2 𝐿 − 1 and Ω = 

⋃
𝑛,𝑒 

𝐼 ( 𝑛 ) 
𝑒 

} 

(51) 

The act of measuring normalised detail magnitudes is here refered 
to as prediction and involves four subsequent steps for deciding the sub- 
elements forming 𝑔 𝐴 

𝑖 ( 𝑡 ) . 
Firstly, an error threshold 𝜀 needs to be prescribed such that 0 < 𝜀 < 

1, which is a parameter chosen by the user to decide which details can 
be ignored. While there is no unique choice for 𝜀 , an optimal range of 
choices exists to keep the accuracy of assembled DG2 solution on 𝑔 𝐴 

𝑖 ( 𝑡 ) 

at the same level as the finest resolution accessible on 𝑔 ( 𝐿 ) 
𝑖 at time t –

via the compressed MWDG2 solution ( Hovhannisyan et al., 2014 ). An 
optimal choice for 𝜀 is expected to be somewhere between 10 − 4 and 
10 − 2 . Arguably, the choice of 𝜀 is rather heuristic, context-specific and 
seemigly dependent on the order-of-accuracy of the DG scheme ( Harten, 
1995, Cohen et al., 2003, Gerhard et al., 2015 ). An analysis on the choice 
of 𝜀 for the adaptive HFV1 and MWDG2 solvers used in the present work 
is carried out later in Section 3.1.1 . 

Secondly, normalised details [ ̌𝑑 ( 𝑛 ) 𝑒 ] 𝑛,𝑒 living on { 𝑔 
( 𝑛 ) 
𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 are 

compared to 𝜀 for indentifying the significant details . In doing so, their 
magnitudes are scanned, level-wise (in an ascending order n = 0, 1, 
…, L − 1), and compared to level-depedent error thresholds 𝜀 ( n ) such that 
𝜀 ( n ) = 2 n − L 𝜀 . Within this process, a detail 𝒅 ( 𝑛 ) 

𝑒 is classified as significant 
if: 

𝑑 ( 𝑛 ) 
𝑒 > 𝜀 ( 𝑛 ) (52) 

Meanwhile, sub-elements 𝐼 ( 𝑛 ) 𝑒 with significant details are flagged as 
active , meaning they are plausible candidates for inclusion in 𝑔 𝐴 

𝑖 ( 𝑡 ) . 

Thirdly, re-flagging of active sub-elements 𝐼 ( 𝑛 ) 𝑒 is needed for regular- 
isation , to ensure that significant details can be re-accessed within a tree 
structure . In fact, across 𝑔 ( 𝐿 −1 ) 

𝑖 , … , 𝑔 
(1) 
𝑖 and 𝑔 (0) 

𝑖 , whenever any child de- 

tails 𝒅 ( 𝑛 ) 
2 𝑒 
or 𝒅 ( 𝑛 ) 

2 𝑒 +1 
is significant on 𝑔 ( 𝑛 ) 

𝑖 its parent detail 𝒅 ( 𝑛 −1 ) 
𝑒 on 𝑔 ( 𝑛 −1 ) 

𝑖 
can only be significant and should be made accessible for possible use –
later in the generation of an assembled DG2 solution on 𝑔 𝐴 

𝑖 ( 𝑡 ) . Thus, reg- 

ularisation is the act of ensuring that such sub-elements 𝐼 ( 𝑛 −1 ) 𝑒 are also 
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flagged as active. When many mother elements are used ( M > 1), regu- 
larisation should also consider activating those sub-elements located at 
the boundaries across the elements, which is necessary to ensure that 
the modelling information can propagate across different elements. 

Fourthly, all significant details 𝒅 ( 𝑛 ) 
𝑒 , at a present time t , are revisited 

to also predict whether their significance is likely to remain or increase at 
time t + Δt , with Δt denoting the simulation time-step. Such a detail is 
here referred to as extra-significant and can be identified by: 

𝑑 ( 𝑛 ) 
𝑒 ≥ 2 𝑚̄ +1 𝜀 ( 𝑛 ) (53) 

In Eq. (53) , 𝑚̄ is the order-of-accuracy of the prediction operator 
( Cohen et al., 2003 ), which is chosen such that 𝐾 𝑚𝑎𝑥 ≤ 𝑚̄ ≤ 𝐾 𝑚𝑎𝑥 + 1 , 
with K max being the polynomial-order of the DG solution. In this work, 
𝑚̄ is taken equal to 1.5, though it may be useful to note that any other 
choice within this range was found appropriate. When a detail 𝒅 ( 𝑛 ) 

𝑒 is 
extra-significant, the set of active sub-elements is enlarged to include, in 
addition to 𝐼 ( 𝑛 ) 𝑒 , its child sub-elements 𝐼 

( 𝑛 +1 ) 
2 𝑒 

and 𝐼 ( 𝑛 +1 ) 
2 𝑒 +1 

. This step is nec- 
essary to ensure that no significant features in the adaptive flow solution, 
u ∈ { h + z, q }, on 𝑔 𝐴 

𝑖 ( 𝑡 ) are overlooked on 𝑔 
𝐴 
𝑖 ( 𝑡 + Δ𝑡 ) when generating 

future details ( Section 2.3.4 ). 
Finally, a DG2 solution on 𝑔 𝐴 

𝑖 ( 𝑡 ) can be decided by ascendingly in- 

specting the tree of details, starting from the coarsest details 𝒅 (0) 
0 
and 

DG2 modes 𝒖 (0) 
0 
, while decoding. That is, while climbing the details tree 

( n = 0, 1, 2, … and n ≤ L − 1), Eq. (49) is successively applied to decode 
local DG2 modes 𝒖 ( 𝑛 ) 𝑒 on active sub-elements 𝐼 

( 𝑛 ) 
𝑒 . Inspection of details 

is aborted under two circumstances: 

(i) When a detail 𝒅 ( 𝑛 ) 
𝑒 switches status to becoming insignificant for the 

first time, with its local DG2 modes 𝒖 ( 𝑛 ) 𝑒 selected for generating the 
assembled DG2 solution on 𝑔 𝐴 

𝑖 ( 𝑡 ) , or otherwise 

(ii) Inspection and decoding reached 𝑔 ( 𝐿 −1 ) 
𝑖 with certain details 𝒅 ( 𝐿 −1 ) 

𝑒 

remaining significant, and their local DG2 modes 𝒖 ( 𝐿 −1 ) 𝑒 are already 
decoded. Then, a last round of decoding is applied to yield the child 
modes 𝒖 ( 𝐿 ) 

2 𝑒 
and 𝒖 ( 𝐿 ) 

2 𝑒 +1 
on 𝑔 ( 𝐿 ) 

𝑖 for inclusion while generating the as- 

sembled DG2 solution on 𝑔 𝐴 
𝑖 ( 𝑡 ) . 

The adaptive DG2 solution can now be viewed as a series of carefully- 
selected DG2 modes forming an assembled DG2 solution on the non- 
uniform grid 𝑔 𝐴 

𝑖 ( 𝑡 ) . Each local DG2 mode should then be updated by ap- 
plying the scaled DG2 formulation as described in Section 2.3.3 . Prior to 
this, the DG2 modes representing the water height h should be restored, 
by subtracting the modes representing the topography z from those of 
the free-surface elevation h + z . Then, the scaled DG2 formulation can 
be applied to update the DG2 modes of the main flow data u ∈ { h, q } as 
previously described ( Sections 2.1.3 and 2.1.4 ). 

2.3.3. RK2-DG2 update: elevating the modes of the assembled DG2 
solution to time t + Δt 

By applying the scaled DG2 formulation described in Section. 2.1.4 , 
each local mode in 𝒖 ( 𝑛 ) 𝑒 , relevant to the main flow data u ∈ { h, q }, 
is updated within a standard RK2 time stepping. While doing so, key 
treatments are incorporated in the RK2-DG2 update to ensure stabil- 
ity around sharp solution gradients, together with conservative incor- 
poration of source terms with wetting and drying. These treatments 
are well-reported for the unscaled RK2-DG2 method ( Kesserwani and 
Liang, 2012 ). Herein, they are re-applied with few modifications to ac- 
commodate the scaling introduced to the present DG2 method and the 
changes related to using the standard SWE model instead of the pre- 
balanced model ( Liang and Borthwick, 2009 ), and to further exploit the 
details ensuring the generation of a robust (assembled) DG2 solution. 
These treatments are summarised in the rest of this section. 
Double localisation and slope limiting: Local slope limiting is 

needed for certain slope coefficients 𝑢 1 , ( 𝐿 ) 𝑒 of the flow variables u ∈
{ h, q }. Slope limiting is a necessary process prior to each RK stage to 
prevent development of Gibbs phenomena around sharp solution gra- 
dients. It should only be triggered at such portions in the solution, 

otherwise it can degrade the conservative character of DG2 modes 
in any other portions of the DG2 solution, or even affect robustness 
(e.g. see examples within Kesserwani and Liang, 2012 ; Kesserwani and 
Liang, 2012 ). Therefore, double localisation is applied to cautiously re- 
strict the application of the slope limiter to the portions of the assem- 
bled DG2 solution at which sharp gradients are about to form. The 
first localisation step consists of only considering the active slope coeffi- 
cients at the maximum refinement level ( L ), 𝑢 1 , ( 𝐿 ) 𝑒 , for possible limiting. In 
fact, DG2 modes, 𝒖 ( 𝐿 ) 𝑒 , at refinement level ( L ) can only be active when- 
ever sustained by a tree of significant details, as previously described in 
Section 2.3.2 and also proved in Vuik and Ryan (2014) . When this hap- 
pens, 𝑢 ( 𝐿 ) 𝑒 should be representative of a local feature occurring in the 
assembled DG2 solution. Such a local feature can either be a sharp dis- 
continuity, i.e. a shock wave, or shockless representing a solution kink 
(e.g. a front of a rarefaction wave) or a rapidly changing state (e.g. due to 
a wetting and/or a drying process). Therefore, a second localisation step 
is needed to avoid slope limiting around any shockless feature within 
the assembled DG2 solution. This can be achieved by further subject- 
ing those active slope coefficients 𝑢 1 , ( 𝐿 ) 𝑒 to Krivodonova’s shock detector 
( Krivodonova et al., 2004 ), which is here used with a detection thresh- 
old ≥ 9, instead of 1 ( Krivodonova et al., 2004 ), to ensure it only detects 
slope coefficients associated with the presence of a sharp solution dis- 
continuity. After double localisation, the relevant slope coefficients can 
then be limited by a slope limiter function such as the Generalised minmod 
(i.e. Eq. 2.9 in Cockburn and Shu, 2001 ),which is here used. Moreover, 
shock detection and limiting is applied component-wise on u ∈ { h + z, 
q }, with the component h + z used instead of h to ensure that the pres- 
ence of sharp terrain gradients will not mistakenly trigger any slope 
limiting on the slope coefficients representing the water height h . After 
double localisation and limiting, limited slope coefficients for h can be 
deduced from the limited slope coefficents of h + z , by subtracting the 
slope coefficients of z . 

It may be useful to note that without double localisation the quality 
of the assembled DG2 solution – compared to the DG2 solution on a 
uniform grid – might undergo more significant deterioration as a result 
of unnecessary calls of the Generalised minmod limiter . In effect, the lim- 
iter tends to either zero or unnecessarily substitute the true DG2 slope 
coefficients. In any case, this leads to false slope coefficients being used 
during encoding ( Eq. (48) ) resulting in false details in the compressed 
MWDG2 solution, which would manifest themselves in a deteriorated 
assembled DG2 solution after decoding ( Eq. (49) ). 
Well-balanced and depth-positivity-preserving DG2 modes: The 

selected DG2 modes forming the assembled DG2 solution on 𝑔 𝐴 
𝑖 ( 𝑡 ) 

are revised based on the wetting and drying condition described in 
Kesserwani and Liang (2012) , which is applied here with the follow- 
ing changes. Firstly, Eq. (19) is used to generate the original Riemann 
states for the components u ∈ { h + z, h, q }, instead of Eq. (12) in 
Kesserwani and Liang (2012) . Secondly, revised states for the compo- 
nents u ∈ { z, h + z, q } are reconstructed from original states under con- 
ditions ensuring both depth-positivity and well-balancedness (i.e. us- 
ing Eqs. (14)–(16) in Kesserwani and Liang, 2012 ). These revised states 
should be used to calculate Riemann fluxes across the sub-elements 
forming 𝑔 𝐴 

𝑖 ( 𝑡 ) . Thirdly, Eqs. (13) –(14) and (21) –(22) are reused to re- 
construct DG2 modes based on the revised Riemann states. Fourthly, 
revised DG2 modes of the h variable are deduced from those of the h + z 
variable by subtracting the revised DG2 modes of the z variable. Finally, 
revised DG2 modes of u ∈ { z, h, q } and Riemann fluxes become availabe 
to evaluate the DG2 operators ( Eqs. (25) –(26) ). 

When applying the present wetting and drying condition, it may 
be useful to note two key aspects. The first is about the continu- 
ity property of the DG2 topography projection in Eq. (20) . Although 
Eqs. (21) –(22) ensure that the continuity of the DG2 topography pro- 
jection holds on a static uniform grid ( Kesserwani, 2013 ), this property 
does not necessarily hold for the assembled DG2 topography projec- 
tion on 𝑔 𝐴 

𝑖 ( 𝑡 ) . In fact, this topography projection is subject to constant 
decoding ( Eq. (49) ) from the compressed MWDG2 solution based on 
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coefficients ( Eqs. (34) –(35) and (40) –(41) associated with decomposi- 
tions from essentially discontinuous functions ( Eqs. (31) –(32) and (36) –
(37) ). Hence, involving the free-surface elevation h + z as an intermedi- 
ate variable (as in Kesserwani and Liang, 2012 ) is found necessary to 
achieve wetting and drying without relying on the continuity property 
for the assembled DG2 topography projection on 𝑔 𝐴 

𝑖 ( 𝑡 ) . 
The second aspect is about a specific time-step restriction criterion 

to ensure depth-positivity for the average coefficients with time evolu- 
tion. By denoting ( ℎ 0 

𝑒 ) 
𝑡 and ( ℎ 0 

𝑒 ) 
𝑡 +Δ𝑡 the average coefficients of the wa- 

ter height variable at times t and t + Δt , respectively, the following for- 
mula can be obtained (using a similar reasoning as in Kesserwani and 
Liang, 2012 ): 
(
ℎ 0 
𝑒 

)𝑡 +Δ𝑡 ≥ [ 1 − 2 𝐶𝑟 ] 
(
ℎ 0 
𝑒 

)𝑡 
(54) 

In Eq. (54) , Cr stands for the Courant number relative to the Courant–
Friedrichs–Lewy condition, which restricts the time-step size Δt within 
explicit time integration schemes. From Eq. (54) , it is clear that, when- 
ever ( ℎ 0 

𝑒 ) 
𝑡 ≥ 0 , Cr must be ≤ 0.5 to also ensure that ( ℎ 0 

𝑒 ) 
𝑡 +Δ𝑡 ≥ 0 . While 

condition (54) may be irrelevant for the RK2-DG2 method for which 
Cr ≤ 0.3 ( Cockburn and Shu, 2001 ), it is found critical to preserve the 
stability of its first-order finite volume variant for which Cr ≤ 1, as de- 
scribed later ( Section 2.4 ). 
Scaled implicit friction term discretisation: Prior to each RK2 

time step, the DG2 modes of the discharge are modified to add friction 
contribution as done for the unscaled DG2 formulation (i.e. see Section 
2.5 within Kesserwani and Liang, 2012 ). The same approach is applied 
for the scaled DG2 method used in this work, leading to similar expres- 
sions as in Kesserwani and Liang (2012) (i.e. Eq. (36) in Section 2.5 
of Kesserwani and Liang, 2012 ) for adding friction into the discharge 

slope coefficients, but without having any of the 
√
3 s due to to the use 

of rescaled basis functions. 

2.3.4. Truncation and encoding: forming a new compressed MWDG2 
solution 

To create new details, the updated DG2 modes, which form the as- 
sembled DG2 solution on 𝑔 𝐴 

𝑖 ( 𝑡 ) , should be used to reform a compressed 

MWDG2 solution on { 𝑔 ( 𝑛 ) 
𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 . DG2 flow modes for the compo- 

nents u ∈ { h, q } are only defined for the sub-elements in { 𝑔 ( 𝑛 ) 
𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 

that spanned 𝑔 𝐴 
𝑖 ( 𝑡 ) . The other sub-elements remained inactive, hence 

have non-existent DG2 flow modes. In this work, truncation is the pro- 
cess of initialising zero details throughout { 𝑔 ( 𝑛 ) 

𝑖 } 𝑛 = 𝐿 −1 , …, 1 , 0 , in particu- 
lar at the inactive sub-elements to keep them subject to potential ac- 
tivation in the next round (i.e. while redoing the process described in 
Section 2.3.2 ). Over the active sub-elements, belonging also to 𝑔 𝐴 

𝑖 ( 𝑡 ) , en- 
coding is done by successively applying Eq. (48) , level-wise in decending 
order. This generates new flow details from the updated DG2 modes and 
thereby addresses any irrelevant zeroing introduced previously by trun- 
cation. As in the pre-processing step ( Section 2.3.1 ), encoding should be 
applied on the components u ∈ { h + z, q }. After truncation and encod- 
ing, a full set of new details [ 𝒅 ( 𝑛 ) 

𝑒 ] 𝑛,𝑒 is available, for which an alterna- 

tive set of normalised details [ ̌𝑑 ( 𝑛 ) 𝑒 ] 𝑛,𝑒 can be produced via Eq. (50) (see 
Section 2.3.1 ). With new sets of details in place, the process 
( Sections. 2.3.2 –2.3.4 ) can be repeated to evolve the adaptive solution 
up to a specific simulation time. 

2.4. First-order variant: adaptive Haar Finite Volume (HFV1) scheme 

The HFV1 adaptive solution is effectively an MWDG1 method 
formulated upon the same scaling and wavelet basis described in 
Sections 2.1 –2.3 , but only considering the the zeroth component of the 
Legendre basis, i.e. P 0 ( 𝜉) = 1, hence neglecting the slope coefficents. 
Now the local approximate solution U h in Eq. (11) becomes piecewise- 
constant, which can be initialised by Eq. (13) and updated by the oper- 
ator (17) . The filter matrices are thus made of a single scalar, given by: 

𝐇 0 = 𝐇 1 = 𝐆 0 = − 𝐆 1 = 1∕ 
√
2 (55) 

with which Eqs. (48) –(49) are applied to encode and/or decode coeffi- 
cents 𝒖 ( 𝑛 ) 𝑒 and/or 𝒅 

( 𝑛 ) 
𝑒 . These coefficients now include only one compo- 

nent representing the piecewise-constant averaged data. The adaptive 
HFV1 solution is processed as described in Section 2.3 , while omitting all 
the routines involving slope coefficents (e.g. double localisation and lim- 
iting). Explicit first-order time marching is applied for time integration, 
but with Courant number not exceeding 0.5 to ensure depth-posivity 
(see Section 2.3.3 ). For comparison purposes, the highest permissible 
Courant number shared by the MWDG2 and HFV1 adaptive solutions, 
i.e. Cr = 0.3, is chosen to run all the simulations in Section 3 . 

3. Numerical tests 

Seven diagnostic tests are conducted to identify and compare the be- 
haviour of the adaptive HFV1 and MWDG2 solution schemes with ref- 
erence to the standard first-order finite volume (FV1) and second-order 
discontinuous Galerkin (DG2) schemes on uniform grids. The first test 
considers a dam-break flow on a wet and flat domain with a shock wave, 
on which wavelet-adaptivity related issues and choices are thoroughly 
analysed to find a setting where the adaptive solvers are as numeri- 
cally accurate as their uniform grid counterparts at the finest resolution 
available, while remaining computationally more efficient. In the sec- 
ond test, the predictive accuracy of the adaptive solvers is re-explored 
for dam-breaks over a dry bed to assess their sensibility in tracking dy- 
namic flow evolution with wet-dry front propagation over frictionless 
and frictional beds. Shockless dam-break flows over a dry domain are 
examined in the third test, to further inspect the properties of the HFV1 
and MWDG2 solvers in capturing a wet-dry front accelerating down- 
hill and decelerating uphill. The fourth test introduces topography with 
discontinuities and kinks partially submerged below a lake-at-rest. The 
test is used to examine the automated mesh generation capability of 
the adaptive HFV1 and MWDG2 solvers, and to assess their ability to 
preserve well-balanced adaptive solutions with zero flow. In the fifth 
test, steady-state flows are explored to study the convergence property 
of the adaptive solvers to steady-state, and to verify further their well- 
balancedness for non-zero flows. The sixth test uses an oscillatory flow 

in a parabolic bowl to measure the numerical conservation of mass and 
energy in a frictionless and physically closed domain, where the solvers 
are subjected to a perpetually moving wet-dry fronts with periodically 
vanishing velocities. The final test simulates a laboratory flume exper- 
iment of a frictional dam-break flow over a trapezoidal hump, includ- 
ing an analysis of the trade-off between maximum refinement level and 
computational efficiency. 

Except when clearly stated for a specific test, the following setting is 
used as a standard. Adaptive HFV1 and MWDG2 solution runs start from 

a single mother element ( M = 1) with nine refinement levels ( L = 9), 
hence yielding an adaptive grid 𝑔 𝐴 

𝑖 with number of sub-elements be- 
tween 2 0 = 1 and 2 9 = 512. Uniform FV1 and DG2 solution runs are 
made at the finest resolution accessible to the adaptive solvers, hence on 
grid 𝑔 (9) 

𝑖 with 512 elements. All solution runs are carried out using the 
same basic parameters, namely Cr = 0.3 for the time-step selection, 10 − 4 

for dry (sub-)element detection, and 9 for Krivodonova’s shock detector 
( Krivodonova et al., 2004 ) with the MWDG2/DG2 solvers. All the sim- 
ulation results presented here are made available for access as supple- 
mentary materials ( Shaw and Kesserwani, 2018 ). The Fortran 2003 code 
used to run these tests is available for download on Zenodo ( Shaw et al., 
2018 ). Instructions for running the models and interpreting the data are 
provided in Appendix 1 . 

3.1. Dam-break flow on a wet domain with shock 

Shock wave transients are characteristic of hydrodynamic flows, 
which are typically short-lived during a long time simulation. In reality, 
they could well represent an impact event perturbing the flow over the 
whole simulation domain. Fine mesh spacing is typically desired over a 
relatively short period of time when the shock occurs and propagates, 
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but such resolution may no longer be required as the shock dissipates. 
To explore the characteristics of wavelet-based adaptivity within the 
HFV1/MWDG2 solutions with discontinuities including shocks, the clas- 
sical dam-break test with a flat topography is considered. Therefore, a 
one dimensional frictionless and wet domain is assumed of length be- 
tween x = 0 and x = 50 m with a hypothetical dam located at x = 25 m. 
The dam separates two water bodies with different initial values of the 
water height h . The initial conditions are a zero discharge and a discon- 
tinuous water profile given by: 

ℎ ( 𝑥, 0 ) = 

{ 
6 𝑖𝑓 𝑥 ≤ 25 

2 𝑖𝑓 𝑥 > 25 
(56) 

This results in a flow profile including a shock wave and rarefaction 
wave which propagate away from the initial dam position in opposite 
directions separated by a constant state ( Toro, 2001 ). Assuming open 
domain boundaries, both waves are expected to be present by t = 3 s 
before entirely exiting the domain by t = 10 s. Five series of runs are 
performed using different solver configurations with the same initial 
conditions, each with a specific purpose as detailed in the following. 

3.1.1. Optimal choice for the error threshold driving wavelet-adaptivity 
In this first series of tests, the adaptive HFV1/MWDG2 solvers are 

employed to identify the error threshold ( Section 2.3.2 ) that ensures a 
fair balance between the numerical accuracy and the computational ef- 
ficiency of the adaptive solvers. Adaptive and uniform solution schemes 
are run for the standard setting, which yields a uniform grid with 512 
elements for the FV1/DG2 solutions ( Δx = 0.098 m) and an adaptive 
grid that can allow up to 512 sub-elements ( Δx (9) = 0.098 m) for the 
HFV1/MWDG2 solutions. To measure accuracy, the normalised 𝓁 2 er- 
ror is calculated while varying the additivity error threshold from 𝜀 = 10 − 6 

to 𝜀 = 10 − 1 ( Fig. 1 a). The 𝓁 2 errors are evaluated for the water height 
variable at t = 2.5 s, when both shock and rarefaction waves are still 
present in the domain (see Fig. 2 ). A normalised 𝓁 2 error is calculated 
as: 

𝓁 2 = 

√ √ √ √ √ √ 

(
ℎ 
0 , ( 𝐿 ) 
𝑒 − ℎ 𝑇 

)2 
Δ𝑥 ( 𝐿 ) 

(
ℎ 𝑇 
)2 

Δ𝑥 ( 𝐿 ) 
(57) 

where h T is the analytical water height as described in Delestre et al. 
(2013) . The 𝓁 2 error for the adaptive solutions is always evaluated on 
the finest uniform grid available, namely 𝑔 ( 𝐿 ) 

𝑖 – by prior conversion 

from a compressed solution on 𝑔 𝐴 
𝑖 into an assembled solution on 𝑔 

( 𝐿 ) 
𝑖 

( Section 2.2.5 ). In Fig. 1 a, the 𝓁 2 errors of the adaptive HFV1/MWDG2 
solvers for various error threshold values are compared to the 𝓁 2 errors 
relative to their uniform FV1/DG2 counterparts on the finest grid. These 
results show that both adaptive HFV1/MWDG2 solvers can preserve the 
𝓁 2 accuracy of the underlying uniform FV1/DG2 solvers, respectively, 
up to an error threshold value of 𝜀 = 10 − 2 . Particularly, for 𝜀 ≤ 10 − 2 , the 
errors of the MWDG2 solution remain lower than the errors of the uni- 
form FV1 solution on the finest grid, as expected due to the second-order 
accurate nature of the MWDG2 solver. With 𝜀 = 10 − 1 , the 𝓁 2 errors of 
HFV1/MWDG2 exceed the 𝓁 2 errors of uniform FV1/DG2 counterparts 
on the finest grid (with 2 9 elements), although they remain bounded by 
the uniform FV1/DG2’s errors that are two order of resolution coarser 
(on the grid with 2 7 elements). Nonetheless, with 𝜀 = 10 − 1 , the 𝓁 2 error 
of MWDG2 is noted to exceed the 𝓁 2 error of FV1 on the finest grid, mak- 
ing it a less compelling choice to further benefit from the DG2 accuracy. 
Hence, the error threshold 𝜀 = 10 − 3 is found to be a rational choice to 
keep the predictive accuracy of the adaptive solvers at the same level as 
their uniform counterparts on the finest grid available, and to achieve 
second-order accuracy with the MWDG2 solver. 

Computational efficiency is measured as the CPU time needed to 
complete a 40 s long simulation and including the pre-processing 
step ( Section 2.3.1 ). Fig. 1 b shows the CPU times for the adaptive 
HFV1/MWDG2 solvers evaluated for all the error thresholds used in the 
accuracy analysis ( Fig. 1 a), along with the CPU times for the uniform 

Fig. 1. Variation of (a) normalised 𝓁 2 water height error at t = 2.5 s and (b) 
total CPU time for the 40 s long simulation of a frictionless dam-break on a wet 
domain, using adaptivity thresholds from 𝜀 = 10 − 6 to 𝜀 = 10 − 1 . Adaptive HFV1 
and MWDG2 results are obtained using a baseline mesh with a single mother 
element ( M = 1) and a maximum refinement level L = 9. Adaptive solutions are 
compared with FV1 and DG2 solutions on uniform meshes with 2 7 = 128 ele- 
ments (marked by horizontal dotted lines) and 2 9 = 512 elements (marked by 
horizontal dashed lines). 

FV1 and DG2 simulations on the finest grid (512 elements). As the er- 
ror threshold increases, the CPU time of the adaptive HFV1/MWDG2 
solvers decreases initially and becomes practically constant for 𝜀 ≥ 10 − 3 . 
For the considered error thresholds, the MWDG2 solver results in 2.3 to 
140 times faster simulations than the uniform DG2 solver on the finest 
grid. In contrast, the adaptive HFV1 solver could only be faster than 
the uniform FV1 solver on the finest grid for 𝜀 ≥ 10 − 4 , most likely due 
to dominance of the wavelet-adaptivity overhead ( Section 3.1.5 ). On 
the finest uniform grid, the DG2 solver is found to be around 8 times 
more expensive than the FV1 solver, although the MWDG2 solver with 
𝜀 = 10 − 3 exhibits better performance than the FV1 solver. 

These tests indicate that an error threshold of 𝜀 = 10 − 3 is an opti- 
mal choice for the adaptive MWDG2 solver to preserve the accuracy of 
the uniform DG2 solver without exceeding the runtime of the uniform 

FV1 solver. This choice is also suitable for the adaptive HFV1 solver to 
deliver simulations that are as accurate as the uniform FV1 solver but 
computationally more efficient. Unless stated otherwise, in the remain- 
der of Section 3 , 𝜀 = 10 − 3 is adopted as a default choice for the error 
threshold value. 

3.1.2. Adaptive solution predictability of relevant flow features (t = 2.5 s) 
The second series of tests compares adaptive solutions of water 

height and discharge, and mainly examines the grid prediction abil- 
ity relevant to the HFV1 and MWDG2 solvers. The adaptive solutions 
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Fig. 2. Solutions of the frictionless dam-break on a wet domain at t = 2.5 s ob- 
tained using a baseline mesh with a single mother element ( M = 1) and a max- 
imum refinement level L = 9. Solutions obtained with the adaptive HFV1 and 
MWDG2 solvers are compared with the analytical solution for (a) water height 
h , and (c) discharge . (b) The refinement levels used by the adaptive solvers. 

are analysed at t = 2.5 s, when both shock and rarefaction waves still 
exist. The adaptive solutions are illustrated in Fig. 2 , which shows a 
good agreement with the analytical solutions. The HFV1 predictions 
( Fig. 2 a,c) show more pronounced numerical diffusion than the MWDG2 
predictions, which is in fact expected given the first-order nature of the 
HFV1 scheme. 

In terms of resolution predictability, as shown in Fig. 2 b, both HFV1 
and MWDG2 correctly predict the finest resolution around the shock, i.e. 
refinement level (9), further showing ability to allow large gaps in reso- 
lution levels without failing. In regions of uniform flow, at the constant 
state and downstream of the shock, the HFV1 and MWDG2 solutions 
predicted the coarsest resolutions at refinement level (5) and (4), respec- 
tively. It is not surprising that MWDG2 yields coarser refinement levels 
than HFV1 as the former always have smaller errors than the latter for 
𝜀 = 10 − 3 ( Section 3.1.1 ). Nonetheless, both HFV1 and MWDG2 solvers 
seem able to sensibly select suitable refinement levels for their adap- 
tive solution in the locality of a shock and throughout the constant state 
( Fig. 2 for 20 ≤ x ≤ 50). However, in prediction of the rarefaction wave, 
MWDG2 presents a remarkable behaviour as compared to HFV1. There, 
the MWDG2 solution uses refinement level (8) around the rarefaction’s 
head and tail, preserves level (7) in between them, and allows a sharp 
drop to level (5) downstream of the head. Also, the MWDG2 solution 
does not even access the maximum refinement level (9), as opposed to 
the HFV1 solution that deploys it to indistinguishably compute the ex- 
tent of the rarefaction. These results suggest that the wavelet-adaptivity 

Fig. 3. CPU time to complete the 40 s long simulation of a frictionless dam- 
break on a wet domain. The number of mother elements and the maximum 

refinement level are varied together so that the adaptive grid allows maximum 

of 512 sub-elements. 

combined with the MWDG2 solver can produce an adaptive solution 
that is more accurate and economical on grid resolution demands. 

3.1.3. Size of coarse baseline grid vs. maximum refinement level 
This third series of runs aims to analyse the trade-off between coarse- 

ness of the initial grid versus depth in maximum refinement level. A 
known adverse effect of conventional adaptive mesh refinement meth- 
ods is the need of an initial coarse mesh that is yet fine enough for 
the flow solver to sense the triggering features of the initial flow con- 
ditions ( Donat et al., 2014, Haleem et al., 2015 ), among many other 
adverse effects ( Zhou et al., 2013, Kesserwani and Liang, 2015, Liang 
et al., 2015, Li, 2010, An and Yu, 2014, Delis et al., 2011 ). Wavelet- 
based adaptivity can overcome this drawback, permitting the initiali- 
sation of simulations from a very coarse initial mesh as small as two 
elements ( Caviedes-Voullième and Kesserwani, 2015 ) or even a sin- 
gle element ( Sections 3.1.1 –3.1.2 ). To study this characteristic for the 
adaptive HFV1 and MWDG2 solutions, they are here reconsidered with 
different settings based on doubling the baseline grid size in conjunc- 
tion with systematic lowering of the maximum refinement level, but on 
the basis of fixing the maximum allowed number of sub-elements to 
512. The parameters { M, L } are varied as { M, L } = {{1,9}, {2,8}, {4,7}, 
{8,6}, {16,5}, {32,4}, {64,3}, {128,2}, {256,1}}, and runs are made 
with 𝜀 = 10 − 3 . As in Sections 3.1.1 , the accuracy of the adaptive solvers 
is evaluated at t = 2.5 s according to Eq. (57) , and their computational 
efficiency is assessed based on the CPU runtime taken to complete a 40 s 
simulation. 

In terms of accuracy, the same qualitative predictions are noted for 
HFV1 and MWDG2 solvers, respectively, under the different setting for 
{ M, L }. Each of the solvers show identical depth and discharge predic- 
tions, which are quite similar to those illustrated in Fig. 2 a,c, and for 
this reason not presented here. They also yield the same number and 
size for the sub-element forming their assembled solutions, consistent 
with the profile shown in Fig. 2 b. This observation is also reinforced 
by the fact that the same normalised 𝓁 2 error magnitude (plotted in 
Fig. 1 for 𝜀 = 10 − 3 ) is retrieved for all the settings. 

As for the runtime efficiency, it is found to be different for each 
solver under the different settings. Fig. 3 shows the CPU time cost for 
each solver relative to each setting { M, L }. As the number of mother el- 
ements exceeds 32 ( Fig. 3 ), the adaptive solvers experience an increase 
in CPU times, as expected. In fact, by t > 10 s, the flow domain contains 
very smooth profiles, for which the adaptive solvers can at best select 
an adaptive grid at the coarsest resolution allowable, with M elements, 
prior to completing the 40 s simulation ( Section 3.1.4 ). In particular, the 
runtime of MWDG2 becomes significantly more costly with increasing 
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Fig. 4. Evolution of (a) element counts and (b) time-steps over the 40 s long sim- 
ulation of a frictionless dam-break on a wet domain using the adaptive HFV1 and 
MWDG2 solvers. The baseline mesh has a single mother element ( M = 1) with 
a maximum refinement level L = 9, hence meshes have a maximum of 2 9 = 512 
sub-elements. The inset of panel (a) plots the final 30 s of the simulation when 
the shock and rarefaction waves have exited the domain. 

number of mother elements, to an extent that the underlying DG2 oper- 
ational costs are overwhelming ( Fig. 3 for M ≥ 128). However, as long 
as the baseline grids do not exceed 32 mother elements, the adaptive 
HFV1 and MWDG2 solvers required similar runtime costs. These find- 
ings indicate that the accuracy of the adaptive solvers is not affected by 
severe coarsening in the baseline grid, but such an action is necessary to 
fully exploit wavelet-adaptivity traits to boost efficiency – in particular 
with MWDG2. 

3.1.4. Coarsening ability and time-step size over long time evolution 
The fourth series of runs investigates the dynamic behaviour of the 

adaptive solutions as the transient dam-break evolves and dissipates in 
the open computational domain during the 40 s simulation. The stan- 
dard setting is used to re-run the HFV1/MWDG2 solvers together with 
the default error threshold, while inspecting their coarsening ability and 
the size of their time-step as time evolved. Fig. 4 shows the time history 
for the number of sub-elements and of the time-step size. During the 
presence of the rarefaction wave in the domain, t < 10 s, Fig. 4 a re- 
veals that the HFV1 solver requires 3 times more sub-elements than the 
MWDG2 solver. In line with the results in Section 3.1.2 (see Fig. 2 ), 
Fig. 4 a shows that HFV1 – with its piecewise-constant basis – involved 
a maximum of 233 sub-elements to represent the sloping rarefaction 
wave, whereas MWDG2 – with its piecewise-linear basis – uses just 83 
sub-elements for representing the same rarefaction wave and does that 
more accurately than HFV1. Beyond t = 10 s, the maximum number of 
sub-elements with MWDG2 shows much faster decrease than with HFV1 
and reaches the single mother element about 10 s earlier (see zoom-in 
portion in Fig. 4 a). This behaviour is expected with both solvers as by 
t > 10 s the waves exited the domain and only small solution perturba- 
tions remain. Relatedly, the time histories of the adaptive time-step size 
are illustrated in Fig. 4 b, showing predominantly larger time-steps with 
MWDG2 than with HFV1. The first noticeable increase in time-step size 
for the MWDG2 solver is achieved by t = 3.5 s when the shock wave exits 

Fig. 5. CPU times for the simulation of a frictionless dam-break on a wet domain 
using (a) FV1 on a uniform mesh and adaptive HFV1, (b) DG2 on a uniform mesh 
and adaptive MWDG2. Filled circles mark the end of the simulation at t = 40 s. 
Inset plots show the first 0.6 s of CPU time during which the adaptive HFV1 and 
MWDG2 simulations have completed. 

the domain. More increase in time-step size is seen by t = 10 s when both 
waves have exited the domain. This increase becomes more significant 
from t > 23 s, when MWDG2 uses less than four sub-elements. From 

t > 27 s, the MWDG2 solver uses a time-step around Δt = 1.5 s, which is 
roughly twice the time-step used by HFV1 over this period. This analysis 
supports the findings highlighted at the end of Section 3.1.2 , suggest- 
ing that the MWDG2 solver is more accurate and less CPU intensive for 
simulations over large spatial domains and long-time scales. 

3.1.5. Computational overhead due to wavelet adaptivity 
The final series of tests examines the computational overhead as- 

sociated with wavelet-adaptivity in the HFV1 and MWDG2 solutions. 
Wavelet-adaptivity reduces the number of sub-elements, producing 
coarser solutions that allow longer time-steps ( Section 3.1.4 ). Fewer sub- 
elements and bigger time-steps reduce the overall computational cost 
( Sections 3.1.1 and 3.1.4 ), but the compression and assembly mecha- 
nisms (via transformations (48) and (49) as detailed in Section. 2.3 ) 
involved in the adaptivity calculations introduce some computational 
overhead that may dominate the overall computational cost ( Fig. 1 b). 
To identify the extent of this overhead, the computational trade-off be- 
tween the adaptive calculations and the uniform ones is analysed consid- 
ering their cumulative CPU runtimes, respectively, throughout the 40 s 
simulations ( Fig. 5 ). The adaptive and uniform solvers are run based on 
the standard setting. 

In Fig. 5 a, the evolution of the cumulative runtimes generated by 
the FV1 and HFV1 are compared. For the first 15 s, the adaptive HFV1 
solver is found to be slower than the uniform FV1 solver due to the 
computational overhead associated with wavelet-adaptivity. Later, af- 
ter the shock and rarefaction waves exit the domain, the adaptive HFV1 
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solution is coarsened aggressively ( Fig. 4 ) and the associated gain in 
computational efficiency is seen to outweigh the adaptivity overhead. 
Nonetheless, the entire 40 s long HFV1 simulation is noted to complete 
in less than half the CPU time of the uniform FV1 simulation on the 
finest grid. This indicates that adaptive HFV1 modelling is more prac- 
tical when simulating flows with smooth profiles. With the adaptive 
MWDG2 solver, as shown in Fig. 2 b, the computational overhead due 
to wavelet-adaptivity remains insignificant relative to the uniform DG2 
simulation. Also, this overhead is found to be lower than the wavelet- 
adaptivity overhead experienced in the HFV1 simulation (compare the 
zoom-in portions in Fig. 5 a and Fig. 5 b) – at least for t < 15 s when 
the rarefaction did not leave the domain. Most strikingly, the adap- 
tive MWDG2 solver is found to complete the 40 s simulation almost 
as quickly as the adaptive HFV1 solver. 

In summary, when simulating a dam-break flow with a shock oc- 
curring on a wet domain, the adaptive HFV1/MWDG2 solvers with 
𝜀 = 10 − 3 preserve the numerical accuracy of their corresponding uni- 
form FV1/DG2 solvers. HFV1/MWDG2 are most effective on very coarse 
baseline grids down to a single mother element; once the waves have 
left the domain, both solvers are able to represent the spatially uniform 

solution with just one element. HFV1 is about twice as fast as FV1, and 
MWDG2 is about 20 times faster than DG2, with MWDG2 achieving 
greater accuracy than HFV1 at the same speed. 

3.2. Dam-break flow on a dry domain without shock 

As shown in Section 3.1 , wavelet-adaptivity can easily refine the so- 
lution in the locality of a shock wave because wavelets act as a kind 
of jump detector ( Vuik and Ryan, 2014 ). However, a dam-break wave 
usually happens over a dry domain, without experiencing shock forma- 
tion when topographic effects are neglected. In this case, a wetting front 
propagation occurs downstream. When friction effects are also neglected 
the wave-front shape is smooth, including a wet-dry front that should 
be modelled with enough resolution to properly track arrival time. Fric- 
tion retards the arrival of the wet-dry front and steepens the wave-front, 
which must also be captured with fine resolution to represent the wave 
tip. In this test, some key properties of the adaptive HFV1 and MWDG2 
solvers are re-explored when simulating dam-break flows over a dry and 
flat bed, considering frictionless and frictional cases for which analytical 
or semi-analytical solutions exist ( Delestre et al., 2013 ). 

3.2.1. Frictionless case 
The test configuration is the same as the dam-break on a wet domain 

( Section 3.1.1 ), except for the initial water height h , which is given by: 

ℎ ( 𝑥, 0 ) = 

{ 
6 𝑖𝑓 𝑥 ≤ 25 

0 𝑖𝑓 𝑥 > 25 
(58) 

The adaptive HFV1/MWDG2 solutions are considered with the stan- 
dard setting. Tests are run for t = 1.3 s and normalised 𝓁 2 errors are 
calculated, using Eq. (57) by differencing numerical solutions with the 
analytical solution for the same range of choices for the error threshold 
(between 𝜀 = 10 − 6 and 𝜀 = 10 − 1 ). Fig. 6 illustrates the respective nor- 
malised 𝓁 2 errors for the HFV1/MWDG2 solvers. Fig. 6 also includes the 
𝓁 2 errors of the FV1/DG2 solvers on two uniform grids with 2 7 = 128 
elements and 2 9 = 512 elements, showing lesser magnitudes with DG2 
as expected. For all the error thresholds, the HFV1 and MWDG2 solution 
remained more accurate than the corresponding uniform FV1 and DG2 
solutions on the grid with 128 elements ( Fig. 6 ). The MWDG2 solver is 
always more accurate than FV1, as opposed to the previous test (com- 
pare Fig. 6 with Fig. 1 a). With 𝜀 ≤ 10 − 2 , the HFV1 and MWDG2 so- 
lutions become almost as accurate as their corresponding uniform so- 
lutions on the finest grid, although they are somewhat less accurate. 
This behaviour is not observed in the previous test (compare Fig. 6 with 
Fig. 1 a), where the 𝓁 2 errors of the HFV1/MWDG2 solvers overlap with 
the 𝓁 2 errors of the uniform FV1/DG2 solvers on the finest grid. Possibly, 
in this test, the water height and flow profiles are largely curved, which 
is the case where the FV1/DG2 solvers benefit more from an increase in 
the resolution of the uniform grid. Also, the flow states in the previous 
test remain unchanged over a significant portion in the domain ( Fig. 2 ), 
which causes less loss of relevant information within the HFV1/MWDG2 
solvers – during (de)compression due to propagation of round-off errors 
in Eqs. (48) –(49) . Here, DG2 and MWDG2 achieved lower 𝓁 2 errors than 
in the previous test, most likely owing to the double localisation process 
that switched off the slope limiter given the shockless nature of this dam- 
break flow. The results in Fig. 6 indicate that 𝜀 = 10 − 3 and 𝜀 = 10 − 2 seem 

to be good choices to maximise the efficiency for HFV1/MWDG2 runs 
and deliver comparable accuracy to the uniform FV1/DG2 runs on the 
finest grid. 

A qualitative analysis of the adaptive HFV1 and MWDG2 solutions 
at t = 1.3 s is presented in Fig. 7 a and 7 b, which includes a comparison 

Fig. 6. Normalised 𝓁 2 water depth error at t = 1.3 s for the simulation of a frictionless dam-break on a dry domain, using adaptivity thresholds from 𝜀 = 10 − 6 to 
𝜀 = 10 − 1 . Adaptive HFV1 and MWDG2 results are compared with those of the FV1 and DG2 solvers on uniform meshes with 128 elements (dotted lines) and 512 
elements (dashed lines). 
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Fig. 7. Water height at t = 1.3 s for the simulation of a frictionless dam-break on a dry domain, comparing the analytic solution with numerical solutions for the 
adaptive HFV1 and MWDG2 solvers with an adaptivity threshold (a) 𝜀 = 10 − 3 and (b) 𝜀 = 10 − 2 . (c, d) Refinement levels for the corresponding solutions. Simulations 
are performed on a baseline mesh with a single mother element and a maximum refinement level L = 9 marked by a horizontal dotted line. 

between the water height profiles predicted by HFV1 and MWDG2 for 
the aforementioned error thresholds and the analytical solution. HFV1 
and MWDG2 predictions are noted to be in good agreement with the 
analytical solution. However, the HFV1 solution is seen to experience 
numerical diffusion at the wet-dry front and at the tail of the wave, 
slightly overestimating the region upstream of the initial dam position 
and underestimating the position of the wave-front (see magnified por- 
tions within Fig. 7 a and 7 b). These effects do not seem to improve when 
lowering the error threshold from 𝜀 = 10 − 2 to 𝜀 = 10 − 3 and are not visible 
in the MWDG2 solution, which provides better overall alignment with 
analytical solution as expected from a second-order accurate numerical 
model. 

In terms of resolution demand, as illustrated in Fig. 7 c and 7 d, 
MWDG2 allows coarser refinement levels than HFV1 and chooses more 
sensibly where to use the finest levels. With 𝜀 = 10 − 2 and 𝜀 = 10 − 3 , the 
HFV1 solution involved the two finest refinement levels, namely still ac- 
cessing levels (8) and (9) to represent the full extent of the sloping water 
surface ( Fig. 7 c and 7 d). The MWDG2 solution does not exceed levels 
(7) to represent this zone except where it should, namely at the kink and 
wet-dry front. Notably, with 𝜀 = 10 − 2 , MWDG2 uses level (6) and below 

along the smoothing wave, level (7) at the kink, but without accessing 
any higher refinement levels despite being available. Considering also 
that MWDG2 predictions are nearly similar at 𝜀 = 10 − 2 and 𝜀 = 10 − 3 (see 
Fig. 6 b and compare Fig. 7 a vs. 7b), lowering 𝜀 can reduce model acces- 
sibility to the finest refinement levels, as desired for some simulations 
that do not demand high resolution, while keeping these finest levels 
re-accessible as needed for other simulations (see also Section 3.7 ). 

3.2.2. Frictional case 
For the frictional dam-break case, the configuration is identical, ex- 

cept that the Manning coefficient n M = 0.016 m 1/3 s − 1 , which is selected 
by calibration to fit the semi-analytical solution available in terms of the 
Chézy factor ( Delestre et al., 2013 ). Adaptive HFV1 and MWDG2 solu- 
tions are produced for the same error thresholds 𝜀 = 10 − 3 and 𝜀 = 10 − 2 , 
which are illustrated in Fig. 8 a and 8 b, respectively, together with the 
semi-analytical solution at t = 1.3 s. Outside of the wave tip region up- 

stream of the wet-dry front, HFV1/MWDG2 solutions perform very sim- 
ilarly to those in the corresponding frictionless test ( Section 3.2.1 ). At 
the wave tip region, the semi-analytical solution is actually based on 
interpolation assuming a parabola ( Delestre et al., 2013 ). As such, no 
exact comparisons can be made therein. Nevertheless, HFV1/MWDG2 
solutions are found to agree well with the semi-analytical solution in 
the wave tip region, with MWDG2 producing a steeper wave-front pro- 
file. Fig. 8 c and 8 d illustrate the corresponding refinement levels used by 
the adaptive solvers with 𝜀 = 10 − 3 and 𝜀 = 10 − 2 , respectively. The adap- 
tive HFV1/MWDG2 solutions show almost the same behaviour for the 
refinement levels as the frictionless case (compare Fig. 7 c and 7 d with 
Fig. 8 c and 8 d, respectively). However, at the wet-dry front, MWDG2 
retains the maximum refinement level, even with 𝜀 = 10 − 2 , due to the 
steeper wave-front induced by friction. 

The frictional and frictionless dam-break tests demonstrate further 
the ability of the adaptive HFV1 and MWDG2 solvers to simulate the 
propagation of dynamic waves over a dry domain. MWDG2 alleviates 
the numerical diffusion errors expected in the FV1 or HFV1 solutions 
with much lower refinement levels. With an error threshold of 𝜀 = 10 − 2 , 
MWDG2 does not need to access the maximum refinement level, apart at 
the wet-dry front when the wave-front is steepened by friction. This sug- 
gests that the error threshold can be further relied on to reduce model 
access to the finest resolutions available as relevant for certain simula- 
tions, even when they are set to perform at very high resolution. 

3.3. Dam-break flow descending and ascending sloping and dry beds 

In this test, the performance of the adaptive HFV1/MWDG2 solvers 
is further examined for dam-break flows featuring a wet-dry front that 
accelerates or decelerates as it descends or ascends a sloping bed. A 
dam-break wave upsloping is initially used in Xing et al. (2010) . A more 
challenging variant is considered here, as proposed in Kesserwani and 
Liang (2012) , including a case where the wave downslopes. The initial 
dam is assumed centred at x = 0 m in a [ − 15 m, 15 m] domain. Upstream 

of the dam ( x < 0), the initial water elevation h + z is equal to 8 m and 
the water height is assumed to be zero downstream of the dam ( x ≥ 
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Fig. 8. Water height at t = 1.3 s for the simulation of a frictional dam-break on a dry domain, comparing the semi-analytical solution with numerical solutions 
using the adaptive HFV1 and MWDG2 solvers with an adaptivity threshold (a) 𝜀 = 10 − 3 and (b) 𝜀 = 10 − 2 . (c, d) Refinement levels for the corresponding solutions. 
Simulations are performed on a baseline mesh with a single mother element and a maximum refinement level L = 9 marked by a horizontal dotted line. 

0). A wall is assumed to exist at the upstream end ( x = − 15 m), which 
can be accounted for by reflective boundary conditions. Free outflow is 
assumed at the downstream end ( x = 15 m) by transmissive boundary 
conditions. The topography is linear with a slope angle 𝛼, namely: 

𝑧 ( 𝑥 ) = −1 + 𝑥 𝑡𝑎𝑛 ( 𝛼) (59) 

Two cases are considered with 𝛼 values in Eq. (59) . First, a dam- 
break ascending with 𝛼 = 𝜋/6 and, second, a dam-break descending with 
𝛼 = - 𝜋/6. The upslope dam-break is simulated for t = 1 s whereas the 
downslope dam-break is simulated for t = 0.75 s. Both cases are assumed 
frictionless. Simulations are performed using the standard setting with 
the uniform FV1 and DG2 solvers (on a grid with 512 elements) and 
with the adaptive HFV1 and MWDG2 solvers taken with the default 
error threshold ( M = 1, L = 9 and 𝜀 = 10 − 3 ). 

In Fig. 9 a and 9 b, the water depth predictions made by the adaptive 
HFV1/MWDG2 and uniform FV1/MWDG2 solvers are illustrated, show- 
ing comparable profiles that also match existing results ( Kesserwani and 
Liang, 2012 ). The difference between the predictions is more notice- 
able for the discharge profiles as shown in Fig. 9 e and 9 f. Compared 
to MWDG2/DG2, FV1/HFV1 predictions exhibit numerical diffusion at 
the start of the wave, as expected given the difference in the accuracy 
orders between the corresponding numerical formulations. Despite this, 
these discrepancies are more prominent for the upslope dam-break case 
(see x = − 11 m in Fig. 9 e vs. at x = − 6 m in Fig. 9 f) suggesting that the 
second-order variants provide better predictions with increased level of 
vigour in the wave propagation. At the wave-front, the discrepancies 
become more noticeable in both the upslope and downslope dam-break 
cases (see x > 10 m in Fig. 9 e vs. at x = 12 m in Fig. 9 f). Therein, in- 
formed further by the results in Fig. 7 a, MWDG2/DG2 are expected to 
more accurately follow the evolution of the wet-dry front as they both 
deploy piecewise-linear solutions to integrate topography and wetting 
and drying, as opposed to HFV1/FV1 that use piecewise-constant solu- 
tions. 

In terms of refinement level predictions, which are illustrated in 
Fig. 9 c and 9 d, the HFV1 solution only used the maximum level (9), 
hence yielding identical results to those delivered by the FV1 solution 

in both upslope and downslope dam-break case. This over-prediction is 
associated with the use of a piecewise-constant basis in HFV1 that yields 
a staircase pattern for the linear topography approximation, making the 
solver trigger the maximum refinement level at 𝜀 = 10 − 3 . Note that the 
proposed wavelet-adaptivity formulations indistinguishably use the de- 
tails of the flow and topography variables to generate the adaptive solu- 
tion. In contrast, the MWDG2 solver, in both cases, predicted refinement 
level (8) to track the start of the wave, and levels (6) and (7) thereafter 
upstream of the wave-front. For the upslope dam-break case, MWDG2 
does not access the maximum refinement level (9) at the wave-front but 
uses refinement level (8) instead. This is in contrast with the downslope 
case where level (9) is retained therein, and level (4) is selected before 
upstream of the depression wave. Such differences in refinement level 
predictions are expected given the different flow physics involved in the 
upslope and downslope dam-break cases; namely, the wet-dry front ad- 
vance is slower in the former case, whereas wave recession at the start 
is delayed in the latter case. 

The propagation of the wet-dry front in the numerical simulations 
can be compared to the analytical position of the wet-dry front x f ( t ) 
given by: 

𝑥 𝑓 ( 𝑡 ) = 2 𝑡 
√
8 𝑔 cos ( 𝛼) − 1∕2 𝑔 𝑡 2 tan ( 𝛼) (60) 

The numerical position of the wet-dry front is calculated based on 
the first (sub-)element at which the water height is bigger than 10 − 2 m 

scanning (sub-)elements from left to right. Fig. 10 a and 10 b show the 
time evolution of wet-dry front positions for the upslope and downs- 
lope dam-break cases, respectively. As seen in Fig. 10 , FV1 calculates a 
slower front advance consistently under-predicting the analytical solu- 
tion. By the end of the simulations, FV1 (and identically HFV1) positions 
the front about 2 m and 1 m below the true position for the upslope 
and downslope dam-break cases, respectively. The DG2 solver tracks 
the upslope and downslope wet-dry fronts more accurately than the 
FV1 solver, however showing an over-predictive tendency. The adap- 
tive MWDG2 solver is seen to preserve the accurate solution of the 
underlying DG2 solver. The frontal evolution obtained with the DG2 
and adaptive MWDG2 solvers compares favourably with results using 
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Fig. 9. Numerical solutions of (a, b) water elevation and (e, 
f) discharge for dam-breaks ascending upslope (left-hand pan- 
els) and descending downslope (right-hand panels) over a bed 
with a constant slope. Tests are performed using FV1 and DG2 
solvers on a uniform mesh, and adaptive HFV1 and MWDG2 
solvers. For the adaptive solvers, (c, d) illustrate the refinement 
levels associated with the corresponding numerical solutions. 

Fig. 10. Evolution of the wet-dry front 
for dam-breaks (a) ascending upslope and 
(b) descending downslope over topography 
with a constant slope. 

the RKDG2-LFT solver presented in Kesserwani and Liang (2012) . 1 In 
summary, the adaptive HFV1 solver is not found as effective as in the 
previous dam-break tests on flat beds because of its piecewise-constant 
basis that can yield over-refinement when approximating a sloping to- 
pography profile. The adaptive MWDG2 solver uses a piecewise-linear 
basis that can exactly represent the sloping topography at any refine- 
ment level, so the MWDG2 solver is able to coarsen more effectively 
than HFV1 while proving more accurate and economical. 

1 In their Fig. 4b, the analytical front evolution plot for the downslope case 
is incorrect. Their numerical results are more closely aligned with the correct 
analytical front evolution presented here in Fig. 10 b. 

3.4. Well-balanced property and mesh generation ability 

This test examines the initial mesh generation ability of the adap- 
tive solvers and their well-balanced property in reproducing a lake- 
at-rest. Unlike the idealised sloping topography in the previous test, 
real terrain is fractally multi-scale, non-smooth, and often discontinu- 
ous, as in the presence of buildings. Preserving quiescent flow over an 
irregular topography is challenging for numerical shallow water mod- 
els, in particular at partially wet zones located at bed discontinuities 
( Kesserwani, 2013, Kesserwani et al., 2018 ). To assess the full extent of 
well-balancedness, a lake-at-rest test has been proposed ( Sharifian et al., 
2018 ) based on an idealised topography with smooth, sloping and dis- 
continuous regions (see Fig. 12 ). 
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Fig. 11. Discharge after t = 100 s for the simulation of the lake-at-rest using (a) the FV1 solver on a uniform mesh and the adaptive HFV1 solver, (b) the DG2 solver 
on a uniform mesh and the adaptive MWDG2 solver. The analytical solution remains at rest with zero discharge while the numerical discharge is close to machine 
precision in all cases. 

The lake-at-rest is defined on [0 m, 50 m] with an initial water ele- 
vation h + z = 2 m such that three scenarios occur: exactly dry at a peak 
( h = 0 m at the curved hump), submerged portion ( h > 0 m at the tri- 
angular hump) and unsubmerged portion with two wet-dry fronts ( h < 

0 m at the rectangular hump). The adaptive and uniform solvers are ap- 
plied to compute the lake-at-rest conditions with zero initial discharge 
( q = 0 m 2 s − 1 ). Simulations are executed for a relatively long time evo- 
lution, namely t = 100 s corresponding to about 16,000 time-steps, con- 
sidering two error thresholds 𝜀 = 10 − 1 and 𝜀 = 10 − 3 with the standard 
setting ( M = 1 and L = 9). A robust and well-balanced solver should pre- 
serve the initial water state and the initial zero discharge unperturbed 
as time evolves. 

Fig. 11 shows the discharges computed by the adaptive and uniform 

solvers. All the numerical discharges are observed to be very close to 
machine precision ( Fig. 11 ) and the initial water elevation remains un- 
changed ( Fig. 12 ) for all the solvers throughout the simulation. Slightly 
larger discharge predictions are noted with MWDG2 at 𝜀 = 10 − 3 than 
with MWDG2 at 𝜀 = 10 − 1 ( Fig. 11 b) and with HFV1 ( Fig. 11 a). This be- 
haviour is expected as the smaller the 𝜀 , the more MWDG2 will access 
Eqs. (48) –(49) , causing more knock-on effects due to rounding of the ir- 
rational numbers involved in the filter banks. Nonetheless, this increase 
in error is negligible even after very long time evolution. Fig. 11 b also 

shows two spikes in the discharge predictions occurring around the dis- 
continuities of the rectangular hump for DG2 and MWDG2 at 𝜀 = 10 − 3 . 
These spikes, however, do not grow over the 100 s long simulation, 
and their magnitude is noted to be smaller with grid coarsening (e.g. 
compare with the MWDG2 predictions at 𝜀 = 10 − 1 ). These results con- 
firm that the adaptive HFV1/MWDG2 solvers are well-balanced. Noting 
also that the negative water height below the rectangular hump remains 
unmodified with time evolution ( Fig. 12 ), the sharp-edges of the rect- 
angular hump effectively become (internal) boundaries, which there is 
no need to manually recognise since the initial water elevation can in- 
tersect the topography without affecting the well-balancedness of the 
solution. This property seems therefore to be instrumental to deal with 
the presence of buildings during the mesh generation process. 

Since h + z and q are unvarying in this test, the assembled initial 
(adaptive) solution is solely selected driven by the topographic features. 
The well-balanced HFV1/MWDG2 solvers can therefore be used as mesh 
generators subject to choosing an error threshold. The mesh generation 
ability of these solvers is particularly explored by further analysing their 
refinement level predictions. Fig. 12 a and 12 b include the refinement 
levels predicted by the HFV1 and MWDG2 solvers, respectively. At the 
rectangular hump, both HFV1 and MWDG2 solvers are seen to select 
the maximum level (9) at the sharp edges, and to coarsen effectively 
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Fig. 12. Topography profiles for the simula- 
tion of the lake-at-rest using (a) the adaptive 
HFV1 solver, (b) the adaptive MWDG2 solver. 
The idealised topography has a smooth, curved 
hump (left), triangular hump (centre) and dis- 
continuous, rectangular hump (right). The wa- 
ter elevation, topography profile and corre- 
sponding refinement levels are plotted on the 
same axis. Solutions are obtained using a base- 
line mesh with a single mother element and a 
maximum refinement level L = 9. Markers show 

cell centre positions, and the full, piecewise 
representation of topography is plotted. 

in-between them where the topography is smooth. For this hump, the 
smooth portion is flat and the sharp-edged portions are strongly discon- 
tinuous. The former portion is readily represented by coarse piecewise- 
constant and piecewise-linear data, while the latter portion can easily 
be detected by both representations. The choice of the error threshold 
seems to have little effect on representing this obstacle, as very simi- 
lar refinement levels are predicted therein by both HFV1 and MWDG2 
solvers at 𝜀 = 10 − 3 and at 𝜀 = 10 − 1 . 

The curved and triangular humps are less easily represented by the 
HFV1 piecewise-constant basis: at 𝜀 = 10 − 3 , HFV1 used the maximum re- 
finement level (9) in these two regions ( Fig. 12 a). More effective coars- 
ening at these two humps is noted by choosing 𝜀 = 10 − 1 where HFV1 uses 
only refinement levels (8) or below. MWDG2 coarsens the triangular 
hump much more sensibly than HFV1 at 𝜀 = 10 − 3 : it uses the maximum 

refinement level only at the kinks at the base of the triangle ( Fig. 12 b), 
and much coarser levels at the tip that is positioned exactly at the cen- 
tre of the domain. At the curved hump, MWDG2 still predicts the max- 
imum refinement level (9), even at 𝜀 = 10 − 3 , which could be signalling 
that more resolution is needed to cover curved terrain shapes. With 
𝜀 = 10 − 1 , the triangular and curved hump are relatively less-resolved 
with MWDG2 than with HFV1, with MWDG2 predicting level (7) and be- 
low. However, taking 𝜀 ≥ 10 − 1 is likely to make the HFV1 or the MWDG2 
solvers unable to preserve enough accuracy (recall Sections. 3.1.1 and 
3.2.1 ). 

With a maximum refinement level L = 9 and an error threshold 
𝜀 = 10 − 3 , MWDG2 used the maximum refinement level at the disconti- 
nuities of the rectangular hump and the kinks of the triangular hump as 
expected, but also throughout the curved hump. To explore whether the 
usage of level (9) throughout the curved hump is an over-refinement or 
a requirement, the MWDG2 solver is re-run by increasing the maximum 

refinement level to L = 14 under the same error threshold. Fig. 13 shows 
the profile of the corresponding refinement levels. Remarkably, now the 

Fig. 13. Adaptive MWDG2 topography profile and corresponding refinement 
levels for the three humps used in the lake-at-rest simulation. The profile is 
obtained using a baseline mesh with a single mother element ( M = 1) and a 
maximum refinement level L = 14. 

MWDG2 solver only accesses the maximum refinement level (14) at the 
strong discontinuities of the rectangular hump. At the kinks, MWDG2 
predicts level (12) for the triangular hump and level (13) for the 
curved hump that has steeper kinks. Moreover, analysis of the MWDG2 
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Table 1 
Initial water depth and boundary conditions for the subcritical, supercritical and transcritical steady-state tests. All steady-state tests have 
an initial discharge q = 0 m 2 s − 1 . 

Steady flow test Initial water height (m) Upstream discharge (m 2 s − 1 ) Upstream water height (m) Downstream water height (m) 

Subcritical 2.0 4.42 – 2.0 
Supercritical 2.0 25.0567 2.0 –
Transcritical with shock 0.33 0.18 – 0.33 

Fig. 14. Convergence to a steady-state solution for (a) subcritical (b) supercritical and (c) transcritical flows. Water height convergence is measured by calculating 
the 𝓁 2 difference between the current and previous time-steps. 

solution provides information on the necessary refinement levels re- 
quired to represent the smooth humps, i.e. suggesting the need for level 
(6) and (10) to discretise the slope and curvature involved in the trian- 
gular and curved humps, respectively. These results imply that MWDG2 
can effectively be used to initialise mesh resolution in a localised man- 
ner as needed. This property could potentially be useful towards making 
more effective use of very high resolution Lidar data without overload- 
ing the simulation, and gives the user direct control over the extent 
of resolution deepness at which topography is represented within the 
model (via choosing 𝜀 ). 

3.5. Convergence to well-balanced steady states with non-zero flows over a 
hump 

In this series of tests, the adaptive HFV1 and MWDG2 solvers are 
given steady boundary conditions to study their convergence ability in 
reaching steady states with flows over a hump. Following Delestre et al. 
(2013) , the one-dimensional domain is [0 m, 25 m] with a topographic 
hump given by: 

𝑧 ( 𝑥 ) = 

{ 
0 . 2 − 0 . 005 ( 𝑥 − 10 ) 2 𝑖𝑓 8 𝑚 < 𝑥 < 12 𝑚 

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 
(61) 

Tests are performed to assess the rate of convergence upon three 
steady flow regimes: subcritical, supercritical and transcritical with a 
stationary shock. The initial and boundary conditions used in each tests 
are available in Table 1 . Simulations are performed with the uniform 

FV1 and DG2 solvers and the adaptive HFV1 and MWDG2 solvers both 
taken with the standard setting and 𝜀 = 10 − 3 . A simulation is set to stop 
whenever the 𝓁 2 difference in water height between the current and 
previous time-steps becomes in the range of machine precision. The time 
history of the 𝓁 2 difference for all three tests are shown in Fig. 14 . 

The FV1, DG2, HFV1 and MWDG2 solvers all converge to ma- 
chine precision in the subcritical test ( Fig. 14 a) and supercritical test 
( Fig. 14 b). For the subcritical test, all solvers converge to machine pre- 
cision within about 300–500 s, with the HFV1 and MWDG2 solvers being 
slightly faster than their FV1 and DG2 counterparts ( Fig. 14 a). In the su- 
percritical test, the FV1 and DG2 solvers converge after about 10 s, with 

the adaptive solvers converging slightly later ( Fig. 14 b). Compared to 
the supercritical case, converging to steady subcritical flow takes longer 
because the flow is relatively weak and adjustment towards balance is 
consequently slower. The transcritical case involves a transition from 

subcritical to supercritical flow, with another transition back to subcrit- 
ical flow downstream of a stationary shock. Unsurprisingly, convergence 
to this transcritical steady-state is the slowest of all three cases ( Fig. 14 c): 
FV1 and DG2 solvers on a uniform mesh converge to machine precision 
after about 800 s, and the adaptive HFV1 solver after about 450 s. The 
adaptive MWDG2 solver does not converge beyond 10 − 4 with 𝜀 = 10 − 3 . 
This stagnation in 𝓁 2 difference with MWDG2 at 𝜀 = 10 − 3 is likely due 
to the intrusion of the slope limiter triggered by noise eventually accu- 
mulating from rounding of irrational numbers at the same location (see 
also the related discussion in the next paragraph). Regardless, when 𝜀 is 
reduced to 10 − 5 the MWDG2 solver converges to machine precision at a 
faster rate than the DG2 solver ( Fig. 14 c). Overall, convergence rates for 
all solvers are of the same order of magnitude for a given flow regime, 
and all solvers are able to converge to machine precision. 

The steady-state solutions of water elevation and discharge are in- 
cluded in Fig. 15 . For all three flow regimes, the numerical solutions 
of water height are in close agreement, all showing no visual differ- 
ence with their corresponding analytical profiles ( Delestre et al., 2013 ), 
which were not illustrated for clarity. As can be seen in Fig. 15 g–
15 i, anomalies in discharge predictions are apparent in the FV1 and 
HFV1 solutions. These anomalies are usually expected to reduce with 
an improved FV-based topography discretisation technique apart where 
a shock develops ( Kesserwani, 2013, Haleem et al., 2015, Caleffi and 
Valiani, 2017 ). However, all these types of anomaly do not appear when 
using DG2 and MWDG2 solvers. Compared to the DG2 uniform solver, 
the MWDG2 solver presents some tiny anomalies in the discharge pre- 
dictions. These anomalies are different to those induced by the HFV1 
and FV1 solvers and are comparatively negligible. They are seen to 
occur at locations where there are gaps in refinement levels (see also 
Fig. 15 d–15 f). Most likely, these tiny anomalies are caused by constant 
(de)compression of the MWDG2 solution at the same location when the 
adaptive grid and solution become static in time. This can eventually 
lead to low levels of noise due to accumulation of round-off errors, which 
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Fig. 15. Steady state solutions of (a, b, c) water elevation and (g, h, i) discharge for subcritical flow (left), supercritical flow (centre) and transcritical flow with a 
stationary shock (right). For the adaptive HFV1 and MWDG2 solvers, (d, e, f) show the corresponding refinement levels. All adaptive solutions are plotted using an 
adaptivity threshold 𝜀 = 10 − 3 . For the transcritical case, an additional solution is plotted using the adaptive MWDG2 solver with 𝜀 = 10 − 5 . 

can generate knock-on effects such as triggering the slope limiter as dis- 
cussed in the previous paragraph. Such tiny noises can be avoided by 
either increasing the convergence tolerance, or lessening 𝜀 . 

In Fig. 15 , the corresponding refinement levels predicted by the 
adaptive HFV1 and MWDG2 solutions are shown for the subcritical case 
( Fig. 15 d), supercritical case ( Fig. 15 e), and transcritical case ( Fig. 15 f). 
Both solvers require higher refinement levels only in the locality of the 
hump, with very few sub-elements involving the maximum refinement 
level (9), corresponding with Δx (9) = 0.049 m. Elsewhere, the solution is 
coarsened aggressively down to refinement level (2) corresponding with 
Δx (2) = 6.25 m. Using an adaptivity threshold of 𝜀 = 10 − 3 , the adaptive 
MWDG2 solver coarsens the solution more effectively than HFV1 in the 
locality of the hump. For the transcritical solution to converge to ma- 
chine precision, MWDG2 required an adaptivity threshold 𝜀 = 10 − 5 and, 
with this choice, MWDG2 behaves similarly to HFV1, using the maxi- 
mum refinement level for the entire region of the hump ( Fig. 15 f). In 
summary, with a suitable choice of adaptivity threshold, all HFV1 and 
MWDG2 solvers converge to steady state solutions down to machine pre- 
cision at about the same rate as the FV1 and DG2 solvers on a uniform 

mesh. They are also found to be as well-balanced as the underlying FV1 
and DG2 uniform solvers. Adaptive HFV1 and MWDG2 solutions are 
coarsened down to refinement level (2), using elements that are 128 
times coarser than the finest elements. 

3.6. Conservation of integral properties for an oscillatory flow in a 
parabolic bowl 

To analyse conservation properties over a long time evolution, the 
uniform and adaptive solvers are applied to simulate an oscillatory flow 

over topography. As shown in Lhomme et al. (2010) , excessive nu- 
merical diffusion in shallow water models acts to dissipate energy and 
damp oscillatory flows. Assuming a frictionless topography, there are no 
sources or sinks of energy, which makes this test suitable to challenge 
the ability of a shallow water model to conserve mass and energy in the 
presence of moving wet-dry fronts. As in Delestre et al. (2013) , an ini- 
tially sloping water elevation is contained in a parabolic bowl defined 
on a one-dimensional domain in the interval [0 m, 4 m], given by: 

𝑧 ( 𝑥 ) = ℎ 0 

( 
1 

𝑎 2 
( 𝑥 − 2 ) 2 − 1 

) 

(62) 

The exact solutions of the water height and the velocity are: 

ℎ ( 𝑥, 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

− ℎ 0 

( (
1 
𝑎 
( 𝑥 − 2 ) + 

𝐵 √
2 𝑔 ℎ 0 

cos 
(√

2 𝑔 ℎ 0 
𝑎 

𝑡 
))2 

− 1 

) 
𝑖𝑓 𝑥 1 ( 𝑡 ) ≤ 𝑥 ≤ 𝑥 2 ( 𝑡 ) 

0 𝑚 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

(63) 
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Fig. 16. Solution of (a, b) water elevation and (e, f) flow ve- 
locity for the simulation of the frictionless parabolic bowl. The 
analytical solution is compared to numerical solutions using 
the FV1 and DG2 solvers on a uniform mesh, and adaptive 
HFV1 and MWDG2 solvers are compared with are shown after 
9 periods (left-hand panels) and 9.5 periods (right-hand pan- 
els). For the adaptive HFV1 and MWDG2 solvers, (c, d) shows 
the refinement levels for the corresponding solutions. 

𝑣 ( 𝑥, 𝑡 ) = 

{ 

𝐵 sin 
(√

2 𝑔 ℎ 0 
𝑎 

𝑡 

)
𝑖𝑓 𝑥 1 ( 𝑡 ) ≤ 𝑥 ≤ 𝑥 2 ( 𝑡 ) 

0 𝑚 ∕ 𝑠 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 
(64) 

where x 1 ( t ) and x 2 ( t ) are the locations of the wet-dry interfaces at time 
t, h 0 = 0.5 m, and a = 1 m ( Delestre et al., 2013 ). The initial water height 
and flow velocity conditions can be obtained from Eqs. (63) –(64) . Trans- 
missive boundary conditions are imposed at both boundaries, but the 
parabolic bowl restricts the water to the domain interior. The uniform 

and adaptive solvers are applied considering the standard setting with 
the default error threshold (512 elements with the uniform solvers vs. 
L = 9, M = 1 and 𝜀 = 10 − 3 with the adaptive solvers). Tests are integrated 
for 36.11 s, corresponding to 18 periods of oscillation. The period to 
complete one oscillatory cycle is 𝑇 = 2 𝜋𝑎 ∕ 

√
2 𝑔 ℎ 0 . The solution of the 

parabolic bowl behaves like a pendulum, with turning points occurring 
every half period, 0 T , 0.5 T , 1 T , 1.5 T , …, when the flow velocity is zero. 
At each period 0 T , 1 T , 2 T , …, the analytical water elevation is equal to 
the initial water elevation and at each intermediate period 0.5 T , 1.5 T , 
2.5 T , …, the analytical water elevation is a mirror image of the initial 
water elevation. 

3.6.1. Qualitative comparisons after 9 periods 
Numerical solutions using the FV1, DG2, adaptive HFV1 and 

MWDG2 solvers are compared with the analytical solution in Fig. 16 . 
The DG2 and MWDG2 solutions of water elevation closely agree with the 
analytical solution after 9 periods ( Fig. 16 a) and 9.5 periods ( Fig. 16 b). 
In contrast, oscillations are damped by the first-order accurate FV1 and 
HFV1 solvers, and the water elevation after 9 periods no longer reaches 

the maximum initial water elevation. For the velocity predictions, the 
DG2 solver obtains calculations that are consistently close to the ana- 
lytical solution of v = 0 m s − 1 after 9 periods ( Fig. 16 e) and 9.5 periods 
( Fig. 16 f). The adaptive MWDG2 solver also achieves small flow veloci- 
ties except around the wet-dry fronts. The FV1 and HFV1 solutions have 
flow velocity errors of about 0.4 m s − 1 with larger error magnitudes in 
the locality of the wet-dry fronts. The refinement levels predicted by the 
adaptive HFV1 and MWDG2 solvers are presented corresponding to the 
solution after 9 periods ( Fig. 16 c) and 9.5 periods ( Fig. 16 d). The HFV1 
solver uses the maximum refinement level (9) throughout the domain, 
as expected given the curved shape of the parabolic topography (recall 
the analysis in Section 3.4 ). The adaptive MWDG2 solver uses the maxi- 
mum refinement level just at the wet-dry fronts, and temporarily in some 
dry regions where small-scale noise occurs in the solutions. Such noise 
can be reduced by slightly increasing the error threshold. Apart from 

these isolated regions, MWDG2 uses only refinement level (7), resulting 
in almost four times fewer elements than the uniform solvers with 512 
elements. 

3.6.2. Mass conservation and energy conservation 
The frictionless parabolic bowl is a closed system with no sources or 

sinks of mass or energy. As the water oscillates within the bowl, there 
is an exchange between kinetic and potential energy, but the total en- 
ergy is conserved. The time evolution of total mass and total energy is 
measured in order to assess the conservation properties of the numer- 
ical solvers. Only the average coefficients are used in both mass and 
energy calculations, which were evaluated for the assembled solution 
on 𝑔 𝐴 

𝑖 . That is, the total mass produced by the adaptive solvers on 𝑔 
𝐴 
𝑖 is 
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Fig. 17. Evolution of (a) change in mass 
and (b) normalised total energy for the sim- 
ulation of the frictionless parabolic bowl. 
The 36.11 second-long simulation corre- 
sponds to 18 periods of oscillation. 

calculated as: 

𝑀 = 
∑
𝑒 ∈𝑔 𝐴 

𝑖 

(
ℎ 0 , ( 𝑛 ) 
𝑒 Δ𝑥 ( 𝑛 ) 

𝑒 

)
(65) 

From Eq. (65) , the mass difference ΔM is evaluated as 
ΔM ( t ) = M ( t ) − M 0 , with M 0 = M (0 ) being the initial mass at t = 0 s. 
The mass difference is normalised relative to the initial mass as: 

Δ𝑀̂ ( 𝑡 ) = Δ𝑀 ( 𝑡 ) ∕ 𝑀 0 (66) 

The total energy is calculated as the sum of kinetic and potential 
energy ( Vreugdenhil, 1994 ): 

𝐸 = 
∑
𝑒 ∈𝑔 𝐴 

𝑖 

{ [
1 

2 
ℎ 0 , ( 𝑛 ) 
𝑒 

(
𝑣 0 , ( 𝑛 ) 
𝑒 

)2 
+ 
(
ℎ 0 , ( 𝑛 ) 
𝑒 + 𝑧 0 , ( 𝑛 ) 

𝑒 

)2 
− 
(
𝑧 0 , ( 𝑛 ) 
𝑒 

)2 ]
Δ𝑥 ( 𝑛 ) 

𝑒 

} 

(67) 

which is normalised relative to the initial total energy E 0 = E (0) such 
that: 

∆( 𝑡 ) = 𝐸 ( 𝑡 ) ∕ 𝐸 0 (68) 

For the uniform solvers, Eqs. (65) –(68) are applied for their assem- 
bled solution on 𝑔 𝐿 

𝑖 instead of 𝑔 
𝐴 
𝑖 . 

The time histories of the normalised mass difference are illustrated 
in Fig. 17 a for the FV1 and DG2 solvers on a uniform mesh, and the 
adaptive HFV1 and MWDG2 solvers. The FV1, HFV1 and DG2 solvers 
conserve mass to machine precision ( Fig. 17 a). The HFV1 solver retains 
refinement level (9) yielding simulations on an equivalent grid as the 
FV1 solver, but at a higher cost: here, HFV1 does not zero any detail co- 
efficient and so gets unnecessarily overloaded with overhead cost due to 
Haar-wavelet adaptivity (recall the analysis in Section 3.1.5 ). Unsurpris- 
ingly, HFV1 delivers the same level of conservativeness as the uniform 

FV1 solver for both mass and energy quantities ( Fig. 17 ). The MWDG2 
solver constantly altered refinement levels between (7) and (9) , result- 
ing in a loss of information due to zeroing of detail coefficients. Given 
also that the multi-wavelet adaptivity of the MWDG2 solver must filter 
both average and slope coefficients – via constant rounding of the ir- 
rational numbers involved in the filters – these effects result in a very 
small, linear growth in mass ( Fig. 17 a). Nonetheless, MWDG2 mass con- 
servation errors are still close to machine precision, even after 18 peri- 
ods of oscillation. The normalised total energy is also measured at each 
time-step for the FV1, DG2, HFV1 and MWDG2 solvers ( Fig. 17 b). As 
expected for a first-order solver, FV1 and HFV1 dissipate energy quite 
rapidly, losing about 13% of the initial energy after 18 periods of oscil- 
lation. In contrast, the DG2 solver on a uniform mesh achieves excellent 
energy conservation, losing less than 1% of the initial energy after 18 
periods. Despite the adaptive MWDG2 solver coarsening the solution to 
refinement level (7), it is only slightly more dissipative than the DG2 
solver, with MWDG2 losing less than 2% of the initial energy. 

For such a dynamic oscillatory flow over a curved topography with 
wet-dry fronts, HFV1 with 𝜀 = 10 − 3 , delivers the same predictive accu- 
racy as the uniform FV1 solver on the finest grid, but is expected to be 
more costly to run ( Section 3.1.5 ). Employing HFV1 with bigger 𝜀 gives 
an under-performance relative to the present accuracy of FV1 and so 
may not be a feasible option for this type of simulation. The DG2 solver 
on the finest uniform grid shows excellent conservation properties for 
both mass and energy quantities. The adaptive MWDG2 is likely to be 
more efficient than HFV1 for this type of simulation, and preserves the 
conservation properties of the DG2 solver with inconsequential effects. 

3.7. Numerical simulation of a laboratory dam-break over a trapezoidal 
hump 

Ozmen-Cagatay and Kocaman (2011) conducted a laboratory flume 
experiment of a dam-break flow over a trapezoidal hump. This test in- 
volves a wet-dry front advancing over a frictional topography, wave 
overtopping on a building-like hump and a topographically-reflected 
shock wave. In particular, it is an ideal benchmark to validate the prac- 
ticality of the HFV1 and MWDG2 solvers in modelling realistic aspects 
of shallow water flows in a multi-scale setting and in relation to the in- 
crease in maximum refinement level. The physical experiment ( Ozmen- 
Cagatay and Kocaman, 2011 ) was conducted in an 8.9 m long acrylic 
glass flume, with the configuration illustrated in Fig. 18 . The topog- 
raphy and initial water elevation profile are the same for the numer- 
ical tests presented here, with an initial zero discharge. A reflective 
boundary condition is imposed at the upstream boundary and a trans- 
missive boundary condition is imposed downstream. The Manning co- 
efficient for acrylic glass is 0.01 m 1/3 s − 1 . The water in the flume was 
photographed at regular time intervals and the water elevation profile 
was measured to an accuracy of about ± 1 mm. Experimental measure- 
ments of water elevation are compared with numerical solutions at time 
T = 11.9, T = 23.05 and T = 41.84, where T is a nondimensionalised time 
𝑇 = 

√
𝑔 ℎ 0 𝑡 with h 0 = 0.25 m denoting the initial height behind the gate 

located at x 0 = 4.65 m. 
Numerical solutions are obtained using the FV1 and DG2 solvers on a 

uniform mesh with 2 L elements, and adaptive HFV1 and MWDG2 solvers 
on a baseline grid with a single mother element, a maximum refinement 
level L and with the default error threshold ( 𝜀 = 10 − 3 ). Tests are per- 
formed with L = 7, 9 and 11 corresponding to a finest grid spacing of 
Δx (7) = 0.070 m, Δx (9) = 0.017 m and Δx (11) = 0.0043 m, or respectively 
to 128, 512 and 2048 elements for the finest uniform grid. 

As shown in Fig. 19 a–19 c, at L = 9, the adaptive and uniform so- 
lutions closely agree with the experimental observations at T = 11.9, 
T = 23.05 and T = 41.84, since the topography and fine-scale flows are 
well-resolved at Δx (9) = 0.017 m. While a similar behaviour for the 
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Fig. 18. Initial configuration of the dam-break over a trapezoidal hump following Ozmen-Cagatay and Kocaman (2011) . Nondimensionalised scales are used in 
subsequent figures. Illustrated aspect ratio is 5:1. 

Fig. 19. Snapshots of water elevation for the dam-break over a trapezoidal hump with friction at nondimensionalised times (a, d) T = 11.9 (b, e) T = 23.05 and (c, f) 
T = 41.84, where T is a nondimensionalised measure of time given by equation. Numerical solutions are obtained using FV1 and DG2 solvers on a uniform mesh with 
2 L elements, and adaptive HFV1 and MWDG2 solvers on a baseline mesh with a single mother element and a maximum refinement level L , with (a, b, c) L = 9, and 
(d, e, f) L = 7. The nondimensionalised elevation is h / h o and the nondimensionalised length is ( x − x 0 )/ h 0 , with the plotted origin being the gate position x 0 = 4.65 m. 

adaptive and uniform solutions is expected at L = 11 as Δx (11) < Δx (9) , 
with L = 7, the topography and fine-scale flow cannot be sufficiently 
resolved by the FV1 and HFV1 solvers using a piecewise-constant ba- 
sis ( Fig. 19 d and 19 e). At T = 11.9, FV1 and HFV1 simulations pro- 
duce insufficient overtopping on the lee side of the obstacle ( Fig. 19 d) 
and, at T = 11.9 and T = 23.05 ( Fig. 19 e), the reflected wave is posi- 
tioned far upstream compared to the experimental observations. Nu- 
merical diffusion is particularly evident in the FV1 and HFV1 solutions 
at T = 23.05 which is not present in the same solutions on the finer 
mesh using L = 9. In contrast, since the DG2 and MWDG2 solvers use a 
piecewise-linear basis, the fine-scale features are still well-resolved even 
at L = 7 with Δx (7) = 0.070 m. Using the same test, Kesserwani and Wang 
(2014) achieved accurate DG2 solutions using a significantly coarser 
mesh of Δx = 0.22 m, and obtained second-order MUSCL-FV solutions 
with errors similar to those obtained with the FV1 and HFV1 solvers. In 
terms of refinement level predictions, both adaptive HFV1 and MWDG2 
solvers are observed to fully refine around the trapezoidal obstacle given 

the sloping character of its sides and the dynamic nature of the flow. 
To realistically analyse efficiency benefits of the adaptive solvers, their 
cumulative CPU time costs are further recorded for completing 30 s nu- 
merical simulations (corresponding to T = 188 s). 

The elapsed CPU time is measured at every time-step, and these time 
series are illustrated for L = 7 ( Fig. 20 – upper part), L = 9 ( Fig. 20 – mid- 
dle part) and L = 11 ( Fig. 20 – lower part). At L = 7 with Δx (7) = 0.070 m, 
the FV1 and adaptive HFV1 solvers complete the simulation the fastest 
( Fig. 20 – upper part), but produce somewhat inaccurate solutions since 
the grid is relatively coarse ( Fig. 19 – lower parts). Accurate solutions are 
achieved using the DG2 and MWDG2 solvers, but the adaptive MWDG2 
solver completes the simulation in about half the time of DG2 on a grid 
with 2 7 = 128 uniform elements. At L = 9 with Δx (9) = 0.017 m, the HFV1 
and MWDG2 solvers complete the simulation around the same time 
( Fig. 20 – middle part). The DG2 solver is about five times more com- 
putationally expensive and completes the simulation after 10.3 s of 
CPU time. At this grid resolution, the FV1 solver remains the most 
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Fig. 20. Cumulative CPU times to compete a 30 s numerical simulations (corre- 
sponding to T = 188 s) for the uniform FV1 and DG2 solvers on a uniform mesh 
with 2 L elements, and the adaptive HFV1 and MWDG2 solvers on a baseline 
mesh with a single mother element and a maximum refinement level L : upper 
part L = 7, medium part L = 9 and upper part L = 11. 

computationally efficient choice, and produces a solution with similar 
accuracy to the other solvers ( Fig. 19 – upper parts). At L = 11 with 
Δx (11) = 0.0043 m, no improvement in solution accuracy is expected 
since the flow in the 8.9 m-long flume is already well-resolved with 
coarser meshes. However, at L = 11, the adaptive MWDG2 solver is, sur- 
prisingly, the first to finish the simulation, followed by the FV1 and 
adaptive HFV1 solvers ( Fig. 20 – lower part) and, compared to the DG2 
solver on a uniform mesh, the MWDG2 solver is 27 times faster. Clearly, 
with increased maximum refinement level, MWDG2 tends to become 
faster than the uniform FV1 solver on the finest grid and, ultimately 
than the HFV1 solver. In terms of resolution accuracy, taking L = 11 is 
unnecessary for this test, as L = 9 provide sufficient resolution, but does 
still pay off with an increase in MWDG2 solver’s efficiency. Given also 
that MWDG2 provides superior accuracy with L = 7 (i.e. up to a reso- 
lution of 0.070 m), the MWDG2 solver could be even more beneficial, 
in favour of accuracy, when the finest resolution involved in the adap- 
tive grid is roughly ≥ 0.1 m. Hence, the MWDG2 solver seems to be a 
promising alternative for simulations over a large domain (10 km and 
more in horizontal length scale) allowing multi-scale features that are 
as small as 0.1 m, nonetheless at a lower runtime cost than the uniform 

FV1 solver on the finest grid available and at nearly the same accuracy 
as the expensive uniform DG2 solver on the finest grid. 

4. Summary and conclusions 

A scaled second-order Discontinuous Galerkin (DG2) solver of the 
Shallow Water Equations (SWE) was presented ( Section 2.1 ), with guid- 
ing principles on how it extends to incorporate multiresolution anal- 
ysis ( Section 2.2 ) based on multiwavelets (MW) to form the so-called 
adaptive MWDG2 solver ( Section 2.3 ). Our aim has been to explain 
this framework in a way that is understandable by water engineers and 
modellers, and to unravel its relevant benefits for improving the accu- 
racy, efficiency and autonomy of Godunov-type hydrodynamic models. 
In the adaptive MWDG2 solver, flow and topography data at various res- 
olution levels are compressed in a single dataset of details, or wavelet 
coefficients ( Section 2.3.1 ). From these details, a multiresolution DG2 
solution can be created and assembled on a non-uniform grid by retain- 
ing the significant details and adding them to the coarsest solution dis- 
cretisation. Significant details were identified by comparing their mag- 
nitude to an error threshold 𝜀 ( Section 2.3.2 ). The scaled DG2 solver 
can directly be applied to evolve the multiresolution DG2 solution on 
an adaptive non-uniform grid ( Section 2.3.3 ). Zero-valued detail coeffi- 
cients were imposed to complete the dataset of details as time evolved 
( Section 2.3.4 ). A first-order version was produced based on the Haar 
wavelet within the Finite Volume (HFV1) method ( Section 2.4 ). The 
behaviour of the adaptive HFV1 and MWDG2 solvers was studied sys- 
tematically and compared against the standard first-order Finite Vol- 
ume (FV1) and second-order Discontinuous Galerkin (DG2) solvers on 
a uniform grid. Seven tests were used to diagnostically explore the per- 
formance of the adaptive (multi)wavelet-based solvers, which covered 
all the elementary aspects relevant to accurate, efficient and robust hy- 
draulic modelling ( Section 3 ). Adaptive solver simulations started from 

a coarsest grid discretisation with M mother elements, with each al- 
lowing a maximum of 2 L sub-elements (a maximum refinement level L 
yielding M ≤ number of sub-elements ≤ M 2 L ). The uniform solver sim- 
ulations considered the grid at the finest resolution available (with M 2 L 

elements). The numerical results consistently reinforced the conclusion 
that the (multi)wavelet-based solvers offer many attractive properties 
including the ability to: (i) automate the formulation of an initial mul- 
tiresolution mesh, (ii) use very few, or a single, mother element(s) as 
a baseline grid, (iii) allow large gaps across resolution levels, (iv) pre- 
serve robustness, accuracy and conservation properties of the standard 
uniform solvers, and (v) adapt modelling resolution and data simply 
with reference to the user-prescribed error threshold 𝜀 . 

More strikingly, findings from this study newly identify a range for 
the error threshold 𝜀 where the adaptive MWDG2 solver can deliver sim- 
ulations that are not only as accurate as the uniform DG2 simulations 
but also faster than the simulations delivered by both the adaptive HFV1 
solver and the uniform FV1 solver. Mainly, MWDG2 outperformed HFV1 
as a result of the sloping nature of its local piecewise-linear solutions, 
which allowed much more aggressive coarsening at the zones in the flow 

solution and topographic data involving different levels of smoothness. 
At these zones, the adaptive HFV1 solver consistently over-refined up to 
becoming even more expensive than the uniform FV1 solver since HFV1 
was dominated by a wavelet-adaptivity overhead. In contrast, the adap- 
tive MWDG2 solver more sensibly predicted coarser solutions and did 
not access the finest resolution level unless necessary around very steep 
solution gradients. The efficiency of the adaptive MWDG2 solver was 
found to increase by increasing the maximum refinement level L , though 
its predictive accuracy remained visually close to the first-order solver 
predictions at a very fine resolution, namely around Δx ( L ) ≤ 0.07 m. 
Our results therefore offer new evidence that an MWDG2 modelling ap- 
proach has the potential to increase the accuracy, runtime efficiency 
and spatial coverage for hydraulic modelling applications for which 
the maximum refinement level is associated with an urban resolution 
grid (approx. around 0.1 m in horizontal length-scale). A robust two 
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dimensional (2D) extension of the MWDG2 approach on quadrilateral 
elements is under development and testing to enable a more realistic 
assessment of the true potential of (multi)wavelet-based approaches for 
2D hydraulic modelling applications. 
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Appendix 1. Instructions for running the FV1, DG2, HFV1 and 
MWDG2 solvers 

Compilation 

The seamless-wave numerical solvers are implemented in Fortran 
2003 and can be compiled using a recent version of GFortran and 
CMake. Other fortran compilers have not been tested. To compile the 
code from the root directory of the unzipped Zenodo download: 

mkdir build && cd build 

cmake .. 

make -j 

Running the numerical solvers 

The FV1, DG2, HFV1 and MWDG2 solvers are all implemented in 
a single executable, run_simulation . To display usage information 
about required and optional command line switches: 

./run_simulation --help 

All the test cases that appear in this article are preconfigured. To run 
one of the test cases: 

./run_simulation < testCase > 

< maxRefinementLevel > --solver < solver > 

--writer < writer > where < testCase > is one of 
dambreakwet section 3.1 
dambreakdry (frictionless), dambreakmanning (frictional) 

section 3.2 
dambreakupslope, dambreakdownslope section 3.3 
lakeatrest section 3.4 
steadysubcritical, steadysupercritical, 

steadytranscriticalshock section 3.5 
parabolicbowlswashes section 3.6 
dambreakonehump section 3.7 
To solve on a uniform mesh, use < maxRefinementLevel > to 

create a mesh with 2 L elements, and choose < solver > to be ei- 
ther fv1 or dg2 . To calculate an adaptive solution, include the switch 
--epsilon < value > with < value > being a double precision 
number between 0 and 1. When --epsilon is specified, adaptive 
refinement is allowed up to the given < maxRefinementLevel > . 
< solver > is still either fv1 or dg2 for an adaptive solution. 

The solver will write space-delimited plain text data depending on 
the choice of < writer > . The following writers output data corre- 
sponding to the end of the simulation: 

cellCentreSolution topography, water depth, discharge 
and refinement level data 

piecewiseSolution as cellCentreSolution , but 
data is at the interface limits 

l2error calculate the 𝓁 2 error between nu- 
merical and analytic solutions 

The following writers output data at every timestep: 
cpu elapsed CPU time 
timestep size of Δt 
elementCount total element count 
convergence 𝓁 2 convergence in water depth 
energy domain integrals of mass and energy 
wetDryFront the position of the wet-dry front 
sample sample data at a specified 

--sample-position 

Additional, optional switches are documented by using 
./run_simulation --help . 
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