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SUMMARY

This article gives an overview of sample size calculations for parallel gnodigrossover
studies with Normal data. Sample size derivation is given for trials where tlugiabje to
demonstrate: superiority, equivalence, 4iieriority, bio-equivalence and estimation to a
given precision, for different Type | and Type Il errors. It is demaotestraow the different
trial objectives influence the null and alternative hypotheses of the trials andhkew t
hypotheses influence the calculations. Sample size tables for the diffgresnbf trials and

worked examples are given.
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1. INTRODUCTION

Since the first 'modern’ randomised clinical trals reported in 1948 [1], clinical trials have
become a central component in the assessment of new therapies. The primae aifject
any clinical trial is to obtain an unbiased and reliable assessment ohagimnen response
independent of any knowar unknown prognostic factors.  First, by ensuring that the
patients studied in the various regimen arms are objectively similar with megete all
predetermined relevant factors other than the regimens themselves. Seconkingysona

that the assssment of the regimen response is independent of a given subject's regimen and
finally through inclusion of an appropriate control to quantify a given regimeomss [2].
Randomisation is important as it ensures that patients are objectively sinthar iegimen
groups being investigated for any demographic or prognostic factors that leithen or
unknown [3]. Randomisation achieves this by ensuring that each subject has a knaen chan
of being given a given treatment in an allocation that can not be predicted [4].

Blinding is important as it removes any systematic bias there may be in treatmssitnasdge

and allocation during the conduct of the trial. It is important too once the trial has been
completed during the cleaning and derivation ofdh&a [5]. If there is any knowledge of
treatment during the cleaning and querying of the data then this knowledgefewyhav
these data are consequently queried and cleaned [3].

The choice of an appropriate control is dependent on the objectivetaatheeing designed.

For example a nemferiority or equivalence trial will usually have a control which is active

if the primary outcome is efficacy. The different types of trials will be desttimeugh this
paper.

When planning a trial one ess$iah step is the calculation of a sample size which will give
the minimum sample size required to meet the given objectives of the study. Sample siz
issues are important for the planning of clinical trials. Studies that are eitremé#bloor too
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largemay be judged unethical [6]. For example, a study that is too large could hatleemet
objectives of the trial before the actual study end had been reached, and sotsmtserpay
have unnecessarily entered the trial. A trial that is too small will li#leechance of meeting
the study objectives, and patients may be put through the potential traumaabff@r tnio
tangible benefit. The general approach to choosing sample size will bébeesor this
article where a statistic can be assumed te @kNormal form and an estimate of the
variance of that test statistic is available. The sections of the paper detailtatbompof
sample sizes appropriate for:

1. Superiority trials.

2. Equivalence trials.

3. Nonrinferiority trials.

4. As good as or better trials.

5. Bio-equivalence trials.

6. Trials to a given precision.

A distinction therefore is drawn to emphasise differences in trials desigriehtonstrate
'superiority’ and trials designed to demonstrate ‘equivalence’ cinfieoiority’. This is
discussed with an emphasis on how differences in the null hypothesis can impact on
calculations. The ICH guidelines E3 and E9 provide general guidance atinggltne
sample size for a clinical trial [3, 7]. The ICH E9 guideline states that:

"The number of subjects in a clinical trial should always be large enough tdg@eowliable
answer to the questions addressed. This number is usually determined byméwy pr
objective of the trial ....The method by which the sample size is calculated shoulkbe gi
in the protocol together with any quantities used in the calculations (suchascearimean

values, response rates, event rates, differences to be detected).”



This paper will go through the methods of sample calculation for studies wisixttestinct
objectives listed above. The paper will also, under the worked examples, give a brief
description of how the calculations could be undertaken in the two packages PASS 2000 [8]
and nQuery 4 [9]. Although PASS 2000 and nQuery 4 are the only packages described in
detail this does not confer a recommendation as to their use by the author.

The paper is written on the premise that just two treatments are to be compaeedimdal

trial and two study designs will be discussed: parallel group and@vesslesigs.

With a parallel group design subjects are assigned at random to the two tredtmenn

two treatment groups which it is hoped are the same in all respects other thaatthentre
received.

With a crossover trial all subjects receive both ttieatments but it is the order that subjects
receive the treatments which is randomised. The big assumption here is that gtaotirig

the second treatment all subjects return to baseline and that the order viecitsseceive
treatment does not affect their response to treatment. -Gvesdrials can not be used
therefore in degenerative conditions, where subjects get worse over time. Alsorethey a
more sensitive to bias than parallel group designs [2].

Although this paper will concentrate diata that take a Normal form this does not limit its
scope as trials where the primary endpoint is assumed to be Normal prolzabigtdor the
majority of trials. Also, the discussion in each section on the null hypotlwesesach trial

and the samplsize derivation is generalisable for other types of data. For supetrtalsy

there is work for crossver [10] and parallel group [11] trials where the data take other
distributional forms as well as methodologies for parallel groupimi@niority [12] and
equivalence trials [13] for binary data.

Conventions for multiple comparisons are not discussed in this paper, although the
approaches for sample size calculation are applicable once appropriatmexjusts been
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made. Koch and Ganksy give an overview of this topic [14] whilst the CPMP havd issue
guidelines [15].

Each section of the paper will walk through the derivation of the appropriafgesaine
formulae. Tables are given in each section which provide sample sizatestimsing these
formulae and worked examples are described which use these tables. Also, within each

section quick formulae are given which do not necessitate the use of tablesuiaticais.

1.1. Estimation of the variancefor calculations

Through out this paper one thfie most important components in the sample size calculation is
the variance estimate used. This variance estimate is usually estimated fropecétres

data sometimes from a number of studies. To adjudicate on the relative quality of the
variance oneshould consider the following aspects of the trial from which the varience
obtained

1. Design: is the study design ostensibly similar to the one you are designing? b@si¢he
level is the data from a randomised controlled trabservational oother data may greater
variability. If you are undertaking a muttentre trial is the variance estimated too from an
similarly designed trial? Were the endpoints similar to those you plan te nsejust the

actual endpoints but was the time relative to treatment of the outcome of interest similar to
you own?

2. Population: is the study population similar to your own? The most obvious coiaidera

is to ask is whether the demographics were the same but if the trial condasted multi
centre oe was it conducted in similar countries? Different countries may haveediffigpes

of care (e.g. different concomitant medication) and so may have differ@npdpulations.

Was the same type of patient enrolled (the same mixed of mild, moderatevane)? Was it
conducted covering the same seasons (relevant for conditions such as asthma)?

10



3. Analysis: was the same statistical analysis undertaken? Not just therqoéstlwether

the same procedure was used for the analysis but were the seanates fitted into the
model? Was the same summary statistics used? Section 8 details how covadates an
summary statistics impact on the variance.

The quality of the variance will obviously influence the strategy of awichakl clinical trial-

it has not been unknown to have next to no data on hand when designing a trial such that the
range divided by four is taken as a variance estimate. Depending on the quality of the
variance estimate (or even if one has a good variance estimate) it may ssblkedio have

some form of variance +estimation during the trial. There is a developing literature on this

topic although this paper will not go into any detail [16, 17, 18, 19, 20, 21, 22, 23, 24].
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2. SUPERIORITY TRIALS

In a superiority trial the objective is to determine whether there is evidereestatistical
difference in the comparison of interest between the regimens with refdrerice null
hypothesis that the regimens are the same. The ny)llafhtl alternative (b hypotheses
may take théorm:

Ho: The two treatments are not different with respect to the mean responsei(; ).
Hi: The two treatments are different with respect to the mean response; ).

In the definition of the null and alternative hypatbe ., and u refer to the mean response

on regimens A and B respectively. In testing the null hypothesis thetwa@egrors one can
make:

l. Rejecting H when it is actually true.

Il. Not rejecting Accepting Hwhen it is actually false.

These errors are usually referred to as Type | and Type |85y 26, 27, 28, 29, 30]. The
aim of the sample size calculation is to find the minimum sample size for a fixeabpityb

of Type | error to achieve a value dfet probability of a Type Il error. The two errors are
commonly referred to as the regulator's (Type I) and investigator's (Typisks and by
convention are fixed at rates of 0.05 and 0.10 or 0.20 respectively. The Type | and Type I
risks carry diffeent weights as they reflect the impact of the errors. With a Typeod er
medical practice may switch to the investigative therapy with resultant costs wiltlisa w
Type Il error medical practice would remain unaltered.

In general, one usually thinks not in terms of the Type Il error but in terms of the poaver of
trial (1-probability of a Type Il error) which is the probability of rejectthge H, when it is in

fact false. Key trials should be designed to have adequate power ficstbissessmenf

the primary parameters with a Type | error of 5%. The power that should be cetsader

standard is 90% with the minimum to be considered for calculations being 80%. It should b
12



noted though that with 80% power one is doubling Type Il error for ar$% saving in
sample size.

For a superiority trial there are two chances of rejecting the null hypo#res thus making

a Type | error. The null hypothesis can be rejected ujf> yy or if u, <ug by a
statistically ggnificant amount. As there are two chances of rejecting the null hypothesis t
statistical test is referred to as a two tailed test with each tail allocated an equal ahtbe
Type | error (of 2.5%). The sum of these tails adds up to the overall Type laeaf 5%.

Thus, the null hypothesis can be rejected if the tegt, 08 1 is statistically significant at
the 2.5% level or the test @f, > 1 is statistically significant at the 2.5% level.

The purpose of #h sample size calculation is hence to provide sufficient power to reject H
when in fact some alternative hypothesis is true. One might therefore tesettvab thneans

are equal, against an alternative that they differ by an amdufl]. The amound is
chosen as a clinically important difference or effect size and is the mainifadi&termining

a sample sizeReducing the effect size by half will guadruple the required samplEBgkze
Formally the aim is to calculate a sample size suitalllenfiking inferences about a certain
function of given model parameter,, f(x) say. For data that take a Normal foriu)

will be u, —ug I1.e. the difference in meand two populations A and B. Now let S be a
sample estimate of (1). Thus S is defined as the difference in the sample means. As one
is assuming that the data from the clinical trial are sampled from a Normal populatign, the

using standard notation, S~K(x), Var (S) ), giving

S—f(u) _
a—r(g) N (03).

A basic equation can now be developed in general terms from which a sample size can be

estimated. Let a be the overall type I error level, with o/2 of this type I error equally
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assigned to each tail of the two tailed test, anclet,, derote the(1—« /2)100 percentage
point of a standard Normal distribution.

Thus, an upper failed, « -level critical region for a test of (y) =0is

19> 2Z,, ,Var(S)}.

For this critical region one needs tottégsagainst an alternative that(,u): d, for some
chosen d and specified power[{LF33]:

d-2,,\Var(s) =z, ,\Var(s),  (2.1)

where g is the overall Type Il error level and, ,is the 100(3B)% point of the standard

Normal distribution. Tus, in general terms for ata@iled, « -level test one has:

d2

Var (S) =
( ) (Zl—ﬂ +Zl—a/2)2

2.2)

where Var (S) will be unknown and depends on the sample size. Once Var (S) isiwritte
terms of sample size, the above expressions eaolved to give the sample size.

In this section, and throughout the paper for parallel group trials, the assumption will be
made that the variances in each group are equal i.ecfhab’=c?. This assumption is

referred to as homoskedasticity. There are alternative derivations for thef casegoal

variances [34, 35]. This paper will not go into further detail on this topic.
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2.1 Parallel Group Trials
Suppose one wishes to design a tywoup study where the sample size in the second group,

ng, can be written as some multiple of the firs, fsay ms= na). Then Var (S) can be
written in terms of p and hence equation (2.2) can be solved for fror example, for an

r:1 Var(S) can be derived as:

2 2 2
Var(s)=2- o2 I+l o (2.3)
n, Ng r n,

Where o is the population variance estimate. Substituting into equation (2.2) gives [35]:

_ (r +1)(Zl—ﬁ + Zl—a/Z)zo-z
rq2

: (2.4)

A

where g =rna_ Note: n=rg + np is minimised when r = 1.
When the clinical trial has been conducted and the data has been collected and cleaned for
analysis it is usually the case that for the analysis the population varishcis, considered

unknown and a sample variance estimafe, is used instead of>. As a consequence of
this a tstatistic as a opposed to astatistic is used for inference. This fact should be
represented in the sample size calculation rewriting equation (2.4) soabaipposetb Z-

values are used. Hence, the following equation should be used:

S (r+ 1)(217/3 +1 g0, (r+1)72)2 o’
AT 2
rd

(2.5)

where n is now defined as the least integer values that satisfies equation (2.5)a As n
appears on both the left and write side of the equation (2.5)eststd rewrite the equation

in terms of power and then use an iterative procedure to solve:for n
| rn,d?
1- IB = CD( m _tl—a /2,nA(r+l)—2J (2-6)
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where d)(o) is the defined as the cumulative density function of N(0,1). Practically one
could use equation (@) for the initial sample size calculation and then calculate the power
for this sample size using equation (2.7), iterating the sample size up asamgamtil the
required power is reached. However, when a sample variance is being used in th® analys
the power should be estimated from a cumulative t distribution as opposed to a aemulati
Normal [35, 36, 37]. The reason for this is that by replacifgwith s> equation 2.6

becomes:

| rn,d?
1_,3 = P[ m _tl—a /2,nA(r+l)—2J

where P(e) denotes a cumulative distribution defined below. This equation can in turn be re-

written as:
Lg_p Jmd/Jr+)o
ﬂ - \/52/02 tl—a 120, (r+1)-2

by dividing top and bottom by-?. Thus, one has a Normal over a square root of a chi
squaed which by definition is-distribution. In fact as the power is estimated under the
alternative hypothesis, and that under this hypothesis d#0, Senn has shown specifically that

instead of a t distribution the power should be estimated from aceraal t distribution

with degrees of freedom(r+1)-2 and norcentrality parametey/rn A/ (r +1)o? [35]. Thus,

equation 2.6 should in fact be rewritten as:

rn,d?
1-p=1- ProbLtLa Jamy iz Ma(r +1) =2, 0;\?} (2.7)
where Probie) is defined as the cumulative density function of a non central t distribution.

To further aid in these calculations a correction factoZ pf,,/4 can be added to equation

(2.4) to allow for the Normal approximation [38, 11]:
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. (r+1)(217ﬁ + Zl,w,z)za2 .\ Z, s 28)
A 2
rd 4

For quick calculations the following formula, to calculate a sample size, with 90%r pon

a two-sided 5% type | error rate, can be used:

o _ 1050 (r +1)

AT d2 r ' (29)
or for r=1:
215’
N, = e

This, 21/5% (5§ =d/o) is a particuldy useful result to remember for quick calculations.
Equations (2.4) and (2.8) are close approximations to equation (2.7), giving estimates only
one or two lower and thus provide quite good initial estimates. Table 2.1 gives sangple size

using equation 2.7 for various standardised differenéesd/ o ).

2.1.1. Worked Example

2.1.1.1. Using the sample size tables

An investigator wishes to design a hypertension trial with equal allocation dsegveups
where the clinical effect of interemst a reduction in blood pressure, compared to control, of
8mmHg (d). The expected standard deviation in the population in which the trial is to be
undertaken is 40mmgHg o). Thus, the standardised difference equates to
0 =d/o=8/40= 020. With the Type | and Type Il errors fixed at 5% and 10% equation
2.8 gives a sample size of 526. Using this sample size to initiate iterations moEqua

one gets the following steps:

[teration n Power
1 526 0.8993
2 527 0.9004

17



Thus, tle sample size required is 527 subjects in each arm of the trial and a total sample

of 1054. Alternatively one could look up the standardised effect of 0.20 in table 2.1 which
gives the same sample size.

If the trial was designed with an unequal allocation of 2:1 (r=2) in favour of the ctmgrol

one would required 395 subjects on the control arm and 790 in the investigation arm; a total

sample size of 1185 patients.

2.1.1.2. Repeated using sample size software
To do the same calculations in nQuerne would need to click on File/New for Goal tick
Means, Number of Groups tick Two and Analysis Method tick Test. Then seleet Two

sample #test. There is an additional tick box depending whether wanted to have an equal or

¥ nQuery Advisor - [MTTO-1]

{1 FEile Edit Yiew Dptions Assistants Elot MWindow Help =1
Els|aslm sme| s woaa|m] |l
Two group t-test of equal means {equal n's)
1 | 2 | 3 ] a | s | s 7
Test significance lewvel, o 0.050
1 or 2 sided test? 2
Group 1 mean, p, 0.000
Group 2 mean, i, 8.000
Difference in means, J, - y, -§.000
Common standard deviation, ¢ 40.000
Effect size, §=Ip, - mulf o 0.200
Power (%) 90
n per group n2f I I
4| | »
For Help, press F1 [ |4UTO RECALC OFF | [z

unequal sample size. Above is the dialogue box that subsequently comes from nQuery and
the entries required to repeat the calculations given in Table 2.1. nQuery alss et
sample of 527 patients per group for an equal allocation ratio and 395 and 790 if the

allocation ratio is 2

18



To repeat the calculations in PASS one needs to highlight Means andtéis&én2t Groups.
PASS gives a sample size of 526 one less than nQuery and Table 2.1 for equairatbotat
gives the same sample sizes for an allocation ratio of 2:1. Moiits détthe dialogue boxes

of PASS will be given in the worked example of the next sub section onaressials.

2.2 Cross-over trials

For the analysis of croswer trial data this paper will concentrate on the case where an
analysis of variance ih¢ primary analysis (with a model with terms for subject, period and
treatment). The additional assumption is that one is undertaking an AB&RAower trial
although the methodology described can be extended to a pair wise comparsonult
period crossover trial (with appropriate adjustment to the degrees of freedom). With the
analysis of variance approach the within subject residual errors aneesis® be sampled from

a Normal distribution. This approach is equivalent to the period adjutgstiwhich will be

described on section 2.2.1 [35].

2.2.1. Paired t-testsand period adjusted t-tests
The difference between a period adjustégbt and a standard pairetst is that for a paired t
test one simply places the observed individual effects on the two treatmemtsdaltmns—

ignoring any treatment ordering. For each subject a treatmdetedife is calculated and
consequently a mean of these differencegequivalent to a difference in the treatment means
U, — Ug), and a n an estimate of the population standard deviation of the diffesgncébe

test statistic is thuslv/n/s, . This is compared to the t distribution od degrees of freedom.

In compaison for a period adjustedtést for each treatment sequence (AB or BA) a mean

difference is calculated, d,, (equivalent to u, — ;) and dg, (equivalent to ug — u,).
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Assuming thathere is equal allocation to each sequenmtg,=ng, =n/2, and the within

sequence variancess; =s; =s, are the same then the mean difference of interest,
(d,s —dg,)/2, has the variance? (I/n,, +1/n,,)/4 = s2/+/n. Thus, he test statistic is

]/Z(EAB — aBA)
s/+/n

which is compared to the t distribution o2 mlegrees of freedom.

If there is truly no period effect then,

1/2(JAB - aBA) ~ ]/2((/1A — tg) — (g — ll’lA)) a\/ﬁ

~
~

Sd/\/ﬁ Sd/\/ﬁ S

and thus one would have an equivalent test to a paiest but with one ks degree of

freedom.

2.2.2. Sample Size Calculations
To estimate a sample size for a croser trial as well as quantifying the within subject
estimate of the difference in treatment means that is of interest ( i.dfettieseze), one needs

an estimee of the within (intra-) subject standard deviatiom,,. The withirsubject standard

deviation is taken from the residual line of an ANOVA model and tifieenthe expected
variation among repeated measurements on the same individual [10

Note that the within subject variability estimates from an ANOVA, model is retatede

variability about the difference from a pairetést through the following result; = 25°.

With an estimate of both the within subject standard deviation and tlee ®ffe equation (2.2)

can again be solved as per a parallel group study:

2z, . +7 o2
n= ( 1-p 1705/2) w ' (210)
q2

20



where n here is thimtal sample size. Note that the allocation ratio has not been used as per
equation (2.4) as in a cresser tial the meaning of r here would be the allocation ratio to each
treatment sequence AB and BA. The assumption here is that an equal ntisuigects will

be assigned to each sequence. For unknown variance one can rewrita ¢guidl) as:

2 (Zl—ﬂ +t,, /2,n—2)20'v2v

d2

n> , (2.11)

where n now is the least integer value that satisfies equation (2.11). In turn eqation (

can be rewritten in terms of power to solve iteratively for n:

nd?
1-p= CD( 52 _tLa/z,an ' (2.12).

202
Similarly to parallel group trials, when thegulation variances is unknown, under: B£0
the Type Il error (and hence the power) should be calculated under the assumatimm of
central t distribution with degrees of freedor2 mnd norcentrality parametel\/nol"’/7205V

[35]. Thus, equation 2.12 can be rewritten as:

nd?
1B =1-Probtt, , o0, N-2 o | (213)

w
Again to solve for n in the same manner as for a parallel group study one can add a
correction factor ofZ, ,,,/2 to equation (2.10) to allow for the Normal approximation, and

use this for initial calculations in equati¢2.13) [38]:

Z(Zl_ﬂ + Zl—a/Z)Zavz\l + Ziar '

n=
d2

(2.14)

For quick calculations one can adapt equation (2.10) for the calculation of samgde si

(estimated with 90% power and a twiled 5% type | error rate):

2 2
n= ;” . (2.15)
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Equations (2.14) and (2.18)ve slightly lower results than equation 2.13. Table 2.2 gives
sample sizes using equation (2.13) for various standardised differefieed/@). The

total sample for a crossver trial are nearly equivalent to that for one arm of a leaggbup
study, for each standardised differenég).( The slight differences are accounted for by the
different degrees of freedom used in equations (2.7) and (2.13). Practically, thoughe they a
the same.

It should be noted that the standardised differences in Tables 2.1 and 2.2 represent differ

guantities. The within subject variance in a croesser trial can be derived from

o’ =0c’(1-p) - where c?is the population variance from a conventional parajroup

design andp is the Pearson correlation coefficient estimated between two measuites on

same subject. For a relatively modest correlation of 0.5, the veitiiject variance would be
half the population variance, and as a consequence for an equivalent meamadiffiie
standardised difference would be 40% larger in a avees trial compared to a parallel group
study. Parallel group and cresger trials will only have an equivalent standardised difference

for a zero corrdation.

2.2.3. Worked Example

2.2.3.1. Using the sample size tables

An investigator wishes to design a hypertension trial similar to that imo8et.1.1. The
clinical effect of interest is a reduction in blood pressure compared takohttOmmHg

(d). The expected withisubject standard deviation in the trial population the trial is

expected to be half that of the betweseibject standard deviation at 20mmHg, (). Thus,
the standardised difference ds=d/o, =10/20= 050. For the Type | and Type Il errors

fixed at 5% and 10% respectively Table 2.3 gives a total sample size of 86.
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2.2.3.2. Repeated using sample size software

For the sample size calculations in PASS and nQuery the assumptionnsttsd of doing an
analysisof variance for the final analysis a pairegst would be undertaken. As described in
Section 2.2.1. for studies with paired data, one must specify the rstasheldation of the
difference of the outcome variable measured on the two treatments anahtlaedstieviation

of the difference can be calculated from the within subject standardidevi@m the result

o4 = \/Eow. Thus, for a pairedtest the standard deviation of the differeneg, should be
used instead of the within subject standard deviation and one should therefare Pefja

with o2 in each of equations 2.10 to 2.15 and adjust the degrees of freeddnirt@quations

2.12 and 2.13.
To repeat the calculations in PASfBe selects Means and therlé@st: 1 Group. The

following dialogue box and consequent output then comes up:
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i NCSS Dutput - [PASS: T-Test - One Sample Output]
% Fil= Edit Yiew Fomat Window Help =181 x|

e« =2 = T e o B ol TR e b A )
One-Sample T-Test Power Analysis
Page/Date/Time 1 284052002 170912 L

Humeric Results for One-Sample T-Test
Mull Hypothesis: MeanO=Mean1  Aternatve Hypothesis: MeanO<=Mean1
Unknown standard deviation.

Effect
Power N Alpha Beta Meanl Mean1 s Size
020008 86 005000 002992 oo 100 283 0354

Report Definitions

Pawar is the e B P S R T RO
M iz the size « B 55: T-Test - One Sample
Alphaisthe ¢ File Bun Analysis Graphics  PASS  Window Help
pra e > 10I=lm  E RIS | X el A U e[ e | 7]
Meant is the Symbals 2 r Background I Abbreviations Template quF? [SOLVE AI
Sigma isthe Plat Text I Ayes I D] I Symbals 1 Sele]ct the
Effect Size, |1 Data I Options I Reports ] Plot Setup I parameter to be
solved for in
Population Size: te[a‘“& of the
— other
Summary .81 Ilnf'”'te j parameters
A sarnple siz
hypothesis teand [Null or Baseline]: Alterative Hypothesis: Mate that this is
deviation of 2 i} the parameter
Fet I j IHa Meanl <> Meanl j splaed on
MeanT [Alemnativel: MNonparametic Adjustmert: gﬁﬁ‘:gigfl 3w
|1 0 j IIgnnre j
Chart Sectic o
M [Sample Size): Alpha [Significance Level:
| | = p® =
S [Std Deviation]: ﬂl Beta [1-Power]:
| =] foa =]
100~
I Enown Standard Deviation
o |
| -
A 3

| Page | 14 Line 1 cal | 1 |4

ghistart| B Microsoft Woid - 6515 doc | 43 NCSS Data- [Uniited]  |[#@ PASS: T-Test - One .. | NESS Ouput-[PASS: TT| GEEY 1710

The mean difference is still the same as in the worked example, 10, but the standéhdevia

for the calculations is now2 * 20=28.28. PASS gives the sample size as 86 as per table 2.2.
To do the same calculations in nQuery one would need to click on File/New for Goal tick
Means, Number of Groups tick One and Analysis Method tick Test. Then select Rast.

nQuery too returns a sample size of 86.

By looking at the two dialogue boxes for nQuery (given earlier for the pagatiap case)

and PASS one can see the two approaches to calculations in the two packages. nQsery work
like a spread sheet where the inputs are edterto a column with the answer (i.e. the sample
size) given at the bottom of the column. If one wishes to do several sample sit&ticals

then one needs to fill in several columns. PASS works by entering the inputs into dialogue

boxes with the anssy going to separate window. One can enter several values into each
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input, for example for Mean one can enter "5, 10, 15" or "5 to 15 by 5", and PASS will output

the sample sizes for different values (or combination of values) in one Output window.
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3. EQUIVALENCE TRIALS

In certain cases the objective of a clinical trial is not to demonstrateimitgebut to
demonstrate that two treatments have no clinically meaningful differencthatethey are
clinically equivalent. The null (F and altenative (i) hypotheses for such equivalence

trials take the form:

Ho: The two treatment differences are different with respect to the mean respqnse:f).
Hi: The two treatments are not different with respect to the mean respoRse ;).
Usually these hypotheses are written in terms of a clinical difference, deaoché:

Ho: sty —pg <—d Or p, —pp >2+d.

Hi: —d<p,—pug <+d.

These hypotheses are an example of an intersaation test (IUT), in which the null

hypothesis is expressed as a union and the alternative as an intersection. thamaeute

equivalence, one needs to reject each component of the null hypothesis.

Note that in an IUT, each component is tested at le\g#ing a composite test which is also

of levela [39].

A common approach with equivalence trials to test each component of the null hypothesi
with a t test- called the Two On&ided Test (TOST) procedure. In practice, this is
operationally the same a®nstructing a ((Ra)100% confidence interval for tj‘y) where
equivalence is concluded provided that each end of the confidence interval fallsteymple
within the interval (-d,+d) [40]. This is because the-£b)100% confidence interval is
excluding two regions each of sizge each of which must simultaneously precluak ¢d).

Hence, the overall significance levebis
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Figure 1 highlights how equivalence can be demonstrated through confidencdsraen/a
Figure2 demonstrated how confidence intervals are used to test the different hypathese
superiority and equivalence trials. The special case of bioequivalence isctov&ection 6.
ICH E10 [41] goes into some detail in the description of equivalencs,taall the related
non-nferiority trials (discussed in Section 4) whilst ICH E9 and E3 discussgpeopriate
analysis of such trials [3, 7].

In this section the sample size formulae will initially be derived

i) For the general case of inequality between treatment$ ((ué: A)

i) Adopting the same notation and assumptions as in Section 2

i) Under the assumption that the equivalence bouddsdd are symmetric about zero
This section will then move on to the special case ofreatrnent difference replacing (i)
with:

i) For the special case of no mean difference (i(g.)f= 0).

3.1. General case

As with Section 2:

M~N(O,l),

A /Vari S i

Hence, thél— 2a) 100% confidence limits for a non-zero mean difference would be:
S-A+2Z,_, JVarS,
To declare equivalence the lower and upper confidence limit should be 4w@ithin

S-A-Z_, 4 Var(S)>-d andS-A+2Z_, Var(S)<d. (3.1)
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Thus, by extending the arguments for superiority triaisthe two one sided test procedure
(TOST) with this critical region there are two opportunities against an alivegrto have a

Type Il error for some chosen d and powef}1-

A+d-Z_ ﬂﬂ/Var(S =27, _+/Var(S)andA -d-Z,_ ﬂf/Var(S) =27, _+/Var(S). (3.2
where g, and g, are the Type Il errors associated with each one sided test from the TOST

procedure ang = g, + f,. Hence,

-d-A d-—A
=———-7 ,andZ_, =————-27,
z 1/VariSi

Z , = 3.3
-5 ng ( )

3.2. Special case of no treatment difference.

For the special case of no treatment difference 0 can be entered into (3.1). Thus, with

the TOST procedure the Type Il error for some chosen d and powgll-come from

d-2z,_,Var(S) =2, _,4Var(S)and-d-zZ,_,,Var(S)=Z,_,/Var(S).

Hence,
d
z =— -7 _,
1-p12 ar S 1-a
giving:
d2
Var (S) = (3.4)

(Zoo+Zip)*

3.3. Typel and setting the equivalence limit
3.3.1. Choiceof Typel error
Strictly speaking when undertaking two simultaneous one tailed tests setn@b would

maintain an overall Type | error rate of 5%. However, the choice of the Typerlierm
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controwersial issue. The convention for equivalence trials is to set the Typer Ir&tecat

half of that which would be employed for a two sided test used in a superiority trial i.e.
a=0.025. That is, giving a Type | error rate of 2.5% [3]. However, setimdype | error

rate for equivalence trials at half that for superiority trials could be dersl to be
consistent. This is because although in a superiority trial one has a two sided 5%
significance level in practice for most trials in effect what bag is a one sided investigation
with a 2.5% level of significance. The reason for this is that one usually has angemesti
therapy and a control therapy and it is only statistical superiority of tlestigative therapy

that is of interest.

Throudh the rest of the sections on equivalence andimfeniority trials the assumption will

be thata=0.025 and that 95% confidence intervals will be used in the final statistical

analysis. This issue will be discussed again in the section on Bioequivalence.

3.3.2. Choice of Equivalence Limit

The discussion on equivalence limits in this section can also be generalisedrteriority
trials discussed in the proceeding section. As with the choice of the Tyme therrsetting

of the noninferiority/equvalence limit is a controversial issue. The equivalence limit is
defined as the "largest difference that is clinically acceptable, so that a diffdrigger than
this would matter in practice” [42]. This difference also cannot be "gréwterthe smgest
effect size that the active (control) drug would be reliably expected ® dwmapared with
placebo in the setting of the planned trial" [41].

However, beyond this there has not much formal guidance. Jones, Jarvis, Lewis et al [40]
have recommended that the choice of limit be set at half the expected clinically ghdanin
difference between the active control and placebo. There are no hard regulédance

although the CPMP [43] in a concept paper state that fommiality studies it may be
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acceptable to have an equivalence limit "of one half or one third of the estalsligeziority

of the comparator to placebo, especially if the new agent has safety or caeplian
advantages"

The definition of the acceptable level of equivalence or nagriority is made therefore with
reference to some retrospective comparison to placebo [44, 45, 46]. In this context the
definition of the norinferiority and equivalence limits should address steps of the form [45,
46].

1. One must be confident that the active control would have been different from placebo had
one been employed.

2. One should be able to determine that there is no clinically meaningéredite between
investigative treatment and the control.

3. Through comparing the investigative treatment to control one should indirecethfebto
determine that it is superior to placebo.

Steps 1. and 3. are important as there is a view thatnfienority and equivalence trials
reward “failed" studies i.e. if one conducted a poor trial where it would not have been
possible to demonstrate the control to be superior to placebo then a poor investigatpye the
may slip through comparison to this control. However, Julious and Zariffa [2] point dut tha
this may not be the case as poor studies are fooanost objectives due to their higher
statistical variability.

In summary therefore one can infer that the clinical difference usedhéodimits of
equivalence and neinferiority will be smaller than the difference used for placebo
controlled superinty trials. There is no generic definition for its settings definition will

need to be defined on a study by study basis with consultation with the appropriatesagenci
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3.4. Paralld group trials

3.4.1. General case.

For equivalence trials the sample size cannot be derived directly for the gerseraliere
the expected true mean difference is not fixed to be zero. This is because thepetdl Ty
error is the sum of the Type Il errors associated with eachaded-test.

As is the case witBuperiority trials Var(S) can be defined as :
var(g)=2-+<- =-——-. 2. (3.5)

From this (and the fact thgf = g, + 5,), equation (3.3) can be used to derive the power

(and Type Il error):

1—ﬂ — (D(\/((/'lA:uB)d)zrnA ZlaJ+®[\/((ﬂAﬂB)+d)zrnA Zla\]l' (36)

(r +)o? (r +)o?

To obtain the requiredample size equation (3.6) until a sample size is reached which gives
the required power (Type Il error ). For unknown variance equation (3.6) cannitee

as:

e q{ J((uA—uB)—d) m, _tla’nA(HMJm[ \/((uA—uB)m) m, —tla,nA(Hl)zJ—l.(s.?)

(r +1)o*? (r +1)o?

As with superiority trials it is best to use a rmentralt-distribution to calculate the Type I
error and power. From a naentral tdistribution the power can be calculated using the

following formula [37, 47, 48]

1-p= Prob(—tl_a'nA(Hl)_z, na(r+2 - 2,12)- Prob(tl_a'nA(Hl)_z, na(r+2 - 2,11), (3.8)

wherez,and r,are non centraljtparameters defined as:

((ﬂA_:uB)'l'd)\/E _ ((ﬂA_ﬂB)_d)\/ﬁl

T, = andr, = \/(r Do°

J(r +1)o?
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For quick calculations (and to provide an initial value for the sample size in th@itsjaan

estimate of the sample sizan be obtained from the following equation

(r+Do%(z ,+2.,f
r((/uA_:uB) - d)2

(3.9)

A

This provides reasonable approximations for the sample size when the mesnchffis
greater than zeroy, — ugz >0), and approaches d. For very quick calculations (for 90%

power and Type | error of 2.5%), the followifggmula can be used:

10502 1
- (r+d) (3.10)
((NA — Hg) — d) r
or for r=1:
2
2o (3.11)

= ((,UA_/JB)_d)z .

3.4.2. Special case of no treatment difference.
For the special case of no treatment differenge { x4, =0), equation (3.5) can be

subgituted into equation (3.4) to obtain a direct estimate of the sample size

no— (r +1)O'2(Zl—ﬁ/2 + Zl—a)z .

A I‘d 2 (312)
For unknown variance equation (3.12) can be as
2
2
(r+Do [Zl_ﬂ +tla,nA(r+l)2]
n, > 2 , (3.13)

rd?
Where rp is the smallest integer value to satisfy equation (3.12uati@n 3.13 can in turn

be rewritten to give power in terms of the sample size:

1—/1’:2@1{ rd®n, J—l- (3.14)

(r +1)02 Lan,(r+1)-2

32



Similarly to equation (3.8), under the assumption of a-central tdistribution, the power
can be derived from

1- B = 2Probl-t, ,, (.M (r +)—2,7)-1, (3.15)

wherer is defined as

_ —Anrd

Jor+)e?

For quick calculations (for 90% power and Type | error of 2.5%), the following forcama

be used:
1352(r +1)
Ny :T’ (3.16)
or, for r=1,
260°°
n, = e (3.17)

It is worth noting here the difference between equations 3.16 and 3.17 and those given earlier

equations 3.10 and 3.11. There is a difference in the coefficients (10.5 and 21 for equations

3.10 and 3.11 respectively and compared to 13 and 16 for equations 3.16 and 3.17) which is

due to the non-symmetric allocation of the Type Il error if the population meem izero.

Table 3.1 gives sample sizes using equation 3.8 for various standardised equivalénce lim

(6 =d/o) and standardised e differences, assuming equal allocation between groups.
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3.4.3. Worked example

3.4.3.1. Using the sample size tables

An investigator wishes to design a pain trial where the objective is to demonstrate
equivalence between two treatments. The largest clinically acceptable effaghith
equivalence can be declared is a change in visual analogue scale (VAS) assessed pain of
10mm (d). There is to be equal allocation between groups. The true mean differenc
between the treatments is thought to be zero and the expected standard deviation in the
population in which the trial is to be undertaken is 50num).( Thus, the standardised
equivalence limits are+ 6 =+d/o =+10/50=+020. For the Type | and Type Il errors

fixed at 2.5% and 10% respectively Table 3.1 gives a sample size of 651 patientsannea

of the trial.

Suppose the true mean difference is thought to be 2mm. This equates to 20% of the
standardised equivalence limits and would inflate the sample size to 827 patiauis arra

of the trial.

3.4.3.2. Repeated using sample size software

To repeat the calculations in PASS one needs to select Means and then EquMakemee

The dialogue box below details the entries required to repeat both calculationsvorkbd
example. One typographical issue to note is that PASS does not distinguish between
bioequivalence and equivalence trials which as will be highlighted Section 6 are two
difference concepts and so as a result PASS has as the heading in the output box

"BioequivalenceMeans Power Analysis"
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i HCSS Dutput - [PASS: Equivalence - Means Dutput]

% Fil= Edit Yiew Fomat Window Help =& x|
e« =2 = T e o B ol TR e b A )

Bioequivalence Means Power Analysis =

L
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a Stalll T Microsoft Word - 5aj15. doc | 3 NCSS Data - [Untitled]

& MCSS Output - [PASS: Eq... ”@ PASS: Equivalence - ..

G 1542

PASS gives a sample sizes respectively 651 and 827 respectively for theraaseatment

difference and a treatment difference of 2mm. The same as table 3.1.

To repeat the calculations in nQuery one would need to clicklefNEiw, for Goal tick

Means, Number of Groups tick Two and Analysis Method tick Equivalence. Then select

Two one-sided tests (TOST) for two group or cross-over. nQuery too gives tharsawes

as table 3.1 for the two cases in the worked example.

3.5. Cross-over trials

The methodologies and assumptions for an equivalence trial with aom@sdesign

are the same as those for parallel group trials . This subsection witbtkeyaly go

briefly through the sample size calculations.
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3.5.1. General case.

The power (and'ype Il error) can be estimated from

1_ﬁ_q)(\/((luA/uBzd)2n —ZlaJ+<D(\/((ﬂAﬂB)+d)zn _ZlaJ_l' (317)

20, ie

For unknown variance equation (3.17) can thus bheritten as

1_ﬁ _(I)(\/((luA/uB)d)zn —tla,an‘F@[\/((ﬂA _:uB)+d)2n _tlanzl_li (318)

2 2
20, 20,

and under the assumption of a reamntral tdistribution the power [Oen, Diletti et al, Chow

et al) the power can be estimated from

1- B =Prob(-t, ,, ,,n—27,)-Probtt, , . ,,n—27,), (3.19)

where 7, and r,are defined as

S (27 £ ) R (T ) i1

202 202

For quick calculations one could use:

262(2, ,+2,, ]
n= - (3.20)
((ﬂ A—Hg) — d)

for sample size estimation and for very quick calculations (for 90% poweryged| Error of

2.5%), one can use the following formula:

2
ne__ 2lou (3.21)

((/UA _:ula)_d)2 .

36



3.5.2. Special case of no treatment difference.
For the spcial case of no treatment differenge,(— x; = 0), a direct estimate of the sample

size can be estimated from

_ 20, (Zl—ﬂ/Z +Z,, )2

n 12 , (3.22)
which, with unknown variance, can beweiten as
2
ZGVZV(Zl_ﬂ + tl—a,n—ZJ
n= 2 (3.23)

d2

Equation 3.23 can in tn be rewritten in terms of power for a given sample size

2
w

2
1—ﬁ:2®[ gn—tlmz}l, (3.24)
which in turn (under the assumption of a reemiral tdistribution), can also be rewritten as:
1- B =2Probi-t, ,, ,,n-27)-1, (3.25)

wherer is defined as

—+/nd

2
20,

For quick calculations (for 90% power and Type | error of 2.5%), the followingularm

can be used:
2662
n= g (3.26)

The quick equations give reasonable estimates of the sample size, undergstingati
sample size by just one or two subjects, and thus provides reasonable initial values for
equations (3.19) and (3.25). Table 3.2 gives sample sizes using equation 3.19 for various

standardised equivalence limit§ € d/o ) and mean di#éfrences.
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3.5.3Worked example

3.5.3.1. Using the sample size tables

An investigator wishes to design a pain trial similar to that in Section 3.4.3.1. Again t
largest clinically acceptable effect for equivalence to be declared is a change in visual
anabgue scale (VAS) assessed pain of 10mm (d) and the true mean difference lie¢éween
treatments is thought to be zero. The expected wathinject standard deviation in the trial
population is 20mm «,). Thus, the standardised equivaen limits equate to

+6 =+d/o =+10/20=+050. For the Type | and Type Il errors fixed at 2.5% and 10%,
respectively, Table 3.2 gives a total sample size of 106 patients in the trial.

If the true mean difference is thought to be 2mm, equating to 20% of theastsed

equivalence limits, the sample size would be inflated to a total of 135 patients inlthe tria

3.5.3.2. Repeated using sample size software

To do the same sample size calculations in nQuery one would need to click on Fil@iNew,
Goal tick Means, Number of Groups tick Two and Analysis Method tick Equivalence. Then
select Two oneided tests (TOST) for two group or crasger. For equivalence trials

nQuery does not use,, as it does for superiority trials, er,, as used in equation 3.9 but a

new varianceaw/\/f, as described in the right hand dialogue box below under the heading

"Suggestion”. One rational for using this variance is that nQuery does not give the tota

sample size buhe sample size per sequence (assuming one has two sequences AB and BA).
By using aw/\/i for the variance estimate (and by giving the sample size per sequence) it

enables nQuery to use the same formula (equation 3.8), for sample sizeioak@tatboth

crossover and parallel group trials. This is because the degrees of freedom about the t

38



statistic in equation (3.8) will be correct for both crossr and parallel group trials using

the nomenclature of sample size per sequence.

Thedialogue box below gives the entries to repeat the sample size calculationgeny nQ

¥ nQuery Advisor - [MTE1-2]
1. File Edt iew Options Assistants Plot Window Help =181 x|

B|e(a) 8] B| *|w[e o] &[u]a[@]n] s ]|

Two-group or crossover t-tests [TOST] of equivalence in means [equal n's) =

t 1 2 [s 1[5 []jcormennse
Test significance levels, £ (one-sided) | 0.025  0.025 The standard devistion is & measurs of the
Lower equivalence limit for D& -Pa, | -10.000 -10.000 variailty betwsen subjects ihin a

group (it is the square root of the

Upper equivalence limit for PR - Pa, 10.000 10.000 Z::fenﬁeiaii?fﬂf'gﬁ j;:_umed to e the
Expected difference, DB - Da 0.000 2.000 )
Commeon standard deviation, & 14.140 Suggestion:

Wwhen the study design is a crossover
Puwer ( % ) 90 90 design, enter the s‘tandardﬂdewaﬂon of
differences divided by 2, OF2, ar

n pel’ gl’oup 53 68 1izgri(2) times the squareroct of the mean
souared error from the crossover
AMNOWA, éAisqrt(Z). Testing for
equivalence of the ratio of means where

data will be analyzed inthe log scale, is
the same as testing the difference in mean
logs. VWhen data are log-normally
distributed, the variance inthe log scale
ecuals the log of (1+CV:) . Select
Estimate SO from the Assistants (or click
on the button marked 16\] and choose
From Coefficient of Yaristion to compute
an estimate of the standard deviation in
the log scale from an estimate of the
Coefficiert of Wariation. Or uze table
MTE2, Twwo-group of crossover ttests
(TOST) for ratio of means (using log
=scale).

Acceptable entries:
=00

4 » |

For Help, press F1 14.14000 AUTO RECALC OFF

For the equivalent sample sizes to those given earlier for no mean differenaenazah
difference of 2 nQuery gives a sample size per treatment sequence of 53ragpeg8vely

or 106 and 136 in total. Taking account of rounding nQuery gives the same restlles fo

total sample size as table 3.2. To do the same calculations in PASS one needsg to selec
Means and then Equivalenbéeans. the dialogue box is the same as that in Section 3.4.3.2.

Now instead of "Parallel Group” though in the "Design Type" box one electsstivers
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It is worth noting that for the variance PASS usges (and notavzv/Z as with nQuery) but

like nQuery it does give the sample size per sequence. PASS gives the same samete size p
sequence as nQuery.

There is an issue with the approach of nQuery and PASS in calculating the saaper
sequence as this is assuming that one is investigating jusatthents in just 2 sequences
(BA and AB). If one was simultaneously investigating 3 treatments say agehave 6
sequences. Another issue is that even if just two treatments are beirtigatedone may

be applying a replicate design as describedection 6.3.3 where again more than two
sequences may be being used. It is more optimal therefore to calculate themeptal sze

and divide this by the number of sequences to get the sample size per sequentearathe

vice versa.
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4. NON-INFERIORITY TRIALS

For certain trials the objective is not to demonstrate that two treatments arentliffere
equivalent but rather to demonstrate that a given treatment is clinically nadricfempared

to another. The null (§) and alternative (IJ hypothees for nofinferiority trials may take

the form:

Ho: A given treatment is inferior with respect to the mean response.

Hi: A given treatment is nemferior with respect to the mean response.

As with equivalence trials these hypotheses are written instefna clinical difference, d,
which equates to the largest difference that is clinically acceptable [42]:

Ho: g —pg <—d .

Hi g, —pg >—d.

In the context of noinferiority trials —d is know as the nemferiority limit. Please see
discussion in section 3.3.2 as to its definition. ICH E3 and E9 go into detail on the analysis
of non-inferiority trials whilst ICH E10 discusses the definition of d [3, 7, 41].

In order to conclude nemferiority, one needs to reject the null hypothesis. In terms of the
equivalence hypotheses in Section 3 this is equivalent to testing just one of the two
components of the TOST procedure. Thus, imderority trials reduce to a simple oseded
hypothesis and test. In practice, this is openatly the same as constructing a2{)100%
confidence interval and concluding noreriority provided that the lower end of this
confidence interval is greater thasl.

Usually noninferiority trials (like equivalence trials) compare the investigatinesapy to an
active control. Statistically they could be considered a special case of eguoesdtials.
However, operationally neimferiority trials are more often conducted since it is only the
lower equivalence (now neinferiority) limit that isusually of interest. For a nenferiority

trial a mean difference a long way frogh in a positive sense, is not a negative outcome for
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the study. Please see also the discussion on "as good as or better trials" foretkteo€ont
non-inferiority studies with superiority studies.

Figure 3 highlights how nemferiority can be demonstrated through a confidence interval
and Figure 2 shows how confidence intervals are used to test the different bgpathe
superiority, equivalence and nanferiority trials.

Adopting the same notation and assumptions as in Section 3 butfyith= —-A and the
non-inferiority bound set atdythe lower (1 - 2a:) 100% confidence limit is

S-A-Z,_, VarS. (4.1)

To declare notinferiority the lower end of the confidence interval should lie above —d:
S-A-Z_, Var(S)>-d. (4.2)

For this critical region one therefore require41-a3) 100% chance that the lower limit lies

above d i.e.:
Hence:

—-d+A
Z ,=——-7 4.3
1-8 m 1-a ( )
giving:

2

Var (S) = (d-4) (4.4)

(Zoo+Z05)°

4.1. Parallel group trials
As with superiority and equivalence trials Var(S) can be defined as

Var(S)z%L.G—,

which can be substituted in to equation (4.4) (repladingvith x, — ;) giving a direct

estimate of the sample size
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(r+)o%z ,+2.,f

(4.5)
g r((/uA_luB)_d)Z
Rewriting equation (4.5) to give power for a give sample size results in:
2
1-B=0 ((/JA — luB) — ?) My _ Zl—a . (46)
(r+)o
The equivalent formula to (4.6), in the case of unknown variance is
(= pg)—d)f'm
1_ﬂ = (I)[\/ A (r _:_31)0_2 A _tl—a,nA(r+l)—2 . (47)

As with the sections on equivalence and superiority trials when the population vasiance
unknown it is best to calculate the power under the assumption of@ntmal tdistribution
[37]:

1-f =1-Problt,, , (0N +1)-27), (4.8)
where7 is defined as

;= |((/JA_ﬂB) _d)\/ﬁ
o +ne?

For quick calculations (for 90% power and Type | error of 2.5%), the followingularm

similar to equation (2.9) can be used:

, = 1050%(r +1) (4.9)

(= p1g) —d)r

In the case of=1 (4.9) resolves to:

. 210°
g ((,UA_/JB)_d)ZI

(4.10)

Equations 4.9 and 4.10 are equivalent to equations 3.10 and 3.11 for the case of a non zero

mean difference i.e. fou, — ¢, >0. The quick equations give reasonable estimates of the

43



sanple size, although with slight underestimation. Table 4.1 gives sample sizes using
equation 4.8 for various standardised +itfieriority limits (6 = d/o ) and standardised mean

differences assuming equal allocation between groups.

One mportant feature to highlight in tables 4.1 and 4.2 is the asymmetric effélse sample
size of different values for the true mean difference. In equivalence &sathere are two
margins when one moves away from a zero mean differeimcany diretion - the sample
size is inflated. However, in nanferiority trials the sample size is inflated only if the true
mean difference moves towards the mafieriority margin. If it is expected that the true mean
difference is in favour of the comparategimen (compared to control) then the sample size
is significantly reduced.

The asymmetric effect of the mean difference on the sample size should ke Emhsihen
designing nofinferiority trials as even only a small expected mean difference in fafdbe

comparator could have a marked effect on the sample size.

4.1.1. Worked example

4.1.1.1. Using the sample size tables

An investigator wishes to design an hypertension trial where the objectivelésnonstrate

that one treatment (an investig&itherapy) is noimferior to another (a standard therapy).

As with the worked example in Section 3.2.3 the largest clinically acceptdbts &f be

able to declare nemferiority is a change in blood pressure of 10mmHg (d). The true mean
difference letween the treatments is thought to be zero with an expected standard deviation
in the trial population of 40mmHgo(). There is to be equal allocation between groups.
Thus, the standardised narferiority limits equate to-6 =—-d/o =-10/40=-025. For

the Type | and Type Il errors fixed at 2.5% and 10% respectively Tableved gisample
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size of 338 patients in each arm of the trial. The quick formula (equation 4vEQ) 386
patients in each arm.

Suppose, though, that one believed th& investigative therapy is a little superior to the
standard such that the true mean difference is thought to be 2mmHg. This inflates the
distance one expects the mean to be away from thénfenority margin by 20% and as a

consequence reduces the sample size to required to 235 patients in each arm of the trial

4.1.1.2. Repeated using sample size software

To do noninferiority sample size calculations in nQuery one would need to click on
File/New, for Goal tick Means, Number of Groups tick Two and Analysis Method tick
Equivalence. Then click on Equivalence of Two Means.

Note that nQuery does not refer to these calculations as non inferiority but leqgceva
However, it is clear from the instructions and the definition of the null hypothess gi
nQuery that the calculations are for a Noferiority trial (see the definition of the null

hypothesis in the dialogue box below). The entries nQuery dialogue box are given below

45



¥ nQuery Advisor - [MTED-2]
. File Edt Yiew DOptions Assistants Plot Window Help 181 x|

/e | o] @[o]a[a(s] [ |

Bl=|H| 8 m| &

Twao group ttest of equivalence in means [equal n's) — B
Equivalence limit, EA
1 | 2 ‘ 3 | 4 | 5 | 6 the null hypothesis being tested is that the
Test significance level, £ 0.025 0.025 test and standardl are not equivalent, that
- — . n the test iz "worze than” the standard by a
Equlvalence Ilmlt dlfference, '10-000 '10.000 specified amount or more, i 2. that
~ s BR- B4 I to EA or is farther f
Expected difference, EA 0.000 2.000 e nthe same drecton el
EA - EA | -10.000 -12.000 e et e
Common standard deviation, O 40.000 40.000 or befter
Effect Size, E = IEA = EAI /O 0.250 0.300 Acceptab|e entries:
Power (%) a0 a0 any vali
n per group 338 235
4 » =
For Help, press F1 -10.00000 AUTO RECALC OFF

For the same calculations in the worked example nQuery returns sample siza® tte
same as Table 4.1.

PASS can not do neimferiority calculations. However, for the special case of no treatment
difference one can get PASS to do the required calculations by going into the &ugeval
dialogue box described in the worked examples in Section 3 and setting the @ype b be
twice what it should be for example 0.20 for a nenferiority Type Il error of 0.10. With
this trick equation (3.15) will give the same results as equation (4.8). Withi¢ki$&SS
calculates the sample size to be 337.

Alternatively in PASS one could use the dialogue box for a superiority trial and adumtg

test described in Section 2. Now instead of setting the Type Il error to twitéswhgquired,

one sets the Type | @mrto be twice what is required for the two sided alternative hypothesis
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i.e. to 5% (note PASS also has the one sided alternative hypothesis too where one could use
2.5%). With this trick equation 2.7 would resemble equation 4.8. Now instead of entering
non-nferiority limits one should enter distance of the true mean to thenfi@mority margin

in the "Mean 2 (Mean of Group 2)" box. Thus, in the worked example for no mean difference
enter 10 and for a mean difference of 2 enter 12. With the trick described PASS retur
sample sizes of 337 and 234 respectively for mean differences of 0 and 2. Each gangple si

1 below the sample size given in Table 4.1 and by nQuery.

4.2. Cross-over trials

The equivalent sample size formula to equation (4.53rassover trials is

o 262(z, ,+2,, ] (4.11)

((ﬂA _IUB)_d)2 ’

which when rewritten in terms of power becomes

1—,32(1) ((/uA_/uB)_d)zn_Z . (412)
202 e
The equivalent formula for unknown variance is
2
1,3:@[\/((””;‘82“1) n tMMJ. (4.13)
GW

As with parallel group designs it eeable to calculate the power (and Type Il error) under
the assumption of a narentral tdistribution and thus equation 4.13 is rewritten as [37]:

1- f =1-Probt, ,, ,,n—27), (4.14)

wherer is defined as

|t~ s15) -~ W]
Vel
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For quick calculations (for 90% power and Type | error of 2.5%), the following forcama

be utilised:

2
ne_ 20 (4.15)

((/JA _ﬂB)_d)z '

As with parallel group estimation the quick equations give reasonable, althoggtiysli
underestimates of the sample size. |&@ah?2 gives sample sizes using equation 4.14 for

various standardised equivalence limit§ {d/c ) and standardised mean differences

assuming equal allocation between groups.

4.2.1. Worked example

4.2.1.1. Using the sample size tables

An investigator wishes to design a cros®r hypertension trial similar to that in Section
4.1.1 with the same clinically acceptable effect of-imdariority of 10mmHg (d). The true
mean difference between the treatments is also thought to be zerceaxpérted within
subject population standard deviation is 20mmHg).( Thus, the standardised non
inferiority limits equate to-6 = -d /o =-10/20=-050. For the Type | and Type Il errors
fixed at 2.5% and 10% respectively Table 4.2 givéstal sample size of 87 patients in the
trial.

If the true mean difference is thought to be 2mmHg the sample size would be redaced t

total of 61 patients in the trial

4.2.1.2. Repeated using sample size software

To do noninferiority sample size caldations in nQuery one would need to click on

File/New, for Goal tick Means, Number of Groups tick One and Analysis Method tick
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Equivalence. Then click on Pairetest for Equivalence Means. The following dialogue box

given below then comes up.

u¥ nQuery Advisor - [MOED-1]

1. File Edit Yiew Options Assistants Plot =181 x=|
Bl=|H| & % 8| |a ]| sZ]:
Paired t-test of equivalence of means — =
B e [ ot
Test significance level, £ (one-sided) | 0.025  0.025 The stendard devistion of differences is
= A P = - - measure of the variability of the difference
Equivalence limit difference, EA 10.000 -10.000 tovetn ontlions il eaeh Subjodt
Expected difference, EA 0.000 2.000 s i
= A = 7 - - uggestuon:
EA & EA 10.000 12.000 Enter & value oheerved in & pilot study or
Standard deviation of differences, | 28.280| 28.280 similar published studies.
Effect size, E = |EA - EA|/ OP 0.354 0424 Acceptable entries:
Power (%) 90 90 =00
n 86 61 Aid:
Uze the Assistants menu of the button
marked [6] to estimste the standard
deviation from a standard error, range,
percentiles, coefficient of varistion, upper
confidence limit, o first and second
conclition standard devistions and
correlation; or, use this menu to obtain the
standard devistion for cluster sampling.
4 | C I
e ——— A e

It is worth noting the changing of gears in nQuery here. For superiority trialsghmption

was the final analysis would be with a pairgdsdt, thus, a standard deviation of the difference
was used in the calculations and a total sample size given. Ewalegce trials it was
assumed that the final analysis would be an analysis of variance, thus,thhe subject
standard deviation (all be it divided by root two) was used in the calculations and a sampl
size per sequence given. Now for roferiority trials nQuery is back to the approach of
superiority trials (despite the fact that naferiority is more akin to equivalence than
superiority trials in concept) assuming that a pairesbt will be used in the final analysis.

For the example give dear for no mean difference (and a standard deviation of the difference
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of 28.28) nQuery returns a total sample size of 86, one awry from table 4.2, but for a mean
difference of 2 nQuery gives a total sample size of 61 which agrees witlable

As with parallel group trials given earlier PASS does not do-interiority sample size
calculations for crosever trials. However, using the trick of using the equivalence dialogue
box described in the worked example in Section 4.1.1, for no treatmenttBePASS gives

44 patients per sequence or 88 total.

Using the "One Sample-Test" dialogue box for superiority trials (described in section 2.2.3)
entering 12 and 10 in the "Mean 1 (Alternative)". For mean differences arid02

respectively PASS calcuks the sample sizes to be 86 and 61.
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5. "ASGOOD ASORBETTER" TRIALS

For certain clinical trials the objective is to demonstrate either that a giveémerdais
clinically not inferior or that it is clinically superior when compared to therobi.e. that the
treatment is "as good as or better" than the control. Irinferiority trials two null and
alternative hypotheses are investigated. First the-inferiority null and alternative
hypotheses:

Ho: A given treatment is inferior with respeotthe mean response.

Hi: The given treatment is nanferior with respect to the mean response.

If this null hypothesis is rejected then a second null hypothesis can be ineelstiga

Ho: The two treatments have equal effect with respect to the mean response.

Hi: The two treatments are different with respect to the mean response.

Practically these two null hypotheses are investigated through the constructo858b
confidence interval to investigate where the lower (or upper as appropriate) besnd i
Figure 2 highlights how the two separate hypotheses for superiority andfagarity are
investigated.

It should be noted that "As good as or better" trials are really aaegory of either
superiority or norinferiority trials. However, in this article these trials are put into a
separate section to highlight how as good as or better trials combine thepuihdses of
superiority and noinferiority trials into one closed testing procedure whilst maintaining the
overall Type I error.

To introducethe closed testing procedure this section will first describe the situatiae whe
onesided test of noimferiority is followed by a oneaided test of superiority. The more
general case where a one sided test ofinfamiority is followed by a two sied test of

superiority is then described.
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In describing as good as or better trials this paper draws heavily on the workiké&wéor

and Yoshida [49]. The CPMP have recently issued a points to consider document [42].

5.1. A test of non-inferiority and a one sided test of superiority

The null (HL) and alternative (H) hypotheses for a nanferiority trial can be written as:
Hlo: pp — g <-d.

Hly: p, — g >—d.

which alternatively can be written as:

Hlo: u, — g +d<0.

H11: y, —pug+d>0.

Whilst the corresponding null (HRand alternative (H3 hypotheses for a superiority trial

can be written as:
H20: p, — g <0.
H21: u, —pug >0.
What is clear from the definitions of these hypotheses is thatiisH2jected at thex level
then HY would also be rejected. Also, if blis not rejected at the level then H2 would
also not be rejected. This is becayse— y; +d > u, —u,. Hence, both Hland H2 are

rejected if they are both statistically significant; neithep Bldd H2 are rejected if Hdis not
significant; and only Hdis rejected if only Hdis significant.
Based on these properties a closed test procedure can be applied to investigate-both non

inferiority and superiority whilst maintaing the overall Type | error rate without

adjustment. To do this the intersection hypothesis N H1,is first investigated which, if
rejected, is followed by a test of kldnd H2. In this instanceH2, " H1, = H1, and so both

non-inferiority and superiority can be investigated through the following two gt8ps
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1. First investigate the neimferiority through the hypothesis K1 If Hl, is rejected then
H2, can be tested. If Rls not rejected then the investigative treatmemfesrior to the
control treatment.

2. If H2,is then rejected in the next step one can conclude that the investigative treatment is
superior to the control. Else if B4s not rejected then nanferiority should be

concluded.

5.2. A test of non-inferiority and atwo sided test of superiority

The null (H3) and alternative (H3 hypotheses for a two sided test of superiority can be
written as:

H3o: 1y = pig -

H31: g, < pg OF 1y > pg.

These hypotheses are equivalent to two-%ided tests at the/2 level of significance
(summing to give an overall type | error @f through the investigation of H2&gainst the
alternative of HZ and the following null and alternative hypotheses:

Hao: pp 2 -

HA: p, < .

In applying tle closed test procedure in this instance it is apparent that the intersection
hypothesisH1, " H3, is always rejected as it is empty and so bothk &id H3 can be
tested. Due to there being no intersection the following steps can be applied steps [49]

1. If the observed treatment difference is greater than zero and H&ected then Hlis

also rejected and one can conclude that the investigative treatment is stgtstjoatior

to control.
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2. If the observed treatment difference is lesmntkzero and Hg3is rejected and Hlis not
then the control is statistically superior to the investigative treatment. olfisHalso
rejected then the investigative drug is worse than the control but is not inferior
(practically though this may be difficult to claim).

3. If H3, is not rejected but R1s, then the investigate drug is nRiorierior compared to the
control.

4. If neither HL nor H3 are rejected then one must conclude that the investigative
treatment is inferior to control.

Note that when investading the H3 and H3 hypotheses, H3will be tested at a two sided o

level of significance whilst Hl will be tested at a one sided o /2 level of significance. Thus,

the overall level of significance is maintained at a.

5.3. Worked example and other considerations

To calculate the sample size required for an as good as or better triddonhe apply the
methodologies described in Sections 2 (Superiority) and 4 {iNerierity).

Supposed an investigator wished to design a parallel group tialgstigate a one sided
test of noninferiority and a two sided test of superiority trial. The trial will be designe
about a standardised clinically meaningful difference (for superiority) atahdardised non
inferiority margin of 0.25. The Type Irer is fixed at 5% for the test of superiority and
2.5% for the test of nemmferiority, whilst the Type Il error is fixed at 10%. From Table 2.1
for superiority one would require 338 patients in each arm. Whilst from table 4.1 for non
inferiority, assming no treatment difference, again one would required 338 patients per arm.
Note that here one is making the (probably unrealistic) assumption that theditatiaon

inferiority limit and the standardised difference are the same.
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On the face of it lten one can switch between HAaferiority and superiority whilst
maintaining the Type | error for no great cost in the sample size. Howevehéd axample
above, there was anticipated to be a true mean difference between the two groupshagainst
investigative therapy. If this mean difference equated to 20% of the standardised non
inferiority limit it would inflate the sample size, mutatis mutardis, to 527 patients per arm.

A more realistic scenario to the one described in the worked example wghene the non
inferiority margin is a fraction of the clinically meaningful differensee Section 3.3.2).
The sample size required to investigate -imdariority would hence be a factor more than
required to investigate superioritythe factor beinghte ratio of the clinically meaningful
difference over the nemferiority margin squared.

For as good as or better trials (given that one is also investigating supgribmay be
appropriate to power for neanferiority (as this will usually be # large sample size
estimate) but assuming a small difference between the two groups in favour of the
investigative therapy (see section 4 and tables 4.1 and 4.2)

A further consideration in as good as better trials is the choice of data set t@ ipavaaey -

the intent to treat (ITT) or per protocol (PP) data set.

The intent to treat population is the patient population evaluated on the basis of thentreatm
regimen patients were planned to receive as opposed to the actual treatmentAgivan.
conequence "subjects allocated to a treatment group” are "followed upsexbsasd
analysed as members of that group irrespective of their compliance to thedptannse of
treatment” [3].

The per protocol is patient population is the "subset of subyelets complied with the
protocol sufficiently to ensure that these data would exhibit the effecisabinient according

to the underlying scientific model” (ICH, E9).
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For a superiority trial the primary data set would be that based on ITT data setidior

inferiority trial the primary data set would be both the PP and the ITT egfé2.
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6. ASSESSMENT OF BIOEQUIVALENCE

Earlier in the paper calculations were given where the objective of the tasltov
demonstrate that the two therapies are dihicequivalent. In an equivalence trial the
comparators may be completely different, in terms of route of administratievearactual
drug therapies, but the objective is to investigate whether they are clinicallgathe.
However, in bioequivalencdrials the comparators are ostensibly the saméhe
manufacturing site may have moved or a formulation altered slightly for tmayhmirposes.
Bioequivalence studies are therefore conducted to demonstrate that twoafmns of a
drug have similar bioavailability i.e. does the same amount of drug get into théob@a@ch
formulation. The assumption in bioequivalence trials is that if the two forimgatiave
equivalent bioavailability then one can infer that they have equivalent effdmtfoeficacy
and safety. The pharmacokinetic bioavailability is therefore a surrogatdeoclinical
endpoints.

Equivalent bioavailability will be concluded if the drug concentration by timelesdfor the
test and reference formulations are stipgyosabé, see Figure 4 for an example. Through
determining that the two profiles are supeposable one can conclude that the two
formulations are clinically the same.

In bioequivalence studies, therefore, one can deterimwigowhether the two formulations
are bioequivalent by assessing the concentration time profiles faeshend reference
formulations [50]. This is usually done by assessing if the rate and extdrgaspton are
the same, where the pharmacokinetic parameter AUC (area under the conceruragpis
used to assess the extent of absorption and the parameter Cmax (maximum comjastrat
used to assess the rate of absorption. Figure 4 gives a pictorial repraseoitatiese
parameters. If the two formulations are bioequivalent then they can be switthedtw

reference to further clinical investigation and can be consideredcimageable.
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The null and alternative hypotheses are similar to those for equivalence:studies

Ho: The test and reference formulations give differeugcéxposureﬁyT # ﬂR)-

Hi: The test and reference formulations give equivalent drug exp@&pﬁeyR).

Similarly to other types of trials the objective of a bioequivalence study testahe null
hypothesis to see if the alterivat is true. The 'standard' bioequivalence criteria is to
demonstrate that average drug exposure on the test is within 20% of the referencegn the
scale [51, 52, 53]. Thus, the null and alternative hypotheses can be rewritten as:

Ho: 14 /1tg < 080 Or 1y /ug > 125.

Hi: 080< uy /ug < 125.

Two comparator formulations can thus be declared bioequivalent if it can be demdnstrate
that the mean ratio is wholly contained within 0.80 to 1.25. To test the null hypothesis tw
onesided tests tathe 5% level are constructed to determine whethey/u, < 080 or

U /g = 125, If neither of these tests hold then the alternative hypothesis can be dccepte
of 080< u;/ug<125. As one is performing two simultaneous tests on rtié
hypothesis, both of which must be rejected to accept the alternative hypothesypethe t
error is maintained at 5%. The convention is to represent the twsidetktests as a 90%
confidence interval around the mean ratiozgf/ 11 which neatly summarises the results of
two onetailed tests. Figure 5 highlights how average bioequivalence between two
formulations can be demonstrated through 90% confidence intervals.

A test formulation of a drug can therefore said to be bioequivalentstaeference
formulation if the 90% confidence interval for the ratio test:referenseh@ly contained
within the range 0.80 to 1.25, for both AUC and Cmax. As both AUC and Cmax must be

equivalent to declare bioequivalence there is no need to allow for multiple cornparis
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For certain indications other parameters, such as Cmin (defined as the minimum
concentration over a given period) or Tmic (defined as time above a minimum inhibitory
concentration over a given period), may also need to be simulisigeassessed.

Note that the criteria for acceptance of bioequivalence may vary dependexgas such as
which regulatory authority's guidelines are being followed and the therapentiow of the
compound being formulated and so the 'standard’ criteria may not always be aggropriat

The methodology described in this section can also be applied to other typesiod
assessment such as the assessment of a food [54], drug interactions [55, 56] or special
populations [57, 58]. The criteria for acceptance for other typesw¥o assessment may
vary depending on either the guidelines [54] oraapriori clinical assessment [55, 56].

It may be worth noting the statistical difference between testing for equivakamte
bioequivalence with reference to investigating the null hypothesis. In equivataisdehe
convention is to undertake two esigled tests at the 2.5% level which in turn are represented
by a 95% confidence interval; in a bioequivalence trial twosded tests at the 5% level are
undertaken, which are represented by a 90% confidence interval. Thus, in bioeqaivalen
trials the overall type | error is maintained at 5% twice that of equivalencewtialise the
overall type | error is maintained at 2.5%.

As bioequivalence studies are usually designed as crossover studies. Tibis thers

concentrates on this design first.

6.1. Justification for log transformation
Theconcentratiortime profile for a one compartment intravenous dose can be represented by

the following equation:

c(t) = Ae?) |
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where t is time, A is the concentration at t=0 ahid the elimination rate constant [59]. It is
evident from this equation that a drug concentration in the body falls exponentialy at
constant rate.

A test aml reference formulation would be supeposable whert, (t)=c,(t). On the log
scale this is equivalent ttog(A;)- A, =log(A;)- s, which for 1, = A, (a priori one
would expect this to be true) becom&sy(A,)=log(A.). Thus, on thdog scale the
difference between two curves can be summarised additively. Indeed it ihigscate that
such pharmacokinetic parameters as the rate conataamd the pharmacokinetic half life,

ty, (ty,= log2/1), arederived [59]. This rationale also follows for the summary statistics

used to measure exposure (AUC) and absorption (Cmax) as well as theevasaimates
[59, 60]. From these argumentke standard assumption for pharmacokinetic data is that

they folow a log Normal distribution with the default being to analysey(lagC) and
loge(Cmax). Any differences on the lggcale (testeference) are then batiansformed to

obtain a ratio on the original scale. It is this back transformed ratio and ispmording

90% confidence interval that are used to assess bioequivalence.

6.2. Rational for using coefficients of variation

As discussed in the previous ssiction all statistical inference for bioequivalence trials are
undertaken on the log scale and back transformed to the original scale fpretatévn.
Thus, the withirsubject estimate of variability on the log scale is used both for inference and
sample size estimation. However, for the interpretation of the mean effélae anriginal
scale itis optimal to have a measure of variability also on the original scale. A meé#sure o
variability that could be used is the Coefficient of Variability (CV) as thisrpater is not

scale dependent. Now, for ldgprmally distributed data the following exact relationship
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between the CV on the arithmetic scale and the standard deviation, 6, on the log scale holds

[48, 59]:

For small estimates af* [o < 030] the CV can be approximated by:

CV=o.

Thus, both the measure of effect and its variability can both be interpreted on the
original scale.

The derivation of this is result is based on the following relationships for the log

Normal distribution [59]:

62
“7
m=e

SZ — (e(2;1+0'2)xe0'2 _1),
where 1 and o respectively relate to the mean and variance on th&dogformed

scale and m and s the corresponding mean and variance on tt@nsformed

scales. Hence:

cv=>- Ve e -1 ~Je -1 .

)
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6.3 Cross-over trials
Calculations for two expected mean responses are described for the special case where the
true mean is expected to be uniiyd the general case when the true mean ratio is not fixed

to be unity(u; /ug =1). Although the calculationsof the special case are more straight

forward, it is recommended that even if one expectwiori the mean ratio to be unity,
where practical, one should consider calculating sample sizes under the assumption of
small mean difference (of 5% say) as plosver of a study is very sensitive to the assumption
about the mean ratio (as a mean ratiqpf u, # 1 is closer to one of the boundaries, 80 to

1.25 say, and so it is more difficult to demonstrate bioequivalence).

6.3.1 General case

The derivation of the sample size is similar to that for equivalence trials i.e. for tieeage
case where the expected true mean ratio is not expected to be unity the sample dizecanno
directly derived. Instead one has to iterate until a sample sisadhed which gives the
required Type Il error (and power). Thus, to calculate the power for the bioemadgal

acceptance limits of (0.80, 1.25) , the following formula can be used:

1-p-= q)[\/(log(m /) ~10g(125)*n —Zla}@(\/(log% /1) ~10g(080)*n —ZMJ—l’ 6.1)

2 2
20, 20,

where o, is the withinsulject variability on the log scale and n is the total sample size. For

unknown variance equation (6.1) can bewrédten as

1-p- @[ \/ (log(ur /1) ~log(125))°n tl_a,n_z} q{ \/ (log(u; / ug) —10g(080)° n —tl_a,n_z]—l- (6.2)

2 2
20, 20,

As with superiority, equivalence and norferiority trials, when the population variance is
not being used it is best to calculate the power using a&atnal tdistribution, as outlined

by Owen [47, 48]
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1-p= PI’Ob(— byn2N=2 2'2)- PrOb(tl—a,n—Z’ n-2, 71)’ (6.3)

wherez,and r,are non centrality parameters:

_ JInllogus /1) ~109(080) , y _ Vnllog(ur  ue) ~l0g(125)

“ 202 20

An estimate of the sample size fgr/u, greater than unity can be obtained from the

following equation:

N ZGVZ\I(Zl—ﬁ +Z,, )2 _, (6.4)
(log(u; / 1g) —l0g(125))

which can be used to provide an initial value for the iterations. This equation provides
reasonableapproximations foru, /u, #1, especially when the mean ratio becomes large

relative to (0.80 to 1.25). This is because in such circumstances most of the Type Il error
comes from one of the two one sided tests. For quick calculations (for 90% power and a

Type | error of 5%), the following formula can be used:

2
n= 7o, (6.5)

(log(u; / z) ~log(125)*

Obviously for true ratios less than unity log(1.25) should be replaced by log(0.80).

6.3.2. Special case of theratio equalling unity
For the special case where the expected true mean difference is expect to be unity the sample
size can be directly derived from the following formula.

2
2
ZO'W[ZI_ s T4ia ]

2

"T T log29y ©9

For unknown variance equation 6.6 can bevrigten to give the sample size:
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2
ZJVZV[Zl_ﬂ + tl—a,n—Z]

n= (Iog(125))2 . (6.7)

In turn this can be rexitten as:

20,

1-p- 2@[ (log125)"n —tla,an—l-

Estimating the power from a naentral tdistribution, equation 6.3 can beweitten to

1-f =2Probi-t, ,, ,,n-27)-1, (6.8)
wherez is the non centrality paransgs defined as

Jn(log(0.8))

—.
20,

Equation 6.6 can be used to obtain initial estimates of the sample size to use in Equation 6.8.
For quick calculations for 90% power, 5% Type | error rate and a 20% acceptance cniteri
the log scale one could use:

n=433%2. (6.9)
This formula gives sample size estimated within 1 or 2 of equation 6.8. Table 6.1 gives
sample size estimates using equation 6.3 for different CVs, mean raticscesptance
criteria 10% (0.90 to 1.11), 15% (0.85 to 1.18)% (0.80 to 1.25) etc for a Type | error rate

of 5% and 90% power.

6.3.3. Replicate Designs

For compounds with high variability the standard AB/B#n require relatively large sample
sizes, especially if the mean ratio is not expected to be unity. Designs whichrtalhyp
overcome this problem are replicate croser designs. Through adding an extra period arm

to the study, such that the sequences are say ABB/BAA, the sample size il ieyl2866
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compared to a standard AB/BA design. An additional two periods and sequences say of
ABBA/BAAB, can reduce the sample size by 50% [61]. The reasons for theseoresguct

are due to the fact that the variances used in the contrast of the means in the fisal areal
halved for a 4 period replicate design and reduced by 25% for a 3 period repliogite desi

Note replicate designs may not be practical for certain compounds, for extérogé with a

long half life, but it is a possible solution for compounds with high pharmacokinetic
variability.

Another type of replicate design is a two period replicate design AA/AB/BA/BEhis T
design allows for an intraubject estimate of variability for a given compound without
increasing the number of periods beyond two. To consider the effect such a design has on

the sample size one must consider the derivation of the total variance

o’ = O'b2 +O'\f,,

where ¢ is the withinsubject component of variation ang? is the between subject
component of variation. Both the variance components can be estimated from previous

crossover trials with the test and reference compounds. See section 8 fetaikedd

description. Now suppose
ol =ko?
it can be shown, assuming an equal allocation to each sequatdbgetsample size required

for a two period replicate design can be derived by multiplying the sampléosigndard

AB/BA design as follows:

2k +1),
Naasas/BAIBE = m Npg/BA-

Where n,g, 5, is the sample size derived from (6.3) The derivation number of this formula

comes initially from imagining that the AB/BA and AA/BB sequences are fromssouer

trial and a parallel group trial respectively with n/4 subjects assigned hcsequence. For
65



each sequences the following total variance cas the derived for the "parallel group”

sequences:

46° 4o?
+

n n
If these sequences were from a parallel group study one would effectivelii@akectage of

the two sessions to compared A and B and so from equation 8.2.4 given later in the chapt
o’ =0+ O'VZV/Z

and witho? = ko2 this the variance becomes:

42k + o2

which equalsw; say.

Now for the "crossaver" AB/BA sequences, the total variance can be derived as:

4o

w

n

which equalsw, say. Now to combine the creeser and parallel sequences into one overall

variance one could use the following formula borrowed from +ae#dysis methodology

[62]:

)

Thus, the overall variangs:

n o " 202(2k+1)
A4 4o’ (2k+1) n(k +1)

From any of the sample size formulae given in this paper it is evident that oresexctiee
sample size in direct proportion to any increase in the variance. If one is plangingple
AB/BA crossover trial the overall wéance would b2} /n. Thus, the ratio of the

variances is thus:
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202(2k+1) n  (2k+1)
nk+l) 202 (k+1)

w

and so the increase in sample sizes for doing a replicateavress

2k+1j*

n =| ——
AA/ AB/BA/ BB AB/BA
( k+1

and the equation given earlier.

To verify this result 10,000 simulations for a fixed sample size of 48 and for various k were
undertaken. Each simulation simulated AB/BA and AB/BA/AA/BB cross-over. The
analysis for each simulation was done with all subjects entered into PROC MVKED

subject entered aandom. The table below gives the results:

k 2k+1 Simulation
k+1

2 1.67 1.65

4 1.80 1.78

6 1.86 1.85

8 1.89 1.88

10 1.91 1.90

What is evident both from the table above and the equation is that a two period replicate
design will alwgs require more subjects than a standard AB/BA requiring the same sample
size only for k=0. However, no matter how larger k becomes it will only require &gc
many subjects at most. This is because as k becomes large virtually afbthetion, in

the comparison of the mean ratio, comes from the AB/BA sequences and iegtlasamany

subjects there will be as many people in these sequences as in a standard ABiBA des
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6.3.4. Use of quick formulaeto estimate the sample size of a bioequivalencetrial

In this section on bioequivalence trials, as with the other sections, equations haga/been
which allow for quick calculation of the sample size. In absolute terms thesalderm
throughout the paper have been consistebéing at most just one ¢wo off the sample
sizes provided in the tables. For large trials such small differencesar@nbidered minor

— moving the sample size from 526 to 527 in the worked example in Section 2.1.1.
However, for bioequivalence trials the absolute differemicene or two may equate to a
large relative difference as the sample sizes are far smaller. For examalCV of 15%
(crossover trial design, mean ratio assumed to be unity) table 6.1 gives the sampale &
whilst equation 6.3 returns a samplie10. The sample size of 10 subjects equates, from
equation 6.8, to a Type Il error of 17%.

For bioequivalence trials it is therefore strongly recommended that tnglesaize tables
only be used for final sample size estimation with the quick results only usedljoba&

park calculations.

6.3.5. Worked Example

6.3.5.1. Using the sample size tables

A bioequivalence trial to compare a test with reference formulation needs to bgeedesi

The standard bioequivalence criteria (i.e. 0.80 to 1.25) will be used to demonstréie that
average drug exposure on the test is bioequivalent to the reference i.e. 0.80 to 1.25. The
within-subject coefficient of variation is expected to be 25% (=CV) and the mean ratio is
expected to be unityy(; /u, =1). The CV 25% equates to a within subject SD of 0.2462.
The study design will be an AB/BA two period crossover. From Table 6.1 it can béaken t
one would need at a minimum a total sample size of 28 subjects. Practicallyothds

eguate to at lead4 subjects on each sequence (AB and BA).
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If the test formulation is expected, on average, to have exposures 5% greatdnethan t
reference i, /1 = 105) then the total sample size would increase to 36 subjects (or 18 per

sequence).

Suppose though instead of an AB/BA design a replicate ABB/BAA or ABBA/BAl&signs

was being considered for the case where exposures were expected to be 5% myitester
compared to reference. If one adopted a 4 period replicate design then one would multiply
thetotal sample size calculated earlier by 0.50 to get 36*0.5=18 subjects in totaldedtire

one adopted a 3 period replicate design then the total sample size calculatedteauld be

multiplied by 0.75 to get 36*0.75=27 subjects in total required.

6.3.5.2. Repeated using sample size software

To repeat the calculations in PASS one needs to select Means and then EquMakemse

The dialogue box below details the entries required to repeat both calculationsvorkbd
example.

Note that as dicussed in section 3 on equivalence trials PASS does not calculate the total
sample size but the sample size per sequerssuming the design is an AB/BA crasser

trial
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This dialogue box highlights one feature of PASS in that it only works on ienatic

scale. Thus, the bioequivalence limit of 0.80 to 1.25 must be logged and a symmetric limit of

-22.3 to +22.3 should be used in PASS calculations. Likewise instead of using a mean ratio

of 44 / ug = 105 one should uses, — 1, = 488 instead.

Another feature to highlight from the output box is that, with the exception of the Type |

error, Type Il error and power, all the default outputs are reported withanmaleplaces.

Thus, in the worked example 4.88 is reported as 5 and 22.3 as 22. This could cause

problems if someone wished to replicate the results and only had the PASS dialogue box to

work from. To amend the default one should click on "Reports” in the PASS output box and

then amend the number of decimal places reduas appropriate.
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Repeating the calculations in PASS gives the same sample sizes as tablem@anfoatios

of 1.00 and 1.05.

To repeat the calculations in nQuery one would need to click on File/New, fortiGoal
Means, Number of Groups tick Two awghalysis Method tick Equivalence. Then select
TOST for ratio of means (log scale) for two group or cross-over. As maydenefrom the
dialogue box title selected nQuery allows one to do the calculations on the lognsocede (
detail as to what to ¢er in the dialogue box will be given in the worked example for parallel
group trials in Section 6.4.3). As calculations are done the log scale nQuery alsleuses t
Coefficient of Variation (CV) for the calculations, although as desdriloe crossover

equivalence trials in Section 3.3.3 nQuery does notajse¢o derive the CV for sample size

calculations bubw/\/i. nQuery also agrees with table 6.1 for the sample size calculations.

As noted in the worked example section 3.3.3 both PASS and nQuery only give sample
sizes per sequence assuming an AB/BA coyv&s trial. It is in bioequivalence trials where

this may be an issue as replicate designs with more than two sequencesuai®mwhon.

Even for the worked example it is a little awkward For a true ratio of 1.05 b&!$ RAd

nQuery returned a sample size of 18 per sequence. Supposing an ABB/BAA design is to be
planned one would have to double 18 per sequence to get the total sample size and then
multiply this by 0.75 to get the total sample size for this design. The sample size per

sequence would then be 13.5 (14 rounded up).
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6.4. Parallel Group Studies

Although crossover trials are the 'norm' for the assessment of bioequivalence
sometimes, particularlwith very long half life compounds, these designs are not
practical. This section briefly describes the methodology for sample sizéataltu

for parallel group bioequivalence trials.

6.4.1 General case

The power for a bioequivalence trial withcaptance limits of (0.8, 1.25) is given by

(r+1)o? (r +)o?

e q{ \/(Iog(uT/uR) ~log(125)’rn, _ ZMJ . q{ J(Iog(ﬂT J1tz) ~10g(080P m, _ zla] . (6.10)

where o is the betweessubject variability on the log scale, r is the allocation ratio arid n

the sample size in the test group. For unknown variance equation (6.10) camriteineas

(r + 1)0'2 (r + 1)02 l-ang ((+1)-2

. ﬂ_q)[ \/(Iog(uT/uR)—log(lzs))zrnT . M}q{ \/(Iong/uR)—log(oso)zmT j_ (6.11)

and under the assumption of a rmemtral tdistribution the power is estimated from:
1-p= Prob(—tl_a o (4127 n(r+1)-2 2'2)- Prob(tl_a o (Hl)_z,nT(r +1) -2, rl), (6.12)

where z,and z,are non centrality parameters

_ i (log(u /pg) ~10g(080)) Iy (log(usy /u5) ~log(125)

" Jr+10? 2 N

As with a crossover trial a direct estimate of the sample size for a mean ratio greater than

unity can be obtained from the following equation:

r+)0%(z, ,+2.,
= , 6.13
" H(log(s /1) - 109(129)) 619

and for quick calculations (for 90% pewand Type | error rate of 5%) :
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n - 17(r +1)o?
r(log(ﬂT/ﬂR) - |09(1'25))2 |

(6.14)

If the mean ratio is expected to be less than unity then replace log(1.25) wat80gn

equations 6.13 and 6.14.

6.3.2. Special case of theratio equalling unity
When the mean ratio isxpected to be unity the sample size can be directly derived from:

2
(r +1)62[Zl—ﬂ + Zl_a]

2

r(log(125)

n = (6.15)

For unknown variance equation 6.15 can berigten as

2
(r "‘1)0'2(21/3 tlon, (r+1)2j

2

r(log(125))* (©19

nT =
Equation 6.16 can in turn can bewatten as

(log(125)*rn
& ﬂ ) ZG)[ WOJT - tl*ax”T (r+1)-2 -5

andunder the assumption of a noentral tdistribution the power can be derived from
1- B = 2Probl-t, ,, (0o (F+1) - 27)-1, (6.17)

wherez is the non centrality parameters defined as

o Jnp r(Iog(OBO))l
J(r+1)o?

Equation 6.15 can be used fortial estimates of the sample size to use in 6.17. For quick
calculations of the sample size for 90% power, 5% Type | error rate ancceptance

criteria on the log scale of 20% one could use

1075k + Do ? /r . (6.18)
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Table 6.2 gives sample siestimates using equation 6.12 for different CVs, mean ratios and
acceptance criteria 10% (0.90 to 1.11), 15% (0.85 to 1.18), 20% (0.80 to 1.25) etc for a Type
| error rate of 5%, 90% power and an allocation ratio of one. As with-ok@sstrials the

simpler equations provide good estimates for initial calculations.

6.4.3. Worked Example

6.4.3.1. Using the sample size tables

A parallel group bioequivalence trial to compare a test with reference foronutegeds to be
designed using the standard bioequivalence criteria (i.e. 0.80 to 1.25). The b=mibjeen
standard deviation is expected to be 0.76 J=and the mean ratio is expected to be unity

(4 /1 =1). This standard deviation of 0.70 equates to a betsekjectCV of 80%.

From Table 6.2 a minimum sample size of 216 subjects would be required in eadhtlzem. |
test formulation is expected, on average, to have exposures 5% higher than timeaefere

(4 / ur = 105) then the total sample size would be 288jscts in each arm.

6.4.3.2. Repeated using sample size software

To the repeat the calculations in nQuery click on File/New, for Goal tieng, Number of
Groups tick Two and Analysis Method tick Equivalence. Then select TOST for ratio of
means (log sale) for two group or crossver. The dialogue box below gives the entries
required to repeat the calculations in nQuery. For the worked example given eaukey nQ

concurs, giving sample sizes of 216 and 282 for mean ratios of 1.00 and 1.05 regpectivel
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To repeat the calculations in PASS one needs to select Means and then EquMalemse

For equivalent entries PASS concurs with nQuery and table 6.2.

6.5. Individual and Population Bio-equivalence

The assessment of bioequivalence as defined in this paper is based on average
bioequivalence in which only the formulation means are required to be equivalent to declare
bioequivalence. New paradigms for bioequivalence based on population and individual
bioequivalence have also be been proposed [63, 64] for which there are regulatory guidelines
[52]. These alternative approaches also involve variabilities of the farondaas well as

their means in the assessment bioequivalence. This paper will not go into angrdetase

topics.
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7. ESTIMATION TO A GIVEN PRECISION

In the previous sections of the paper calculations were described &fithiéve investigation
of specific objectives. However, there are cases when a preliminarniptpinwestigation is
conducted tastimate possible effectstiview to doing a later definitive study [65, 66Ry
definition such studies are held early in the drug development (or climeastigation)
paradigm. With estimation studies rather than formally testing null hy@sthiess more

informative to gve confidence intervals to estimate the unknofyn) f

Recall that(1- ) 100% confidence interval foff) has halfwidth

W= Zam/VariSi. (7.1)

Hence, if one is able to specify a requirement for wwvanté Var (S) in terms of 'n' then the
above expression can be solved for n as before.

It should be noted though that if the sample size is based on precision calculations, then the
protocol should clearly state this as the basis for the size of the stu

Precision calculations may also be undertaken when the sample size is cetgynmrarily

by practical considerations. In such cases one may quote the precision estithates
obtained based on the halfdth of the confidence interval, and provide this information in
the discussion of the fixed sample size. Again it must be clearly stated in theopto&dc
the size of the study was determined based on practical, and not formal, cowsislerati

The estimation approach is also useful where one wishes to estimate possttlactiss
several doses. The overall context of such a study would be to assist in therseleati
dose to carry forward into a later study. CPMP [15] in their multiplicity guidslsays of
such studies:

"Sometimes atady is not powered sufficiently for the aim to identify and recommend a
single effective and safe dose (or dose range) but is successful only at datingnatn

overall positive correlation of the clinical effect with increasing dose.s ®ialready a
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valuable achievement.... Estimates and confidence intervals from pairwise sumpanf

single doses are then used in an exploratory manner for planning of future studies”

In the context then of an overall clinical development (or investigation) an @stinséudy

(or studies) could provide important cumulative evidence of the pharmacologicat béaef

given drug asset. These studies can not prove a given affect but can valuably inform studies

which can.

7.1 Paralle Group Trials
Defining Var(S) agper equation (2.3) one can solve equation (7.1) to give [36, 67]

2 2
N, = (Hl)zl;"z" , (7.2)
r'w

where m =rng and mn , ng and r are defined as per Section 2. For unknown variance

equation (7.2) can be rewritten as

r+1t2 ?
n, > ( ) ta /2,;1;\(r+1)*2(7 . (7.3)
rw

Equation 7.3can be solved iteratively to find a value @f where the left hand side of the

equation is greater than the right. An alternative equation to solve foould be

| W
CD{ m -t /2,nA(r+l)—2J > 05. (7-4)

Equation 7.4 holds as:

fM _t >7 =0
(r +1)O'2 Fa I2n, (r+1)-2 — <05 !

and hence equation 7.3. Equation 7.4 is in fact the same as equation 2.6, given in the section
in superiority trials, but with the Type Il error set at 0.5 (although obviously assiprec
trials are not powered they can not have any Type Il error). The practitiahtipp of this

result is given later in the worked example using PASS to calculate sample sizes.
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To allow for the Normal approximation equation 7.2 can have a correction factor added to

assist in initial calculations [38]:

(r+)o°z2, Z2
1-=

n, = 2 2 7.5
A w? 4 (7.5)

a

The following quick formula can be used (assuming one wishes to have a 95% confidence

interval for the precision estimates):

457 (r +1)
n =, 76
AT T (7.6)
or for r=1:
N _80'2
A sz .

Table 7.1 gives sample sizes using equation 7.3 for various standardised widttg & ).

The simpler equations slightly (by one or two) underestimate the sample size.

7.1.1 Worked Example

7.1.1.1. Using the sample size tables

An investigator wishes to design a pilot safety cardiovascular trial witlal etjocation
between groups where the objective is to estimate any possible effe@Tc of new
treatment compared to control with precision around the point estimai® skeconds (w).
The expected standard deviation in the populathomhich the trial is to be undertaken is 25
seconds ¢). Thus, the standardised width equatesSted/o =5/25= 020. Table 7.1
gives a sample size of 194 patients in each arm of the trial.

If an unequal allocation of 2:1 (r=2) was necessary in favour of the investigativetideng

one would required 145 subjects on the control arm and 290 in the investigation arm.
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7.1.1.2. Repeated using sample size software

To do the same calculations in nQuery click on File/New for Goal tick Means, Mwhbe

Groups tick Two and Confidence Interval. Then select Confidence interval feredite of

two means. The dialogue box below gives the entries required in nQuery.

mE nluery Advisor - [MTCO-1]

. File Edit WYiew DOptions Assistants Plot “Window Help - & =]
elzaslm s|we] s p(o]alo]n] s
Confidence interval for difference of two means based on z (large equal n's)
1 | 2 | 3 | a |
Confidence level, 1-cc 0.950
1 or 2 sided interval? 2
Common standard deviation, ¢ 25.000

Distance from mean to limit, @ 5.000 |

n per group 193
< | »
For Help, press F1 |5.000000 |4UTO RECALLC OFF | "z

nQuery gives a sample size of 193 which is one off table 7.1. This differendebeodilie to

rounding error or, as it seems from the nQuery manual [9], nQuery uses equatidyu(7.5)

without the correct factor from Guenther [38].

PASS does not do these calculations directly. A trick is to select Meanseand Tiest: 2

Groyos (see section 2 and Superiority Trials for a description of the dialogue boxes of this

form). In the dialogue box enter 5 as the mean difference and 50% as tyqe. || Biese

entries would get PASS to use a formula equivalent to equation 7.4 (seéisdhgsion of

equation 7.4 earlier in this section for the rational for this).

sample size of 192 per arm.
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7.2 Cross-over group trials

Similarly to the parallel group case one can solve equation (7.1) to give

2 2
n= Hmeu - (7)
W

where n is the total sample size. For unknown variance equation (7.7) can berrasritte

Zti 12,n-29 y
n>_—telan27w 7.8
e (7:8)

which can be solved iteratively. Alternatively as with parallel group triasfabowing

formula could be used:

cp( nw ]z 05. (7.9)

— —t
2 lal2,n-2
20,

To allow for the Normal approximation equation 7.7 can amended to have aioarfactor

(Guenther):

n=—— 2+ 2. (7.10)

2022%, 7%,
1-=

The following formula can be used for quick calculations (assuming one wishes to have a

95% confdence interval precision estimates):

(7.11)

Table 7.2 gives sample sizes using equation 7.8 for various standardised widttdg & ).

As with parallel group trials the quick formula slightly under estimates thplsaize.

7.2.1 Worked Example
7.2.1.1. Using the sample size tables
An investigator wishes to design a cras®r pilot cardiovascular safety study with equal

allocation to estimate any possible effect on QTc with precision around thieeptimate of
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+5 seconds (w). The expected witlsimbject standard deviation in the population in which
the trial is to be undertaken is 10 seconds).( The standardised width equates to

0 =d/o=5/10= 050. Table 7.2 gives a tak sample size of 34 patients.

7.1.1.2. Repeated using sample size software

To do the same calculation in PASS one needs to select Means and then Confiderate Inter

— Mean. The following dialogue box gives the entries required.

T/ MCS5 Dutput - [PASS: Mean - Conf. Interval Dutput]
@ File Edt Yiew Fomat Window Help = Ellll

| S 5| o[ F ) ] = P 0 B X A U

Confidence Interval of A Mean -]
Page/Date/Time 1 10082002 15:34:25 |
Humeric Results
c.C. N s
Confidence Sampl Standard
Precision Coefficient Size Deviation
45934 0.85000 34 14.140

Unknown standard deviation.

Report Defi=#inns
=EEee R i PASS: Mean - Conf. Interval

Confidence File Bun Analysis  Graphics PASS window Help
M is the siz — T = R =
et [ |l el ) x| el 7]
Symbols 2 r Background I Abbreviations Template COMFIDEMCE «
COEFFICIEMT:
Plot Text ] Aues I aD I Spmbols 1 The
Summary Data I Options I Reports ] Plot Setup I confidence
A sample £ coefficient

4934 whe Find [Solve Forl: Population Size: represents the
probability that

IN [Sample Size] j IInfinile j & particular
confidence
Chart Sec Precizian: N [Sample Size): inkerval

[ = = includes the

I J I J population .

Confidence Coefficient 5 [Standard Deviation]: 50 mtlasalz.tlzat 15,

ar 0.95 j IT 414 j [propartion of
confidence

™ Known Standard Deviation intervals

conztructed in
this ratiner
that include the
population
mean.

3

Mote that the
=z x significance
| level i equal lo;l

A _>l_I
I Page | 1A Line | 1 col [ 1 4

i Start| B Microsoft Word - Sailfi doc | 43 NCSS Data- [Uniided]  |[@@ PASS: Mean - Cont_ 1| @ NESS Oufput - [PASS: Me. | GHE] 1535
As with superiority trals in Section 2 the standard deviation required for the calculations is

the standard deviation of the difference. Thus, the standard deviation to use is

1414=+2*10. PASS returns a sample size of 34 which is the same as sample size

obtainedfrom Table 7.2. However, there is one anomaly in that the precision of 5 entered
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into the dialogue box has metamorphicised into 4.934 in the output window. It is not clear
why this is so.

To do the same calculations in nQuery click on File/New for Goal tick Means, Mwhbe
Groups tick One and then Confidence Interval. Then select Confidence interval for
difference paired means. Like PASS nQuery uses the standard deviatienddference in

the calculations. nQuery returns a sample size of 31 subjects three short of tablkig.2. T
discrepancy could be due to rounding error, or, as with parallel group tr@ds)dtbe due to

nQuery  using equation (7.10) but  without the correction factor.

82



8. DESIGN CONSIDERATIONS

8.1 Inclusion of Baseline or Covariates

In the final analysis of a clinical trial, the effect of treatment on the resporisgewdst is
often adjusted for predictive factorssuch as demographic factors (like gender and age) or
clinical covariates (such as baseline responbg)fitting them concurrently with treatment in
the statistical model.  This section will concentrate on the case where baselire is
predictive covariate of interest (although the results are generalisableetofattors), the
design is a parallel group and an analysis of covariance (allowing for thenbasslto be the
final analysis. The CPMP have just issued draft notes for guidance on the designysisl ana
of studies with covariates [68].

Frison and Pocock [69] give a variance formula for various numbers of baseline

measures:

Variance= 02(1_L] : 8.2.1

1+(p-Dp
Here, p is the Pearson correlation coefficient between observations and p is the
number of baseline measures taken per individual. From this equation a series of
correction factors can be calculated [13] which give the variance reduction (and
consequent sample size reduction) for different correlations and numbers of
baselines.
From equation 8.2.1 it is clear that for fixed numbers of baseline measures the highe
the correlation the greater the reduction in variance and consequent sample size. For

exampe if three baseline measures were to be taken with the expected correlation

between baseline and outcome of 0.5, the effect would be to reduce the variance to

0.6250*c*. However, for the same number of baseline measures if the expect
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correlation between baseline and outcome was 0.7 then the effect would be to reduce

the variance to 0.387%*.

Another result from equation 8.2.1 is that for a fixed correlation it seems that
although there is incremental benefiith increasing numbers of baselines this
incremental benefit approximately asymptotes at 3 baselines. The followieg tab
demonstrate this giving the correction factors for a fixed correlagome®n baseline

and outcome of 0.50 and different numberbadeline measures.

Number of Variance
baselines

0.7500
0.6667
0.6250
0.6000
0.5833
0.5714

OO WNBE

The results in this subection demonstrate the importance, when estimating the
sample size, in taking the variance estimate from the full hwldere all covariates

are present. It also highlights how, if one ignores baseline and covariateatiéorm

one could potentially be overestimating the sample size. The variancengllfowi
covariates should therefore be used in the sample size equations given in previous

sections.

8.2. Post Dose M easures Summarised by Summary Statistics
Often in parallel group trials, patients are followed up at multiple time pointsakinkl use
of all of the information obtained on a patient has the desirableefly of increasing the

precision for estimating the effects of treatment. Naturally as the pred@sincreased the
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variability is decreased and one consequently needs to study fewer patientsritoorde
achieve a given power.

Suppose one is interested in looking at the difference in the average of all of Hoeg®st
measures:

Ho: iy = pg versesd, : u, # ug,

where zz, andy; represent the means of the average-gose measures in the two treatment

populations.

Frison and Pocock [69] expled several other summary measures for multiple post dose time
points such as the rate of change of a particular endpoint across time. Digidpahd
Zeger [70] describe the hypothesis for such a trials. However, this paper will notagot
detail on topic. The simplest approach of just taking the simple average of thdogest
assessments for each subject will be described.

Assuming one haspostdose measures and that the correlation between these measgures is

the variance can be calculatedr

2 —
variance= 2 L (r 1),0}, 8.2.2

r
where o2 represents the variance obtained from a trial with a singledosstmeasurement.
When looking at equation 8.2.2 it seems that as the correlation betweatopesheasures
increases the variance and consequent total sample size required increases. etaise b
although it may seem counterintuitive, the advantage of taking additional meassrement
decreases as the correlation increas€his fact is due to how the total variance?, is

constructed [71]:

ct=c?+02, 8.2.3
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where o is the within subject component of variation (as in cms trials) ando; is the

between subject component of variation.

It is important here to distinguish between the witliimtra-) subject and the betweénter-)
subject components of variation. The witlsubject component of variation quantifies the
expected variation among repeated measurements on the same individimcompound of
true variation in the individual. Whilst the betwesrbject component of variation quantifies

the expected variation of single measurements from different indigsidudl only one
measurement is made per individual it is imposdiblestimates’ and o and consequently

only the total variation, given in equation 8.2.3, can be estimated
If one knows the betweesubject variance and the correlation between measures the-within

subject variancean be derived from:

o2 = (]'_—p]af. 8.2.4
Yo
Following on from this result the variance that takes account of the nwhip®st dose

measures can be defined as:

2
. (o3
Variance= o7 +—2  8.2.5
r

Thus, formula 8.2.2 is now actually quite intuitive. As for constant r the higher the
correlation, from 8.2.4, the lower the withsabject variance and, from 8.2.5, the lower the
total variance and consequent sample size. However, as p increases, and ow falls, the effect

of taking repeated measures diminishesa already constitutes a small part of the overall
variance.

Equation 8.2.2 also gives the incremental benefit of taking additional post dose measures.
As with taking baselines it seems that although there is incremental benefit withsingre
numbes of post dose measures this incremental benefit asymptotes at 4 post dosesmeasu
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The following table demonstrates this result giving the correction factorsa fiked
correlation between post dose measures of 0.50 and difference numbers of post dose

measures measures.

Number of post Variance
dose measures

1.0000
0.7500
0.6667
0.6250
0.6000
0.5833

OO WNBE

8.3 Inclusion of Baseline or Covariates as well as Post Dose M easures Summarised by
Summary Statistics

As noted in the previous section further savings in sample size can be achieveolinyiragc

for baseline as a covariate. Frison and Pocock [69] define an additional varianceert@asur
account for the baseline (or multiple baselines) as a covariate andraiéfearembers of post
dos measures. Assuming there gprbaseline visits and r post dose visits the variance is

defined as:

Variance= o2
r 1+(p-Dp

2
H(-Dp__ pp } 8.2.6
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9. SUMMARY

This article walked through the calculations for croger and parallel group trials where the
assumptia is that the data are Normally distributed. The null and alternative hypotheses we
described for the most common types of trial and it was highlighted how thpsthéses
impact on sample size derivation.

For each type of trial, and trial desigmamber of formulae were provided. From quick easy
to use results to ones which required iteration to find a solution. It is recommendgtetha
more complicated results be used generally and to assist in this recommesdaipie size
tables using these results have been provided.

Of the different types of clinical trial covered in this paper probably the onewithhecome
more prevalent in the future are nimrfieriority or "as good as or better” trials. To facilitate
their design greater work needo be undertaken on defining miorfieriority margins. At
present there is only general guidance.

An aspect of clinical trial design that is likely to grow is that of being adaptive Ia wrads.

An area only briefly mentioned in this paper. Throbging adaptive one could modify one's
sample size calculations during a trial's course and so optimise thedesiim. As such
adaptive methodologies develop sample size calculations for Normal data, bimeagihe,

will be further adapted to aceonodate them.
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Table 2.1. Sample sizes for one group, na (ns=rna) in a paralle group study for
different standardised differences (6 =d/o ) and allocation ratios for 90% power and a

two sided typel error rate of 5%.

Allocation ratios

Fo) 1 2 3 4
0.05 8407 6306 5605 5255
0.10 2103 1577 1402 1314
0.15 935 702 624 585
0.20 527 395 351 329
0.25 338 253 225 211
0.30 235 176 157 147
0.35 173 130 115 108
0. 40 133 100 89 83
0. 45 105 79 70 66
0.50 86 64 57 53
0.55 71 53 47 44
0. 60 60 45 40 37
0.65 51 38 34 32
0.70 44 33 30 28
0.75 39 29 26 24
0. 80 34 26 23 21
0.85 31 23 20 19
0. 90 27 21 18 17
0.95 25 19 17 15
1. 00 23 17 15 14
1.05 21 15 14 13
1.10 19 14 13 12
1.15 17 13 12 11
1.20 16 12 11 10
1.25 15 11 10 9
1.30 14 11 9 9
1.35 13 10 9 8
1. 40 12 9 8 8
1.45 12 9 8 7
1.50 11 8 7 7

96



Table 2.2. Total sample sizes (n) for a cross-over study for different standardised
differences (6 =d /o) and allocation ratios for 90% power and a two sided typel error
rate of 5%.

o n
0. 05 8408
0.10 2104
0.15 936
0. 20 528
0. 25 339
0. 30 236
0.35 174
0. 40 134
0. 45 106
0.50 87
0.55 72
0. 60 61
0. 65 52
0.70 45
0.75 40
0. 80 35
0.85 32
0.90 29
0.95 26
1.00 24
1.05 22
1.10 20
1.15 19
1.20 17
1.25 16
1.30 15
1.35 14
1.40 13
1.45 13
1.50 12
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Table3.1. Samplesizes(nq) for onearm of a parallel group equivalence study with
equal allocation (r=1) for different standardised equivalencelimits(§ =d/o ) and true
mean differences (as a percentage of 8) for 90% power and atypel error rate of 2.5%.

Percentage Mean Difference

S 0% 10% 15% 20% 25%
0.05 10397 11042 11915 13218 14960
0.10 2600 2762 2980 3306 3741
0.15 1157 1228 1325 1470 1664
0. 20 651 691 746 827 936
0.25 417 443 478 530 600
0. 30 290 308 332 369 417
0.35 214 227 245 271 307
0. 40 164 174 188 208 235
0. 45 130 138 149 165 186
0.50 105 112 121 134 151
0.55 87 93 100 111 125
0. 60 74 78 84 93 105
0. 65 63 67 72 80 90
0.70 55 58 62 69 78
0.75 48 51 54 60 68
0. 80 42 45 48 53 60
0.85 37 40 43 47 53
0.90 34 36 38 42 48
0.95 30 32 34 38 43
1.00 27 29 31 35 39
1.05 25 27 29 31 35
1.10 23 24 26 29 32
1.15 21 22 24 26 30
1.20 20 21 22 24 27
1.25 18 19 21 23 25
1.30 17 18 19 21 24
1.35 16 17 18 20 22
1.40 15 16 17 18 21
1.45 14 15 16 17 19
1.50 13 14 15 16 18
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Table3.2. Total samplesizes(n) for cross-over equivalence study for different
standardised equivalence limits (5 =d/o ) and true mean differences (as a per centage

of 3) for 90% power and atypel error rateof 2.5%.

Percentage Mean Difference

5 0% 10% 15% 20% 25%
0.05 10398 11043 11916 13219 14961
0.10 2601 2763 2981 3307 3742
0.15 1158 1229 1326 1471 1665
0.20 652 692 747 828 937
0.25 418 444 479 531 601
0.30 291 309 333 370 418
0.35 215 228 246 272 308
0. 40 165 175 189 209 236
0. 45 131 139 150 166 187
0.50 106 113 122 135 152
0.55 88 94 101 112 126
0. 60 75 79 85 94 106
0. 65 64 68 73 81 91
0.70 56 59 63 70 79
0.75 49 52 55 61 69
0. 80 43 46 49 54 61
0.85 39 41 44 48 54
0.90 35 37 39 43 49
0.95 31 33 36 39 44
1.00 29 30 32 36 40
1.05 26 28 30 33 36
1.10 24 25 27 30 33
1.15 22 23 25 28 31
1.20 21 22 23 26 29
1.25 19 20 22 24 27
1.30 18 19 20 22 25
1.35 17 18 19 21 23
1.40 16 17 18 20 22
1.45 15 16 17 18 20
1.50 14 15 16 17 19
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Table4.1. Samplesizes(npa) for onearm of an parallel group non-inferiority study with
equal allocation (r=1) for different standardised equivalencelimits (5 =d/o ) and true
mean differences (as a percentage of 8) for 90% power and atypel error rate of 2.5%.

Percentage Mean Difference

S -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%
0.05 5381 5839 6358 6949 7626 8407 9316 10379 11636 13136 14945
0.10 1346 1461 1590 1738 1908 2103 2330 2596 2910 3285 3737
0.15 599 650 708 773 849 935 1036 1155 1294 1461 1662
0. 20 338 366 399 436 478 527 584 650 729 822 935
0.25 217 235 256 279 306 338 374 417 467 527 599
0.30 151 164 178 194 213 235 260 290 325 366 417
0.35 111 121 131 143 157 173 192 213 239 270 306
0. 40 86 93 101 110 121 133 147 164 183 207 235
0. 45 68 74 80 87 96 105 116 130 145 164 186
0.50 55 60 65 71 78 86 95 105 118 133 151
0.55 46 50 54 59 64 71 78 87 98 110 125
0. 60 39 42 46 50 54 60 66 74 82 93 105
0. 65 33 36 39 43 47 51 57 63 70 79 90
0.70 29 31 34 37 40 44 49 54 61 68 78
0.75 25 27 30 32 35 39 43 48 53 60 68
0. 80 23 24 26 29 31 34 38 42 47 53 60
0.85 20 22 23 26 28 31 34 37 42 47 53
0.90 18 20 21 23 25 27 30 34 37 42 48
0.95 16 18 19 21 23 25 27 30 34 38 43
1.00 15 16 17 19 21 23 25 27 31 34 39
1.05 14 15 16 17 19 21 23 25 28 31 35
1.10 13 14 15 16 17 19 21 23 26 29 32
1.15 12 13 14 15 16 17 19 21 23 26 30
1.20 11 12 13 14 15 16 18 20 22 24 27
1.25 10 11 12 13 14 15 16 18 20 23 25
1.30 10 10 11 12 13 14 15 17 19 21 24
1.35 9 10 10 11 12 13 14 16 17 20 22
1.40 8 9 10 10 11 12 13 15 16 18 21
1. 45 8 9 9 10 11 12 13 14 15 17 19
1.50 8 8 9 9 10 11 12 13 14 16 18
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Table4.2. Total samplesizes(n) for cross-over non-inferiority study for different
standardised equivalence limits (5 =d/o ) and true mean differences (as a per centage

of 3) for 90% power and atypel error rateof 2.5%.

Percentage Mean Difference

5 -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%
0.05 5382 5840 6359 6949 7627 8408 9316 10380 11637 13137 14946
0.10 1347 1462 1591 1739 1909 2104 2331 2597 2911 3286 3738
0. 15 600 651 709 774 850 936 1037 1156 1295 1462 1663
0. 20 339 367 400 437 479 528 585 651 730 823 936
0.25 218 236 257 280 307 339 375 418 468 528 600
0.30 152 165 179 195 214 236 261 291 326 367 418
0.35 112 122 132 144 158 174 193 214 240 270 307
0. 40 87 94 102 111 122 134 148 165 184 208 236
0. 45 69 75 81 88 97 106 117 131 146 165 187
0.50 56 61 66 72 79 87 96 106 119 134 152
0.55 47 51 55 60 65 72 79 88 99 111 126
0. 60 40 43 47 51 55 61 67 75 83 94 106
0. 65 34 37 40 44 48 52 58 64 71 80 91
0.70 30 32 35 38 41 45 50 55 62 69 79
0.75 26 29 31 33 36 40 44 49 54 61 69
0. 80 24 25 27 30 32 35 39 43 48 54 61
0.85 21 23 25 27 29 32 35 38 43 48 54
0.90 19 21 22 24 26 29 31 35 38 43 49
0.95 18 19 20 22 24 26 28 31 35 39 44
1.00 16 17 19 20 22 24 26 29 32 35 40
1.05 15 16 17 18 20 22 24 26 29 32 36
1.10 14 15 16 17 18 20 22 24 27 30 33
1.15 13 14 15 16 17 19 20 22 25 27 31
1.20 12 13 14 15 16 17 19 21 23 25 29
1.25 11 12 13 14 15 16 18 19 21 24 26
1.30 11 11 12 13 14 15 16 18 20 22 25
1.35 10 11 12 12 13 14 15 17 19 21 23
1.40 10 10 11 12 13 13 15 16 18 19 22
1.45 9 10 10 11 12 13 14 15 17 18 20
1.50 9 9 10 11 11 12 13 14 16 17 19
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Table 6.1. Total sample sizes (n) for a bio-equivalence cross-over study for different
CVs, levels of bio-equivalence and true mean ratios for 90% power and a type | error

rate of 5%.
Levels of Bicequivalence

eV (% Rati o 10% 15% 20% 25% 30%
10 0.80 43 12
0.85 48 13 7

0.90 54 14 8 5

0.95 60 16 8 6 5

1.00 21 10 7 5 5

1.05 55 15 8 6 5

1.10 40 13 7 5

1.15 26 10 6

1.20 104 17 8

15 0. 80 93 23
0.85 106 26 12

0.90 119 29 14 8

0.95 132 33 15 9 7

1.00 45 20 12 8 6

1.05 121 31 15 9 7

1.10 86 25 12 8

1.15 57 19 10

1.20 231 36 15

20 0. 80 163 40
0.85 185 45 20

0.90 207 50 22 13

0.95 232 56 25 14 10

1.00 78 34 19 12 9

1.05 212 54 24 14 10

1.10 151 43 20 12

1.15 99 33 16

1.20 405 62 24

25 0. 80 251 60
0. 85 284 68 30

0.90 320 77 33 18

0.95 357 86 37 21 14

1.00 120 52 28 18 12

1.05 326 82 36 21 14

1.10 232 65 30 17

1.15 151 49 24

1.20 625 95 36

30 0.80 356 85
0. 85 403 96 41

0.90 454 108 46 25

0. 95 507 121 52 29 18

1.00 170 73 39 25 17

1.05 463 116 51 28 18

1.10 329 92 42 24

1.15 214 69 33

1.20 888 135 50

35 0. 80 477 113
0. 85 540 128 54

0.90 608 145 61 33

0.95 679 162 69 38 24

1.00 227 97 52 32 22

1.05 620 155 67 37 24

1.10 440 123 55 31

1.15 287 92 44

1.20 1190 180 67
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Table 6.1 (Cont). Total sample sizes (n) for a bio-equivalence cross-over study for
different CVs, levels of bio-equivalence and true mean ratios for 90% power and a type

| error rate of 5%.
Levels of Bicequivalence

vV (N Rati o 10% 15% 20% 25% 30%
40 0. 80 612 144
0. 85 694 164 69

0.90 780 185 78 42

0.95 871 207 88 48 30

1.00 291 124 66 41 27

1.05 796 198 86 47 30

1.10 565 157 71 39

1.15 367 118 56

1.20 1527 231 86

45 0. 80 760 179
0.85 861 203 86

0.90 969 230 97 52

0.95 1082 257 109 60 37

1.00 361 153 82 50 33

1.05 989 246 106 59 37

1.10 701 195 87 48

1.15 456 146 69

1.20 1897 286 106

50 0. 80 919 216
0.85 1042 246 103

0.90 1172 277 117 62

0.95 1309 311 132 72 45

1.00 437 185 99 60 40

1.05 1196 297 128 70 44

1.10 848 236 105 58

1.15 552 177 83

1.20 2295 346 128

55 0.80 1089 256
0.85 1233 291 122

0.90 1387 328 138 74

0.95 1550 368 156 84 52

1.00 517 218 117 71 47

1.05 1416 352 152 83 52

1.10 1004 279 124 68

1.15 653 209 98

1.20 2718 410 151

60 0. 80 1266 297
0. 85 1435 338 142

0.90 1614 381 160 85

0.95 1803 428 181 98 61

1.00 601 254 136 82 54

1.05 1648 409 176 96 60

1.10 1168 324 144 79

1.15 759 243 114

1.20 3162 476 175

65 0. 80 1451 340
0.85 1644 387 162

0.90 1849 437 183 97

0.95 2067 490 207 112 69

1.00 689 291 155 94 62

1.05 1888 469 202 110 68

1.10 1338 371 165 90

1.15 870 278 130

1.20 3624 546 200
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Table6.2. Samplesizes(n1) for one arm of a bio-equivalence paralléel group study for

different CVs, levels of bio-equivalence and true mean ratiosfor 90% power and a type

| error rate of 5%.
Levels of Bicequivalence

CV (% Rati o 10% 15% 20% 25% 30%
30 0. 80 356 84
0. 85 403 95 40

0.90 453 108 46 25

0.95 506 121 51 28 18

1.00 169 72 39 24 16

1.05 462 115 50 28 17

1.10 328 92 41 23

1.15 213 69 33

1.20 887 134 50

35 0. 80 476 112
0.85 540 128 54

0.90 607 144 61 33

0.95 678 161 69 37 23

1.00 226 96 51 31 21

1.05 620 154 67 37 23

1.10 439 122 55 30

1.15 286 92 43

1.20 1189 179 66

40 0. 80 611 144
0.85 693 163 69

0.90 779 184 78 41

0.95 871 207 88 48 30

1.00 291 123 66 40 26

1.05 796 198 85 47 29

1.10 564 157 70 38

1.15 367 117 55

1.20 1527 230 85

45 0. 80 759 178
0.85 861 203 85

0. 90 968 229 96 51

0. 95 1082 257 109 59 36

1.00 361 152 81 49 33

1.05 988 245 106 58 36

1.10 700 194 87 47

1.15 455 146 68

1.20 1896 286 105

50 0. 80 919 216
0. 85 1041 245 103

0.90 1171 277 116 62

0.95 1309 310 131 71 44

1.00 436 184 98 60 39

1.05 1195 297 128 70 43

1.10 847 235 104 57

1.15 551 176 82

1.20 2295 345 127

55 0. 80 1088 255
0.85 1233 290 121

0.90 1387 327 137 73

0.95 1550 367 155 84 52

1.00 516 218 116 70 46

1.05 1416 351 151 82 51

1.10 1003 278 124 68

1.15 652 208 97

1.20 2718 409 150
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Table 6.2 (Cont). Sample sizes (n1) for one arm of a bio-equivalence parallel group

study for different CVs, levels of bio-equivalence and true mean ratios for 90% power

and atypel error rate of 5%.
Levels of Bicequivalence

eV (% Rati o 10% 15% 20% 25% 30%
60 0. 80 1266 297
0. 85 1434 337 141

0.90 1613 381 160 85

0.95 1803 427 180 97 60

1.00 601 253 135 82 54

1.05 1647 408 176 96 59

1.10 1167 323 144 78

1.15 759 242 113

1.20 3162 476 174

65 0. 80 1450 340
0.85 1643 386 161

0.90 1849 436 183 97

0.95 2066 489 207 111 68

1.00 688 290 154 93 61

1.05 1887 468 201 109 68

1.10 1337 371 164 90

1.15 869 277 129

1.20 3623 545 200

70 0. 80 1641 384
0.85 1860 437 182

0.90 2092 494 207 109

0.95 2338 553 234 126 77

1.00 779 328 175 105 69

1.05 2135 529 227 124 76

1.10 1513 419 186 101

1.15 984 313 146

1.20 4100 616 226

75 0.80 1836 430
0.85 2081 489 204

0.90 2341 552 231 122

0.95 2616 619 261 141 86

1.00 871 367 195 118 77

1.05 2390 592 254 138 85

1.10 1693 469 208 113

1.15 1101 351 164

1.20 4588 690 253

80 0. 80 2035 476
0. 85 2307 542 226

0.90 2595 612 256 135

0.95 2900 686 289 156 96

1.00 966 407 216 131 85

1.05 2649 656 282 153 95

1.10 1877 520 230 125

1.15 1220 388 181

1.20 5086 764 280

85 0. 80 2237 524
0.85 2535 596 248

0.90 2852 673 281 149

0.95 3187 754 318 171 105

1.00 1061 447 238 143 94

1.05 2912 721 310 168 104

1.10 2063 571 253 138

1.15 1341 427 199

1.20 5590 840 308
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Table 7.1. Sample sizes for one group, na (ne=rna) in a parallel group study for
different standardised widths (6 =w/o) and allocation ratios and 95% confidence
intervalsfor the precision estimates

Allocation ratios

Fo) 1 2 3 4
0.05 3075 2306 2050 1922
0.10 770 578 513 481
0.15 343 257 229 214
0. 20 194 145 129 121
0.25 125 94 83 78
0. 30 87 65 58 54
0.35 64 48 43 40
0. 40 50 37 33 31
0. 45 40 30 26 25
0. 50 32 24 22 20
0.55 27 20 18 17
0. 60 23 17 15 14
0. 65 20 15 13 12
0.70 17 13 12 11
0.75 15 12 10 10
0. 80 14 10 9 9
0. 85 12 9 8 8
0. 90 11 8 7 7
0.95 10 8 7 6
1. 00 9 7 6 6
1.05 9 7 6 5
1.10 8 6 5 5
1.15 8 6 5 5
1.20 7 5 5 4
1.25 7 5 4 4
1.30 6 5 4 4
1.35 6 5 4 4
1. 40 6 4 4 3
1.45 6 4 4 3
1.50 5 4 3 3

106



Table 7.2. Total sample sizes for a cross-over study for different standardised widths
(6 =w/ o) and 95% confidenceintervalsfor the precision estimates
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Figure1l: Anillustration of average equivalence between two populations
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Figure2. Anillustration of the difference between superiority, equivalence and non-

inferiority.
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Figure3: Anillustration of average non-inferiority between two populations
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Figure4. An example of pharmacokinetic profilesfor atest and reference formulation.
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Figure5: Anillustration of average bioequivalence between two formulations
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