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SUMMARY

This article gives an overview of sample size calculations for a siegjnse and a comparison of
two responses iaparallel grougrial where the outcome lsinary. Sample size derivation is given
for trials where the objective is to demonstrate: superiority, equivalenceinfieoority and
estimation to a given precision. For each type of trial the null and alternative rsgs#ealescribed
as well as how the impact these have on the sample size calculations.chtypeaof trial the
calculations are highlighted through worked examples. Sample size w@bilks fifferent types of

trials and worked examples are given tostssifuture calculations.
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1. INTRODUCTION

An essential stem planning a trial is the calculation of a sample size which will give
the minimumnumbergequired to meet thebjectives of the studyWe have already
given a tutorialfor the case where the endpoint is anticipatedhdee a Normal
distribution[1]. Thispaper extends this work to discuss the situation where the primary
endpointis binary.A review of sample size formulas for the comparison of proportions
has beemublished before [2]; this paper expands and updates that review.

Having as good an estima#s possible of theequiredsample size is important as
studies that are either too small or too large may be judged une8jidabf example,

a study that is too large could have met the objectives of the trial before thlestuaty

end hadbeen reached, and so some patients may have unnecessarily entered the trial
and have been randomised to a therapy thatkandybe proven to be suboptimal.
Conversely a trial that is too small mawve little chance of meeting the study
objectives, and patients may beteringa trial for no tangible benefit. The general
approach to choosing sample size will be describetiis article where the primary
endpointcan be assumed be binaryand anestimate of théreatment response on at
least one of the arms available. The sections of the paper detail computation of
sample sizes appropriate for:

1. Superiority trials.

2. Equivalence trials.

3. Nonrrinferiority trials.

4. As good as or better trials.
5. Trialsto a given precision.

Asin ourearlier paper]] adistinction is drawretweertirials designed to demonstrate
'superiority’ and trials designed to demonstrate 'equivalence’ emieoiority’. We
emphasis how differences in the null hypothesis can impact on calculatiomell as

in the estimation of the treatment response under the null and alternative bigpothe
[3]. The ICH guidelines E3 and E9 provide general guidance on selecting thie sam
size for a clinical trial ,7].

Using worked examplesye will also give a brief description of how the calculations
canbe undertaken in two populpackage$ASS11 [8] and nQuery 7 [9].

The paper is written otine premise thaine ortwo treatments are to be compare@in
parallel grouptrial with a singlebinary outcome Each section of the paper will
describehe appropriate sample size formulae. Tables are given in each section which
provide sample size estimates using these formulae and worked exampéscabed

which use these tables. Also, within each sedmmequick approximatéormulas



are given which do notquirethe use of tables for calculation¥e assume that the
reader is familiar withthe concepts of Type | and Type Il errors (and power) as
discussed imn earliettutorial article L] and numerous books including [B-4

2. SINGLE PROPORTION

In studieswith a single binary response, there are two types of hypothesis that can
investigated depending avhetherthe objective of the triakito show the response is
greaterthanor less than some hypothesised valas in the null (H) and alternative
(H1) hypothesis below

Ho: The treatmenhas areffectin terms of the absolute rigleingless or equal than
some prespecified valudz, < r,,).

H1i: The treatment has an effect in terms of the absolutdesiggreater than some
pre-specified valug =, > 7).

Alternatively

Ho: The two treatments have equal effect with respect to the absolute risk difference
Tp =T7y)-

Hi: The two treatments are different with respect to the absolute risk difference (
T # 7Ty ).

Even if wehave a two (or mojearm trialwe may still wish to investigate an hypothesis
for a single arm. For example the primary endpoint may be clinicald masa
continuous scale bute may wish also to show that for a particular adverse event the
proportian of eventn the investigative treatment arr, can be proved (at a given
level of significance) to be less than soanariori set clinically important absolute risk
ie.r, <y .

We will concentrate on the situation @frandomised controlled trial where there is a
need to assess a single arm of the trial but without reference to the esnttblas in

an assessment of adverse eveh# [A way of investigating a single binary response
would be to obtain a best estimate of the absolute risk for the investigative tteatmen
and then see if the upper bouad lowerbounddepending on the null hypothesd)

the 95% confidence interval for this response excludes the clinically impastant r



2.1. Confidence Interval Calculation

It is worth considering the calcuiah of confidence intervals for a single binary
response before describing the sample size calculafidrese are numbesf ways of

a calculating a confidence intervdld. Here we will concentrate on just twthe
Normal approximation approach atiek exact method.The Normal apprarnationis
the most common approach for calculating confidence interifai&ever,for rare
eventsthe Normal approximation may not hold and exact metrsidsild be applied
instead

2.1.1. Normal Approximation

Under the Normal approximation the confidence interval for a single proportion is
defined as

1) ptZ,_,,S€p),

where p is the estimated response from the, tedlp) =+ pd- p)/n, Z,,,, the
(1-a /2)% point of the standard Normal distribution

and « the level of statistical significancex(=0.05 would give 95% confidence
intervals). This method is referred to as the Wald method [13].

2.1.2. Exact Confidence Intervals

Theconfidence interval calculations descril@dexact” confidence intervals are also
known as CloppePearson confidence intervals4]. These confidence intervals are
calculated by summing each of the tail probabilities from the binomial distribution,
given the observed number of cases (k) for the sample siZEH@gfore, afining the
individual cell probabilities as

n

2) Pr(X =k) = [k

jpk -p,

the lower limit of the confidence interval éalculatedas the largestalue of p such
that the lower tail area of tlrmulativedistribution is no more tham/2. Likewise
the upper limit is calculated as temallestpoint where the cumulative distribution
equals oexceeds 1/2. Formally, the lower point of a confidence interval is defined
asthe maximum valuepsuch that

o 3T sz

k
i=0



whilst the upper point is defined e minimum value gsuch that,

k

@) Z(?]pﬂ, - p,)™ 212,

i=0

An alternative approach to calculate exact confidence intervals Wwetddise the link
between binomial and beta distributigh§-16] From this théower bounds defined
as

(5) p, =1- BETAIN(1-a/2,n—k+1k),
and upper as

(6) p, = BETAINV(1-a/2,k+1n-k).

Here, ais the level of statistical significancer£0.05 would give 95% confidence
intervals), k the number of events observed n the samplesigee investigatie
treatment arrand BETAINV(e) refers to the cumulative distribution function of a Beta
distribution. The upper and lower bounciculatel from (5) and(6) will provide
range of plausible values that the populatioopprtionis likely to be within. The
theoretical rationa behind using the Beta distribution is more complicated than for
standard Normal approximation calculations. However, operationally thegsréoce
calculate and can be calculatedriost statistical packages. TBETAINV(e) notation

given in this paper is taken from the computer paclSafs.

Identical confidence intervals can also be obtained using the link between the F
distribution and the binomial distribution althoughith a more complicated
nomenclature]3,15,16]. This link will not be discussed further.

2.2. One Tailed or Two Tailed?

The question of whether to calculate one or two tailed confidence intervals is not
straightforward 17]. It depends on whetheve wish to provide an estimate of the
plausible range for the true value (two tailed) or a value which you are aaunfitdle

not be exceeded lilie true value (one tailed).

For rare eventw/e are often interested inoae tailed confidencimterval such that a
(upper) ondailed (1-« %) bound is estimated from

7) BETAINV(1- o,k +1n—k)

This one tailedconfidence interval will give estimate of tipeoportionfor a given
number of events k in n subjects which is unlikely to be exceeded tyép®pulation
proportion.



The emphasis in this paper, howevei|l be on two tailed confidence interval
estmationi.e. using(5) and(6). As we are only interested in one tail of the 95%
confidence interval this would be equivalent to a one tailed confidence intervalbbut wit
a set at 2.5%.

2.3. Sample SizeCalculation

To calculate the sample size for an anticipated respopsehich we wish to assess
as being less than (or greater) then a hypothesised walutne following Normal
approximation result could be used [18]

n= [Z:L-,B\/ﬂ-A(l_ﬂ-A) +Zy Ny (1_7[H)]2 .

(za=mu)

(8)

This sample size calculation would be consistent with a Normal approximation being
used for the confidence intelv Here,a and g are the overall Type | and Type I

errors level
An alternativeequationis

A2y +Ziaf

(zn—my )

(9)

where 7 = (z, + 7, ) /2. Equation (9 gives similar answer® equation (8for 7,
<r, butgives a slightly larger sample sittg =, >, .

Table 1 gives sample sizes fron(8) for various values ofr, >z, . For 7z, <=z,

replace”» by 1~ 7 and Tn by 17w .



Table 1. Sample size calculations for a one arm trial for a single binary response
using the Normal approximation for 90% power and a95% confidence interval
for an alternative hypothesis of 7, > 7, using(8).

7Ty
A 005 010 015 0.20 025 030 035 040 045 050 055 060 065 070 075 080 085 0.90
0.10 264
0.15 79 438
0.20 40 122 589
0.25 25 59 158 718
0.30 17 35 74 189 825
0.35 12 24 43 87 214 912
0.40 10 17 29 50 97 233 977
0.45 8 13 20 33 56 105 248 1022
0.50 6 10 15 23 36 60 111 257 1045
0.55 5 8 12 17 25 38 62 114 261 1047
0.60 4 6 9 13 18 26 40 64 115 259 1028
0.65 3 5 7 10 14 19 27 40 63 113 252 988
0.70 3 4 6 8 11 14 19 27 40 62 109 240 927
0.75 2 4 5 6 8 11 14 19 27 38 59 103 222 845
0.80 2 3 4 5 7 8 11 14 19 25 36 55 94 200 742
0.85 2 2 3 4 5 7 8 10 13 17 23 33 49 82 171 617
0.90 1 2 3 3 4 5 6 8 10 12 16 21 28 42 68 137 471
0.95 1 2 2 3 3 4 5 6 7 8 10 13 17 23 32 51 96 301

Using a binomial distribution an estimate of the power can be obtainec:foations
(20) and (1)[19]

(10) f(rﬂn};a— L

j=0

where q is the largest integer of k such that

(11) Zkl[?j”nﬂ -7V <a

Table2 givesthe sample sizes estimate fr¢h®) and (11) As withTablel for z,<
Tn replace”a by 1= 7a and7n by 1= 7u | It should be noted that hefes > 7+
and 7~<7x do not quite give symmetric results. Té@®ere seven instances where
the sample size calculated f&ra~ 7r was slightly higher than the sample size
estimates “equivalent” fofA<7H . These arshown(with the sample size fof

> %W ) assuperscript entrigs



Table 2. Sample size calculations for a one arm trial for a single binary response
using a binomial distribution for 90% power and a two sided significancdevel of
5% for an alternative hypothesis of 7, > z,, using equation (10) and (11)

Superscript entries areshownwhenaa and 4 are swapped and the results differ.

7T
A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
0.10 316
0.15 102 492
0.20 55 149 641
0.25 38 75 183 768
0.30 27 49 90 212 870
0.35 18 34 56 103 237 949
0.40 16 23 39 60 112 255 1021
0.45 14 20 26 42 66 116 266 1066
0.50 12 15 20 30 42 70 121 274 1080
0.55 8 13 16 22 31 44 71 125 273 1082
0.60 7 10 14 18 22 32 46 72 121 275 1059
0.65 6 9 11 13 18 24 33 47 69 124 265 1017
0.70 6 8 10 11 15 18 23 30 46 68 117 252 950
0.75 5 7 9 9 12 13 17 23 32 44 64 111 231 863
0.80 5 5 6 8 9 11 14 17 21 31 39 59 99 207 764
0.85 5 5 6 6 7 8 10 11 15 19 27 36 55 87 180 632
0.90 5 5 5 5 6 8 9 9 13 14 19 21 32 45 73 143 484
0.95 5 5 5 5 5 5 7 7 8 9 10 15 18 25 35 51 100 301

ComparingTablel with the equivalent values ifable2 we can se¢hatequation §
estimates the sample size to be smaller grarations (1pand(11). Thisdifference

in the sample sizes due to two reasons. Firstlfsisher's Eact testsis more
conservative thathe asymptotictestand so requirea large sample size for a given
significance level and power. Secondly, because of the discrete nature of thesbinom
distribution it may be impog#se to get an exact type | and Type Il error. One can easily
find the actual significance level and power a given sample size, that a binomial
distribution produces. If these actual values are inserted into (@pule find results
comparable to Tabéel and 2

For completeneswae includethe following resultwhich gives the sample size where
an arcsie transformation(if y=sin(x) then x=arcsin(y))is applied to the hypothesised
and anticipated response®0]. The sample sizes estimdtérom this result are
comparable to earligesultsand will not be discussed further.

[Zl—ﬁ + Zl—a/2:|2

alarcsing/z,,) - arcsingz, )|

12) n=



2.3.1. Worked Example 1 — Sample Size Calculation for a Single Binary
Response

An investigator is designing a placebo controlled trial to investigate a netméetin
depression. The sample size for the primary endpoint was calculated to=i6ats
per arm.From experience with other compounds for the same indicit®madverse
eventrateis anticipated to be around 50% in the trial populatibne compoundnder
investigationis expected to have a lower adveesentrate of around 40% and the
investigator wishes tdemonstrataisinga 95% confidence interval (equivalent to a
Type | error of 2.5%) and 90% power that éwent rates less than 50%.

Since ma <7H We look up 1 a and T 7y and wsing the Normal approximation result
given by equation(8) therequiredsample size from Tablkfor 14=0.5 and 1a=0.6 is
estimated to b@59 patients. Alternatively using the binomial approach, and results
(10) and(11), Table 2estimates the sample size to be 275 patients. As the sample size
is less than the sample s@eb25 patients being recruited the investigator has sufficient
power for the additional objective.

In repeating the calculai in PASS ve believe therenay bean error in the way PASS
estimates sample size for one binomial proportion. To estimate the sample size on
PASS you select thmenuoptionsProportions /Ond’roportion /Test (nequality) and

then the icon Test for One Proportion (ProportianEpr this problenthe Alternative
Hypothesis dialogue can be set to ‘p<p0’ and the Type | error as 0.025. PASS can
either estimate the sample size (for a given power) or the power (for a givele samp
size). PASS estimates the sample size to be 263 patients

The SAS codethat seems to mimic the results in PASSyiven inFigure 1 This
program will iterate until the first integer sample dizesgreater than 90% power.

10



Figure 1. Example SAS code for calculating sample sizassing a binomial
distribution for the alternative hypothesis of 7, > 7, .

data poweri;
do ps= 0.10 to 0.95 by 0.05;

do p0= 0.05 to ps-0.05 by 0.05;
flag1=0; k1=0;

do n=3 to 2000 by 1 until (flagi=1);
n1=n; flag2=0;k1=0;

do k=0 to n by 1 until (flag2=1);
prob2=probbnml(ps,n,k);

if prob2 gt 0.025 then do;
flag2=1;

if k ge 1 then do;

k1i=k-1;
prob2a=probbnml(ps,n,k1);
end;

if k = 0 then do;

k1=0;

prob2a=probbnml (ps,n,k1);
end;end;end;

prob3=probbnml(p0,n,k1);
if prob3 ge 0.90 then do;
flagi=1;
end;end;
output;
end;end;
run;

There is amnterestingssue with this programming approadhkigure2 gives the power
for the study for different sample sizes ranging from 250 to 290 patierike worked
exampleof 7 ,=0.40 andr,, =0.50. We can se&om Figure2 howapower of 90% is
obtained for a sample size of2patients bunow we have less than 90% powfer
264 patient$. In fact it is not until the sample size is52hat for both this andhe
subsequentample sizedoes power excee@D%. The sample size &75patientsis
whatis given inTable2 and by Equations 10 and 11.

The reason why the pow&zig-zags in Figure2 is due tothe discretenature of the
binomial distribution. With additional patients thehievablelType | error maydrop

which may mean that the powterachieve that level of significan€als. To estimate
the sample sizegivenin Table2 aprogramwas written so thathe iteration will only

11



stop forgiven integesample sizé it, and sample sizes up10 greaterall hadgreater
than 90% powerFigure3 gives example SAS code for this calculation.

Figure 2. Power for a given sample size for the case,=0.40 andr, =0.50 where
we wish to show thatr, < 7z, with a two-sided95% confidence interval.

- YLk
0.90 ? /\[\ A [\/\/V

I LA

MATYIA

MR

S

Power

0.86

248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292

Sample Size
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Figure 3. SAS code used to generateable 2 for calculating sample sizes using a

binomial distribution for the alternative hypothesis of z, > 7z, .

data poweri;
do ps= 0.10 to 0.95 by 0.05;

do p0= 0.05 to ps-0.05 by 0.05;
flag1=0; k1=0;

do n=5 to 2000 by 1 until (flag1=10);
ni=n; flag2=0; k1=0;

do k=0 to n by 1 until (flag2=1);
prob2=probbnml(ps,n,k);

if prob2 gt 0.025 then do;
flag2=1;

if k ge 1 then do;

k1=k-1;
prob2a=probbnml (ps,n, k1) ;
end;

if k = 0 then do;

k1=0;

prob2a=probbnml (ps,n,k1);
end; end; end;

prob3=probbnml (p0,n,k1);
if prob3 ge 0.90 then do;
flagi=flagi+1;

end;

if prob3 1t 0.90 and flagl ge 1 then do;
flag1=0;
end; end;
ni=n1-flagli+1;
output;
end; end;
run;

The equivalent calculation in PASS is given below. Here PASS is run to give the

sample size for a range of sample sizes from 260 to 280. PAS§ivesva sample

size of 274 patients.

13
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PASS also haswo other methodsgiving sample sizeestimatesfor two Normal
approximation approachgboth with and without a continuity correction Both
approaches are a little differeindbm (9) (and indeed8)) in that thevariance estimate
of the treatment effect (under the null or alternative hypothesis) eglegust 7, or
z,, and mwt both (as in(9) and(8)). Forthe calculatiorof the result thatisesr,

(termed p hat in PASS) the sample size is estimated to be 251 patients.

In nQuery to estimate the sample size equivalent to the exact approachirgiven
equations (1Pand(11) the optiongroportions /One /Exact test for a single proportion
need to be selected. nQueloes not give the sample size directly but the power for a
given sample size. To sadeing manyiterations equation (Pcould be used for an
initial sample size nQuery only gives power to 2 decimal plaseshe calculations
spreadshedfactually returns as a percentage equivalent to two decimal plaitles)
more significant digits appear at the bottom of the window. For the spreatisheet
power isalways romded down. Hence, a power of 89.99 will appear as 89% in the
output. Query gives a sample size off2@atients.

To calculate a sample size using a Normal approximation the optiopsertions /One
/One sample Chi-squared tes$tould be ticked. HAis result gives a sample size2%9
patients which agrees witiQuery.

14



2.4. Sample Size Calculation Re-visited — Sample Size Based on
Feasibility

2.4.1. Precision Based Approach

As highlighted inWorked Example 1in clinical trials the primary objectivis usually

not to estimata single absolute righut rathelcompare amvestigative treatment with

a controlfor a given objective and endpaintThe sample size would theredobe
estimated from the primary endpoint and hence ‘fixeith respect to the objectifer

the single absolute risk. In this context therefore the objective may not be to prove a
risk is less than some bound but to quantify the likely range of values that the risk could
plausibly be -through a confidence interval.

In Section3.5precision based trials are described where the objective is to quantify the
risk difference against control.

For a single risk the precision of the triahde estimate from

Z, 2\ PA-Pp)

(13) W= :

Jn

wherew here isdefined as half the widttor a confidence interval. Here, it is assumed
that both n and p are knowi.o estimate a sample size to have a required precision,
w, about p then the following result could be used.

— le—a/2 p(l_ p) )

W2

(14) n
If exactconfidenceintervalsare being used then we can estimate the precision for a
trial from

(15) w=(BETAIN1-a/2,k+1n—k)+BETAIN1-a/2,n—k+1k)-1)/2

wherek is estimatedrom k=pn To estimate the sample size can iterate on n until
we get a sample size with the requisite precision for a given p.

2.4.2.  Probability of Seeing an Event

In the contextof clinical trials the results describedbove may not bereadily
applicable whenve wish to quantify a riskarticulaty if this risk is quite raresuch as

with an adverse event. A more appropriate calculation quantifies the probability of
seeing the everior the finite (and fixed) sample size in the trial
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Hence|if the risk for a particular adverse evenpithen the probability that k or more
adverse events will be observed with n subjects can be calculated from

(16) Py =1—i(2j p*d-p)"*

24.2.1. Worked Example 2 — Calculating a Probability of Observing Adverse Event

A Phase llitrial has been desigd where the number of patients per arm is 100. For
the investigative treatment a number of adverse events are being monittdred wi
differenceanticipatedisks Table3 givestheprobability of obsemng various numbey

of adverse events for different anticipated population risks.

FromTable3 we can see that for a risk ah adverse event /1000 wewould have
less than 10% chance of observing at least one adverse event. Also for a risk of
1/10,000 we’d have only a 1% chance of seeing at least one adverse event.

Table 3. Probablilities of observing a given number of adverse events or more (k)
for given anticipated risksfor a sample size of 100 patients.

Risk of an Event

k 0.0500 0.0300 0.0100 0.0050 0.0010 0.0001
1 0.9941 09524 0.6340 0.3942 0.0952 0.0100
2 0.9629 0.8054 0.2642 0.0898 0.0046 <0.0001
3 0.8817 0.5802 0.0794 0.0141 0.0002

4 0.7422  0.3528 0.0184 0.0017 <0.0001

5 0.5640 0.1821 0.0034  0.0002

6 0.3840 0.0808 0.0005 <0.0001

7 0.2340 0.0312 0.0001

8 0.1280 0.0106 <0.0001

9 0.0631  0.0032

10 0.0282  0.0009

We recommenthat a table such dsable3 be calculated for all planned clinical trials.

If no adverse events are observed the resultalite3 could be used to put the results
into some context.This could be done in context also withe ‘3 over n’ (3/n) rule
[12]. The 3/n rulegivesthe approximateipper tail of a onesided 95% confidence
interval when zero events are observed and is deusieg the Poisson approximation
to from equation 1§

Suppose there are no observed instances of a partacuarse event ithe trial of100
subjectsve are @scribing. Suppose in the protocol we had stated fibiathe adverse
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eventwe anticipatedhe populatiorrisk to be1/2000=0/00%nd thughata priori we
would anticipate that there was a probability of 0.39 of observing at least oneeadvers
event. We could highlight this probability when discussing the result. Also, we could
state thatbased on the observed trial data, we can rule out a ridko® (3/n¥0.03

or 3%or greater.

3. PARALLEL GROUP TRIAL S
3.1. Superiority Trials

With a superiority trial tB objective is to determine whether there is evidence of a
statistical difference in the comparison of interest between the regimineference

to the null hypothesis that the regimens are the same. The gubritl alternative
(H1) hypotheses mayka the form:

Ho: The two treatments are not different,(= 7 ).

Hi: The two treatments are different ( # ) i.e. either A is superior to B or B is
superior to A.

For atwo-sidedsuperiority trial there are two chances of rejecting the null hypothesis
and thus making a Type | error. The null hypothesis can be rejecpadifp, or if

P, < P by a statistically significant amount. As there are twancles of rejecting

the null hypothesis the statistical test is referred to as a two tailed test with each talil
allocated an equal amount of the Type | error (of 2.5%). The sum of theseldasils a
up to the overall Type | error rate of 5%. Thus, the nytiothesis can be rejected if

the test ofz, > 7, is statistically significant at the 2.5% leadl significanceor the

test of 7, < 7 is statistically significant at the 2.5% level.

The purpose of the sample size calculation is hence to provide sufficient powertto rejec
Ho when in fact some alternative hypothesis is true

3.1.1. Summarising Clinical Trials with Binary Data

For a clinical trial where the primary outcome is a binary responsmthBon is given
in Table4 where p, and p; are the responses anticipated on treatment A and B

respectively;p is the average response across treatmentsand n, are the sample
sizes in each treatment group and n is the total sample siz
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Table 4. Summary table for a clinical trial with a binary outcome

Outcome
Treatment 1 0 Sample Size
A Pa 1- Pa Na
B Pg 1- Ps Ng
Overall Response p=(n,p,+ngPg)/(n 1-p n=n,+ng

The absolute risk reduction is probably the simplest way of summarising binary data
which is p, — p; andthis is thescale thatve will focuson.

One drawback of workingvith the absolute riskdifferenceis that itis bounded by
(-1, 1). This bounding can adversely affect inferenespecially wheioth response
arenear one of the bounds.

3.1.2. Sample Sizes for a Superiority Trial
For the special case of equadiged arms in the trial the sample size is

(2,27 A=7) + 2, a7 p) + 70 (= 10) |

(”A _72'3)2

(17) Na =

Since the expressions under the square roots are relativelytstelidleges in the s,
this is often simplified t¢3,27,28]

_ [Zl-ﬂ +Zl—a/2]2(ﬂ.A(l_7Z.A)+7TB (1_773))

(ﬂA_ﬂ-B)Z

(18) Ny

The result(18) gives the maximum sample size for the case whes0.5 [3]. From

this fact and whin this range for the average response a quick estimate of the sample
size, for 90% power and twaided significance level of 5%, can be obtained from the
following result [3]

525

For 80% power and tweided significance level of 5% the sample size can be estimate
from [3]
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Both of these results will provide conservatimaximum” estimates of the sample
size.

For these sample size calculations we have assaqued allocation to treatment. For
fixed allocation to treatment there are extensions to these reg)lenfd for random
allocation there are alternative resu28]l In addition we have assumed there will be
just a single endpoint in the trial. For calculations with multiple endpoints there are
alternative calculations3p-33.

Sample sizefor selected values of ma and g using equation (J)7are given infable5

Table 5. Sample size estimates usingsult (17) for one arm of a parallel goup
trial for various expected outcome responses for a given treatments) and
comparator (ns) for a two sided type | error rate of 5% and 90% power

B
ma 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 582
0.15 188 918
0.20 101 266 1212
025 65 133 335 1464
030 47 82 161 392 1674
035 36 57 97 185 440 1842
040 28 42 65 109 203 477 1969
045 23 33 47 72 118 217 503 2053
050 19 26 36 52 77 124 227 519 2095
055 16 21 28 39 54 81 128 231 524
060 14 17 23 30 40 56 82 130 231
065 12 15 19 24 31 41 57 82 128
0.70 10 12 15 19 24 31 41 56 81

0.75 8 10 13 16 19 24 31 40 54
0.80 7 9 11 13 16 19 24 30 39
0.85 6 7 9 11 13 15 19 23 28
0.90 5 6 7 9 10 12 15 17 21
0.95 4 5 6 7 8 10 12 14 16

If we intend to usa continuity corrected chi-squaréekstin the analysis the(17) and
(18) couldbe used to estimaieitial valuesof the sample size which are thecreased
to account for the conservative nature of this test using the following result [28]

(21) n,, = ﬁ{u \/1+ ;}
4 NA(7p —75)
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Table6 gives estimates of the sample size ugggations (2Lwith (17)

Table 6. Sample size estimates usingsult (17)) with a continuity correction for
one arm of a parallel group trial for various expected outcome responses for a
given treatment ra) and comparator (ws) for a two sided type | error rate of 5%
and 90% power

B

TA 005 010 015 020 025 030 035 040 0.45
0.10 622

0.15 208 958

0.20 114 286 1252

0.25 75 147 355 1504

0.30 55 92 175 412 1714

0.35 43 65 107 199 460 1882

0.40 34 49 73 119 217 497 2009

0.45 28 39 54 80 128 231 523 2093

0.50 24 31 42 59 85 134 241 539 2135
0.55 20 26 33 45 61 89 138 245 544
0.60 18 21 28 35 46 63 90 140 245
0.65 16 19 23 29 36 a7 64 90 138
0.70 13 16 19 23 29 36 47 63 89
0.75 11 13 17 20 23 29 36 46 61
0.80 10 12 14 17 20 23 29 35 45
0.85 9 10 12 14 17 19 23 28 33
0.90 8 9 10 12 13 16 19 21 26
0.95 7 8 9 10 11 13 16 18 20

If the final analysis is to be a Fisher's Exact theh the sample size calculation is not
so straightforward.The sample sizes calculated in two stages. Conditional on the
number of events observdd, in n, subjects on treatment A arld, events inng

subjects on treatment B such thkt=k, +k; and n=n,+n;, we canuse a
hypergeometric distributioto find the probability of a number of eventsri as

(nAJ(nB J

k N\ k—k

(22) P, =P(k [k,n,n,) :T
k]

The P value is defined as the sum of allRpewhichare< Py, i.e.
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o (ko k=K
(23) — <

F(ka Ink,ny)=>" -
=

For thesubset otableswhere we reject the null hypothesis fr¢22) we can estimate
the power undahealternative hypothesisn equation (24).

(24) Power= ZZ(EA)(EB}Q A-7z, )"zl (- 7y )™
A B

Thus for a givenk,, k;, n, and n, we can estimate the poweHence,through
iteration we carestimate the sample sizerfa givenr, and 7, for a givennominal
power. As for a single binary respse discussed earlier in the paperneed to iterate
beyond thesample sizeachieved whenfirst a power of 90% is reached. For the
programming in this paper the program stopped once a sample sepdvaer greater
than 90% and all the sample sizes up to at leasubjfects morealso all had power
greater than 90%.

Table 7gives sample sizes for 90% power for a one tailed Type | error of-2:8f6h
will be take to be the same as for a two tailed Type | error of 5%.
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Table 7. Sample size estimates for one arm of a parallel group trial for various
expected outcome responses for a given treatment (7a) and comparator (ws) for a
onesided type | error rate of 2.5% and 90% power assuming Fisher’s exact test
is the final analysis

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 605
0.15 188 965
0.20 108 285 1264
0.25 62 142 362 150z
0.30 49 89 175 415 1731
0.35 33 65 108 202 468 187¢
0.40 30 47 72 118 218 502 202¢
0.45 28 37 55 81 133 235 526 207t
0.50 19 29 43 59 87 133 243 550 2151
0.55 18 25 32 47 62 87 125 228 520
0.60 16 23 26 37 48 67 91 126 228
0.65 13 17 23 29 38 a7 67 94 125
0.70 10 13 16 23 28 38 47 65 91
0.75 9 12 17 21 24 29 36 47 58
0.80 9 11 12 17 20 22 29 33 40
0.85 8 10 12 15 15 20 22 27 29
0.90 8 7 10 10 12 15 15 20 20
0.95 4 7 7 10 10 10 10 12 15

It is interesting to compar€able 6 with Table 7 The two tables are reasonably
comparable and so if a Fisheexact test is to be considered for the final analysis it
may be worth estimatg the sample size using the more straightforward approach of
the continuity corrected sample size calculation.

The programming foiTable 7is quite computer intensive. A quick estimate of the
sample size for Fisher's exact test can be obtaiftech a simple Normla
approximation. If, in a study, we actually observed the predicted effect sizehwith t
required sample size at significance level a and power 1-B, then the observed test
statistic is simply z,+z15 For a of 0.05 and B of 0.10 the one sided ®alue wauld
actually be 0.00059. Thus a quick metlod obtaining the correct sample size is to
perform Fisher’'s exact test on the given proportions with increasingesamp until

a one sided falue of 0.00059 is obtained. The result of this procetdurgven in

Table 10.This quick method is quite useful generally and deserves to be better known.
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Table 8. Sample size estimates for one arm of a parallel group trial for various
expected outcome responses for a given treatment (7a) and comparator (ws) for a
one sided Pvalue of 0.059% assuming Fisher’s exact test is the final analysis

B

TA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 615
0.15 204 977
0.20 113 298 125¢
0.25 74 150 358 1514
0.30 55 92 179 429  173¢
0.35 42 68 108 205 468  189¢
0.40 37 49 74 124 227 507 2017
0.45 26 39 55 84 135 237 526 209t
0.50 23 31 45 59 87 137 243 545 2131
0.55 21 29 38 49 67 96 143 250 560
0.60 18 21 31 36 48 66 95 145 251
0.65 17 20 26 30 40 47 66 95 143
0.70 15 18 20 25 31 40 51 65 91
0.75 13 16 18 21 25 30 40 48 61
0.80 12 12 15 19 21 26 31 36 49
0.85 12 12 14 15 19 20 26 28 38
0.90 9 10 12 12 15 18 20 21 29
0.95 7 9 12 12 15 16 17 18 21

The results iMable 7andTable8 are reasonably close. The advantageedgproach
in Table 8is that itis quite easy to prograand the SAS code is givenkigure4
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Figure 4. SAS code used to generafeable 8 for calculating sample sizes using
only the P-value

data power;
do pa=0.10 to 0.95 by 0.05;

do pb=0.05 to pa-0.45 by 0.05;

flag=0;

p=round(10.5*(pa*(1-pa)+pb*(1-pb))/((pa-pb)*(pa-pb)))-1+3;
do n=p to 10000 by 1 until (flag=10);
ka=round(pa*n) ;
kb=round(pb*n) ;
m=ka+kb;
prob=probhypr(2*n,m,n,kb) ;
if prob 1t 0.00059 then do;
flag=flag+1;
end;
if prob ge 0.00059 and flag ge 1 then do;
flag=0;
end;
end;
n=n-flag+1;
output;
end;end;run;

If we planned to use a mid Pvalue with Fisher's Exact Tegshen Table 9gives
sample sizes for 90% power for a one tailed Type | error of 2.B84s is calculated
by amendingquation (22) to become equatio(25)

L) [l e
ARMERARES

(25)  F(kyInk,n,) = Z

Or alternatively

]
I

Theone sidednid-P P value is defined using (23) as the sum oPthevhich are less
thanP, ,-1 plus half the value a?,, from (23)

(26)  F(kyInk,n,)= Z
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Compamg Table 9to Table 7we see there are biggen @bsoluteermg differences
in the sample size estimates for the smallest effect sizes. The sample sizesdestimate
in Table 9are closeto those ofTable5.

Table 9. Sample size estimates for one arm of a parallel group trial for various
expected outcome responses for a given treatment (ra) and comparator (ws) for a
onesided type | error rate of 2.5% and 90% power assumingnid-P Fisher’s exact
test isthe final analysis

B

TA 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 =
0.15 188 917
0.20 96 268 121z
0.25 61 134 341  147¢
0.30 45 82 169 405 168z
0.35 31 60 102 193 455 1837
0.40 29 45 67 109 204 489  197¢
0.45 19 33 50 76 122 225 506 205t
0.50 17 25 33 51 81 127 237 526  210¢
0.55 16 23 29 37 56 83 125 228 520
0.60 15 16 23 30 45 59 83 126 228
0.65 10 14 21 26 29 44 59 88 125
0.70 10 11 16 21 27 35 44 57 81
0.75 9 10 13 19 21 26 33 42 55
0.80 9 10 11 14 19 21 26 33 37
0.85 8 9 9 11 14 16 19 21 26
0.90 8 6 9 9 9 11 14 16 19
0.95 4 6 6 6 9 9 9 9 11

We can epeathe quick methodised inTable8 for a midP valueby replacing the line
prob=probhypr(2*n,m,n,kb);

with
prob=probhypr(2*n,m,n,kb-1)+0.5*(probhypr(2*n,m,n,kb)-probhypr(2*n,m,n1kk-

in Figure4. The sample sizewe given in Table 18ndare reasonablyl@se to those
of Table 9
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Table 10. Sample size estimates for one arm of a parallel group trial for various
expected outcome responses for a given treatment (7a) and comparator (ws) for a
mid-P P-value 0.059% assuming Fisher’s exact test is the final analysis

B

A 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.10 >80
0.15 186 916
0.20 99 265 121C
0.25 64 132 333 1462
0.30 45 81 160 391 167z
0.35 34 55 95 183 438 184C
0.40 27 41 64 107 202 475 196€
0.45 21 31 46 70 116 216 501 205C
0.50 17 24 34 50 76 123 225 517 2092
0.55 14 20 27 37 53 80 127 230 522
0.60 13 16 21 28 39 55 81 128 230
0.65 10 13 18 22 29 40 57 81 127
0.70 8 11 14 18 23 30 40 55 80
0.75 7 9 12 14 18 23 29 39 53
0.80 6 9 9 14 15 18 22 28 37
0.85 5 7 7 9 12 14 18 21 27
0.90 4 7 7 9 9 11 13 16 20
0.95 3 4 5 6 7 8 10 13 14

3.1.3. Worked Example 3 — Sample Size Calculation for arallel Group
Superiority Trial with Binary Response

An investigatorwishes todesign a placebo controlled trial to investigate a new
treatmentor migraine. The absolute risk of migraine on placeh@r the trial period

is anticipated to be 50% artdvould be clinically worthwhile usinthe drug if the risk
wasreduced on the new treatmenté@o. This is atreatment effect of an absolute risk
reduction of 10%. The investigator wished to design the study to have 90%gvwiver
a two sided significance level of 5%.

The sample sizaessingthe different methods aggven inTable11.

To repeat the calculations in nQuexyu needselectFile/Newand therunder “Make
Conclusions Using” tick “Proportions”; under “Number of Groups” tick “Two” and
under “Analysis Method” tick “Test”. nQuery will then give you threeiam “Chk
squared test” which seertsbeequivalent taalculationfrom (17); “Chi-Squared test
(continuity corrected)” which seems to based on equation(17) with (21) and
Fishefs Exact test. The calculations for FiskeExact test are given below. nQuery
does not give the sample size for this calculation but ratagraiver for a given sample
size. You then need to iterdtee required sample siby hand+emembering not to

stop just because a sample size gives a power of 90%. For Fisher's Exact Tegt nQue
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gave a sample size of 542 patients per afhtomparison of the results from nQue
with PASS and those in the paper are givehahle1l1

Advisor - [FTT2-1] I R =lal x|
f dit Miew  Option: ants R Plot Window Help =& x|
Bls|@s|n|smlel el elojalo(s] s
Twao yroup Fisher's-exact test of equal proportions (odds ratio = 1) (equal n's) - -
Sample size per group, n
9 | 10 | " I 12 I 13 | 14 I 15 16 17 18 19 20 The sample size per group is the number of
Test significance level, 0025 0.025 0.025 0.025 0025 0.025 0.025 0025 0.025 0025 0.025 0025 subjects or observations in each group
- needed for the specified power, the larger
1 or 2 sided test? 1 1 1 1 1 1 1 1 1 1 1 1 the sample size, the higher the power to
Group 1 proportion, =, | 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 detect a specific atternative effect size.
Group 2 proportion, 7, | 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Suggestion:
Power (% ) 90 80 90 89 90 90 a0 a0 90 a0 90 a0 Enter the number of subjects you can
n per group 538 538 540 541 542 543 544 545 546 547 sag [550 | EHORG AR SONE R S
Acceptable entries:
Rl i3 =7 0 =l
= =1[T Fleis, 1. statistical Methods for Rates and Proportions. =]
UseR NoTES for 2 21 o o Yy &S . N Yo (1950 -
P ————— 26
~Goal: Make Conclusion Using ~Number of Groups — -Analysis Method - : J
Chernick, M.R., Liu, C. Y. "The saw-toothed behavior of power
¢ Means  One @~ Test versus sample size and software solutions: single binomial
proportion using exact methods.” The American Statistician 56
+ Proportions « Two ¢ Confidence Interval (2002} pp. 148-155
" Survival (Time to Event) > Two " Equivalence R.G Thomas and M. Conlon "Sample size determination based
on Fisher's exact test for use in 2x 2 comparative trials with
" Agreement low event rates™ Controlled Clinical Trials 13(1992) pp. 124- :J
* Regression STORED STATEMENTS for PT12-1: =
# Chi-square test to compare two proportions
= Chi-square test (continuity corrected)
Compute power or sample size
Compute one of two proportions
Two-group Chi-square test comparing proportions in C categories
# Mantel-Haenszel(Cochran) test
I~ Unequal n's Cancel
I” | Finite:-Population
- =
Far Help, press F1 [550.0000 [AUTO RECALC OFF | [ fnum |

i | start| |_j Programs | _ijMicmsau.-l & 5A5 - Res... | ] tutorialinb... | W samples\ze‘..l @)Amarimni..' @Micrasof'tE.ul I nouerya.. jPSZUO‘pdf.‘.l E‘gwindows'r.‘.l & 2 NCSSE... -| | |« L MEI] 158

In PASS to calculate the sample syzmi need to select “Proportions” and the “Two
Groups: Independent” and finally “Inequality (Proportignsyou can then drop down

in the dialogue box “Test for” to calculate sample sizes foite&d unpooled”
(equivalent tq18)); “Z-test pooled” (equivalent 1d.7));“Z -test cc pooled” (equivalent

to (17) and (21)) and “Fisher's Exact Test”. For FisherExact Test though the
calculation is only performeds default if the sample sizes in each arm are both less
than 100.If this is not the caséhenthe continuity corrected calculations (equivalent
to equations (1Band(21)) are undertakenTo change the default click on options and
under “Exact Test Optiongéset the “Maximum N1 or N2 for Exact Calculations”, for
example to 10,000-or Fishers Exact test PASS gives a sample size of 533 patients
per arm.

There is a similar issue with PASS for two arm trials as for a singl&iatrighlighted
in Figure2. Figure 3 highlights how PASS crosses the power boundary of 90% for a
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sample size of 533 before dropping below it again araassing at 542 patients per
arm.

Figure 5. Power for a given sample size for the case,=0.40 and z,=0.50for a
Fishers Exact test for a onesided Type | error rate of 2.5% from PASS.

0.802 ~

0.801

0.800 S

Power

0.899 4

0.898

I I I ]
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NeitherPASS or nQuery gives samepdize estimates for mid Pvalues.
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Table 11. Comparison of results in paper with nQuery and PASS

Current Paper nQuery PASS

Normal Approximation fron{18) 515 N/A 515
Normal Approximation fron{17) 519 519 519
Continuity Correction fronfl7) and(21) 539 538 538
Fishets Exact Test 550 542 533
Fishets Exact Test MieP 526 N/A N/A

Ourresultsare very slightly largethan those ofiQuery for this worked examplesingr
Fisher's Exact Test. For the continuity correcsathple size estimatioRASS and
nQuerygive a sample size one less thia results in the papeWe suspecthis may

be due to the steps used gmmple sizecalculation. For the Normal approximation
using equation (1&)oth PASS and nQuery anddipaper estimate the sample size to
be 519 patients per arm. In actuality this was 518.04 rounded up to 519. ItBd9 is
used in(21) the sample size is estimated to be 539 patients. If 5i81®ed instead
the sample size is 538 patients per arm.

3.1.4 Discussion of the Sample Siz€alculations

There is a maxim that yashould analyse your study as you haesigredit. With
sample size calculations it is the opposite way reuyour designshould reféct your
planned analysisHence, f the plan is to undertake a edguared test for the primary
analysis them sample sizealculationshouldreflect this. Thus, for both a single arm
trial and a two arm trial dependirmn the assumptions for the analysis the planned
statisticaltest should be considered [33,34]

We would recommend that tkample asymptotiapproaches described hsteuld be

used for most sample size calculations. This does not preclude other approaghes bein
used (including maybe simulations) to investigate the sensitivity of the initial
calculations.

3.2. Non-Inferiority Trials

In the initial investigation of a new therapeutic intervention for a particularsgisea
randomised trials are conducted against either placebo or a “treated as uswal” co
group.However,when tle existingtherapy has been established as effectiveay

then be no longer ethical to undertake randomised trials where the control tiserapy
placebo. Instead activeontrolled trials are conducted wherenaw treatment is
compared to an established treatment with the objective of demonstratingethat
treamentis noninferior to thisestablishedreatment.
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For certain trialghereforethe objective is not to demonstrate that two treatments are
different but rather to demonstrate that a given treatment is clinically noiomfer
compared to another. Thalh(Ho) and alternative (kj hypotheses for nemferiority

trials may take the form:

Ho: A given treatment is inferior with respect to #tesolute risk of a response.
Hi: A given treatment is nemferior with respect to thabsolute risk of a response.

A nonrinferiority study is usually planned therefore to detecttlife effect of the
investigative treatmensg not much worse thahe control treatmertefined by a non-
inferiority margin,d. An assessment of nanferiority of a new treatment is usial
performed by comparing the lower tail of 95% confidence interval with the non
inferiority margin to rule out the inferiority of a new treatmélite thresholdsetting

of d is not straightforward and is defined as the largest difference that is clinicall
acceptable such that a larger difference than this would matter in clinical prabiice [
a clinical judgement This difference also cannot be “greater thansthallest effect
size that the active (control) drug would be reliably expected to have cainitine
placebo in the setting of the planned triad6]; a statistical ssessment Often the
margin is defined as some fraction of the active control ef{tactr placebpto be
retained and the control effect is estimated from historical trials as a statisticad.marg
Jones et gdB1] recommend that the choice of limit bt at half the expected clinically
meaningful difference between the active control and ptaasta clinical margir-or

a binary outcome, the active control effect may be expressed as, the difference or
differencein the logarithmsn the event rates, thedifference in logodds of the event

of interest. Generally, the definition ahacceptable level of neimferiority is made
with reference to some retrospective superiority comparison to pla@@d][ In this
contextwe layout the assumptions in @a@n noninferiority trial andtheissues with

the noninferiority margin[1,37-43. There are regulatory guidelines on setting the
non-inferiority margin @5,46].

Thus the two hypotheses become:

Ho: 7, —7g <—d .

Hi 7, -7y >—d.

In the context of nomferiority trials—d is known as the nanferiority limit.

In order to conclude nemferiority, we need to reject the null hypothesis. Thus,-non
inferiority trials reduce to a simple oiseded hypothesis test. In practice, this is
opemtionally the same as constructing a2()100% confidence interval and
concluding norinferiority provided that the lower end of this confidence interval is
greater than-d.

To analyse a nemferiority trial, the following ABC shouldbe considered[7,48]:
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1. TheAssay sensitivity of the active control in both the placebo controlled trials and
in the active controlled noimferiority trial exists.

3. Bias is minimised through steps such as ensuring that the patient population and the
primary efficacy endpoint are essentially the same for the plaamitoolled trial and
the activecontrolled trial.

2. Constancy assumption of the effect of the common compafadortwo trials in
sequenceTrial 1 and Trial 2the control effect of Treatment B vs. Placebo in Trial 1
is assumed to be the same as the control effect of TreaBwsntPlacebo’ in Trial 2

In addition to demonstrate thahére is no clinically meaningfuhferiority of the
investigative treatmentompared tothe activecontrol comparator, noinferiority
studies often entail an indirect crassl assessment. €hindirect inference is that
through comparing the investigative treatment to the control treatment, whether a ne
treatment preserves a fraction of the control effect or is superibetplacebo’ not
concurrently studied.

This is an issue, however, thatthe estimate of effect over placelmoTrial 1 may
possibly be overestimated for comparison in Trial 2 due to the placebo responses
improving over time i.e.placebo’creep. Howeverthe lack ofconstancyof control

effect prescribed by the placetwweep cannot be formally testd@8-44], although an
educated assessmentcohstancy violation may help [19

To ensure the choice of margin and hence to ensure the study is not biased, the
following factors are critical imlefining the nonnferiority margin:

i. How should the heterogeneity of the control effect and its variability across
completed placeboontrolled trials, relative tdrial 1, be incorporated?

ii. Should differential weight be given tog reponse from thenost recent studies
and/or from the studies with smaller effects?

iii. What should be the preservation fracti@tdaccount fotheplacebo creep?

Fromapublic health perspective, when undertaking-imdariority trials what we wish
to do is to protect #efficacy that has been established with the standard théiapy
is asit is described for vaccinatiamials for example50].

Noninferiority studies are often thought of as trials where there is a need to make an
indirect comparisomvith placebo using the active control in the current triatlirect
comparisos are undertaken when a comparison is made between two regimens where
the regimens have usually never been given concurrently in any controlled trial
investigating the same general patient population. To make comparisons of the
regimens of interestomnon controls from the trials undertaken for these regimens
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are used. For exampbensider Scenario 1 whetwo trials were conducted with the
following regimens randomised.

Trial 1: Placebo and Treatment A,
Trial 2: Placebo and Treatment B.

We could use tfact that both regimens have had a trial where they were compared to
placebo to make comparisons betwgeatment# to B in the same patient population
and the same primary efficacy endpoint studied.

Now consider Scenario 2 wheFeal 1 and Trial 2are conducted in sequence with the
following set up.

Trial 1: Placebo and Treatment A,
Trial 2: Treatment A and Treatment B,

Treatment A should have been shown tceffective in trial 1 (a placeboontrolled

trial) in order to launch Trial 2 (an acthoentrolled trial). In some disease areas, when
an approved agent becomes the standard of care it may no longer be etloicdlith ¢

a placebo controlled trial. Thus, due to ethical constraints, Trial 2 cannot include a
Placebo arm. In Scenario 2, comparigbrA vs. B in Trial 2 is of primary interest,
sometimes followed by the comparison of Treatment B vs. Placebo to indirectly infe
efficacy of Treatment B througd crosstrial comparison.

In Scenario 2a newtreatment is compared to an established treatment with the
objective of demonstrating thatew treatmentis noninferior to this established
treatment.

The methodologies for making indirect crdgal comparisons are available, e.§3{

51]. The validity of these methods relies on strong assumptions that often cannot be
formally testedsince treatments are not compareddiyewithin the same trial43-

44].

3.2.1. Type | and setting theNon-inferiority Limit
3.2.1.1. Choice of Type I error

Two simultaneous one tailed tests setiw.05 would maintain an overall Type |
error rate of2.5%. However, the choice of the Type | error is a controversial issue.
The convention for equivalence trials is to set the Type | error rate at hadit evhich
would be employed for a two sided test used in a superiority triak+@.025 p].
Setting the Type | error rate for equivalence trials at half that for sujgtivals could

be considered to be consistent. This is because although in a superionitg trisala
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two sided 5% significance leviein practice for most trials whate haveis a one sided
investigation with a 2.5% level of significance. The reason for this isvnasually
havean investigative therapy and a control therapy and it is only statisticai ity

of the investigative therapy that is of interest.

Through the rest of the sections on equivalence andmferority trials we will
assumethat 0=0.025 and that 95% confidence intervals will be used in the final
statistical analysis. This issudl be discussed again in the section on Bioequivalence.

3.3.1.2. Choice oNon-inferiority Limit

We have already discussed the setting of-ingeriority limits but general the
following points should be considered:

1. Youmust be confident that the active control would have been differenttfrem
placebo had one been employed.

2. Youshould be able to determine that there is no clinically meaningful difference
betweertheinvestigative treatment and the contir@latment

3. Through comparing the investigative treatmerhéxontroltreatmentou should
indirectly be able to determine that it is superior to placebo.

Steps 1 and 3 are important as there is a view thatnfemority and equivalence
(discussed later ithe paperjrials reward "failed" studies i.e.\We conducted a poor
trial where it would not have been possible to demonstrate the ctvatitshento be
superior to placebo then a poor investigative therapybmeagccepted byomparison
to this control. However, Julious and Zarifd] point out that this may not be the
case as poor studies are poor for most objectives as poor studies tendtimihere
statisti@l variability and so are less likely therefore to show -nderiority or
equivalence.

We can thereforenfer that the clinical difference used for the limits of equivalence and
non-nferiority will be smaller than the difference used for placebo costioll
superiority trials. There also is no generic definition for its settiiig) definition will
need to be defined on a stuby-study or indicatiorby-indication basis with
consultation with the appropriate agencies and experts.

There are regulatorguidelines for a binary response in the antimicrobial therapeutic
areawhere controlled trials are the norfd5,56] The issues raiseétom this
therapeutic agare generic to other therapeutic areas.
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Table 12. Noninferiority margins for different control response rates

Non-inferiority Margin

Response Rate FDA! CHMP?
>90 -10% -10%
80-89% -15% -10%
70-79% -20% -10%

'Food and Drug AuthorityCommittee for Health and Medicinal Products (formerly
Committee for Pharmaceutical and Medicinal Products (CPMP)

Tablel2gives the nosinferiority margins for different response rates as recommended
by FDA [55] and GHMP [56]. The FDA guidelines are redundant now but they do
raise interesting points.What is evident fromlable 12 is that whilst the CPMP
recommend a flat equivalence marghe FDA margins are a step function according
to the anticipated control response rate.

3.2.2. Sample SizeCalculation

The issue in calculating the sampleeis that under both the null and alternative there
is a nonzero difference between treatments. Generally, sampldéosinelascan be
thought of as equation (27).

27) . (ZH +VarianceunderNull + Z, ,+/Varianceunder theﬂ\lterna'[i\e)2
g ((”A_”B)_d)2

Now (27) can bewritten

(28) . (Zl—a\/;;A(l_ Tp)+ 7wy (L—7g) +Zlfﬂ\/7zA(1—7rA)+7rB - 71-8))2 ,
’ ((ﬂA_ﬂ'B)_d)2

where 7, and z are estimates of thesponses on treatment under the null hypothesis
used to estimate the variance under this hypothé&sisnoninferiority trials we have

that 7, # 7 i.e. the two treatments do not have an equal response. As the estimates of
r, and r, effect the estimate of the variance the definition of the null hypothesis
hence influences the variance under this hypothesis. There are a number of ways
considering this problem, three of which will now be discussed [3,57-60]. Julious and
Owen [55] compared the different methods through simulation and within the
parameters of the simulation recommended the simplest method for sample size
estimatonwas to estimatée variace under the null hypothessnply by repladng

7 , and 7, with anticipated estimates of the responsgandz, . Hence, the variance

of a single observation under the nupothesis becomes
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(29) ﬂ-A(l_ﬂ.A)—i—ﬂ.B(l_ﬂ-B)!
whichis the same as the variance under the alternative.

For the special case of equal sizgoups i.en, = n, , a direct estimate of the sample
size can be obtaine8T].

(ﬂ-A A-7p)+ g~ ”B))(Zl—ﬁ + Zl—a)2

59) = (- 175)—dY

where z, is the assumed proportion of responses expected in subjects on treatment A
andr, is the assumed proportion of responses in subjects on treatmé&ablg. 13
gives sample size estimates 8% power and a type | error rate of 2.5%

As we discussed witkuperioritytrials, equation(30) could be adapted to give the
maximum sample size for the casehere 7 = 05 (where 7 = (7, + 75)/2) [3].
Hence,a quick estimate of the sample size, for 90% power andcident significance
level of 5%, can be obtained from the following result

525
(31) nA: 5 -
((”A —mg)— d)

While for 80% power and tweidedsignificance level of 5% the sample size can be
estimate from

4
((zp—-7g)—d)*

(32) Ny =

Both of these results will provide conservative “maximum” estimates of the sample
size. The utility of these results here could be questidreuever as often with non

inferiority trials the anticipated responses are likely to be high on both treadnmes
and results (31and(32) are very conservative outside of the range (0.3, 0.73 for
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Table 13. Sample sizes for a non-inferiority study for 90% power and a type |
error rate of 2.5%

Ta Limit -0.05 -0.04 -0.03 -0.02 -0.01 0O 0.01 0.02 0.03 0.04 0.05
0.70 0.05 45845 11325 4993 2784 1766 1214 883 669 522 418
0.70 0.10 1839 1268 925 703 550 442 362 301 254 216 186
0.70 0.15 460 378 315 266 228 197 171 150 133 118 105
0.70 0.20 205 179 157 139 124 111 100 90 81 74 67

0.75 0.05 41537 10222 4491 2495 1577 1080 782 590 459 366
0.75 0.10 1671 1149 835 632 493 395 322 267 224 190 163
0.75 0.15 418 342 284 240 204 176 152 133 117 103 92
0.75 0.20 186 162 142 125 111 99 89 80 72 65 59

0.80 0.05 36178 8856 3872 2141 1345 917 660 495 382 303
0.80 0.10 1461 1000 723 545 423 337 273 225 188 158 135
0.80 0.15 366 298 246 207 175 150 129 112 98 86 76
0.80 0.20 163 141 123 108 95 85 75 67 60 54 49

0.85 0.05 29768 7227 3136 1720 1072 724 516 383 293 229
0.85 0.10 1209 822 590 441 340 268 216 176 145 121 102
0.85 0.15 303 245 201 167 141 120 102 88 76 66 58
0.85 0.20 135 116 101 88 77 67 60 53 a7 42 37

0.90 0.05 22308 5336 2284 1234 757 502 351 255 190 145
090 0.10 0915 615 436 322 244 190 150 120 97 79 65
090 0.15 229 183 149 122 101 85 71 60 51 43 37
0.90 0.20 102 87 74 64 55 48 41 36 31 27 24

Sample size estimates usiaguation (30jare givenin Table 13 for therange 0.70
<na< 0.90to illustrate theissues with nosinferiority sample sizealculations Note
that how for a trial being designed where the new treatnsetitought to bea little
better than control, i.er, — 7, >0, the sample size is smaller than fQy— =, =0. The

opposite is true forr, — 7, <O.

Sample sizes are not given for anticipated responses greater than 0.90 g for hi
response ratebe Normal approximation used in the sample size calculations may no
longer hold. Our recommendatiofor sample sizes outside of this range would be to
estimate thevaluesusing alternative methods such as simulatiwhich wedescribe
below.

Table 14 gives an example of sample size calculations where the control response is
assumed to be 95% for various Aaferiority limits and true mean differences. The
process for the simulation was as follows:
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1. Simulate a random sample of size n from a binomial distributidrere the
response rates in thed arms are assumed to be =0.95 andr;goes from 0.92

to 0.98.

2. For the random sample estimate the response rates in the two treatment arms.

3. Calculate a 95% confidence interval for the treatment difference 7, and
determine if the lower bound excludes the mufefiority limit

4. Repeat 1to 3 alargeimber of times (here 100,000) and count the number of times
simulations conclude noinferiority. Take this as the power for the sample size.

5. Repeat 1 to 4 increasing the sample size by 1 until a cut off for the power has been
reached

Table 14. Sample sizes for a non-inferiority study for 90% power and a type |
error rate of 2.5% for a control response rate (r,) of 95%

g —7p
Limit -0.03 -0.02 -0.01 0 0.01 0.02 0.03
0.03 11964 2780 1146 585 336 208
0.4 12904 3020 1249 655 386 242 156
0.05 3249 1358 717 424 271 184 129

The sample sizes were simulated beyond 90% power so we could diwafitimestudy

with the given sample size and all proceeding sample sizes (up to 10 greater) had 90%
power. The confidence intervals for the simulation waleulated using the Wilson

score method. This methodology has shown to perform well in simulations and to give
comparable redts to exact methodologie$?. We assumehat the confidence
intervalsin the analysis in the completed study would be the Wilson score ones.

3.2.3. Worked Example 4 — Sample Size Calculation for arallel Group
Non-Inferiority Trial with Binary Response

An investigator wishes to design a trial where the anticipated respateson the active
control is 80%. The investigator also expects an 80% response rate on the investigative
therapy i.etheyanticipatethereto be no true difference between the tmegents. The
non-nferiority limit is to be set at 10%he sample size is to be estimated with 90%
power and a one sided type | error rate of 2.5%.

From equation 80) the sample size is estimdteo be 337 patients per arm. If the
investigative respons&ate was anticipated to be 829ittle better than the control
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response then the sample size would be reduced to 225 patients per arm. Hence, only
a small difference between treatments can have quite a marked effect on the sample
size.

If the investigtor thoughtthat the investigative treatment is a little worsay 78%
rather tharB0% then for the same namferiority limit the sample size is increased to
545 patients per arm.This demonstrates that a small change initivestigative
response ratgives asubstantial increase the sample size

To undertake the calculation in PASS there are a number of options. One route is under
menu to select Proportions/Two Groups: IndependentiNfeniority [Differences].

Then in the dialogue screefor “Test Statistic” select “Aest Pooled” for “Non-
inferiority Difference” enter-0.10 For “Actual Difference” enter0.02, 0 and 0.02;

and for “Reference Group Proportion” enter 0.80. Example output from PASS is given
below. PASS for this example gives g@me sample size estimatega®n inTable

143

il |5 (%]

L20NAZ AT BE 1

Powes Aaiakyin oF Hon Infariority Tests of Tws bndependont Prapertiomm
Humuric Revutts for Hom Infaviority Tests Baved on the Differonce P1 P2
W0: PEFRe-D0, H1: P1LPZ-01200, Tost Statistic: 2 test (pooled)

SR R T T

In nQuery for “Making Conclusions Using” tick “Proportions”; for “number of
Groups” tick “Two”; for “Analysis Method” tick “Equivalence” then select “Two
group test of equivalence in proportionsiQuery also agrees with both PASS and the
sample size estimates frofable143 for this worked example.

3.3. "As Good as or Better" Trials

For certain clinical trials the objective is to demonstrate either that a given tne&me
clinically not inferior or that it is clinically superior when compared to the con&ol

38



that the treatment is "as good as or better" than the contréhslgood as or better
trials two null are investigated. First the Aaferiority null hypotheses:

Ho: A given treatment is inferior with respect to the mean response.
If this null hypothesis is rejected then a second null hypothesis can be ineestigat
Ho: The two treatments have equal effect with respect to the mean response.

In practice these two null hypotheses are investigated through the construction of a
95% confidence interval to investigate where the lower (or upper as appropouabel)

lies. Figure 6highlightshow the two separate hypotheses for superiority and non
inferiority are investigated.

Figure 6. An illustration of the difference between superiority, equivalence and
non-inferiority trials : the dark line in the figure is the confidence interval while
delta is the noninferioroty or equivalence limit

Superior (statistically)

—
Control Better
0 Treatment Better
Equivalent (clmically)
Control Better A 0 A Treatment Better

Non-inferior (clinically)
= -—

Control Better = 0 Treatment Better

* A 18 variable

It should be noted that$ good as or better” trials are really a-sabegory of either
superiority or nofinferiority trials. Howeverywe haveputtheminto a separate section
to highlight howthey combine the null hypotheses of superiority and-mberiority
trials into one closed testing procedure whilst maintaining the overall Typarl e

To introduce the closed testing proceduwre will first describe the situation where a
onesided test of noinferiority is followed by a onaided test of superiority. The
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more general case where a one sided test ofifenority is followed by a two sided
test of superiority is then described.

This section isgivenin Julious[1] who gavethe calculations for data anticipated to
have a Normal distributiofi]. Thisdrewon the work of Morikawa and Yoshid&J.
The CPMP have a ‘points to consider’ document on the topjc [35

3.3.1. A Test ofNon-inferiority and a One Sided Test of Superiority

The null (HL) and alternative (H) hypotheses for a nenferiority trial can be written
as:

Hlo: 7, — 7y < —d.

Hli: 7, —7g >—d.

This can alternatively be written as:
Hlo: 7, —7g +d <0.

Hly: 7, —75+d >0.

The corresponding null (HRand alternative (H2 hypotheses for a superiority trial
can be written as:

H2o: 7, — 7y <0.
H2:1: 7, — 75 > 0.

What is clear from the definitions of these hypotheses is thatifsH2jected at the
level then H3 would also be rejected. Also, if blis not rejected at the level then
H2, would also not be rejected. This is becamge- 7, +d > 7, —7;. Hence, both
H1, and H2 are rejected if they are both statistically significant; neitheyattl H2
are rejected if Hdis not significant; and only R1s rejected if only Hdis significant.

Based on these properties a closed test procedure can be applied to in\estigaia
inferiority and superiority whilst maintaining the overall Type | errde naithouto
adjustment. To do thighe intersection hypothesisi2, " H1,is first investigated

which, if rejected, is followed by a test of Hkand H2. In this instance
H2, "H1, =H1, and so both neoinferiority and superiority can be investigated

through the following two steps [[1]
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1.

First investigate thaon-inferiority through the hypothesis K1 If H1, is rejected
then H2 can be tested. If Hlis not rejected then the investigative treatment is
inferior to the control treatment.

If H2, is then rejected in the next step one can conclude that theigawest
treatment $ superior to the control. Otherwisd, H2, is not rejected then nen
inferiority should be concluded.

3.3.2. A Test ofNon-inferiority and a Two Sided Test of Superiority

The null (H3) and alternative (H3 hypotheses for a two sided te$tsuperiority can
be written as:

H3o: 7, = 7.

H31: 7, <mgOrm, > 7yg.

The hypothesidi3; is equivalent to two onsided tests at the/2 level of significance
(summing to give an overall type | ermate of o) through the investigation of H2
against the alternative of KHand the following null and alternative hypotheses:

Hdo: 7, 27

H4. 7, <r7mg.

It is apparent that the intersection hypothddig ~H3, is always rejected as it is

empty and so both Hland H3 can be tested. Due to there being no intersection the
following steps can be applied :

1.

If the observed treatment difference is greater than zero ant Hgected then
H1l, is also rejected and one can conclude that the investigative treatment is
statistically superior to control.

If the observed treatment difference is less than zero and Hjected and Hls

not, then the control is statistically superior to the investigative treatment. o If H1
is also rejected then the investigative drug is worse than the control but is not
inferior (practically though this may be difficult to claim).

If H3, is not rejected but Hlis, then the investigate treatmentis noninferior
compared to the control.

If neither HL nor H3, are rejected then one must conclude that the investigative
treatment is inferior to control.
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Note that when investigating the §dnd H3 hypotheses, H3will be tested at a two
sided a level of significance whilst HL will be tested at a one sided a /2 level of
significance. Thus, the overall level of significance is maintained at a.

3.3.3.  Non-inferiority versus Superiority Trials

As noninferiority trials often use a nemferiority margin which is set atfaaction of
the superiorityeffectof the ative control overplacebo, the sample size requirements
for a noninferiority trial are often perceived as being muckatgr than that for a
superiority trial. However the sample size forneudaethe sameonly whenthe non
inferiority marginis set to zero.

If the margin is set to zero it would mean that wivencompag two active treatments

the objective would be to show the lower bound of the 95% confidence interval
excludes zere- and the investigative treatment is statistically superior to the active
control. A noninferiority margin is usually set at less than zera. tHis casetiis
therefore easier to show a néwatment ision-inferior and, in the active control trial
context thisrequires smallesample sizes.

There is a further important distinction between superiority trials andnf@mority
trials in that the former use the dass randomizeédand the principle of ‘intentiore-
treat’ For a noninferiority trial it has beersuggested one shld analyse the data ‘per
protocol and also ‘as randomised’ as-primary [35]. This may require that a greater
number of subjects are recruited.

The concepts of superiority and niorfieriority are of course interelated. Indeed there

may be instances where insteddesigning a study to show an investigative treatment

is no worse than an active control at the 2.5% level of significance we may wish to
design a superiority study but at a level of statistical significaneatgr than the
nominal 2sided 5% (1 sided 2.5%). Such a study would give more assurance as to the
investigative treatment being no worse than the active control. CHMEdmment

“It might be an acceptable approach, in extreme situations, to run a superiority
trial using a less stringent significance level than0.05, weighing up the
increased risk of a false positive result against the risk of rejecting a drug with
a valuable efficacy advantage. It might be more acceptable, and easier from an
ethical perspective, to specify a level of confidence we require in the superiority
of a drug, than to specify an extra number of deaths that is of no clinical
importance...

For example with a dataet where the lowebound of an 85%confidence
interval (by definition narrower than a 95% interval) touches zero, it might be
that the 95% interval touchesb. If delta had been defined to b& then
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achieving nornferiority in this example would correspond to having
demonstrated superiority at the 15% level of significance”

Table 15 gives smple sizes for different control response rates and different
improvements on the investigativ@atment, assuming, > r,, for various control
response rates and Type | error rates using ré€splt Results(22) and(24) — exact
methodology - could also be used for these calculations

Table 15. Sample sizes per groujor a superiority study for 90% power and a
various Type | error rates

Significance Level

i g —7a 0025 0.050 0.075 0.100 0125  0.150  0.175  0.200
070  0.02 10820 8818 7624 6766 6090 5534 5058 4642
070  0.03 4758 3878 3354 2976 2678 2434 2224 2042
0.70  0.04 2648 2158 1866 1656 1490 1354 1238 1136
0.70  0.05 1676 1366 1180 1048 944 856 784 718
0.75  0.02 9584 7812 6754 5992 5396 4902 4480 4112
0.75  0.03 4198 3422 2958 2624 2364 2146 1962 1802
0.75  0.04 2326 1896 1638 1454 1310 1190 1088 998
0.75  0.05 1466 1194 1032 916 824 750 684 628
0.80  0.02 8086 6592 5698 5056 4552 4136 3780 3470
0.80  0.03 3520 2870 2480 2202 1982 1800 1646 1510
0.80  0.04 1938 1580 1366 1212 1092 992 906 832
0.80  0.05 1212 988 854 758 682 620 568 520
0.85  0.02 6326 5156 4458 3956 3562 3236 2958 2714
085  0.03 2726 2222 1922 1704 1534 1394 1274 1170
085  0.04 1484 1210 1046 928 836 760 694 638
085  0.05 918 748 648 574 518 470 430 394
090  0.02 4302 3508 3032 2690 2422 2200 2012 1846
090  0.03 1816 1480 1280 1136 1022 928 848 780
090  0.04 966 788 680 604 544 494 452 414
090 0.05 582 474 410 364 328 298 272 250

3.4. Equivalence Trials

In certain cases the objective of a clinical trial is not to demon#ti@tan investigative
treatment issuperiorityor no worseghan a controbutinsteadto demonstratéhat two
treatments have no clinically meaningful difference, i.e. that they are chnicall
equivalent. The null (k) and alternative (B hypotheses for such equivalence trials
take the form:

Ho:The two treatmemtare different with respect to thisk difference(rz, # 7).
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H1:The two treatments are not different with respect toittedifference(z, = 7).
Usually these hypotheses are written in terms of a clinical differen@mddbecome:
Ho: 7, -7z <—-d or 7, — 7z > +d.

Hi: —d<z,—7z<+d.

These hypotheses are an example of an interseatiom test (IUT), in which the null
hypothesis is expressed as a union and the alternative as an intersection. Im order t
conclude equivalence, oneets to reject each component of the null hypothékite

that in an IUT, each component is tested at lewgiving a composite test which is

also of level [1,3,64].

A common approach with equivalence trials to test each component of the null
hypothesis with a t testalled the Two On&ided Test (TOST) procedure. In practice,
this is operationally the same as constructing 2o(j1L00% confidence interval where
equivalence is concluded provided that each end of the confidence interval falls
completely within the interval(—d,+d) [37]. This is because the -@u)100%
confidence interval is excluding two regions each of sizeeach of which must
simultaneously precluded-+d). Hence, the overall significance levehis

3.4.1. Sample Sizes for &quivalenceTrial

The power for a given sample size can be estimated from

(33) 1_/,_@[ \/ n(ry-m)-af ]N{ \/ n(r-m)edf | .

”A(l_”A)+”B(l_7TB)_ ”A(l_ﬂA)+7[B(l_7[B)_

To estimate the sample sizeeiterates (33 on the sample size until the nominal power
is reached. Similar to norinferiority trials discussed earlieequation(33) uses the
anticipated responses in the trial to estimate the samplarsilgmilar issuesccur
with respect testimating the response on the null and alternative hypotBgsisg8]
Tablel6gives the sample sizes for various control responeeareat equivalence limit.
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Table 16. Sample sizeger group for an equivalence study estimated for 90%
power and a type | error rate of 2.5%

Ty =T
7 Limit -0.05 -0.04 -0.03 -0.02 -0.01 0 001 0.02 0.03 0.04 0.05
0.70 0.05 - 45645 11325 4993 2802 2184 2749 4806 10694 42282 -
0.70 0.10 1839 1268 925 707 585 546 574 680 874 1175 1671
0.70 0.15 460 378 317 275 252 243 247 265 299 350 418
0.70 0.20 205 180 161 148 140 137 138 143 152 167 186
0.75 0.05 - 41337 10222 4491 2511 1950 2445 4257 9434 37134 -
0.75 0.10 1671 1149 835 636 525 488 511 603 771 1032 1461
0.75 0.15 418 342 286 248 226 217 220 235 264 308 366
0.75 0.20 186 163 145 133 126 122 122 126 134 146 163
0.80 0.05 - 35978 8856 3872 2154 1664 2075 3592 7910 30934 -
0.80 0.10 1461 1000 723 548 450 416 434 509 646 860 1209
0.80 0.15 366 298 248 214 194 185 187 198 222 256 303
0.80 0.20 163 142 126 115 108 104 104 107 113 122 135
0.85 0.05 - 29568 7227 3136 1731 1326 1639 2809 6124 23684 -
0.85 0.10 1209 822 590 444 362 332 343 398 500 658 915
0.85 0.15 303 245 202 173 156 148 148 155 172 196 229
0.85 0.20 135 117 103 93 87 83 82 84 87 94 102
0.90 0.05 - 22108 5336 2284 1242 936 1136 1911 4075 15383 -
0.90 0.10 915 615 436 324 260 234 238 271 333 428 578
0.90 0.15 229 183 150 126 112 104 102 106 114 128 145
0.90 0.20 102 87 76 68 62 59 57 57 58 61 65

Result(33) can be simplified for the case where there is azern difference between
treatments such that, > 7. In this instance most of the Type Il error comes from

just one parbf (33) and so a direct estimate of the sample size can be estimate
rewriting (33) as:

(Ta=70) + 76 U= 75) 2oy + 2o )
qﬂ'A - ”B| - d)2

(34) N, =

The greaterr, is relative torr; the nearetr, — 7, is to the margin and the clo4gd)

becomes t¢33). To illustrate thigpoint Table17 estimates the sample sizes from
(34). We can see here that the sample sggwoachthose ofTable 16 as the
difference between the treatmegtts bigger.
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Table 17. Sample sizes per group for an equivalencgudy estimated for 90%
power and a type | error rate of 2.5% estimated directly for a nonzero
difference between treatments

g —7p
T Limit -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0.70 0.05 45645 11325 4993 2784 1766 2732 4806 10694 42282

0.70 0.10 1839 1268 925 703 550 442 540 676 873 1175 1671
0.70 0.15 460 378 315 266 228 197 223 256 298 350 418
0.70 0.20 205 179 157 139 124 111 122 134 149 166 186

0.75 0.05 41337 10222 4491 2495 1577 2430 4257 9434 37134

0.75 0.10 1671 1149 835 632 493 395 480 599 771 1032 1461
0.75 0.15 418 342 284 240 204 176 199 227 263 307 366
0.75 0.20 186 162 142 125 111 99 108 119 131 146 163

0.80 0.05 35978 8856 3872 2141 1345 2062 3592 7910 30934

0.80 0.10 1461 1000 723 545 423 337 408 506 646 860 1209
0.80 0.15 366 298 246 207 175 150 169 192 220 256 303
0.80 0.20 163 141 123 108 95 85 92 100 110 121 135

0.85 0.05 29568 7227 3136 1720 1072 1628 2809 6124 23684

0.85 0.10 1209 822 590 441 340 268 322 396 500 658 915
0.85 0.15 303 245 201 167 141 120 133 150 171 196 229
0.85 0.20 135 116 101 88 77 67 73 79 85 93 102

0.90 0.05 22108 5336 2284 1234 757 1129 1911 4075 15383

0.90 0.10 915 615 436 322 244 190 223 269 333 428 578
0.90 0.15 229 183 149 122 101 85 93 102 114 128 145
0.90 0.20 102 87 74 64 55 48 51 54 57 61 65

For the special case of no anticipated treatment difference the power can be estimated
from

n,d?
35 1-4=20| |—2~— 7 -1.
(35) B a7

where 7 =(z,+7,)/2 is interpreted in this instance as the anticipated overall

response. Consequen{l35) can in turn be rewrign to give a direct estimate of the
sample size

2(217/3/2 + Zl—a)zﬁ(l_ 77) .

(36) Ny = d2

Hence, for the special case of no treatment differeheect estimates of the sample
size can be obtained
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3.4.2. Worked Example 5 — Sample Size Calculation for arallel Group
Equivalence Trial with Binary Response

An investigator wishes to design a trial where the anticipated respateson the active
control is80%. The investigator also expeeis 826 response rate on the investigative
therapy i.e. there is anticipated to be a smidlerence between the treatments. The
equivalencdimit is to be set at 10% the sample size is to be estimated with 90% power
and a one sided type | error rate of 2.5%.

From Table 16, the sample size is estimdtéo be 509 patients per arm. If the
investigative response rate walsoanticipated to b&80%, thesample size would be
416 patients per armf the response rate was expected t@&é then the sample size
would be estimated to be 5g&tients per arm.

Equivalence trials are quite sensitive to the assumptions around the diffarence
responses espedly as any nofzero difference will increase the sample size

If we had used resu|84) (andTablel7)then we would have estimated the sample size
to be 506patients per arm. A little smaller than our previeample sizestimate.

To get the sample sizeper armin nQueryfor “Making Conclusions Using” tick
“Proportions”; for “number of Groups” tick “Two”; for “Analysis Method” kKc
“Equivalence” then select “Two group test of equivalence in proportions (using
confidence interval” and then “Two sided confidence interval for test minus st&ndar
nQuery does not estimate the sample size djrecit instead undertakes simulations
to estimate the power for a given sample size. You then need to iterate tet yoe g
requisite power.

For the worked example nQuery described earlier of investigative and control
responses @2% and30% respectively with @ patients per arrtaken fromTable16
nQuery estimates the powerbe 90%. For response rate8@¥ on both arms nQuery
again estimates the power to &®6 with 416 patients per arnd17 patients per arm
gives 90%) Finally for response rates @8% and80% nQuery estimates the power to

be 89%with 548 patients per anffor 550 patients nQuery estimates the power to be
90%)

Example nQuery output is given below.
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[ =+ nQuery Advisor - [PTELC-1]

Piok Windon |-\m'p =8 x|

e
Blc(e s8] +|er o @o|aom] s
Two-sided confidence limits for difference in proportions (simulation) =
Sample size per group, n
1 | 2 | 3 [ « T s 6 T 8 9 10 il The sample size per group is the number of
Confidence level, 1-oc 0.950 0.950 0.950 sub;dev;iur'c"bw
Standard proportion, 7rg 0.800 0.800 0.800 e e
Test expected proportion, 7, 0.820 0.800 0.780
Lower limit for m, - mg, LL -0.100 -0.100 -0.100
Upper limit for 74 - 75, UL 0.100 0.100 0.100 Enter the number of subjects you can
e = 10000 10000 10000 afford to study and solve for powier.
Random seed for {l 122 122 122 Acceptable entries:
Power (%) 90 89 89 22
W S B 509 416 548 Special feature:
Use Unequal n's from the Assistants menu
< | ||| orthe button marked inito obtain atavie | 7|
1| Rererences for PrETC1: =
USER NOTES for PTEfc-1
— = " Newcombe, R.G. “interval estimation for the difference
=101 between independent propartions: comparisan of eleven
methods” Statistics in Medicine 17(1968) pp. 872-890
= = STORED STATEMENTS for PTEfc-A: 2
Simulations completed: 7667 /10000
Time elapsed: 49
Estimated power: 80.97
95% confidence interval for power, normal approximation
Lower limit: 89.30
Upper limit: 90.64
Far Help, press F1 T " [ALTORECALC OFF | T Ram
@start| B ! rbox in s.a.julous@s... | (@) Welcome to Facebock ... | [ Tutorial inBiostatstics | ] tutorial n biestatistis ... | s Pass 2005 Data - unt... |[B nQuery Advisor - [P... | Search Desicon P |« @ Bl o

To undertake the calculation in PASS there are a number of options. One route is under
menu to select Proportions/Two Independent Propatiigquivalence /Equivalence

Test for Two Proportions [Differences] Then in the dialogue screen: for “Test
Statistic” select “Zest Pooled”; for UpperEquivalence Difference” enter 0.10; For
“Actual Difference” enter-0.02, 0 and 0.02; and for “Re&re Group Proportion”

enter 030. PASS agrees in the main with the sample size estimates takefi digen

16 except when the investigative and controtesponses wer@8% and 80%
respectively where it estimates the sample size to be 549 patients instead of 548
patients.

3.5. Estimation to a Given Precision

So far we have discussed specific defined objectivemsvever, there are cases when a
preliminary, omilot, investigation is conducted éstimate possible effects witview

to doing a later definitive stud$$-67. By definition, such studies are held early in
the drug development (or clinical investigation) paradigm. With estimation studie
rather than formally testirgnull hypothess it is more informative to give confidence
intervalfor the unknowreffect
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Precision calculations may also be undertaken when the sample size is radatermi
primarily by practical considerations. In such cases one may quote théopretihe
estimates obtained based on the half-width of the confidence interval, and provide this
information in the discussion of the fixed sample size. Again it must be clestdd s

in the protocol that the size of the study was determined based on practical, and not
formal, considerations.

In the context of an overall clinical development (or investigation) an estimétidy s

(or studies) could provide important cumulative evidence of the pharmacological
benefit of a given drug asset. These studies cannot prove adfieenbut can
valuably inform studies which can.

A conservative approach would be to et 05 as if wedo not have any idea of the

overall response this would give us a maximum estimate of the variance for theeabsolut
risk difference and would not be too conservative provided phit within the range

(0.3, 0.7). Therefore, for a given half confidence interval width, w the following
condition must be met to obtain the sample size per group

(37) n, = Tp(l—mﬁ/z)zf_a,z _

Table 18 is derivedfrom equation (37) Table 18 gives the sample size required for
different values of the expected mean respacsess treatment groupp,, and widths

w. Two sided 95% confidence intervals are plahimethe final analysis. The mean
responsesp, given in the table vary from 0.10 to 0.50. Values greater than 0.50 are
not given as the sample size required for0.60 is equivalent t@ =0.40, the sample

size for p=0.70 is the same g3=0.30 etc.

Table 18. Sample sizes required per group for two sided 95% confidence intervals
for different values of width, w, for various expected mean absolute respses

W
p 0.025 0.050 0.075 0.100 0.150
0.10 1107 277 123 70 31
0.15 1568 392 175 98 44
0.20 1967 492 219 123 55
0.25 2305 577 257 145 65
0.30 2582 646 287 162 72
0.35 2797 700 311 175 78
0.40 2951 738 328 185 82
0.45 3043 761 339 191 85
0.50 3074 769 342 193 86
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3.5.1. Worked Example 6 — Sample Size Calculation for Rarallel Group
Estimation Trial with Binary Response

An investigator wishes to design a trial wheredkieragaesponse rate mnticipated
to be 65%. The investigatarishes to estimatpossible effects with precision ef-
10% using a 95% confidence interval.

In Table 18we use 1 p=0.35 and gethe sample size to &5 patients per arm.

To undertake the sample sizes in nQuery for “Making Conclusions Using” tick
“Proportions”; for “number of Groups” tick “Twao”; for “Analysis Method” kc
“Confidence Interval” then select “Confidence for difference in proportiofer an
average response eabdf 65% and precision of 10% nQuery agrees Wihle 18and
estimates the sample size to be 175 pataitarm

In PASS to calculate the sample size you need to s€ectfidence Intervalsand the
“Proportion$ and finally “Confidence Intervals for Two Proportions [Differences]

For Confidence Interval Width set the value at 20% (note in the paper we use half
widths); for P2 enter 0.65 and f@onfidence Interval Formula Ckguare. PASS

gives a sample size of 175 patients per arm.

13012012 165138 1

stwaen Twa Propertions wisg Difarsnces
rance in Prapestions

Lowsr  lppsr
P P2 P1.P2 Limi Limie
B 0S5 00 OW 010

— = - Awoiage AMSIIIL - Cant 43 s 6o | B DGl 10—
E re: | b et | Bl Moceit o, ©

4. DISCUSSION

This paper describes sample size calculations when the outcome is binary fetya vari
of study designs. It is important to realise that sample salculations are ‘a guess
masquerading as mathematicBhus we usually only need an approximate answer,
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and it is important that some form of sensitivity analysis is carried out to inuestiga
what factors are important, and perhaps where more information should be sought.

4. REFERENCES

1. Julious SA. Tutorial in Biostatistics: Sample Sizes for clinical trials with Normal
Data. Statistics in Medicin@00423:1921-86

2. Sahai H and Khurshil. Formulae and tables for the determination of sample sizes
and power in clinical trials for testing differences in proportions for the twiplea
designs: a reviewstatistics in Medicind99615:1-21

3. Julious SA.Sample sizes falinical trials. London: Chapman and Hall, 2009.

4. Machin D Campbell MJ Tan SB and Tan Sample size tables for clinical studiés 3
edChichesteiViley-Blackwell.2008.

5. Chow SC, Shao J, Wang Bample ige calculations in clinical research'®ed
Boca Raton. Fl: Chapman and Hall/CRC, 2007.

6. ICH E9. Statistical principals for clinical trials. September 128&ilable at URL:
http://www.emea.europa.eu/docs/en_GB/document_library/Scientificelguet?009
/09/WC500002928.pddate last accessed: 1 Feb 2012)

7. ICH E3. Structure and content of clinical study reports. July.199&ilable at
URL:
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Effitta
3/Step4/E3_Guideline.pdf (date last accessed: 1 Feb 2012).

8. Hintz JL. PASSL1 User's Guide Kaysville, 2011.
9. Elashoff JD.nQuery advisorersion7 user's guide Los Angeles, 2000.

10. SAS Institute Inc., SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute
Inc., 2002-2004.

11. Piantadosi, S. Clinical trials a methodological perspectifeEdition. Wiley,
2005: New Jersey, USA.

12. Eypasch E, Lefering R, Kum CK, Troidl H. dbebility of adverse events that
have not occurred: a statistical remindBMJ 1995311:619-20.

13. Newcombe RG. Two sidedonfidence intervals for the single proportion:
comparison of seven methodStatistics in Mediciné998,17:857-72

51



14. Clopper CJ and Pearson ES. Thke ofconfidence ofiducial limits illustrated in
the case of the binomidiometrika 193426:404-413.

15. Daly L. Simple SAS Macros for thealculation ofexact binomial and Poisson
confidenceimits. Computational and Biological Medicir99222:351-361.

16. Julious SA.Two-sided confidence intervals for the single proportion: comparison
of seven methodsStatistics in Medicin@00524:3383-4

17. Bland JM, Altman DG. Statistical notes: one sided and two sided tests of
significanceBMJ 1994309.248.

18. Fleming TR . Onesample multiple testing procedure for Phase Il clinical trial.
Biometrics1982;38: 143-151.

19. Korn. EL. Sample size tables for bounding small proporti@iemetrics1986:
42(1)213-6

20. Desu, M.M. and Raghavarao, D. Sample size methggoldcademic Press
1990. London.

21. Neyman J, Pearson ES. On the use and interpretation of test cBienzetrika
1928:20(A);175-94.

22. Neyman J, Pearson ES. On the problem of the most efficient tests of statistica
hypotheses Philosophical Transitions Royal Society (Londb833;23:289-37.

23. Neyman J, Pearson ES. The testing of statisiypatheses in relation to the
probabilities a priori.Proceeds of the Cambridge Philosophical Socl&§3:
29;492-510.

24. Neyman J, Pearson ES. Contributions to the theory of testing hypotlesesal
Statistical Research Menng (University of London)1936;1:1-37.

25. Neyman J, Pearson ES. Sufficient statistics and uniformly most powerful test of
statistical hypothesislournal Statistical Research. Memoirs (University of London)
1936;1:113-137.

26. Neyman J, Pearson ES. Contributions to the theory of testing statistical
hypothesesJournal Statistical Research Memoirs (University of Lond®88:2;25-
57.

27. Julious SA, Campbell MJ, Altman DG.. Estimatisgmple sizes for continuous,
binary and ordinal outcomes in paired comparisons: practical hidtarnal of
Biopharmaceutical Statistick999;9(2):241-51.

52



28. Campbell MJ, Julious SA, Altman DG. Estimating sample sizes for binary, drdere
categorical, and continuous outcomes in two group comparisBnisish Medical
Journal1995;311:1145-8.

29. Ambrosius WT and Mahnken JD. Power for studies with random group sizes.
Statstics in Medicine 201,(29: 1137-44.

30. Senn S and Bretz FPower and sample size when multiple endpoints are
considered.Pharmaceutical Statistic®0076(3):161-170

31. Yeo A and Qu YEvaluation of the statistical power for multiple tests: a case
study. Pharmaceutical Statistic3009 8(1):5-11

32. Sozu T, Sugimoto T and HamasakiSample size determination in clinical trials
with multiple coprimary binary endpoints. Statistics in Mdicine 2010
(DOI: 10.1002/sim.3972)

33. Richardson JTE. The analysis of 2x1 and 2x2 contingency tables: an historical
review. Statistical Methods in Medical Researt®94 3:107-133

34.Lydersen, S, FagerlapnMW and Laake P. Tutorial in Biostatistics: recommended
tests for association irk2 tables. Statistics inMedcine. 2009;28:1159-1175

35. CPMP. Points to consider on switching between superiority anthfesiority.
(CPMP/EWP/482/99) 17 July 2000. Available at URL:
http://www.emea.europa.eu/docs/en_GB/document_library/Scientificelgnec?009
/09/WC500003658.pdHate last accessed: 1 Feb 2012).

36. ICH E10 Choice of control group in clinical trials, 2000. May 2@0ilable at
URL:
http://www.emea.europa.eu/docs/en_GB/document_library/Scientificelguet?009
/09/WC500002925.pddate last accessed: 1 Feb 2012).

37. Jones, B., Jarvis, P., Lewis, J.A. and Ebbutt, A.F.al§tb assess equivalence: the
importance of rigorous methodBritish Medical Journall996;313 36-39.

38. D'Agostino, R.B., Massaro, J., and Sullivan, L.NNor+inferiority trials: design
concepts and issueghe encounters of ademic consultants in statisticStatistics in
Medicine2003;22:169-86.

39. Hung, H.M.J., Wang, S.J., Lawrence, J. and O'Neil, R.T. Some fundamental issues
with noninferiority testing in active controlled trialStatistics inMedicine2003;22:
213-225

40. Wiens, B.L. Choosing an equivalence limit for aoferiority and or equivalence
studies.Controlled Clinical Trials2002; 23: 2-14.

53



41. CHMP Guideline on the choice of noxferiority margin. Doc
CPMP/EWP/2158/99. (2005). Available at URL:
http://www.emea.europa.eu/docs/en_GB/document_library/Scientificelguet?009
/09/WC500003636.pddate last accessed: 1 Feb 2012).

42. Wang, SJ, Hung, HMJ, Tsong ¥Woninferiority analysis in active controlled
trials. Encyclopaedia of Biopharmaceutical Statist2®8 Edition, Marcel Dekker, New
York, NY. pp. 674-677.2003.

43. Wang, SJ, Hung, HMJ, Tsong Wtility and pitfalls of some statistitanethods
in active controlled trialsControlled Clinical Trials2002;23: 15-28

44. Snapinn, SM. Alternatives faiscounting in thenalysis ofnon-inferiority trials.
Journal of Biopharmaceutical Statisti2§04;14:263-273.

45. CHMP. Guideline on the choice of narferiority margin. Doc
CPMP/EWP/2158/99 January 2006

46. FDA Guidance for Industry\on-Inferiority Clinical Trials (draft). March 2010
Available at URL:
http://www.fdagov/downloads/Drugs/GuidanceComplianceRegulatorylnformation/G
uidances/UCM202140.pdf (date last accessed: 1 Feb 2012).

47. Julious SA. The ABC of nandferiority margin setting from indirect
comparisonsPharmaceutical Statisticg011 DOI: 10.1002/pst.517)

48. JuliousSA and WandSJ Issues with indirect comparisons in clinical trials
particularly with respect to neinferiority trials. Drug Information Journak008;
42(6): 625-33

49. WangSJ,Hung HMJ. TACT method for neimferiority testing in active controlled
trials. Statistics in MedicineSpecial issue: Nomferiority Trials. 2003, 22: 227-238.

50. Datta, S, HalloramME and Longini IM . Augmented HIV vaccirtgal design for
estimating reduction in infectiousness and protective efficacy. Statisticedicille
1998;17: 185-200.

51. Hasselblad, V. and Kong, D.FStatistical methods for comparison to placebo in
activecontrol trials. Drug Information JournaR001;25: 435-49.

52. Lim, E., Ali, Z., Ali, A,. Routledge T., Edmonds, L., Altman, D.G. and Large, S.
. Indirect comparison metanalysis of aspirin therapy after coronary surgdyitish
Medical Journal2003;327, 1309-13.

53. Song F., Altman D.G., Glenny A.M. and Deeks J.J. Validity of indirect comparison
for estimatingefficacy of competing interventions: empirical evidence from published
metaanalysesBritish Medical Journal003;326: 472.

54



54. Julious SA, Zariffa N. The ABC of pharmaceutical trial design: some basic
principles. Pharmaceutical Statistic3002;1:45-53.

55. FDA (1992). Points to consider. Clinical evaluation of -arféctive drug
products.

56. CPMP Notes for guidance on the evaluation of medicinal products indicated for
the treatment of bacterial infections. Doc CPMP/EWP/558/95. 2004.

57. Dunnett, C.W. and Gent, M. Significancstieg to establish equivalence between
treatments, with special reference to data in the form of 2x2 taBlemetrics1977;
33:593-602.

58. Farrington, C.P. and Manning, G. Test statistics and sample size formulae for
comparative imomial trials with null hypothesis of nexero risk difference or nen
unity relative risk. Statistics in Medicind9909:1447-54.

59. Miettinen, O. and Nurminen, M. Comparative analysis of two re@éatistics in
Medicine19854:213-226.

60. Koopman, P.A.R. Confidence intervals for the ratio of two binomial proportions.
Biometrics198440:5137.

61 Julious SA and Owen R. A comparison of methods for sample size estimation for
non-inferiority studies with binary outcomeSitatistical Methods in Medical Research
2011:20(6);595-612

62. Newcombe, R.G. Interval estimation for the difference betviegependent
proportions: comparison of eleven metho&satistics in Medicind99817:873-890.

63. Morikawa T, Yoshida M. A useful testing strategy in phase lll trials: coatbi
test of superiority and test of equivalencéournal d Biopharmaceutical Statistics
1995:5(3);297-306.

64. Berger RL, Hsu, JC. Bioequivalence trials, interseatioion tests and
equivalence confidence setStatistical Scienc&996;11:283-319.

65. Day S.Clinical trial numbers and confidence intervals of-ppecified size The
Lancet 1988; Dec 17:2(8625):1427.

66. Wood J, Lambert Msamplesize calculations for trials in health services research
Journal of Health Services and Research and PdlgS§9;4:226-9.

67. Julious SAand Patterson SD. Sample sizes for estimation in clinical research.
Pharmaceutical Statistic80043:213-5.

55



	1. Introduction
	2. Single Proportion
	2.1. Confidence Interval Calculation
	2.1.1. Normal Approximation
	2.1.2. Exact Confidence Intervals

	2.2. One Tailed or Two Tailed?
	2.3. Sample Size Calculation
	2.3.1. Worked Example 1 – Sample Size Calculation for a Single Binary Response

	2.4. Sample Size Calculation Re-visited – Sample Size Based on Feasibility
	2.4.1. Precision Based Approach
	2.4.2. Probability of Seeing an Event
	2.4.2.1. Worked Example 2 – Calculating a Probability of Observing an Adverse Event



	3. Parallel Group Trials
	3.1. Superiority Trials
	3.1.1. Summarising Clinical Trials with Binary Data
	3.1.2. Sample Sizes for a Superiority Trial
	3.1.3. Worked Example 3 – Sample Size Calculation for a Parallel Group Superiority Trial with Binary Response
	3.1.4 Discussion of the Sample Size Calculations

	3.2. Non-Inferiority Trials
	3.2.1. Type I and setting the Non-inferiority Limit
	3.2.1.1.  Choice of Type I error

	3.2.2. Sample Size Calculation
	3.2.3. Worked Example 4 – Sample Size Calculation for a Parallel Group Non-Inferiority Trial with Binary Response

	3.3. "As Good as or Better" Trials
	3.3.1. A Test of Non-inferiority and a One Sided Test of Superiority
	3.3.2. A Test of Non-inferiority and a Two Sided Test of Superiority
	3.3.3. Non-inferiority versus Superiority Trials

	3.4. Equivalence Trials
	3.4.1. Sample Sizes for a Equivalence Trial
	3.4.2. Worked Example 5 – Sample Size Calculation for a Parallel Group Equivalence Trial with Binary Response

	3.5. Estimation to a Given Precision
	3.5.1. Worked Example 6 – Sample Size Calculation for a Parallel Group Estimation Trial with Binary Response


	4. References

