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Abstract 

A paradoxical finding from recent studies of face perception is that observers are error-prone 

and inconsistent when judging the identity of unfamiliar faces, but nevertheless reasonably 

consistent when judging traits. Our aim is to understand this difference. Using everyday 

ambient images of faces, we show that visual image statistics can predict observers' 

consensual impressions of trustworthiness, attractiveness and dominance, which represent 

key dimensions of evaluation in leading theoretical accounts of trait judgement. In Study 1, 

image statistics derived from ambient images of multiple face identities were able to account 

for 51% of the variance in consensual impressions of entirely novel ambient images. Shape 

properties were more effective predictors than surface properties, but a combination of both 

achieved the best results. In Study 2 and Study 3, statistics derived from multiple images of a 

particular face achieved the best generalisation to new images of that face, but there was 

nonetheless significant generalisation between images of the faces of different individuals. 

Hence, whereas idiosyncratic variability across different images of the same face is sufficient 

to cause substantial problems in judging the identities of unfamiliar faces, there are 

consistencies between faces which are sufficient to support (to some extent) consensual trait 

judgements. Furthermore, much of this consistency can be captured in simple operational 

models based on image statistics.    
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Introduction 

The faces we encounter in our everyday lives can be very variable in appearance, depending 

on pose, expression, illumination and other factors. For example, Figure 1 shows different 

images of the same person. Jenkins, White, Van Montfort and Burton (2011) used the 

concept of ‘ambient images’ to refer to these types of image and the great amount of 

variability they reflect. Our interest here is in the consequences of this variability, and 

especially its implications for the perception of identity and for social trait impressions.  

 

Figure 1: Example ambient images of the same face from one of the identities used in Studies 

1-3. The depicted identity has given permission for his images to be reproduced here. 

Implications for the perception of face identity are beginning to be relatively well-

understood. For most perceivers, variability in the images falling on the retina creates 

remarkably little difficulty for recognising the identities of highly familiar faces (Bruce & 

Young, 1986; Burton, Jenkins, Hancock & White, 2005; Young & Burton, 2017). For faces 

of unfamiliar people, however, matters are very different. If you do not know the person 

shown in Figure 1, it can be tricky even to see that these are all photos of the same face 

(Jenkins et al., 2011). As a consequence, performance in matching and recognition tasks 

involving ambient images of unfamiliar faces is generally susceptible to substantial error 

rates (Hancock, Bruce & Burton, 2000; Young & Burton, 2018), though there is a 
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surprisingly wide range of performance across different observers in the normal population 

(Burton, White & McNeill, 2010). 

By analysing the statistical properties of ambient images of faces, Burton, Kramer, Ritchie 

and Jenkins (2016) showed that image variability is to some extent idiosyncratic - that is, the 

ways in which one person's face varies across images can be different for someone else's 

face. Learning to recognise a familiar face thus involves learning how that face can vary, 

through seeing it in many settings – in effect becoming sufficiently expert with that face 

identity to be able to recognise new photos of the same person. But this form of perceptual 

expertise is identity-specific and may not generalise to another person’s face, because that 

face varies in different ways. For this reason, unfamiliar face recognition is often poor 

because the range of variability of an unfamiliar face is unknown (Burton et al., 2016; 

Kramer, Young & Burton, 2018; Young & Burton, 2018). Computational work has shown 

the utility of this approach by simulating a range of well-known properties of familiar and 

unfamiliar face recognition (Kramer, Young, Day & Burton, 2017; Kramer et al., 2018). 

Although perception of the identities of unfamiliar faces can be problematic, many other 

characteristics are more easily seen. These include relatively objective properties determined 

by structural cues such as apparent gender, age and ethnicity (Bruce & Young, 2012) and 

more subjective impressions of social dispositions such as friendliness or trustworthiness. 

These impressions based on facial appearance are what we particularly seek to understand 

here. They influence actions ranging from whether to approach someone at a party to whether 

to vote for them in an election or judge them guilty of a crime (Olivola, Funk, & Todorov, 

2014; Todorov, Olivola, Dotsch & Mende-Siedlecki, 2015). Although they are known to be 

of limited validity (Todorov, 2017), such impressions are to some extent consensual across 

different perceivers (Kramer, Mileva & Ritchie, 2018; Oosterhof & Todorov, 2008; 

Sprengelmeyer et al., 2016; Sutherland et al., 2013) and they can be formed from little more 

than a single glance (South Palomares & Young, 2018; Willis & Todorov, 2006). 

Understanding how they are created has been a focus of much recent interest. 

An important advance has been to demonstrate that, while they can involve many different 

traits, facial impressions mainly fall along a relatively small number of underlying evaluative 

dimensions. Oosterhof and Todorov (2008) found dimensions that approximated perceived 

trustworthiness and dominance, and later studies have both replicated this underlying pattern 



Facial impressions 

 

5 

 

and suggested that youthful attractiveness may form a third dimension (South Palomares, 

Sutherland & Young, 2018; Sutherland et al, 2013). These accounts explain how a wide 

variety of impressions can be derived from a relatively simple underlying structure, since 

perceived traits and attributes can be evaluated from their positioning in the resulting three-

dimensional space (Oldmeadow, Sutherland & Young, 2013; Oosterhof & Todorov, 2008; 

Sutherland et al., 2013). 

Despite this relatively simple structure to trait impressions, it is clear that multiple covarying 

visual cues are used, with no single cue completely controlling a given dimension (Santos & 

Young, 2011; Todorov, 2017; Young, 2018). For example, smiling can make a face look 

relatively trustworthy, attractive, or even in some circumstances dominant, depending on the 

type of smile and the way it is combined with other cues (Young, 2018). These interacting 

cues can be visualised and manipulated with data-driven techniques involving computer 

modelling (Oosterhof & Todorov, 2008; Walker & Vetter, 2009) or computer image 

manipulation (Sutherland et al., 2013; Sutherland, Rhodes & Young, 2017). Interestingly, 

many of the cues are highly image-dependent, such that across different ambient images the 

same face can look trustworthy or untrustworthy, attractive or unattractive, dominant or 

submissive, depending on pose, expression, lighting and other variables (Jenkins et al., 2011; 

Sutherland, Young & Rhodes, 2017; Todorov & Porter, 2014). In sum, impressions of the 

same face can vary considerably - a person can look approachable at one moment and 

forbidding the next moment, as is evident in Figure 1. However, perceivers will often 

misattribute these momentary dispositions as reflecting stable traits of unfamiliar people 

(Todorov, 2017). 

There is a striking difference, then, between the way that image variability needs to be used 

in determining face identity and in forming trait impressions. Identity needs to be recognised 

despite differences between images of the same face, whereas trait impressions need to make 

use of these image differences and in consequence are highly image-dependent. Moreover, 

and seemingly paradoxically, image differences are interpreted inconsistently by different 

observers when used to perceive unfamiliar face identity, yet the same image differences are 

interpreted relatively consistently by different observers when forming trait impressions. 

Of course, judgements of identity and judgements of traits also have very different functional 

roles in our daily lives that will shape the functional organisation of an optimal face 
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perception system (Young, 2018). Identity is fundamentally driven by the requirement to 

recognise people we know, whereas trait judgements based on faces are, by definition, 

particularly useful for unfamiliar people. For people we know, we can infer character from 

past behaviour rather than relying only on facial appearance. We might therefore expect that 

the physical cues signalling identity will, to some extent, be different from those signalling 

personal traits. It follows that, unlike face recognition, the cues characterising trait 

impressions are likely to be relatively consistent across many different faces (Young & 

Burton, 2017; Young, 2018).  

Cue consistency has already been demonstrated for the perception of the relatively objective 

characteristic of face gender, where it has been established that a dimension that is a by-

product of encoding the identities of familiar faces will also serve to classify any face image 

(including images of unfamiliar faces) as male or female (Kramer, Young et al., 2017). 

However, little is known about the possibilities of consistent versus idiosyncratic variability 

in the cues that underlie more nuanced and apparently subjective impressions. On the one 

hand, given the fact that observers form reasonably consensual impressions of images of 

unfamiliar faces, it seems likely that they use cues that can generalise across many face 

identities. On the other hand, the evidence of identity-specific image variability is compelling 

and there is evidence that an individual may (for example) have at least partially idiosyncratic 

facial expressions (Cohn, Schmidt, Gross & Ekman, 2002; Kaufmann & Schweinberger, 

2004; Mileva & Burton, 2018), hence being able to interpret such identity-specific 

idiosyncrasies could confer an advantage in forming impressions of that person from their 

face. 

Our first step in the present study was therefore to determine whether consensual impressions 

of everyday face images can be modelled directly from physical image properties (Study 1). 

To achieve this we used Principal Components Analysis (PCA) of a set of highly varied 

ambient images to extract PCs describing the underlying variation in shape and surface 

texture properties across the image set. In line with other image-based approaches (Burton, 

Miller, Bruce, Hancock & Henderson, 2001; Calder, Burton, Miller, Young & Akamatsu, 

2001; Craw, 1995; Kramer, Jenkins & Burton, 2017), we defined image shapes in terms of 

the locations of fiducial positions marking the locations of facial features (eyes, nose, mouth 

etc). Surface texture properties (pixel colour and brightness values) were then derived across 

shape-normalised images, i.e. images that were reshaped in a manner that put each image's 
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fiducials into the same set of locations, so that the positions and shapes of features themselves 

were held constant (Burton et al., 2001; Calder et al., 2001; Craw, 2005). We then created 

regression equations that used these shape and surface texture PCs to model the rated 

trustworthiness, attractiveness and dominance of each image in a training set. As a strong test 

of its validity, we cross-validated each regression model by establishing how well it could 

predict the rated trustworthiness, attractiveness and dominance of a novel set of ambient 

images that had not been included in the training set of images used to create that model. This 

generalisation test is essential because it shows how well each model has captured genuinely 

informative rather than spurious covariation in the trained images.  

Importantly, PCA is used here mainly as a convenient description of the statistical properties 

of a set of face images. We make no assumptions about whether the human visual system 

uses PCA - its value is instead that it offers a principled data reduction format and, of course, 

that the same technique was used by Burton et al. (2016) to investigate identity-specific 

variability. 

Our second step was to evaluate the potential contribution of face identity to impression 

formation by incorporating within-person variability into our predictive models (Study 2 and 

Study 3). As noted above, studies of variability across different images of the same face have 

shown that this variability is to some extent idiosyncratic - the ways in which one person's 

face varies in appearance are different from how someone else's face will vary (Burton et al., 

2016). Being able to represent the statistics of this idiosyncratic variability can assist in 

recognising the face of a familiar individual (Kramer, Young et al., 2017; Kramer et al., 

2018), whereas lack of knowledge of the variability of unfamiliar faces hinders their 

recognition (Kramer, Young et al., 2017; Kramer et al., 2018; Young & Burton, 2018b). We 

therefore sought to determine whether being able to represent the identity-specific statistical 

variability of an individual face would assist the formation of impressions of social traits such 

as trustworthiness, or whether interpreting these traits could be learnt from any other face. So, 

while previous work has established the value of PCA to model first impressions (Oosterhof 

& Todorov, 2008; Walker & Vetter, 2009), here we add the novel step of establishing the 

statistics of multiple images of the same person. This way, we can sample both within- and 

between-person variability.  

To achieve this, we created regression-based models from sets of multiple images of the same 
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face or from images of several different faces and tested whether within-identity models 

created from images of the same face were better able to predict the trustworthiness, 

attractiveness and dominance of novel images of that face than were cross-identity models 

created from different faces. In Study 2, the within-identity models were based on a single 

face, and in Study 3, on a small set of faces. 

Study 1 

In Study 1, we evaluated how much of the variance in impressions of trustworthiness, 

attractiveness and dominance of images of faces can be modelled from physical image 

properties. The face images we used were all unstandardised, everyday images of the type 

Jenkins et al. (2011) term 'ambient images'. As such, they are often thought to present a 

significant challenge to modelling because of the great many ways in which such images can 

vary (see Figure 1).  

Method 

Stimuli  

The image set for Study 1 consisted of 20 images of each of 20 unfamiliar people (10 men), 

400 in all. These were foreign celebrities and a relative of one of the authors, which ensured 

the availability of many images for each identity. All were unfamiliar to our participants. 

Foreign celebrity images were downloaded from an internet search by entering the name of 

the person and choosing images that were in full colour, with all facial features needed to 

position fiducials visible in the image, and with no parts of the face obscured by clothing or 

glasses. These were all naturally occurring ambient images (Jenkins et al., 2011) and included 

a large amount of variability due to lighting, pose and expression for each identity (see Figure 

1 for examples).  

Participants 

Images were rated by 20 participants (mean age = 20.1 years, age range = 18-24 years), all 

from the University of York. Sample size was based on Todorov and Porter (2014) who also 

collected ratings from 20 participants per image. All participants had normal or corrected-to-

normal vision and received payment or course credit for their participation. Participants 
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provided informed consent in accordance with the ethical standards of the 1964 Declaration 

of Helsinki. Experimental procedures were also approved by the Ethics Committee of the 

University of York Psychology Department.  

Image rating task 

The rating task was computer-based, and stimuli were displayed on an 18-inch LCD monitor. 

The experimental program was written in MATLAB and used functions of the Psychophysics 

Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). Face images were 

presented individually at the centre of the screen with a rating scale positioned underneath. 

Participants were asked to rate each image on a scale from 1 (not at all 

trustworthy/attractive/dominant) to 9 (extremely trustworthy/attractive/dominant) using a 

mouse-click. The task was self-paced, with an inter-stimulus interval of 1s. As is common in 

first impressions research, participants were not given detailed instructions as to how to 

interpret the rating dimensions (trustworthiness, attractiveness, dominance), but were instead 

encouraged to rely on their “gut instinct” (cf. Todorov, Mandisodza, Goren, & Hall, 2005). 

They were also informed that they would see multiple different images of the same faces. 

Participants provided ratings for all 400 images. Each image was rated for a single social 

attribute (trustworthiness, attractiveness, or dominance) across a block of 400 trials, and the 

order of the blocks corresponding to each of the three ratings was randomised to reduce any 

carryover effects (Rhodes, 2006). Order of image presentation was also randomised 

individually for each participant. 

From these ratings of the trustworthiness, attractiveness and dominance of each image we 

derived the mean rating across all 20 participants for each of the 400 images for each of the 3 

traits. These averaged ratings of each image formed the data to be modelled. 

Image PCA and Regression Models 

The procedure for PCA of the images followed that used by Burton et al. (2016), where full 

details can be found and appropriate software has been provided in Kramer, Jenkins and 

Burton (2017). Prior to PCA, images were scaled to 190 x 285 pixels and represented in RGB 

colour space using a lossless image format (bitmap). Face image shape was derived by 

manually aligning the points of a standard grid of 82 fiducial positions with anatomical 

landmarks. The positioning of this grid of fiducials on each image led to 82 xy-coordinates, 
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creating a shape-vector of 164 numbers (82 points x 2 coordinates) for each image. In order 

to derive image surface texture-vectors, the average location of each fiducial across the whole 

image set was calculated. The surface texture (RGB values) for each image was then 

morphed to this average shape, so that corresponding fiducials were aligned across different 

images and in consequence all 2D shape information resulting from differences between 

images in the fiducial locations themselves was discarded. This generated a texture-vector of 

pixel intensities comprising 162,450 numbers (190 width x 285 height x 3 RGB layers) 

describing these nominally 'shape-free' images. PCA was performed separately for shape 

(using the original fiducial locations) and for surface texture (based on the shape-free 

images). This generated a number of shape and texture eigenvectors (equivalent to Principal 

Components, also referred to as 'eigenfaces' in the literature). 

Principal Components (PCs) are ordered by the amount of variation they account for, so early 

components explain more variability than later ones. Each PC captures a set of properties that 

describes a way in which different images vary and each face image can be represented as a 

linear combination of these eigenfaces, providing each image with a unique set of coefficients 

(or weights) that acts as its signature. For the purposes of the present study, the first 30 PCs 

for shape and for surface texture were used to model the variability of a set of training 

images, with each individual image coded as a set of 30 shape and 30 texture coefficients.  

In order to test the validity of the regression-based models we developed, PCA was applied 

separately across 5 different subsets of 320 images from the full set of 400. Each subset of 

320 model training images used 16 of the 20 images for each of the 20 faces comprising the 

full set, allowing 80 images (4 images for each of the 20 people) to be held back to form an 

independent cross-validation test of the generalisability of the regression model to new 

ambient images. In order to ensure a fair comparison of levels of performance between 

trained images and novel test images, we measured each model's performance across the 320 

trained images using a random sample of 80 of these, thus equating the number of images 

used to measure performance in each case (i.e. 80 images from the training set and 80 

untrained novel test images). This procedure was repeated 5 times, each involving a different 

sample of trained and untrained test images. 

The regression models were based on stepwise linear regression with the averaged ratings of 

a given trait (trustworthiness, attractiveness, or dominance) for each image as the dependent 
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variable and image shape and surface texture coefficients as predictor variables. A separate 

regression was used for each trait. We used these models to estimate the proportion of 

variance in the overall group ratings of trustworthiness, attractiveness or dominance for each 

image that could be accounted for in the trained images (images subjected to PCA) and then 

in the untrained test images used to assess the model's generalisability. 

Results and Discussion 

As is often the case in this type of research, our analyses are based on the mean rating per 

image across all participants, not on the individual participants' ratings themselves. That is, 

we are modelling the consensual (average) component of impressions of each image. As is 

also common in this type of research, inter-rater agreement was high for all three social 

attributes (Cronbach’s alphas above .90). This measure is appropriate when drawing 

conclusions about the overall group values, because alpha measures the extent to which a 

group of items (here, observers) will agree with other groups, tested in future (Cortina, 1993). 

High values of alpha therefore show that ratings of each image are likely to be stable across 

groups of participants.  

Ratings of attractiveness (D (400) = .08, p < .001) and dominance (D (400) = .06, p = .005) 

were not normally distributed, therefore we also calculated Kendall’s W as a non-parametric 

alternative to alpha. Here the values were lower, indicating that there were differences 

between observers, but nonetheless revealed an underlying core of significant agreement 

(Attractiveness, W = 0.50, p < .001; Trustworthiness, W = 0.21, p < .001; Dominance, W = 

0.23, p < .001). We return to the implications of this later. 

Figure 2 shows mean ratings for all images on the three social judgements. These are 

displayed separately for male and female face identities, and ranked by overall mean, 

separately for each judgement. Again consistent with previous work (Jenkins et al, 2011; 

Sutherland, Young et al., 2017; Todorov & Porter, 2014), there are substantial differences in 

the ratings given to different images of the same person, and this is true for all three 

judgements. This is evident even after ordering each identity by their mean score, which 

would emphasise any between-person differences. That said, it is clear that differences in the 

average overall attractiveness across different faces were a little more pronounced than were 

differences in perceived trustworthiness or dominance and the same trend is also evident in 

other published work (Sutherland, Young et al., 2017; Todorov & Porter, 2014). In fact, it is 
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always possible to pick images of any two individuals where one would be perceived as more 

trustworthy or dominant than the other.  

The data in Figure 2 are separated by face gender simply to show that the extent of variability 

is not gender-specific. Other than the slightly lower attractiveness ratings for some of the 

male faces there are no obvious gender differences, and face gender was ignored for the PCA. 
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Figure 2: Mean ratings of all images from the Study 1 set of 20 images of each of 20 face 

identities for trustworthiness (top), attractiveness (middle) and dominance (bottom), 

displayed separately for male (left) and female (right) face identities. Each column represents 
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a single identity and each point represents a single image. Identities are ranked on the x-axis 

by mean identity score, separately for each rating. There are substantial differences in the 

ratings given to different images of the same person for all three judgements. 

These observations of consistency in overall ratings of each image (high values of Cronbach's 

alpha and highly significant values of Kendall's W) and substantial variability across the 

items themselves (Figure 2) confirm that the selection of images used shows properties 

similar to those noted in previous studies using ambient images (Sutherland, Young et al., 

2017; Todorov & Porter, 2014). Having established this, we turn to whether the physical 

properties of the images can be used to predict the overall impressions of trustworthiness, 

attractiveness and dominance. 

Using image properties to predict impressions  

We used up to 60 derived dimensions from PCA (30 shape, 30 surface texture) to model the 

average social trait ratings of trustworthiness, attractiveness and dominance of each image 

through stepwise linear regression. In each case, 320 images were used to create the 

regression model (from which 80 were randomly selected to estimate performance with 

trained images), whilst the remaining 80 images served as a novel test set to determine the 

model's generalisability. This procedure was repeated 5 times for each trait, using different 

sets of trained and novel test images. Regression models were created from the top 5, 10, 15, 

20, 25 and 30 PCs representing fiducial shape and surface texture components, and for the 

corresponding combinations of shape and texture components (involving 10, 20, 30, 40, 50 or 

60 PCs). The first 30 shape and the first 30 texture components explained 99.6% and 86.6% 

of the overall variance on average across the 5 iterations of the procedure. 
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Figure 3: Percentages of variance in participants' impressions of each attribute in Study 1 

that can be explained using different numbers of shape and surface texture PCs for sets of 

trained ambient images used to create each regression model (left column) and in the cross-

validation generalisation tests involving untrained novel images (right column). Mean 
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performance across five separate iterations is shown, and error bars represent standard 

error. The upper row shows models that combine shape and surface texture PCs, the middle 

row uses only shape PCs, and the lower row uses only texture PCs. 

Figure 3 shows the proportions of variance in participants' impressions of each attribute that 

can be explained from the physical properties of the images used to create each regression 

model and in the cross-validation generalisation tests involving novel images. It is clear that 

models based on an analysis of image statistics using a combination of shape and surface 

texture PCs are reasonably successful, being able to account for 64% of the variance in 

impressions across the modelled images and 51% across untrained novel images. 

Performance with the novel images does not improve much from using more than 30 PCs 

from the combined shape and texture predictor set. 

Much of this success can be attributed to the shape PCs, which are themselves able to account 

for 54% of the variance in impressions across the modelled images and 46% across novel 

images. In contrast, surface texture PCs are less informative overall but still able to account 

for 47% of the variance in impressions across the modelled images and 36% across novel 

images.  

To provide statistical confirmation of these main points we used Wilcoxon matched-pairs 

signed ranks tests to compare peak levels of performance. For the trained images, peak 

performance for models that combined shape and surface texture PCs was better than for 

shape PCs only (Z = 3.41, p = .003) or for surface texture PCs only (Z = 3.41, p =.003), and 

performance with shape PCs was also better than for surface texture PCs (Z = 2.90, p = .004). 

The same pattern was evident for performance with the novel test images; shape+texture > 

shape only, Z = 2.44, p = .015, shape+texture > texture only, Z = 3.41, p =.003, shape only > 

texture only Z = 2.90, p = .008. 

A caveat concerning the above analyses might be that they are based on 60 PCs for 

shape+texture models and only 30 PCs for the shape only or surface texture only models. We 

therefore repeated the appropriate comparisons using performance levels for only 30 PCs in 

the shape+texture model, with the following results; for trained images - 30 shape+texture > 

30 shape PCs, Z = .17, p > .05, 30 shape+texture > 30 texture PCs, Z = 3.12, p = .006, for 

novel images - 30 shape+texture > 30 shape PCs, Z = .34, p > .05, and 30 shape+texture > 30 

texture PCs, Z = 3.41, p = .003. The Holm-Bonferroni correction (1979) was applied to 



Facial impressions 

 

17 

 

account for the multiple comparisons in both analyses. Supplementary Table 1 shows full 

statistics for each level of ‘N PCs’. The relatively weak performance from surface texture 

PCs alone was therefore borne out by these complementary analyses. We note that in Figure 

3 this was particularly noticeable for estimating perceived attractiveness. 
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Figure 4: Scatterplots showing the relation between observed ratings (averaged across 

human participants) and model-predicted ratings of the trustworthiness, attractiveness, and 

dominance of novel test images in Study 1. 
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Our critical test of each regression model involved its ability to predict impressions of 

untrained ambient images. The design of Study 1 meant that across the 5 runs, all 400 images 

were used once each as untrained novel test items. Figure 4 shows scatterplots of the model-

predicted ratings for these novel test items (using the combination of 60 shape and surface 

PCs that led to best generalisation performance) against the averaged observer ratings of 

trustworthiness, attractiveness and dominance. Substantial Spearman’s correlations were 

found (trustworthiness, r = 0.74, p <.001; attractiveness, r = 0.73, p <.001; dominance, r = 

0.72, p <.001), confirming that differences in impressions were being successfully modelled 

at the image level. 

Study 2 

Having shown in Study 1 that much of the variability in trait impressions can be modelled 

directly from image properties, in Study 2 we examined whether knowledge of how an 

individual face can vary is useful to forming trait impressions. This is an important issue 

because by applying PCA to multiple images of the same face, Burton et al. (2016) have 

demonstrated that the PCs that best describe the variability of one individual face are 

different from the PCs that best describe another face. That is, variability is to some extent 

identity-specific. This observation has been used to explain differences between familiar and 

unfamiliar face recognition, and in particular the way in which we become ‘experts’ at 

recognising individual familiar faces (Burton, 2013; Young & Burton, 2017, 2018a). Here we 

ask whether this identity-specific variability will also give rise to idiosyncratic social 

attributions, or whether the cues that form the source of these attributions are instead shared 

across different faces. To many researchers it seems intuitively likely that knowledge of an 

individual face may help to some extent in forming impressions. For example, a person may 

have a characteristic way of smiling that is more easily picked up in comparison with their 

other facial expressions (Cohn et al., 2002; Kaufmann & Schweinberger, 2004). 

For Study 2 we tested the extreme cases in which a regression model was created entirely 

from ambient images of the same person's face or from a mixed set of different faces. To do 

this, we assembled larger samples of ambient images for each of a few faces, which could 

then be used to derive an identity-specific PCA of variability representing only one of these 

people. We could then use the regression technique with an individual face’s PCA, to predict 

attributions made to new photos of that person. Performance with the same sets of novel 
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ambient images was directly compared across regression-based models created using the 

same face as the test images or created from images of a mixed set of different faces.  

Method 

Stimuli 

We selected four identities (2 male) from the set used in Study 1, and collected 100 images of 

each. Selection criteria were the same as in Study 1: images were downloaded from an 

internet search on names, and the first 100 images returned (including those already used in 

Study 1) were chosen for which all facial features needed to position fiducials were visible 

and not obscured by clothing or glasses. We also used the 20 images of the 16 other faces 

included in Study 1 as additional stimuli to create sets of face images that included multiple 

identities. 

Participants 

Images were rated by 40 participants (mean age = 20.5 years, age range = 18-25 years), all 

from the University of York. All had normal or corrected-to-normal vision and received 

payment or course credit for their participation. Participants provided informed consent prior 

to their participation in accordance with the ethical standards of the 1964 Declaration of 

Helsinki. Experimental procedures were also approved by the Ethics Committee of the 

University of York Psychology Department. 

Image rating task 

Using the same general procedure as Study 1, all 400 of the newly collected images were 

rated for attractiveness, trustworthiness and dominance on a nine-point scale. Rating trials 

were arranged into counterbalanced blocks involving a single characteristic (trustworthiness, 

attractiveness, or dominance) and images were presented in a separate random order for each 

participant. Each participant rated 50 images per identity (200 in total) in such a fashion that 

all images were rated by 20 participants.  

Image PCA and Regression Models 

First, we conducted PCA on images of each target person separately. Each PCA was carried 
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out using the same general procedure as for Study 1, but the sets of ambient images subjected 

to PCA were now entirely of the same individual. Our intention was to establish, for each 

person, how well the variability in social impressions they create can be predicted from the 

image properties of their own photos. This approach differs from Study 1, in which predictive 

models were derived from image sets containing a mixture of both within-person and 

between-person variations (multiple images of multiple people). Instead, Study 2 included an 

exclusively 'within-identity' condition in which regression models were now created person 

by person and tested for generalisation to new images of the same face. 

If we call the first face person A, we sampled 80 images of face A from the 100 available and 

ran the regression analysis as before, leaving aside the remaining 20 images of face A for 

testing the generalisation of the regression model. This procedure was repeated 5 times for 

face A, with each repetition involving a different set of 20 test items, thus leading to an 

estimate of performance following within-identity training across 5 face A test sets, measured 

with the 5 regression-based models.  

As for Study 1, to ensure a fair comparison of levels of performance between trained images 

and novel test images, we measured each model's performance from a subset of the trained 

images; this time using a random sample of 20 of the 80 trained images to match the sample 

size for the untrained novel test images.  

The same procedure was then followed for faces B, C, D. In this way, we modelled how 

much of the variance could be accounted for in perceptions of trustworthiness, attractiveness 

and dominance across 5 different runs involving trained and untrained images of the same 

individual, for each of 4 different faces. 

To compare performance of these exclusively within-identity models to cross-identity models 

created from multiple faces of different individuals, we used 20 images of the 16 faces 

remaining from Study 1. This resulted in a total set of 320 varied-identity images that did not 

include faces A-D, which were then subdivided into four independent sets of 80 images (each 

with 5 images of 16 faces). 

These sets of 80 images of multiple identities were then each subjected to separate PCAs and 

used to create regression models for the perception of trustworthiness, attractiveness and 

dominance in each set. We then tested how well these cross-identity models could predict 



Facial impressions 

 

22 

 

participants' impressions across 5 different sets of already trained images (i.e. images of the 

same person for the within-identity model and images of the 16 different identities used in the 

training for the cross-identity model) and, critically, across the 5 sets of untrained images for 

each of faces A, B, C, and D (where none of these face identities had been in the training set).  

In this way, we were able to compare performance at predicting the attributes of untrained 

images (sets of 20) across regression models that were trained on sets of images of the test 

face (A, B, C, or D, comprising the within-identity condition) or on images of multiple other 

faces (a cross-identity condition). In other words, by comparing performance of within-

identity and cross-identity models on the same sets of novel test images, we can directly 

measure whether training that encompasses the within-person variability of that particular 

face confers any benefit. 

Results and Discussion 

As in Study 1, high Cronbach’s alphas were noted (above .88 for all three traits). Ratings of 

attractiveness (D (400) = .14, p < .001), trustworthiness (D (400) = .08, p < .001) and 

dominance (D (400) = .07, p < .001) did not follow the normal distribution, therefore we 

calculated Kendall's W as an alternative agreement measure. As the first 50 images of each 

identity were rated by one group of participants and the remaining 50 images of each identity 

by a different group, we calculated Kendall’s W separately for each set. Similarly to Study 1, 

the values were lower than Cronbach's alpha but still showed significant agreement 

(Attractiveness, set 1 W = 0.43, p < .001, set 2 W = 0.44, p < .001; Trustworthiness, set 1 W = 

0.20, p < .001, set 2 W = 0.26, p < .001; Dominance, set 1 W = 0.11, p < .001, set 2 W = 0.14, 

p < .001).  

Figure 5 shows the spread of ratings for each trait across all four identities. Consistent with 

results from Study 1, there is a substantial range of variability in impressions of different 

images of each person, but with some overall between-person differences in ratings of 

attractiveness.  
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Figure 5: Mean ratings of 100 images for each of four people (males M1 and M2, females F1 

and F2) added to the set of stimuli used in Study 2. Ratings are shown for trustworthiness 

(top), attractiveness (middle) and dominance (bottom) for each identity. Each data point 

represents the average rating for each image. As for Study 1, there are again substantial 

differences in the ratings given to different images of the same person for all three 

judgements.  
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Using image properties to predict impressions  

Our regression models were each based either on 80 images of the same face, which we will 

call within-identity models, or on 80 images that included 16 face identities, which we call 

cross-identity models. These models were then tested for their ability to predict the variability 

in ratings of trustworthiness, attractiveness or dominance across sets of randomly selected 

images from the training sets (i.e. images of a single identity for the within-identity model 

and images of different identities for the cross-identity model) as well as 20 novel images of 

one person's face. When testing the performance of the within-identity models with untrained 

images, these test sets were always new images of the regression-trained face. The identical 

test sets were then used to assess the generalisability of the cross-identity models created with 

images of multiple other faces. In order to provide an estimation of chance performance, we 

used the same training and test image sets for both the within- and cross-identity models and 

shuffled all social trait ratings. 

 

 

 

Figure 6: Percentages of variance in participants' impressions in Study 2 that can be 

explained using different numbers of PCs for sets of trained images used to create each 

regression model (left panel) and in the cross-validation generalisation tests involving 
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untrained novel images (right panel). Performance with trained images was tested by 

predicting social trait ratings from a randomly selected set of training images – these were 

images of the same person for the within-identity model and images of different identities for 

the cross-identity model. Performance with new images was tested by predicting social trait 

ratings from a set of images depicting the same identity (from the within-identity set) which 

were never included in the training set for either models. Mean performance across separate 

iterations involving the three modelled traits (trustworthiness, attractiveness and dominance) 

is shown, and error bars represent standard error. Performance with novel test images shows 

relatively modest benefit in both cases, but is consistently higher in the within-identity than 

the cross-identity condition. 

In essence, then, we can directly compare performance in terms of the percentages of 

variance in impressions across within-identity and cross-identity models tested on exactly the 

same sets of novel images. Data are presented in Figure 6. 

As in Study 1, we used up to 30 shape and 30 texture components. Shape components 

explained 99.7% and texture components explained 91.8% of the total variance on average 

across the four identities. For model creation, we used a combination of shape and surface 

PCs, as this was clearly optimal in Study 1. However, we do not show shape and surface PCs 

separately in Figure 6 because the overall level of generalisation test performance was 

substantially lower than for Study 1. Likewise, performance is averaged across the three 

different traits to show the key datum of the overall percentage of variance that can be 

explained by each type of model.  

Both the within- and the cross-identity model performed significantly above chance. This was 

estimated with a Wilcoxon signed-ranks test based on data with 60 PCs. The results showed 

that the within-identity model performed significantly better than chance for both trained (Z = 

5.14, p < .001) and new images (Z = 5.51, p < .001). The same was also true for the cross-

identity model (trained images – Z = 6.74, p < .001; new images – Z = 3.20, p = .001). In fact, 

the same pattern holds even when using substantially fewer PCs. Supplementary Table 2 

shows full statistics for each level of ‘N PCs’.  

We will draw particular attention to two contrasting features of the data presented in Figure 6. 

First, better performance with the trained images could be achieved when multiple identities 

were used (the cross-identity modelled images in Figure 6, accounting for 68% of the 
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variance with 60 PCs) than when the models were trained on a single face (the within-identity 

modelled images, accounting for 49% of the variance with 60 PCs). Second, this pattern was 

reversed in the generalisation tests, with only 10% of the variance explained by cross-identity 

models and 19% by within-identity models. 

The substantial drop in overall performance in the generalisation tests is in part likely to 

reflect the smaller sizes of the training and test image sets in Study 2, as compared to Study 1. 

More importantly, however, generalisation performance was higher for the models created 

from different images of the same identity (the within-identity models), with around 9% of 

additional variance explained. We tested this statistically using a Wilcoxon signed-ranks test 

to show better generalisation test performance from within-identity than cross-identity 

models based on 60 PCs (Z = 3.25, p = .001). 

It thus seems that the generalisability of impressions may be slightly more reliable for a face 

that is well-known. We note though that the standard errors are substantially larger in the 

within-identity than the cross-identity condition for both the trained images and the 

generalisation test. This reflects differences between how well the impressions of different 

images of the four faces used in the within-identity condition could be modelled; some faces 

were easier to model than others. 

Nonetheless, even the cross-identity models could account for some of the variance in 

impressions for the novel face identities used in the generalisation test; performance did not 

collapse to zero. A one-sample Wilcoxon signed-ranks test showed that the variance 

explained by the cross-identity model was significantly different from zero (Z = 6.74, p < 

.001). Hence, even though there may be some benefit to knowing a face well, at least some of 

the cues that create trait impressions are sufficiently consistent across different faces that 

personal knowledge of a face is not essential to forming impressions that will be consistent 

with those of other observers.  

Study 3 

Study 2 showed that learning to make trait attributions from a single face is to some extent 

identity-specific. Training based on images of a single face was able to capture less of the 

variance in impressions in the trained image set than was training based on images of a 

number of faces, yet generalisation to new images of the same face was slightly better than 



Facial impressions 

 

27 

 

generalisation to a different face. To that extent, this test at the limits of exposure to different 

identities (contrasting training based on a single face with training from a number of different 

faces) confirms that there does seem to be something idiosyncratic about impressions of a 

specific face. However, the circumstances in which one might learn to form impressions 

based entirely on a single individual do not replicate those prevailing in the natural 

environment, which is characterised by interactions with different people. 

We therefore sought in Study 3 to assess the impact of learning to make trait inferences from 

a relatively small number of frequently encountered faces, as would be typical in the 

environment of most infants. To achieve this, we trained models on 80 images of each of 4 

faces and tested generalisation to 20 new images of each of the same 4 faces (within-identity 

condition). We contrasted the performance of these 'familiar face impression' models to that 

of models trained with an equivalent total number of images (320 altogether) representing 16 

different identities that did not appear in the novel test set (cross-identity condition). As an 

additional point of comparison, we added a 'mixed-identity' condition because the within-

identity training set differed from the cross-identity training set both in the number of 

identities and in the number of images per identity. Like the cross-identity condition, the 

mixed-identity training set used 20 images of 16 faces, but (unlike the cross-identity 

condition) the training sets included some images of the faces that would appear in the novel 

test set. In this way, we could determine whether it is the presence of to-be-tested identities in 

the training set (as in the within-identity and mixed-identity conditions, but not in the cross-

identity condition) that is a key factor underlying generalisation performance, or the number 

of trained images of the to-be-tested identities (which was larger in the within-identity 

condition than the mixed-identity condition, and zero in the cross-identity condition). 

In each condition, then, the novel test images were identical; only the type of training 

(within-identity, cross-identity, or mixed-identity models) was manipulated. 

Method 

Stimuli, Participants, and Image rating task 

Stimuli and ratings were all taken from those used in Study 1 and Study 2. By using 80 

images of each of the 4 Study 2 set faces (320 images in total) and holding back 20 images of 

each of the Study 2 faces (80 in total) as novel test items we created stimuli for the within-
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identity condition in which the model training and generalisation test items were of the same 

identities. This procedure was repeated 5 times, using different samples of 20 images from 

the 100 available for each face. 

Each model was first tested with a set of randomly selected images which were included in 

the training set. These were images of the same identity for the within-identity model, images 

of different identities (different from the ones in the within-identity set) for the cross-identity 

model and images of different identities (including those in the within-identity set) for the 

mixed-identity model. The critical test, however, was how well these models could generalise 

to completely novel images. The same sets of novel test images were used for the cross-

identity and mixed-identity conditions, but with regression models based on different training 

regimes. For the cross-identity condition, we used a model trained on the 320 images from 

Study 1 (20 images of 16 faces) that were of faces not included in the 80-item generalisation 

test sets. In the mixed-identity condition, we used a model trained on 20 images of each of 

the 4 faces that would appear in the appropriate generalisation test set together with 20 

images of 12 other faces that were not in the generalisation test set.  

As for Study 1, in order to ensure a fair comparison of levels of performance between trained 

images and novel test images across each training regime, we measured each model's 

performance for the 320 trained images using a random sample of 80 of these, thus equating 

the number of images used to measure performance in each case (always 80 images from the 

training set and 80 untrained novel test images).  

Image PCA and Regression Models 

Image PCA and the creation of regression models was carried out in the same way as for 

Study 1, involving model training on the sets of 320 images, randomly sampling 80 of these 

modelled images to measure training performance, and cross-validation tests for 

generalisation with the sets of 80 untrained novel images.  

Results and Discussion 

Our principal interest was in generalisation from within-identity models trained on the same 

small set of faces as the novel test images (4 identities in total), from mixed-identity models 

trained on a set of faces (16 identities in total) that included exemplars from the 4 faces used 



Facial impressions 

 

29 

 

to create the novel test images, or from cross-identity models trained on a larger set of 

different faces (16 identities in total) from the novel test images. As in Studies 1 and 2, we 

used up to 30 shape and texture components. Performing a PCA on images of all identities 

together revealed that the first 30 shape and texture components explained 99.5% and 88.2% 

of the overall variance respectively.   

Using image properties to predict impressions 

Our regression models were each based either on 80 images of each of 4 faces, which we call 

within-identity models, or on 20 images that included 16 face identities, which we call 

mixed-identity or cross-identity models. These models were then tested for their ability to 

predict the variability in trait ratings of trustworthiness, attractiveness or dominance across 

sets of trained images (these were images of the same identity for the within-identity model 

and images of different identities for the mixed- and cross-identity models) and untrained 

novel test images. The novel generalisation test images were the same across the three types 

of training condition, but in the within-identity condition these novel test images were of 

faces that had exclusively formed the training set, in the mixed-identity condition they were 

of faces that had formed part of the training set, and in the cross-identity condition they were 

of faces that had not been in the training set. In order to provide an estimation of chance 

performance we used the same training and test image sets for the within-, cross- and mixed-

identity models and shuffled all social trait ratings. 
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Figure 7: Percentages of variance in participants' impressions in Study 3 that can be 

explained using different numbers of PCs for sets of trained images used to create each 

regression model (left panel) and in the cross-validation generalisation tests involving novel 

images of 4 faces (right panel). The within-identity model was trained on images of 4 

different identities, the cross-identity model was trained on images of 16 other identities and 

the mixed model was trained on images of 16 identities which included the 4 identities from 

the within-identity set. Performance with trained images was tested by predicting social trait 

ratings from a randomly selected set of training images – these were images of the same 

person for the within-identity model and images of different identities for the cross- and 

mixed-identity models. Performance with new images was tested by predicting social trait 

ratings from a set of images depicting the same identity (from the within-identity set) which 

were never included in the training set for any of the models. Mean performance across 

separate iterations involving the three modelled traits (trustworthiness, attractiveness and 

dominance) is shown, and error bars represent standard error. 

Results are presented in Figure 7. As for Study 2, the data are averaged across the three trait 

dimensions to focus on the key points. They are also shown only for the combined analysis 

based on shape and surface texture PCs, but we note that separate analyses simply concurred 

with what we found in Study 1; namely that shape PCs derived from fiducial locations were 
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more effective than surface texture PCs, but a combination of both (as presented in Figure 7) 

achieved the best results. 

Our estimation of chance showed highly similar values across the three models as well as 

across all levels of PC numbers. The mean chance performance for both trained and new 

generalisation images was 1% with maximum values of only 2%. Wilcoxon signed-ranks 

tests showed that all models performed significantly above chance levels both for trained and 

new generalisation images (all Zs = 3.41, all ps = .001). 

As can be seen, the trained models were able to account for substantial and closely 

comparable proportions of the variance in trait impressions in the training sets; 62% overall 

for within-identity training using 60 PCs, 60% overall for mixed-identity training, and 63% 

overall for cross-identity training. However, there was a clear difference in the generalisation 

tests using novel images, with 51% of the variance in novel test images explicable following 

within-identity training using 60 PCs, 45% overall following mixed-identity training, and 

19% overall following cross-identity training. Wilcoxon matched-pairs signed-ranks tests 

based on generalisation test data from 60 PCs showed that a significantly higher amount of 

variance was explained by within-identity training compared to cross-identity training (Z = 

3.18, p = .003) and by mixed-identity training compared to cross-identity training (Z = 3.01, p 

= .006), whilst within-identity and mixed-identity models did not differ significantly (Z = 

1.02, p > .05). 

Moreover, there were clear signs of overfitting in the cross-identity training condition, with 

performance to novel test images actually declining across higher numbers of PCs. That said, 

it remains the case that on average, 33% of the variance in trait impressions of entirely novel 

faces could be successfully modelled from between 20 and 50 shape and texture PCs in the 

cross-identity condition. Moreover, Wilcoxon matched-pairs signed-ranks tests based on 

generalisation test data from 50 PCs showed the same pattern as found for 60 PCs, with a 

significantly higher proportion of variance explained by within-identity training compared to 

cross-identity training (Z = 2.27, p = .046) and by mixed-identity training compared to cross-

identity training (Z = 2.73, p = .018), whilst within-identity and mixed-identity models did 

not differ significantly (Z = 1.02, p > .05). The Holm-Bonferroni correction (1979) was 

applied to account for the multiple comparisons. Supplementary Table 3 gives statistical 

comparisons between conditions at each level of ‘N PCs’ (10 to 60).  
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General Discussion 

A paradox in recent studies of face perception has been that while people can readily form 

reasonably consistent (consensual) trait impressions from images of unfamiliar faces, their 

perception of unfamiliar face identity is both error-prone and inconsistent between different 

observers (Jenkins et al., 2011; Young, 2018; Young and Burton, 2017, 2018a, 2018b). Our 

aim was to understand this difference between relatively consensual trait impressions and the 

inconsistent perception of the identities of unfamiliar faces.  

Our work is grounded in the observation that ambient images of faces can be highly variable, 

with substantial differences resulting from changes in lighting, pose, expression and so on. 

Analyses of this variability have shown that it can be substantial, even for images of the same 

face, but that it is also to some extent identity-specific in the sense that the way in which one 

person's face varies may differ from how someone else's face varies (Burton et al., 2016). 

This variability can therefore create problems in recognising the identities of unfamiliar 

faces, whose dimensions of variability are by definition unknown to the observer. Learning to 

recognise a face thus involves learning to cope with and make use of its idiosyncratic 

variability (Burton et al., 2016; Kramer, Young et al., 2017; Kramer et al., 2018). 

This image variability also offers a substantial challenge to creating models that can simulate 

the impressions of human observers, since different images of the same face can create very 

different subjective impressions (Jenkins et al., 2011; Sutherland, Young et al., 2017; 

Todorov & Porter, 2014), as was evident in the ratings collected here (Figure 2 and Figure 5). 

Moreover, while theoretical models of facial impression formation converge on the idea that 

most traits fall along two or three underlying dimensions, they tend to use different descriptor 

labels for the dimensions themselves. The seminal study by Oosterhof and Todorov (2008) 

called the two dimensions they identified valence/trustworthiness and dominance, whereas 

Sutherland et al. (2013) called their three dimensions approachability, youthful-attractiveness 

and dominance. However, all researchers accept that applying verbal labels to the dimensions 

revealed by PCA or factor analysis will always be somewhat imprecise, and trustworthiness 

and approachability are in fact close correlates of each other (Sutherland et al., 2013), so 

there is no substantive disagreement. On this basis, we chose to use ratings of 

trustworthiness, attractiveness and dominance as proxies for each of the main dimensions. 

In Study 1, we were able to create PCA-based regression models that could on average 
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account for 51% of the variance in consensual impressions of entirely novel, naturally-

occurring, images across these dimensions. This is comparable to previous work by Vernon, 

Sutherland, Young and Hartley (2014), who developed an approach that could capture 58% 

of the variance in human observers' impressions of novel ambient images using a linear 

neural network trained on an arbitrary set of 65 different physical attributes measured in each 

image, such as eye width, eyebrow width, mouth width and eyes-to-mouth distance. 

However, while Vernon et al.'s (2014) approach showed that it is possible to model 

subjective impressions of highly varied everyday images from objectively specified 

attributes, it was subject to the limitation that the choices of these 65 attributes represented 

arbitrary decisions of the experimenters. These choices may have failed to represent all of the 

information potentially present in the images and they also imposed constraints that meant 

that the model was not directly image-based as it involved an intermediate step of calculating 

the 65 attributes.  

From PCA-based models, Study 1 was able to achieve a level of generalisation performance 

approaching that reported by Vernon et al. (2014) even though our training sets of 320 

images were smaller than the sets of 800 images Vernon et al. used to train their neural 

networks. However, the most important difference between the procedures used in Study 1 

and by Vernon et al. (2014) is not the number of images used to create the models, but rather 

the absence in Study 1 of any intervening image analysis beyond a statistical description of 

the variability of the images themselves. PCA makes no assumptions concerning which 

features or attributes might be important, or indeed whether the critical information can be 

described linguistically (e.g. in terms of attributes or features) at all. 

That a PCA-based approach can work so well shows that much of the information used to 

create consensual trait impressions can be found in the images themselves. Theoretical 

approaches to facial impression formation often emphasise inferences based on stereotypes 

involving gender or age (Macrae & Bodenhausen, 2000; Oldmeadow et al., 2013; Quinn & 

Macrae, 2011; Sutherland, Young, Mootz & Oldmeadow, 2015) and the importance of facial 

expression (Montepare & Dobish, 2003, 2014; Oosterhof & Todorov, 2008; Said, Sebe, & 

Todorov, 2009; Sprengelmeyer et al., 2016; Zebrowitz, Kikuchi, & Fellous, 2007). While 

such higher-order inferential factors undoubtedly play a role in impression formation, our 

data show that much of the variance in impressions can be modelled without needing to use 

them as explicit mediators. This may in part be due to the fact that PCA analyses dimensions 
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of physical variability because, as already noted, it is clear that it is covariation between cues 

that determines facial impressions rather than individual cues per se (Santos & Young, 2011; 

Todorov, 2017; Young, 2018). For example, although smiling is often regarded as a cue for 

approachability, smiling can also make a person look attractive and even in some 

circumstances dominant. It is the type of smile and especially the way that it is combined 

with other cues such as face shape, age, skin colour and head orientation that creates the 

overall impression. The combination of regression and PCA may therefore be a valuable way 

of finding such covariation. In understanding the impact of cue covariation, however, it is 

useful to note that the techniques used here and by Vernon et al. (2014) are mainly linear; 

they do not presuppose (and would not find) more complex non-linear interactions. Their 

relative success suggests that linear models may be sufficient to mimic much of what our 

brains can do. In fact, Todorov and Oosterhof (2011) directly compared the performance of 

linear and nonlinear (quadratic) models and showed only limited improvement in the amount 

of variance explained by a quadratic model. In this respect, it is interesting that fMRI studies 

have shown that face-responsive brain regions also track relatively linear changes in face 

properties (Baseler, Young, Jenkins, Burton & Andrews, 2016). In making this point, we are 

not however seeking to claim that the human brain uses PCA as such - the point is only that 

PCA offers a useful way of demonstrating the presence of information that the brain can 

exploit.  

That said, there remains a substantial proportion of variance that has not been captured by 

these linear approaches. How much of this unexplained variance is meaningful and how 

much is simply measurement error is unknown, because there is no objective criterion for 

whether an impression is 'correct'; what we are testing is agreement between a regression 

model and the average impressions of an independent group of observers. In this respect, it is 

important to emphasise that whilst understanding consensual impressions is important, these 

are not everything that needs to be explained. Although many studies report substantial 

consistency of facial impressions across different observers (as we do here), forming a 

consensual core of 'shared taste' that is consistent across most observers, it is also 

acknowledged that there is a significant contribution from individual differences that 

correspond to 'private taste' (Germine et al., 2015; Hehman, Sutherland, Flake, & Slepian, 

2017; Hönekopp, 2006; Kramer et al., 2018). This is evident in the data we report here, where 

inter-rater agreement about the overall group values, as measured with Cronbach's alpha was 

high for all three social attributes. In contrast, Kendall's coefficient of concordance across 
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different observers, W, was noticeably lower, even though it did indicate an underlying core 

of significant agreement. Averaging the impressions of each image across multiple observers 

(as we did here) will reduce the impact of these observer differences, but not fully eliminate 

them.  

It is also important to note that very similar impressions can be based on purely auditory 

cues, with research showing that the relative importance of facial and vocal information 

varies as a function of the specific social trait in question (Mileva, Tompkinson, Watt, & 

Burton, 2018; Rezlescu et al., 2015). Understanding how auditory and visual information are 

combined to create an almost instantaneous impression of a person represents an important 

theoretical task (cf. Young, 2018). 

Turning back to the visual information itself, although shape PCs used in isolation were more 

effective than texture PCs in modelling facial impressions, a combination of shape and 

surface texture PCs achieved the best results. However, it is worth emphasising that our 

approach involves analysing the PCs of the shapes and textures of the images themselves, 

which are not simply the same as the shapes or textures of the faces - the same face can have 

different fiducial positions and different surface texture patterns in different images. 

Moreover, although widely used in the computer science and psychology literatures (Burton 

et al., 2001; Sutherland, Rhodes et al., 2017), this procedure does not create a perfect 

separation between shape and surface texture information. For example, shape from shading 

cues do not typically influence 2D fiducial locations and hence become treated as a surface 

property of each image (Sormaz, Watson, Smith, Young & Andrews, 2016; Sormaz, Young 

& Andrews, 2016; Kramer et al., 2018).  

Nonetheless, the usefulness of image shape PCs based on fiducial locations for modelling 

facial impressions stands in marked contrast to their lack of importance to classifying familiar 

identity. In a modelling study using the same type of ambient images, Kramer et al. (2018) 

showed that a combination of PCA and Linear Discriminant Analysis (LDA) could be used to 

recognise a number of trained face identities in a set of highly variable ambient images, and 

that 80 training images (equivalent to the number of images we used to create the regression 

models of impressions in Study 2) were sufficient to reach asymptotic levels of face identity 

recognition (close to 100% correct) across nearly 4,000 images containing many different 

identities (Kramer et al., 2018). However, Kramer et al. (2018) found that excellent 
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performance for recognising identity could only be achieved with a model based on surface 

texture PCs; the performance of image shape PCs for recognising identity was poor (around 

3% correct overall). This poor performance in familiar face recognition from shape PCs 

almost certainly reflects the fact that the 2D image fiducial locations themselves are altered 

by changes in viewpoint, pose and expression, rendering them too unstable to find identity-

specific properties (Burton, Schweinberger, Jenkins & Kaufmann, 2015; Kramer et al., 2018). 

However, the factors that create this instability at the fiducial level (changes in viewpoint, 

pose and expression) are of course highly relevant to facial impressions (Jenkins et al., 2011; 

Sutherland, Young et al., 2017), so it makes sense that image shape PCs are useful to 

modelling these impressions. There is a profound difference between the demands of face 

identity recognition (for which the impact of within-identity image differences needs to be 

minimised) and the creation of trait impressions (for which within-identity image differences 

carry a great deal of meaningful information) (Young, 2018). 

Our contention is therefore that the roles of within-face and between-face variability are of 

critical theoretical importance. The reason why Kramer et al. (2018) used a combination of 

PCA and LDA for face recognition lay in Burton et al.'s (2016) finding that the statistical 

variability of a face across different images is to some extent identity-specific; that is, the 

ways in which Vladimir Putin's face varies across different images will be different from the 

ways in which Donald Trump's face varies. Under these circumstances LDA offers a useful 

way to cluster together images of the same face identity; reshaping the underlying image-

based PCA space into a representational space organised around different face identities that 

can bring images of Putin (or of Trump) closer together. However, this PCA+LDA technique 

mainly serves to recognise faces from a trained set of 'familiar' identities. Like human 

observers, the PCA+LDA model performs relatively poorly in recognising unfamiliar face 

identities (Kramer et al., 2018). 

In Study 2 and Study 3, we also found some evidence of identity-specific variability in first 

impressions. In Study 2, training involving a single face identity led to better generalisation 

of performance to novel images of that face than did training from different identities even 

though training performance was better for multiple identities (the cross-identity training 

condition in Study 2) than for a single face (within-identity training in Study 2). However, 

although above-chance in Study 2, ability to successfully predict impressions of novel images 

of a specific face was relatively limited; accounting for 19% (following within-identity 
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training) or 10% (following cross-identity training) of the variance in impressions. A simple 

analogy that might be used to think about this phenomenon would be that if you have a friend 

who does not smile very often, then one of their smiles will carry greater weight than that of 

another friend who smiles most of the time. Interpretation of the meaning of a smile will then 

be, in part, identity-specific. 

Pushing this analogy further, however, while interpretation of the meaning of a smile will be 

in part identity-specific, smiling itself remains something that is interpretable across different 

individual faces. Indeed, in Study 3 we noted overall levels of generalisation performance 

comparable to those obtained in Study 1 from training involving a relatively small set of face 

identities. Using the same analogy, any identity-specific variability in the probability of 

smiling will not be such as to entirely prevent generalisation of the implications of a smile to 

other identities. In other words, although there is some idiosyncratic variation, much the same 

combinations of cues may well signal trustworthiness, attractiveness or dominance in any 

face, be it familiar (in our case, a face on which the regression model was trained) or 

unfamiliar (i.e. an image of a novel face). This point is also clear from Vernon et al.'s (2014) 

study, where an overall level of performance comparable to our Study 1 and Study 3 was 

achieved with a model based entirely on a single ambient image of each face, i.e. without 

representing idiosyncratic face variability at all. Nonetheless, our findings here suggest that it 

is likely useful to be exposed to at least a small number of different faces to arrive easily at 

relatively stable interpretations of the meaning of different cue combinations. 

Our findings therefore help resolve the paradox of why people can so readily form consensual 

impressions of unfamiliar faces when their perception of unfamiliar face identity is both 

error-prone and inconsistent between different observers (Young, 2018; Young & Burton, 

2017, 2018a, 2018b). Although we have shown (in Study 2 and Study 3) that, like identity, 

the variability that underlies facial trait impressions is to some extent idiosyncratic, relatively 

speaking it is less person-specific than the variability that underlies face identity; there is 

useful information that can be generalised to any face image in order to interpret its 

trustworthiness, attractiveness and dominance to some extent. 

These insights contrast with a relatively traditional approach to face recognition, which has 

often sought to use highly standardised images in an attempt to minimise the impact of 

‘nuisance’ variation from factors such as lighting, camera differences, etc. However, we have 
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shown elsewhere that this approach can obscure our understanding (Burton, 2013; Young, 

2018). By using the full range of ambient images of the type people recognise every day in 

their newspapers, televisions, and online, we can preserve the natural within-person 

variations that characterise our real world experience of faces. Far from being a nuisance, this 

variability is a necessity in allowing us to find consistent cues for recognising familiar face 

identity (Bruce, 1994; Burton, 2013) and as we show here it is critical to other aspects of face 

perception as well (Bruce & Young, 2012; Sutherland et al., 2013; Vernon et al., 2014). 

From a broader standpoint, facial impressions seem to fall along key dimensions that other 

primate species also use to evaluate conspecifics (Fiske, Cuddy & Glick, 2007; Oosterhof & 

Todorov, 2008; Sutherland, Oldmeadow & Young, 2016). Trustworthiness or approachability 

can be considered as involving the appraisal of intentions to help or harm, attractiveness is 

linked to mechanisms of sexual selection, and dominance involves an appraisal of ability to 

carry out intentions. What is different for humans is that we are exposed to such large 

numbers of unfamiliar individuals and, as Todorov (2017) emphasises, this is in evolutionary 

terms a relatively recent cultural phenomenon. An interesting idea is therefore that 

mechanisms underlying first impressions are initially established in relatively small groups of 

familiar people encountered in infancy and childhood (cf. Pascalis et al., 2014; Lee, Quinn & 

Pascalis, 2017) where they may well have relatively high validity (if your mum looks 

unapproachable, it's not the best time to ask for more pocket money). They are then 

overgeneralised to strangers' faces and mistakenly considered to represent stable traits in a 

similar manner to the fundamental attribution error of interpreting others' behaviour as 

reflecting enduring personality characteristics (cf. Todorov, 2017). Our findings help to 

elucidate the perceptual underpinnings of this process.  

 

Supplementary Materials 

All supplementary data (raw ratings for both the between and the within person image sets 

and the accompanying shape and texture PCA projections for each image) and all 

supplementary tables referred to in the text can be obtained from the Open Science 

Framework (doi: 10.17605/OSF.IO/UQP9B) at: 

 https://osf.io/uqp9b/?view_only=adb8be2e27404bedb7a419b7395c8d41 
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