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Abstract: This paper aims at identifying paramount hydraulic factors in energy dynamics of water

mains, using Principal Components Analysis (PCA). The proposed method is applied to two large

ensembles of leaky and non-leaky pipes comprising over 40,000 pipes selected from 18 North

American water distribution systems to guarantee the versatility of pipe characteristics and statistical

significance of the explored patterns. PCA mono-plots indicate energy metrics such as Net Energy

Efficiency, Energy Lost to Friction and Energy Lost to Leakage serve better in identification of low

from high efficiency pipes. In addition, PCA mono-plots and bi-plots reveal relative importance

of hydraulic parameters and that average flow rate, hydraulic proximity to major components

and average unit headloss can have more tangible effects on energy dynamics of pipes compared

to leakage and average pressure. Some factors such as elevation, diameter and CHW are not

as influential as expected in distinguishing high-efficiency from low-efficiency pipes. Further,

a comparison between the approach used in this paper and a simplified common-practice replacement

strategy points out the difference energy considerations can make, if included in a bigger asset

management landscape.

Keywords: energy efficiency; headloss; leakage; pipe rehabilitation; water distribution systems;

principal components analysis (PCA); asset management

1. Introduction

Water main aging and deterioration tends to evolve in lockstep with a loss of hydraulic capacity,

an increased leakage, and a higher pumping energy requirement in a water distribution system [1–5].

There are several factors such as operating pressure and topographical elevation that are known to

have a large impact on the energy performance of water mains and water distribution systems in

general [6]. Often, detailed hydraulic modeling and/or optimization are needed to fully ascertain the

extent to which changes in hydraulic parameters will change the energy use in distribution systems.

Unfortunately, advanced energy modeling and optimization are not extensively used in engineering

practice nor do most water utilities have the resources to perform these analyses to characterize the

energy performance of their systems. Further, the large number of variables in distribution system

operation is an important barrier that makes it difficult for water utility managers to gain a clear

picture of how system operations and the state of deterioration of pipes act together to affect the energy

performance of water mains and their systems.

Previous studies that have considered energy issues in distribution systems have only examined a

few case study systems in an ad hoc fashion. Energy indicators to relate system-wide energy efficiency
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to pump efficiency and reservoir location were developed, without considering leakage impacts [7].

Cabrera et al. [8] presented a set of metrics to characterize the system-wide energy performance that

includes losses to friction, leakage, and overpressure. These energy metrics provided a useful set

of tools to help water utility managers better understand how far their systems were from an ideal

energy-efficient state but fall short of being able to identify individual pipes that would be problematic.

Building upon their earlier work, the same authors presented additional metrics to assess the energy

efficiency of a pressurized system and procedures to prioritize interventions on a system-wide basis [9].

The study [10] examined the energy dynamics of groups of pipes and pumps in the Toronto distribution

system. While these researchers also solved the energy balance to examine the frictional losses in

individual pipes of the Toronto system, they did not examine the efficiency, leakage, and other energy

characteristics of these pipes. The results of these previous studies pertain specifically to the specific

distribution systems examined and it is an open question as to whether these results are transferrable

to a wide cross section of real, complex systems.

To address this problem, this research focuses on applying the tools of statistical analysis to

large datasets spanning multiple systems to examine the relationships between pipe and hydraulic

parameters and energy performance. What motivates the use of large datasets and this statistical

approach is that the ensuing results have statistical significance and are transferrable across a wide

cross section of large, complex distribution systems [11]. The knowledge gleaned from this research

can be used by water utilities to identify water main assets with threshold levels that lead to low

energy performance without having to resort to advanced water distribution and energy modeling

and optimization techniques.

The aim of this paper is to build on the work of Hashemi et al. [11] to identify the hydraulic

parameters that have the largest impact on the energy performance of water main assets in distribution

systems. The paper answers three research questions:

1. What hydraulic parameters have the largest influence on the energy performance for water mains

data in distribution systems?

2. What combinations of hydraulic parameters can better distinguish highly efficient water mains

from those with low efficiency?

3. How aligned are the simplified rehabilitation approaches, for example those based on pipe age or

break rate, with energy efficiency in water mains?

A statistical approach is taken to address these three research questions. This paper applies

principal components analysis (PCA) to an ensemble of 40,000 water mains across 18 water distribution

systems. The choice to use PCA in this paper is motivated by two challenges: First, the high

dimensionality (numerous pipe and hydraulic parameters) of the dataset makes it difficult to visualize

and identify what parameters drive energy use. Second, the dataset comprises 40,000 data points

(40,000 water mains across 18 systems) so the large number of data points requires advanced statistical

techniques to fully explore [2,3]. PCA is a proven technique that can simplify a large dataset and

identify the most influential parameters that drive energy use in distribution systems. Thus far,

there has been little research that has deployed statistical techniques like PCA to examine the energy

dynamics of water mains with a large set of data on pipes across numerous systems.

The new knowledge created in this paper has the potential to help water utilities perform a

screening-level identification of groups of pipes that are likely to have a low energy performance and

follow up with targeted condition assessment and hydraulic modeling to further examine the energy

performance of pipes and their candidacy for rehabilitation.

2. Methods

2.1. Pipe-Level Energy Metrics

The pipe-level energy metrics developed by the authors [12] were used in conjunction with PCA

to examine the relationship between pipe and hydraulic parameters (e.g., average flow (Ave Q), pipe
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roughness (CHW), pipe diameter (D), average unit headloss (UH), presssure (P), elevation (Elv) and

hydraulic proximity to major components) and energy use in water mains of distribution systems (see

Table 1). The pipe-level metrics and their parameters are defined in Equations (1)–(6). The reader can

refer to [12] to obtain more details on these pipe-level metrics.

GEE =
Edelivered

Esupplied
× 100% (1)

NEE =
Edelivered

Esupplied − Eds
× 100% (2)

ENU =
Edelivered

Eneed
× 100% (3)

ELTF =
Efriction

Esupplied − Eds
× 100% (4)

NEE =
Edelivered

Esupplied − Eds
× 100% (5)

where GEE, the gross energy efficiency (Equation (1)), compares the energy delivered to the users

serviced by a pipe (Edelivered) to the energy supplied to that pipe (Esupplied). Each energy components

are defined in Table 1. NEE, net energy efficiency (Equation (2)), compares the energy delivered to

users serviced by a pipe (Edelivered) to the net energy in that pipe (Esupplied − Eds), where net energy is

the energy supplied to the pipe minus (Esupplied) the energy supplied to users located downstream

of the pipe and not directly serviced by the pipe (Eds). ENU, energy need by user (Equation (3)),

compares the energy delivered to the users serviced by a pipe (Edelivered) against the minimum energy

needed by those users (Eneed). The minimum energy by a user is defined as Eneed = γ Qmin Hmin ∆t

and is a function of the minimum water use needed by users (Qmin) and the minimum pressure head

required to deliver acceptable water service to users (Hmin). ELTF, energy lost to friction (Equation (4)),

compares the magnitude of friction loss in the pipe (Efriction to satisfy the demand and leakage at the

end of the pipe, and demands downstream of the pipe) to the net energy supplied to the pipe (Esupplied

− Eds). ELTL, energy lost to leakage (Equation (5)), compares the sum of the energy lost directly to

leakage and the frictional energy loss along the pipe required to meet the leakage flow, Ql, at the end

of the pipe or Eleak + Efriction (leak) relative to the net energy supplied to the pipe.

Table 1. Summary of energy components and metrics by [12].

Item Definition

Esupplied Energy supplied to the upstream end of the pipe
Edelivered Energy delivered to the user to satisfy downstream demand Qd at pressure head Hd

Eds Energy flowing out of the pipe to meet downstream user demands
Eleak Energy directly lost to leakage

Efriction Friction energy loss incurred along the pipe
Elocal Local energy losses through valves, appurtenances, and blockages
Eneed Energy needed/required by the downstream node according to standards

Efriction (leak) Friction energy loss incurred along the pipe as a result of leakage
GEE Gross Energy Efficiency
NEE Net Energy Efficiency
ENU Energy Needed by User
ELTF Energy Lost to Friction
ELEL Energy Lost to Leakage

Proximity
Hydraulic proximity to major components of the network based on pressure head and

pipe flow
Q Pipe flow (m3/s)
Hs Head supplied at the upstream node of a pipe
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2.2. Principal Components Analysis (PCA)

The multivariate analysis of a considerable number of energy indicators and hydraulic factors

(a high-dimensional problem) makes PCA a pertinent tool to reduce the dimensionality of a dataset.

Using PCA makes it possible to identify what parameters account for most of the variance and scatter

in the original dataset [13,14]. In this way, PCA makes it possible to visualize a large dataset and

identify what pipes and groups of pipes possess combinations of characteristics that lead to low

energy performance.

PCA essentially builds on a correlation matrix to visualize and explore patterns or relationships not

captured by correlation analysis. Principal Components (PCs) are linear combination of Eigenvalues

of the correlation matrix of the statistical ranks of hydraulic parameters and energy metrics [11]. They

are, therefore, orthogonal and not correlated. Each data point (pipe) will be assigned a score on the

PCs, hence the dataset along these PCs shows the most variance/scatter. This will distinguish pipes or

groups of pipes from each other as the point of interest in this paper. The first few PCs, corresponding

to the larger Eigenvalues of the correlation matrix, describe most of the variance in the dataset and are

statistically sufficient to describe the variance of the data.

PCA Mono-Plots and Bi-Plots

A “mono-plot” is the representation of the hydraulic factors and energy metrics on the orthogonal

axes of the first two PCs. Hydraulic factors or energy metrics with high scores on either axes of the

mono-plot tend to be more influential on the variance of the dataset. Parameters that track closely

together have similar effects on the dataset, while parameters that diverge from one another have a

different influence on the dataset. Moreover, the original observations in the dataset can be presented in

a “bi-plot” by transforming their original values into new PC coordinates, as described in Equation (6):

(pipei score)j = [pipe]1×n × [PC]n×j (6)

where (pipei score)j is the score of pipei on the jth PC, [pipei]1×n is the vector on the ith row on the

matrix of pipes including the ranks of all n hydraulic variable values for pipei and [PCj]n×j is the

Eigenvector corresponding to the jth largest Eigenvalue (the jth PC), including the scores of all n

hydraulic parameters. Therefore, each pipe or observation will be assigned one value on each of the

new directions or PCs, which makes the visualization of the observation on the new/transformed

coordinate system possible. Clusters of pipe scores on the PCA bi-plot can distinguish data groups

with similar characteristics. The formation of clusters can help identify the factors that have the most

impact on the similarities or dissimilarities in the observations.

3. Application of Multivariate Statistical Analyses in Large WDSs

To yield robust results in statistical analysis, this paper required a benchmarking dataset

representative of the wide variety of characteristics such as configuration, pipe conditions and age

profile, found in different water distribution systems. Eighteen distribution networks, therefore, were

selected from different areas in the states of Kentucky and Ohio in the United States as well as the

province of Ontario in Canada [15–17]. The network models in Ohio and Ontario are those utilized

by corresponding municipalities while Kentucky models comprise a database developed from GIS

files obtained from the Kentucky Infrastructure Authority [15]. This large dataset includes over 40,000

pipes. Seventeen of these systems comprise almost 20,000 pipes without information available on

leakage (the non-leaky ensemble), while one system comprises approximately 20,000 pipes that include

leakage for each pipe as estimated by a robust field measurement campaign (the leaky ensemble).

It is noted that there might be background leakage or leakage included as a part of the demand

for the non-leaky ensemble, however, not included as a separate factor. The results of multivariate

statistical analyses of the networks with and without leakage were also juxtaposed to understand

the importance of considering leakage in the energy dynamics of WDSs. The characteristics of these
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WDSs are summarized in Table 2. To obtain hydraulic outputs of the distribution systems (such as

nodal pressures and pipe flows), EPANET2.0 network models were used [18]. EPANET2.0 hydraulic

outputs were then retrieved by a code in Visual Basic 6.0 to evaluate energy metrics. Except for average

pressure that is a hydraulic output by EPANET2.0, all other hydraulic characteristics of the systems in

Table 2, such as water demand, pipe roughness and sizes, leakage, etc., are surveyed data and input to

the hydraulic models. Lastly, Matlab R15 was used to perform matrix algebra calculations to obtain

mono-plots and bi-plots [19].

Table 2. Summary of characteristics of 18 North American WDSs.

Network State/Province
No. of
Pipes

Pipes
Length

(km)

No. of
Model

Junctions

Difference
in Elevations

(m) a

No.
of

Pumps

No.
of

Tanks

Average Daily
Demand
(MLD)

Average
Daily

Pressure (m)

1 ON1
b 12,189 627 11,177 50 31 10 69.07 44.86

2 ON2 405 56 349 46 6 3 3.54 46.71
3 KY1

c 984 67 856 37 1 2 7.52 33.07
4 KY2 1124 152 811 29 1 3 7.92 46.07
5 KY3 366 91 271 43 5 3 15.19 41.76
6 KY4 1156 260 959 75 2 4 5.65 48.02
7 KY5 496 96 420 75 9 3 8.58 134
8 KY6 644 123 543 96 2 3 6.19 60.2
9 KY7 603 137 481 70 1 3 5.80 55.32

10 KY8 1614 247 1325 135 4 5 9.32 54.15
11 KY9 1270 972 1242 138 17 15 5.07 94
12 KY10 1043 435 920 96 13 13 8.18 68
13 KY11 846 464 802 248 21 28 6.61 97.11
14 KY12 2426 655 2347 145 15 7 5.18 111
15 KY13 940 155 778 95 4 5 8.92 50.78
16 KY14 548 105 377 65 5 3 3.94 53.9
17 OH1

d 1183 166 956 100 15 4 10.13 57

18 OH2
e 27,231 f 5500 19,618 154 28 27 531.49 53

a: Difference in Elevations = maximum junction elevation (excluding elevated storages) minus minimum junction

elevation; b: ON = Ontario; c: KY = Kentucky; d: OH = Ohio; e: OH2 system includes total leakage equivalent to 8%

of the total daily demand for nodes; f: Not all the pipes in all systems participate in the statistical analysis.

4. Results

4.1. Hierarchical Importance of Parameters in Energy-Based Decision Making

4.1.1. Non-Leaky Ensemble

PCA for non-leaky systems includes 11 variables, including both hydraulic parameters as well

as energy metrics, summarized in correlation matrix (Table 3). Figure 1 indicates the corresponding

contribution of each PC, based on the 11 Eigenvalues of the correlation matrix in Table 3. According to

Figure 1, in the non-leaky ensemble, the first two PCs describe almost 65% of the variance in the data

(47.3% and 16.9%, respectively), while the other nine PCs account for 35% of the variance in the data.

Hence, the first two PCs are selected to compress and visualize the pipe dataset in a two-dimensional

space. It is noted that the PCs do not directly correspond to the parameters and variables in the

correlation matrix of Table 3 and are linear combinations of them to introduce new directions on which

the correlation is minimized and variance maximized.

Table 3. Correlation matrix of energy metrics and pipe hydraulic factors [11].

CHW
D

(mm)
P (m)

Avg. Q
(L/s)

Avg. Unit
Headloss
(m/km)

Prox
(m4/s)

Elv.
(m)

GEE

(%)
NEE

(%)
ENU

(%)
ELTF

(%)

CHW
1 1 −0.20 0.05 0.05 −0.13 0.05 −0.10 0.11 0.06 0.05 −0.10

D (mm) 2
−0.20 1 −0.07 0.53 0.09 0.55 0.26 −0.57 −0.30 −0.01 0.29

P (m) 3 0.05 −0.07 1 −0.02 −0.08 −0.05 −0.24 0.10 0.08 0.66 −0.10
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Table 3. Cont.

CHW
D

(mm)
P (m)

Avg. Q
(L/s)

Avg. Unit
Headloss
(m/km)

Prox
(m4/s)

Elv.
(m)

GEE

(%)
NEE

(%)
ENU

(%)
ELTF

(%)

Avg. Q
(MLD) 4 0.05 0.53 −0.02 1 0.73 0.96 0.16 −0.75 −0.81 −0.13 0.73

Avg. Unit
Headloss
(m/km) 5

−0.13 0.09 −0.08 0.73 1 0.69 0.10 −0.64 −0.88 −0.14 0.82

Prox (m4/s) 6 0.05 0.55 −0.05 0.96 0.69 1 0.18 −0.73 −0.78 −0.08 0.71

Elv. (m) 7
−0.10 0.26 −0.24 0.16 0.10 0.18 1 −0.09 −0.08 −0.41 0.06

GEE (%) 8 0.11 −0.57 0.10 −0.75 −0.64 −0.73 −0.09 1 0.80 0.04 −0.76

NEE (%) 9 0.06 −0.30 0.08 −0.81 −0.88 −0.78 −0.08 0.80 1 0.10 −0.92

ENU (%) 10 0.05 −0.01 0.66 −0.13 −0.14 −0.08 −0.41 0.04 0.10 1 −0.07

ELTF (%) 11
−0.10 0.29 −0.10 0.73 0.82 0.71 0.06 −0.76 −0.92 −0.07 1

1: CHW = Hazen–Williams “C” factor; 2: D = Pipe diameter; 3: P = Average daily pressure of a pipe; 4: Avg. Q =
Average daily flow of a pipe. However, it is noted that the energy metrics are evaluated based on hourly flows [12];
5: Avg. Unit Headloss = Average daily unit headloss in a pipe; 6: Prox = Hydraulic proximity of each pipe to major
components such as elevated storages and/or pump stations [11,12]; 7: Elv = Arithmetic Average of upstream and
downstream nodes of a pipe; 8: GEE = Gross Energy Efficiency (in percent); 9: NEE = Net Energy Efficiency (in
percent); 10: ENU = Energy Needed by the User (in percent); 11: ELTF = Energy Lost to Friction (in percent).

Figure 1. Contribution of each PC in the non-leaky ensemble.

The mono-plots presented in the next section are a visual expression of the importance of hydraulic

parameters and metrics with regard to the first two PCs in both non-leaky and leaky (in a similar

fashion) ensembles. Figure 2 shows the mono-plot for the non-leaky ensemble. The x-axis represents

PC1, describing the most variation in the pipe dataset (47.3%). The y-axis represents PC2, describing

the second most variation in the data (16.9%). More influential parameters and metrics are mainly

perceived to have scores higher than 0.3 on each PC. However, to narrow down the important

parameters and metrics for decision making, higher alignment with the PCs will also be preferable.

According to Figure 2, GEE and NEE track closely, meaning that higher values for one result in higher

values for the other as well. The PC1 values for these two metrics suggest that they are more influential

in describing variance than parameters such as CHW, diameter and Elv. On the other hand, ELTF,

Average flow (Ave. Q), headloss and proximity are clustered together. This not only means that they

have similar effects on pipes, but also that high values of these parameters result in lower values of
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GEE and NEE. It is also noted that all parameters of GEE, NEE, ELTF, proximity, Ave Q and headloss

are well represented with regard to PC1, as their respective vectors are first, much larger compared to

parameters such as CHW and diameter and, second, closely aligned with the PC1 axis.

Figure 2. Mono-plot of variables of interest in the non-leaky ensemble.

Moreover, along the PC2 axis, ENU and Pressure (P) are clustered together and have high vector

magnitudes compared to other parameters. Therefore, it can be inferred that these two vectors are

highly correlated/aligned to each other, and that they have higher importance compared to D and

CHW. However, ENU and P have lower importance or influence compared to those with higher values

along the PC1 axis (ELTF, GEE, NEE, headloss, etc.). This is mainly because PC2 describe less variance

(16.9%) compared to PC1 (47.3%).

The CHW and D vectors are not situated close to any other parameters or to each other, which

means that they will not affect the dataset in the same way as the other parameter. In addition, these

vectors are not well represented on either the PC1 or PC2 axes, both in their magnitude and in their

direction, which explains less importance in the variance of the ensemble. The Elv vector points away

from other parameters, implying that it has a different effect on the variance of the pipe dataset. It

can also be inferred that higher elevations cause lower pressure, since the Elv and P vectors point in

opposite directions.

The Ave Q and unit headloss vectors point in a similar direction and in the opposite direction

of the GEE and NEE vectors. From a hydraulic standpoint, this implies that an increase in Ave Q

and/or unit headloss in a pipe causes a decrease in GEE, NEE. Moreover, P closely tracks with ENU,

confirming that pressure directly influences energy surplus or deficit in a pipe. The correlation matrix

in Table 3 also indicates no relationship between these two groups of parameters, supporting the

results shown in Figure 2, where the two groups (P and ENU versus GEE, NEE and Ave Q) do not

track closely.

4.1.2. Leaky Ensemble

Figure 3 shows the mono-plot for the leaky ensemble (indicated as system OH2 in Table 2 as the

largest distribution network). PCA for this includes the same variables as in the non-leaky ensemble

plus daily leakage and ELTL, which comes to the total of 13 variables as opposed to 11 in the non-leaky

ensemble. Even though the percentage of leakage in this system is fairly small (almost 8%), Figure 3

shows slightly different results to those of Figure 2 which could illustrate the importance of considering

leakage. As shown by the axes, PC1 describes 36.5% and PC2 20% of the variance. The sum of these
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contributions is slightly smaller compared to that of the previous mono-plot mainly because more

parameters (including daily leakage and ELTL) are now included in the PCA, which makes each

parameter less descriptive with regard to the total variance in the ensemble. According to Figure 3,

influential parameters are GEE, ELTF, proximity, Ave Q and headloss as they all hold comparatively

higher scores along PC1 (above absolute values of over 0.3 on both axes). Diameter is now more

influential and closer to the cluster of ELTF, headloss, proximity, and Ave Q compare to the non-leaky

ensemble results. This difference in the relative importance of the parameters may emphasize the

importance of considering leakage and larger networks. Further, ELTL, leakage and NEE are the next

most influential vectors, with high PC2 scores (absolute value over 0.40). Elv in the leaky ensemble is a

fairly important parameter compared to CHW, pressure, and even ENU, because of the length of the

corresponding vector in Figure 3. As in the results for the non-leaky ensemble, CHW is a less important

parameter—its vector points away from other parameters and has a small magnitude. Compared to

the non-leaky ensemble, although ENU and P still track closely, their importance is dwarfed by ELTL

and leakage along the PC2 axis. This implies that in systems with leakage, the impact of pressure may

be lower compared to leakage on the energy dynamics of the system.

Figure 3. Mono-plot of all variables of interest in the leaky ensemble.

Another noticeable difference from the non-leaky ensemble is that the NEE vector direction does

not match those of other parameters. This could be due to considering leakage, meaning that NEE

seems to be affected by two sources of inefficiency, leakage and friction. This can explain why NEE

and GEE do not cluster together as they did in the non-leaky ensemble results. In general, considering

leakage in the analysis seems to have shuffled the importance of some of the hydraulic parameters,

even though there are still similarities between the two cases.

For the leaky case, diameter now seems to have gained more influence (with a score of −0.3 on

PC1). It is also observed that average unit headloss and diameter can potentially have similar effects on

the dataset, which was not captured originally by correlation analysis. It could also be interpreted as

larger pipes being generally located near the major components, and thus may bear inherently higher

unit headloss rates. This is also corroborated by the fact that water main sizes decrease moving away

from major components in a system.

4.2. Clusters of High Efficiency Versus Low Efficiency Pipes

Results in Figures 2 and 3 explain that of all the variables included in PCA, comparatively energy

dynamics have higher importance in describing the variance in both ensembles, as they are expressed

through longer vectors and highly aligned with PC1 and PC2 axes. This would suggest that the
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mono-plots represent energy dynamics landscape in the two ensembles. Therefore, the energy metrics

values can be used to characterize high/low-efficiency pipes throughout the whole dataset.

To find clusters of high-efficiency pipes in the non-leaky and leaky ensembles, the corresponding

threshold as to distinguish these pipes ought to be defined. Investigation on the relationship between

the energy metrics values and common-practice thresholds by Hashemi et al. [11] indicate that, for

the efficiency metric, NEE, values above 70th percentile of the data set correspond to high efficiency

(NEE > 99.9%). Similarly, energy loss metric ELTF values below 30th percentile correspond to low

efficiency pipes (ELTF < 0.0018%). Moreover, 100% < ENU < 105% correspond to the optimal pressure

range (approximately 30–50 m) specified in North American guidelines [20–22]. In a similar way, for

the other efficiency and energy loss metrics (GEE and ELTL), it is assumed that the same thresholds

suffice to distinguish high efficiency pipes. Therefore, GEE > 20% and ELTL < 0.8% are considered

highly efficient [11,23,24]. Based on the same investigations, low efficiency pipes are considered to

have metric values below 30th percentile for GEE and NEE and above 70th percentile for ELEF and

ELTL. ENU values corresponding to excessive pressure in pipes indicated by standard (approximately

70 m) are considered to indicate low efficiency pipes for this metric. Therefore, GEE < 15%, NEE <

99.4%, ENU > 113%, ELTF > 0.3% and ELTL > 3% indicate low-efficiency pipes. The threshold values

considered for both non-leaky and leaky ensembles are summarized in Table 4.

Table 4. Threshold values to define high and low efficiency pipes by [11,23] in both non-leaky and

leaky ensembles.

Energy Metric
Threshold Value to Define Low

Efficiency Pipes (%)
Threshold Value to Define High

Efficiency Pipes (%)

GEE GEE < 15 GEE > 20
NEE NEE < 99.4 NEE > 99.9
ENU ENU > 113 100 < ENU < 105
ELTF ELTF > 0.3 ELTF < 0.0018

ELTL * ELTL > 3 ELTL < 0.8

* ELTL does not apply to the non-leaky ensemble.

4.2.1. Non-Leaky Ensemble

Figure 4 shows the bi-plot for the ELTF clusters, with ELTF value-ranges (represented by different

colors) stratifying bands along the y-axis with the colors changing along the x-axis. Pipes with higher

values of ELTF (low efficiency) stratify on the left-hand side while pipes with lower values of ELTF

stratify on the right side of the bi-plot. This is because ELTF has a high score on PC1, therefore, based

on Equation (6) pipes with similar ELTF values (pipei,n) will have similar products of these values

and ELTF score on PCn,1 (pipei,n × PCn,1). As Figure 2 indicated ELTF as one of the most influential

hydraulic factors (with high score along PC1), the product of pipe parameter values and the ELTF

score, based on Equation (6), will then be higher and form bands on the direction shown in Figure 4.

Based on Table 4, threshold values of Figure 4 are chosen to distinguish high efficiency pipes in green,

low efficiency in red and other values in between in light blue. Further, it is seen that the direction on

which the colors of bands change in Figure 4 is the same as the direction of the ELTF vector in Figure 2,

i.e., higher values of ELTF, that is tantamount to low efficiency pipes in terms of ELTF, cause these

pipes to form a band on the left side of Figure 4 (based on ELTF vector in Figure 2). Similarly, NEE and

GEE display clusters of low values (close to zero) on the left hand side and the cluster of higher values

(close to 1) on the right hand side. However, because of similar visual result as the ELTF cluster, they

are not presented. As general rule, pipes with similar values of metrics expressed with larger vectors

(GEE, NEE, ENU and ELTF) tend to cluster more visibly in certain areas of the bi-plots.

Unlike the ELTF, NEE and GEE, ENU stratifications change more closely along the PC2 axis than

the PC1 axis, as seen in Figure 5. The direction on which the color of bands changes is the same as the

direction of the ENU vector in Figure 2. Values of ENU > 113% that correspond to low efficiency pipes
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tend to stratify on the bottom (indicated in the color of red) while those that correspond to 100% <

ENU < 105% form a horizontal band closer to the top and indicated in green. Other pipes indicated in

blue pertain to the other pipes ranging between high efficiency and low efficiency pipes. ENU obtains

higher score along PC2, which indicates, first, lower importance compared to GEE, NEE and ELTF (that

merit high scores on PC1) and, second, no correlation between the two set of variable. This implies the

direction on which the ENU values change has no correlation to that of GEE, NEE and ELTF, as PC1

and PC2 are orthogonal. In other words, efficiency in terms of ENU does not seem to have an effect on

efficiency in terms of GEE, NEE and ELTF.

Figure 4. Bi-plot of ELTF values in the non-leaky ensemble.

Figure 5. Bi-plot of ENU values in the non-leaky ensemble.

Clusters of high and low efficiency pipes are formed by combining high and low values of

energy metrics such as GEE, NEE, ENU and ELTF indicated in Table 4. Therefore, the intersection

of vertical bands (from metrics with higher scores on PC1) and horizontal bands (from the metrics

with high scores on PC2) forms smaller clusters of high or low efficiency pipes. High-efficiency pipes

are defined as summarized in Table 4. However, the purpose of setting thresholds for the metrics is

to approximately locate the cluster of high-efficiency pipes on the PCA bi-plots, and not to suggest
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threshold values for rehabilitation and replacement in practice, as this would be a complex decision

task involving multiple factors such as budgetary limitations, risk assessment, water quality, pipe age

and break rates, along with energy considerations. The selected thresholds lead to a cluster formed on

the top right area of the plot in Figure 6. Similarly, low efficiency pipes cluster are also defined as per

summarized in Table 4. The mentioned thresholds create a cluster on the left hand side of the bi-plot.

To the extent that stricter values of metrics are desired, the clusters can be smaller or larger, however,

the location of clusters will remain the same.

Figure 6. Bi-plot of high/low efficiency clusters in the non-leaky ensemble.

4.2.2. Leaky Ensemble

According to Figure 7, pipes with higher NEE values are located in the top left area, while pipes

with smaller values of NEE tend to cluster in the bottom right area of the plot. This arrangement of the

clusters is mainly because of the direction of NEE axis relative to PC1 and PC2 axes, which makes this

set of results different from non-leaky set of pipes. Thresholds of high versus low-efficiency pipes are

considered based on Table 4.

Figure 7. Bi-plot of NEE values in the leaky ensemble.

From the mono-plot in Figure 3, it was seen that ELTL has a high score on the PC2 axis (value

of 0.42) and its corresponding vector is closely aligned with the PC2 axis. This is reflected in the
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bi-plot in Figure 8, where ELTL values change almost along PC2. High efficiency pipes regarding

ELTL (based on Table 4) are clustered at the top (indicated in green), while low-efficiency pipes, on

the bottom (indicated in red) and other value ranges (indicated in light blue) are situated in between.

Stratifications of metrics values for GEE, NEE and ENU for the leaky ensemble resemble those of the

non-leaky ensemble considering the same thresholds, and therefore are not presented here.

The combination of high efficiency values of metrics based on Table 4 results in the cluster of high

efficiency pipes on the top left corner of Figure 9, indicated in green. In a similar way, the intersection

of low efficiency bands of metrics form the cluster of low efficiency pipes located on the bottom right

corner of Figure 9, indicated in red. In addition, similar to the non-leaky ensemble, choosing stricter

or more lenient thresholds can result in smaller or larger clusters of high versus low-efficiency pipes;

however, the location of the clusters will remain the same. The data points indicated in blue correspond

to pipes in the ensemble with an efficiency that is in between the two cohorts of high/low efficiency

pipes. Locating high/low efficiency pipes on the bi-plots of Figures 6 and 9 can help identify which

hydraulic factors can better point towards these cohorts (considering vectors of hydraulic factors in

Figures 2 and 3).

Figure 8. Bi-plot of ELTL values in the leaky ensemble.

Figure 9. Bi-plot of high/low efficiency clusters in the leaky ensemble.
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4.3. Examining Current-Practice Pipe Rehabilitations

To assess how simplified, common-practice rehabilitation plans would perform from an energy

efficiency standpoint, the pipe replacement plan for the leaky ensemble proposed by Prosser et al. [16]

was compared to the proposed approach in this paper. The approach proposed by Prosser et al. [16]

considers thresholds of 25 breaks per 100 km or 100 years of age in pipes as two alternatives to

trigger replacement.

Figure 10 shows the clusters of high and low-efficiency pipes as in Figure 9. In addition, the pipes

earmarked for replacement by Prosser et al. [16] beyond the benchmark date (in this case, from 2013 to

2040) are shown as yellow triangles, while previously replaced pipes are shown as black diamonds.

It can be seen that many of the pipes to be replaced do not overlap with the low efficiency cluster,

as identified through PCA, nor do these pipes move towards high-efficiency pipes after replacement.

Figure 10. Bi-plot of high/low efficiency clusters compared to common-practice replacement plan by

Prosser et al. [16].

5. Discussion

One of the main findings of the analysis was to identify which parameters have the largest

influence on describing the variance in energy performance across all pipes in the dataset. Knowing

these parameters can help to identify high versus low efficiency pipes.

The PCA results shown through mono-plots in Figures 2 and 3 indicated that of all the hydraulic

parameters and energy metrics included in the analysis, NEE, ELTF in both ensembles and ELTL in the

leaky ensemble have the highest capacity to describe the variance in the dataset, or, in other words,

the energy dynamics landscape, based on their score associated with the two PCs.

Accounting for leakage causes the mono-plot (e.g., Figure 3) and the bi-plots (e.g., Figures 7–9)

to take a different shape compared to those of the non-leaky ensemble (e.g., Figures 2 and 4–6). For

instance, stratification of similar value ranges for metrics (e.g., ELTF and ENU in Figures 4 and 5)

are vertical or horizontal in the non-leaky pipe dataset, while NEE stratifications in the leaky pipes

(Figure 7) are diagonal. This result emphasizes the need to consider leakage in energy analysis to fully

characterize the complex relationships between friction and flow in individual pipes. Consideration

of leakage as shown in Figure 3 causes NEE to take on a distinguished direction compared to other

metrics and may potentially identify a different group of low efficiency pipes.
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Having categorized high efficiency versus low efficiency pipes, it is of interest to know what

characteristics these pipe would have in common, within each cluster. When planning for asset

management or rehabilitation, water utilities need to associate highly efficient or low efficiency assets

with more familiar decision factors (e.g., pipe size, roughness, unit headloss, pressure, etc.) that would

be more readily available, given the level of effort to calculate energy metrics. However, they would

also need to know what combination of the readily available decision factors (hydraulic parameters in

this study) and with what priority these parameters could be used to better distinguish low from high

performance pipes. This objective of the study is achieved by juxtaposition of mono-plots (Figures 2

and 3) and bi-plots (Figures 6 and 9) for each ensemble.

Having located the high and low efficiency categories of pipes on the bi-plot using the criteria in

Table 4, comparison of the PCA results for the non-leaky ensemble (Figures 2 and 6) indicates that Ave

Q, hydraulic proximity and unit headloss are suitable candidates for identifying the two cohorts of

high/low efficiency pipes, based on their vector orientations. It should be noted that, based on the

relative importance of these parameters, i.e., the association with the PCs, low efficiency pipes are

better characterized by unit headloss (or high Ave Q) compared to pressure. Because of their vector

sizes and directions, Elv, D and CHW would not serve as suitable guides to identify high/low efficiency

pipes. Although CHW is considered as an influential factor for pipe replacement in practice, the results

indicate that this parameter alone is not a suitable representative of energy efficiency.

In a similar way, considering the mono-plot (Figure 3) and the bi-plot (Figure 9) in the leaky

ensemble, the best hydraulic parameters with which to identify high/low efficiency pipes are revealed.

In this case, the most influential parameters are Ave Q, hydraulic proximity and unit headloss in pipes,

because of the size of their corresponding vectors as well as their alignment with the most important

principal component, PC1. The next best set of hydraulic parameters includes leakage and pressure,

which have relatively less importance in identifying high/low efficiency pipes, because of their

alignment with the second most important principal component, PC2. At the same time, the leakage

flow itself seems to be more important compared to pressure because of its vector size. Therefore,

leakage in pipes, if well characterized, would be a better indicator than pressure for identifying energy

efficiency in pipes. Similar to the case for the non-leaky pipe ensemble, Elv, CHW and diameter play a

less significant role in characterizing energy dynamics in pipes. In addition, in the leaky ensemble,

diameter seemingly has gained more importance due to a longer vector along PC1 in Figure 3. This

perhaps corresponds to the correlation of larger pipe sizes and higher flows (not clearly shown in the

non-leaky ensemble), due to more accurate model calibration compared to the KY systems, which are

the majority of the non-leaky ensemble. However, since diameter does not point directly towards the

clusters of high/low efficiency pipes on the bi-plot of Figure 9, they would not be nominated among

the most influential parameters in the energy dynamic landscape.

By mathematical definition, Ave Q and hydraulic proximity are more directly reflected in GEE

and NEE, in the way that pressure and unit headloss are reflected in ENU and ELTF, and that makes

these parameters and their corresponding energy metrics highly correlated. Thus, the hydraulic

parameters can be used to target high/low efficiency pipes, as corroborated by mono-plots and

bi-plots, particularly given that parameters such as unit headloss and Ave Q are more available to

decision makers at water utilities. If leakage is known and well-characterized, it can serve alongside

unit headloss and Ave Q as the best candidates for enabling decision makers to effectively earmark

high efficiency/low efficiency pipes. In fact, a combination of hydraulic parameters in the form of the

resultant vector of unit headloss (or Ave Q) and leakage on the mono-plot of the leaky ensemble has

an orientation that would better serve to identify low efficiency pipes. Pipes experiencing high unit

headloss (or Ave Q) and high leakage would be the most likely candidates in this case.

To understand how energy dynamics align with replacement programs based upon age of pipe

or pipe break rates, Figure 10 placed these methods side by side to high and low efficiency pipes.

The results showed that the pipes that would be replaced based upon their age or break rate history

are generally not the ones that are the least energy efficient. Although considering energy efficiency
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alone does not suffice for pipe replacement decision making, the difference in the outcome of the two

approaches implies that energy efficiency should be considered in conjunction with other factors such

as age, break rate, water quality, payback period and risk assessment to complement the bigger asset

management picture, particularly as water utilities seek to become more energy efficient.

6. Conclusions

The goal of the present paper is to explore the patterns and relationships between energy metrics

and hydraulic parameters to better understand which parameters have the greatest influence on energy

performance of individual pipes. PCA is used to simultaneously visualize the relationships between

energy metrics and hydraulic factors and to prioritize these parameters by their importance. This

statistical approach helps to reduce the dimensionality of the dataset to allow for identification of

combinations of factors that have significant influence on the energy performance of water mains. Two

large ensembles comprising over 40,000 pipes juxtaposed the difference in results for systems with and

without leakage and highlighted the importance of considering of leakage in large real-world systems

when studying their energy dynamics.

The PCA mono-plots show that parameters such as flow, hydraulic proximity of pipes and unit

headloss play more important roles in influencing the energy efficiency of pipes compared to leakage

and pressure. However, leakage and pressure have a greater impact on the energy efficiency of pipes

than diameter, CHW and Elv, which are not well-represented on any of the principal components.

However, since leakage and CHW could change throughout the time, it would be a worthwhile study

to consider time-based degradation of the leakage and CHW in other efforts.

The PCA bi-plots help to visualize and locate low-versus high-efficiency pipes in a

two-dimensional space considering all hydraulic parameters and pipe-level energy metrics. In both

leaky and non-leaky cases, clusters of high- and low-efficiency pipes are located on two opposite

corners of the plot, and, when considered in conjunction with mono-plots, reveal combinations of

hydraulic parameters that would more directly point towards these clusters. The hydraulic parameters

of unit headloss and average flow, which are more explicitly involved in mathematical definitions of

energy metrics, would serve best in the absence energy metrics.

Overall, energy dynamics along with risk assessment, pipe break rates and age, and water quality,

can help to prioritize the replacement and rehabilitation of pipes and should be considered as part

of the bigger picture to improve overall water distribution system asset performance. This study has

identified several metrics and parameters that could be useful for this purpose moving forward.
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