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Abstract. Haemodynamics is believed to be a crucial factor in the
aneurysm formation, evolution and eventual rupture. The 3D blood flow
is typically derived by computational fluid dynamics (CFD) from patient-
specific models obtained from angiographic images. Typical quantitative
haemodynamic indices are local. Some qualitative classifications of global
haemodynamic features have been proposed. However these classifica-
tions are subjective, depending on the operator visual inspection.
In this work we introduce an information theoretic measurement of the
blood flow complexity, based on Shannon’s Mutual Information, named
Interlacing Complexity Index (ICI). ICI is an objective quantification of
the flow complexity from aneurysm inlet to aneurysm outlets. It measures
how unpredictable is the location of the streamlines at the outlets from
knowing the location at the inlet, relative to the scale of observation.
We selected from the @neurIST database a set of 49 cerebral vascu-
latures with aneurysms in the middle cerebral artery. Surface models
of patient-specific vascular geometries were obtained by geodesic active
region segmentation and manual correction, and unsteady flow simula-
tions were performed imposing physiological flow boundary conditions.
The obtained ICI has been compared to several qualitative classifications
performed by an expert, revealing high correlations.

Keywords: Aneurysms, CFD, haemodynamics, flow complexity, Mu-
tual Information

1 Introduction

Aneurysms are pathologic dilations of the vessel wall. Prevalence of intracra-
nial aneurysms (IA) is estimated to be between 2 and 5% [12] and their even-
tual rupture typically causes subarachnoid haemorrhage, resulting in high rates
of morbidity and mortality. Different indicators of their natural evolution have
been investigated based on diverse factors, including genetics, clinical conditions,
aneurysm size and morphology, and aneurysm haemodynamics. Haemodynam-
ics is believed to be a crucial factor in the aneurysm formation, evolution and
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eventual rupture [9, 14]. For cerebral aneurysms, in vivo flow measurements with
detailed resolution is unfeasible. Thus, the 3D blood flow is usually derived by
computational fluid dynamics (CFD) from patient-specific models obtained by
segmentation of angiographic images. From the time-varying blood flow field,
v(x, t), derived local quantities, such as wall shear stress, dynamic pressure and
vorticity, are typically computed as local quantitative haemodynamic indices.
For visualization purposes, also some loci are obtained, such as iso-velocity sur-
faces and streamlines. This allows to obtain a global qualitative impression or
a subjective classification of the flow pattern, which has led to the definition of
global haemodynamic indices such as flow pattern, flow complexity, flow stabil-
ity, or recirculation zones. However, these indices are subjective, depending on
operator visual inspection [4]. Objectively quantifying the flow complexity in IAs
would eliminate the inter-observer variability and the need for flow visualization.

For general flows, complexity is related to the concept of chaos [19, 1], which
has been studied from the perspective of dynamical systems and ergodic theory
[7]. However, the derived flow complexity measures, such as Lyapunov exponents
and Kolmogorov–Sinai entropy, are not feasible to study the aneurysmal flow.
Whereas the blood flow transport through a vascular region of interest takes a
finite time from inlet to outlet, those measures characterize flows infinitely prop-
agated in time, or flows in periodic geometries [20, 5]. An alternative approach is
focused in quantifying chaotic mixing [6, 16]. None of them is directly applicable
to aneurysm since they consider the mixing of a two-phase fluid, or are only
defined for flows in a closed container, without inlets and outlets.

Here, we introduce the Interlacing Complexity Index (ICI) as a measure of the
complexity of a flow due to the chaotic mixing in the transport from inlet to out-
let. This enables to apply it to the flow complexity quantification in aneurysms.
ICI is inspired by communication theory [15], which deals with information flow
as opposed to fluid flow. A communication system involves a transmitter, a re-
ceiver, and a communication channel. We can recognize parallel roles in those of,
respectively, the inlet, the outlet, and the flow transport between them (Fig. 1).
A position at the inlet (transmitted message) is connected by a flow streamline
(channel) to a corresponding position at the outlet (received message), observed
at a particular scale (noise). Shannon’s mutual information (MI) measures the
amount of information effectively communicated. Thus, the more complex the
flow, the lower the ability to discriminate the outlet position by knowing the
inlet position, and the smaller the MI. The ICI is a function of the observation
scale, defined as the normalization of this MI, so that ICI = 0 for the simplest
parallel flow and ICI → 1 for a very complex flow.

2 Interlacing Complexity Index

2.1 Natural Distribution of Streamlines

Let us consider any portion of the vascular system. Typically, it would have a
tree structure. Thus, there would be one blood flow inlet and several outlets. But
several inlets are also posible in the Circle of Willis. The flow at each instant t is
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Fig. 1. Inlet-outlet flow system analogy to a communication system.

given by a vector field, v(x), representing the local fluid speed. The congruence

of streamlines, Γ , at one instant is the set of lines generated by integrating this
vector field. We can then assign to each streamline, γ, its Cartesian coordinates
when crossing the inlet, xIn(γ), or the outlet, xOut(γ). We define the natural

distribution of streamlines as the one given by the probability density

p(xIn) =
v(xIn) · n̂(xIn)

∫

In
v(xIn) · n̂(xIn) dxIn

(1)

or the corresponding expression for the outlet. Here n̂ denotes the normal vector
at any point of the inlet or the outlet. For incompressible flows, the obtained
distribution of streamlines (denoted symbolically by p(γ)) is invariant to it being
generated at the inlet or the outlet.

2.2 Scale-Dependent Mutual Information

To compute the MI between location at inlet, xIn, and outlet, xOut, connected
by the same streamline, we must define their joint probability distribution,
p(xIn,xOut). For an infinite-precision localization of points, this would produce
Dirac deltas, which will result in infinite MI. Thus, we introduce a scale of ob-
servation, s, and a corresponding Gaussian point spread function (PSF) defining
conditional probability densities at the inlet, ps(xIn | γ), and outlet, ps(xOut | γ),
with standard deviations proportional to the area-equivalent radius, σ = sR, of
inlet and outlet, respectively. This provides the joint probability density

ps(xIn,xOut) =

∫

Γ

ps(xIn | γ) ps(xOut | γ) p(γ) dγ . (2)

From this we can compute the MI

Is =

∫

Inlet

dxIn

∫

Outlet

dxOut ps(xIn,xOut) log

(

ps(xIn,xOut)

ps(xIn) ps(xOut)

)

, (3)
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Fig. 2. Example of a subset of streamlines around one outlet point and their corre-
sponding points at the inlet, displaying an elongated and complex pattern.

which is a function of the scale s.

2.3 Interlacing Complexity Index

The ICI is defined as a normalized distance based on MI, analogous to dmax =
1− NMImax for discrete variables [8]:

ICI s = 1−
Is

max
{

I
(In)
s , I

(Out)
s

}

. (4)

Here, the inlet self MI, I
(In)
s , is the MI corresponding to the probability density

ps(xIn,x
′

In) =

∫

Γ

ps(xIn | γ) ps(x
′

In | γ) p(γ) dγ , (5)

and analogously for the outlet I
(Out)
s . Thus, ICI is expected to be in the range

[0, 1], with ICIs = 0 for a perfectly laminar parallel flow, and ICIs → 1 for a
very complex flow.

3 Numerical Estimation of ICI in Aneurysms

3.1 Blood Flow Simulation from Patient-Specific Vasculatures

3D Rotational Angiography (3DRA) images of the cerebral vasculature from
49 patients including an aneurysm in the Middle Cerebral Artery (MCA) have
been selected from the @neurist database [17]. A surface model of the patient-
specific vascular geometry is obtained with the Geometric Active Region (GAR)
segmentation [2] and manually corrected using the suite @neufuse [17]. The
vasculature of interest includes at least 12 vessel diameters upstream and 4 vessel
diameters downstream from the aneurysm, clipped with planes perpendicular to
the vessel centerline. Unstructured volumetric meshes have been created using
an octree approach with ICEM CFD 13.0 (ANSYS, Canonsburg, PA, USA),
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composed of tetrahedral elements with side length 0.24mm and three layers of
prism elements at the wall with total height of 0.08mm and side length 0.12mm.
Unsteady flow simulations have been performed with CFX 13.0 (ANSYS) for
incompressible Newtonian fluid with viscosity µ = 3.5mPa s and density ρ =
1066 kg m−3 (typical values for blood) and imposing rigid walls and flow rate
(inlet) and pressure waveforms (outlets) extracted from a one-dimensional model
of all the large arteries in the human body [11], for a cardiac cycle of period 0.8 s.

3.2 Inlet and Outlet Selection

To evaluate the complexity introduced in the blood flow due to the presence
of the aneurysm, inlet and outlets have been automatically selected as cross-
sections perpendicular to the vessel centerline at around one vessel diameter
from the aneurism neck, following the same criterion introduced in [10].

3.3 Streamlines Generation and ICI Estimation

The streamlines at two physiologically relevant cardiac phases: peak systole (PS)
and end diastole (ED), have been integrated from the flow velocity field using
4th order Runge–Kutta algorithm, implemented in the Visualization ToolKit
library [18]. Congruences of N streamlines have been generated by selecting N

seed points according to the natural distribution (1).
The integrations (3) required for Is, I

In
s
, and IOut

s
have been computed by

Monte Carlo [13], using uniform samplings of M points in both the inlet and the
outlet. From them, ICI s was computed as defined by (4).

4 Experiments

4.1 Algorithm Accuracy and Precision Evaluation

To estimate the algorithm precision and accuracy we have selected a random
subset of 10 aneurysms, considering their ICI s at peak systole. We have con-
sidered as ground-truth, the values obtained with N = 100k streamlines and
M = 50k points, which is in the limit of the feasible computation. ICI s has been
also computed for N = 5k, 10k, 20k, 50k and M = 2k, 5k, 10k, 20k, instantiated
twice for each combination. For each scale, the signed error is given by the differ-
ence with respect to the ground truth, εs = ICI s−ICI (GT)

s
. Table 1 presents the

estimated accuracy and precision for 3 different settings for N and M , where the
accuracy is quantified by the mean signed error, ε, and the precision by twice its
standard deviation, 2σε, representing approximately the 95% confidence interval
(ε± 2σε).

Both accuracy and precision increase with the number of streamlines (N) and
with the number of points (M). From the obtained values, a reasonable selection
seems to be N = 20k and M = 5k, involving an acceptable mean computational
time of 5 minutes per case.
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Table 1. Accuracy (ε) and precision (2σε) of ICI s for 3 scales and 3 settings of N and
M . The values are expressed as ε± 2σε (approximate 95% confidence interval).

N=5k,M=2k N=20k,M=5k N=50k,M=20k

s = 1/3 0.001± 0.032 0.002± 0.012 0.001± 0.008
s = 1/10 −0.005± 0.010 0.000± 0.006 0.000± 0.003
s = 1/20 −0.018± 0.022 −0.003± 0.007 −0.001± 0.003
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Fig. 3. Distribution of ICI across MCA aneurysms at PS and ED.

4.2 Distribution of ICI in the Population of Aneurysms

The values of ICI 1⁄10 across the sample of aneurysms at PS and ED are displayed
in Fig. 3. The values spread quite homogeneously across the ICI range, and
the complexity at PS and ED are clearly separated for most cases. This result
evidences that ICI is a sensitive measurement of flow complexity in aneurysms.
In general, the ICI obtained for PS is larger than the one obtained for ED, but
the opposite behaviour is also observed.

4.3 Comparison with Subjective Flow Complexity and Stability

For each aneurysm, the flow field has been qualitatively assessed by an expert,
through visual inspection of the streamlines, according to 2 qualitative variables
[3, 4]: flow complexity (simple or complex), assessed at PS, and flow stability
(stable or unstable) assessed by comparing the flow patterns at PS and ED.

We have investigated the correlation of the proposed quantitative ICI with
these subjective qualitative classifications. Fig. 4 shows a box-plot of ICI 1⁄10 at
PS compared to flow complexity and a box-plot of the absolute value of the
difference between ICI 1⁄10 at PS and ED compared to flow stability. The classes
are not exactly recovered, since some overlap is observed, but highly statistically
significant differences were obtained with the non-parametric Mann–Whitney U

test (flow complexity: p = 9 × 10−3; flow stability: p = 5 × 10−4). This result
supports that ICI is related with these subjective classifications, providing a
meaningful biomarker.



Title Suppressed Due to Excessive Length 7

●

Simple       Complex

IC
I (

s=
1/

10
)

Flow Complexity

0.2

0.4

0.6

0.8

**

●

Stable       Unstable

IC
I 1

10
(P

S
)−

IC
I 1

10
(E

D
)

Flow Stability

0.00

0.05

0.10

0.15

***

Fig. 4. Correlation of ICI with the subjective flow classifications. The significant
difference between each pair of categories is assessed by non-parametric Mann–Whitney
U test. ∗∗ (p < 0.01), ∗∗∗ (p < 0.001).

5 Conclusions

In this paper, we have introduced the interlacing complexity index (ICI), in-
spired in information theory, as an objective measure of the flow complexity for
vasculatures with aneurysms. The behaviour of ICI has been tested with numer-
ical experiment on a dataset of MCA aneurysms. The estimation of ICI from
finite samples of streamlines has shown good accuracy and precision. The results
indicate that ICI provides a sensitive flow complexity measure, discriminating
across the population of aneurysm and between ED and PS, with an intuitive
interpretation, and in agreement with subjective classifications. This supports
the potential of ICI as biomarker for the natural evolution of aneurysms, and to
quantify differences in follow-ups and between treatment options. For instance
ICI could quantify how aneurysm growth or flow diverter treatment affects flow
complexity.

ICI has been compared with subjective classifications, which inherently en-
tails some variability and can be affected by the visualization of only a limited
number of streamlines. In its turn, ICI can be affected by the pre-processing
steps for flow simulation. These relevant factors will be considered in subsequent
studies.
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1. Aref, H., Blake, J.R., Budǐsić, M., Cartwright, J.H.E., Clercx, H.J.H., Feudel, U.,
Golestanian, R., Gouillart, E., Guer, Y.L., van Heijst, G.F., et al.: Frontiers of
chaotic advection. arXiv preprint arXiv:1403.2953 (2014)
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