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Abstract: Circadian rhythms allow an organism to synchronize internal physiological responses to 
the external environment. Perception of external signals such as light and temperature are critical 
in the entrainment of the oscillator. However, sugar can also act as an entraining signal. In this 
work, we have confirmed that sucrose accelerates the circadian period, but this observed effect is 
dependent on the reporter gene used. This observed response was dependent on sucrose being 
available during free-running conditions. If sucrose was applied during entrainment, the circadian 
period was only temporally accelerated, if any effect was observed at all. We also found that 
sucrose acts to stabilize the robustness of the circadian period under red light or blue light, in 
addition to its previously described role in stabilizing the robustness of rhythms in the dark. 
Finally, we also found that CCA1 is required for both a short- and long-term response of the 
circadian oscillator to sucrose, while LHY acts to attenuate the effects of sucrose on circadian 
period. Together, this work highlights new pathways for how sucrose could be signaling to the 
oscillator and reveals further functional separation of CCA1 and LHY. 

Keywords: circadian rhythm; sucrose; CCA1; LHY; pathway 
 

1. Introduction 

Circadian clocks are endogenous timekeepers that coordinate internal physiological responses 
to the predicted external environment. In Arabidopsis, 30% of the transcriptome is circadian 
regulated, and this includes processes such as metabolism, the induction of flowering, growth, 
responsiveness to hormones, and biotic and abiotic stress [1–8]. Consequently, having an internal 
oscillator that closely matches external time enhances plant fitness [9]. Studies that investigated 
responsiveness to periodic stress cues or metabolism have highlighted the importance of metabolic 
oscillations in the regulation of circadian rhythms [3,10]. It has been proposed that endogenous 
timekeepers not only predict external stress cues but also provide the basis for temporal segregation 
between incompatible cellular metabolic processes that would otherwise be energetically futile and 
stressful [7,8,11,12]. 

Plant circadian rhythms are generated through a series of transcriptional-translational loops. At 
the center of the oscillator is a repressive feedback loop formed between the morning expressed 
MYB transcription factors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED 
HYPOCOTYL (LHY) and the night-phased TIMING OF CAB EXPRESSION 1 (TOC1), also known as 
PSEUDO RESPONSE REGULATOR 1 (PRR1) [13–15]. This core loop is subsequently regulated by a 
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series of morning and evening loops. In the morning, sequential expression of PRR9/7/5 starting 
with PRR9 just after dawn results in the repression of CCA1/LHY expression throughout the day 
and early evening [16]. At dusk, GIGANTEA (GI) and ZEITLUPPE (ZTL) co-associate to degrade 
TOC1 [17,18], and the evening complex, composed of EARLY FLOWERING3, EARLY 
FLOWERING4, and LUX ARRYTHMO (LUX), represses the expression of GI, LUX, PRR9, and PRR7 
[19]. 

The entrainment of the oscillator occurs through perception of external cues such as light and 
temperature [20–22] but also through internal cues signals such as sucrose availability [8,23]. It has 
been previously shown that sucrose application shortens the circadian period, but this effect is 
dependent on the light level used [10,24,25]. Conversely, inhibition of photosynthesis either through 
growth in a CO2-free environment or by inhibiting photosystem II activity through 
3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) treatment results in lengthening of the 
free-running period [10]. 

Some of the mechanisms through which sucrose regulates the oscillator have been recently 
uncovered. In response to low sugar levels, the bZIP63 transcription factor directly promotes the 
expression of PRR7 to promote the repression of CCA1 [10,26]. bZIP63 activity is subsequently 
regulated by the sugar-sensing kinase SUCROSE NON-FERMENTING RELATED KINASE 1 
(SnRK1) [27]. In the absence of any one of these components, the oscillator becomes insensitive to 
pulses of sucrose, highlighting the importance of these factors in sucrose-mediated entrainment of 
the oscillator [26]. The perception of sucrose availability may occur through the perception of the 
sugar-signaling molecule TREHALOSE 6-PHOSPHATE. Mutations within the Tre6P synthesis 
enzyme TREHALOSE-6-PHSOPHATE SYNTHASE1 (TSP1) result in insensitivity of the oscillator to 
sucrose [26]. Alongside this pathway, AKIN10, a sub-unit of SNRK1, also regulates the phase of GI 
expression through interactions with TIME FOR COFFEE (TIC) [28–31]. Additionally, 
PHYTCHROME INTERACTING FACTORS (PIFs) controls the expression of CCA1/LHY in a 
sucrose-mediated entrainment pathway [32]. This pathway is dependent on light and temperature, 
highlighting the intersection of external and internal cues in providing robust oscillations [33]. 
Separately to entrainment, sucrose also controls the amplitude and stability of circadian rhythms by 
stabilizing GI [25,34]. Sucrose therefore has multiple input pathways to regulate not only the period 
and phase of the oscillator but also its stability. 

To examine how sucrose is signaling to the oscillator, here multiple luciferase reporter genes 
were analyzed with or without sucrose under free-running conditions. Our work confirms previous 
work that found sucrose does shorten the circadian period, and this process is dependent on sucrose 
being available under free-running conditions. Moreover, we found that the oscillator is highly 
responsive to sucrose availability, and shortening of the free-running period is observed with 
concentrations of sucrose as low as 0.5% w/v. We also observed that sucrose stabilizes circadian 
oscillations under free-running conditions in the light, complementing the previously observed role 
of sucrose in supporting circadian rhythms in the dark. Finally, we identified a role for GI in a 
blue-light-dependent sucrose signaling pathway, and we also identified noncomplementary roles of 
CCA1 and LHY in sucrose-mediated regulation of the oscillator. 

2. Methods 

2.1. Plant Material 

Circadian rhythmicity was monitored using the promoter::luciferase system (Southern and 
Millar, 2005). The Col-0 GI::LUC and Ws-2 CAB2::LUC lines have been previously described [35–37]. 
The cca1-11, lhy-21, and cca1-11/lhy-21 CAB2::LUC mutants have also been described previously [36]. 
CCA1::LUC and GI::LUC were introgressed into the gi-11 mutant [38] through crossing. gi-11 
CCA1::LUC and gi-11 GI::LUC were then self-fertilized until stable lines were obtained. 
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2.2. Growth Conditions and Luciferase Imaging 

Seeds were surface-sterilized and sown onto MS medium containing 3% w/v sucrose or no 
sucrose as indicated, and then stratified at 4 °C for 3 days. Seedlings were entrained for seven days 
under 12 h light/12 h dark photoperiods (white light at 100 µmol m−2 s−1) and a constant temperature 
of 22 °C. On day six, seedlings were transferred to 96-well imaging microtiter plates (Perkin Elmer, 
Juegesheim, Germany) containing 3% w/v sucrose or no sucrose as indicated and re-entrained for a 
further day before being transferred to the TOPCOUNT (Perkin-Elmer (Perkin-Elmer-Cetus), 
Norwalk, CT, USA). TOPCOUNT experiments were carried out under a constant temperature of 21 
°C and either constant blue or constant red light as stated in text. Data were analyzed as previously 
described [20,21,39]. 

3. Results 

3.1. Confirmations That Sucrose Regulates Free-Running Period of the Oscillator 

To explore the effects of sucrose on the oscillator, seedlings expressing GI::LUC (Col-0) or 
CAB2::LUC (Ws-2) were examined under free-running conditions in the presence or absence of 3% 

w/v sucrose with either monochromatic blue light (BL) or red light (RL) [14]. In both backgrounds, 
the free-running period (FRP) of GI::LUC decreased when sucrose was applied as previously 
reported (Figure 1 and Figure S1) [10,25]. Similarly, CAB2::LUC (assayed only under BL) also had an 
accelerated period, but this was limited to only the first time window of free-running conditions. In 
subsequent time windows, CAB2::LUC FRP returned to ~26 h, highlighting a temporal effect of 
sucrose on this reporter gene (Figure 2, Figure S1). 

 

 

Figure 1. The effect of sucrose on rhythmic expression of the luciferase marker GI::LUC. The 
free-running period of GI::LUC seedlings (Col-0) under either monochromatic blue light (BL) (A,C,E) 
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or red light (RL) (B,D,F). Panels (A,B) shows the time-course of average luminescence from 
representative experiments, while panels (C,D,E) and (F) show combined data from the independent 
experiments conducted as described above (six experiments under BL and three under RL). Under 
RL fast Fourier transform (FFT) analysis was performed during the time windows 06–101 h (1st-tw), 
31–126 h (2nd-tw), and 56–151 h (3rd-tw) (beginning of free run was initiated at 0 h, as indicated in 
the figures). Under BL, FFT analysis was performed during the time windows 06–96 h (1st-tw) and 
31–121 h (2nd-tw). Error bars represent standard error (SE). In (E) BL and (F) RL, the relative 
amplitude error (RAE) and circadian period are paired for all plants that generated an FFT output 
(RAE < 0.9; see Methods); in these graphs, the closer a population is to the origin, the more robustly it 
oscillates. 

 

 

Figure 2. The effect of sucrose on rhythmic expression of the luciferase marker CAB2::LUC. 
CAB2::LUC (Ws-2) seedlings were either entrained in the presence or absence of 3% w/v sucrose and 
then moved to media with or without 3% w/v sucrose during free-running conditions (constant BL). 
(A) Analysis of periodicity in successive time windows of Ws-2 plants under different entrainment 
and free-running sucrose percentages. (B) As in Figure 1, the RAE and circadian period are paired for 
all plants that generated an FFT output (RAE < 0.9) under the different sucrose availabilities during 
entrainment or under free-running conditions. Error bars represent SE. FFT analysis was conducted 
as described in Figure 1 for the respective light conditions. 

Alongside accelerating the circadian period, we also observed that the presence of sucrose acted 
to stabilize the circadian period and the accuracy of these rhythms under free-running conditions. In 
the absence of sucrose, the FRP of GI::LUC (Col-0) and CAB2::LUC (Ws-2) gradually accelerated over 
successive free-running time windows, and there was an increase in the relative amplitude error 
(RAE), which measures the accuracy of circadian oscillations (Figures 1 and 2, Figure S1). This 
observed effect occurred independently of the prevailing light conditions. By contrast, seedlings 
treated with sucrose retained a consistently accelerated period, and RAE either stayed stable or 
decreased (rhythms became more accurate) for both GI::LUC (Col-0) or CAB2::LUC (Ws-2) (Figures 1 
and 2, Figure S1). Therefore, sucrose accelerates FRP and stabilizes circadian rhythms under 
free-running conditions, although there is a reporter gene effect in some instances. 
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3.2. The Oscillator Dynamically Responds to Sucrose under Free-Running Conditions 

To determine if the observed effects of sucrose was caused by exposure when entrained or if the 
oscillator was dynamically responding to sucrose availability, plants were either entrained on media 
containing 0% w/v sucrose or 3% w/v sucrose and then moved to free-running conditions with 
media either containing 0% or 3% w/v sucrose. All experiments were carried under BL as BL results 
in the most stable rhythms under free-running conditions [40]. When sucrose was applied only 
during free-running conditions, there was a shortening of CAB2::LUC FRP (Figure 2A,B). However, 
in seedlings only exposed to sucrose during free-running conditions, FRP shortened more than 
when seedlings were exposed to sucrose during both entrainment and free-running conditions. 
Furthermore, seedlings only exposed to sucrose during free-running conditions did not display the 
temporal effect of sucrose on CAB2::LUC FRP (Figure 2A,B). Conversely, seedlings exposed to 
sucrose only during entrainment had a longer FRP than seedlings exposed to sucrose during 
free-running conditions. 

As with the effect of sucrose on FRP, the ability of sucrose to stabilize circadian oscillations over 
successive free-running windows was also dependent upon sucrose being present during 
free-running conditions (Figure 2A,B). Prior exposure during entrainment was not sufficient for 
sucrose to stabilize circadian oscillations. Similar results were also obtained for GI::LUC (Col-0) for 
both the effect of sucrose on accelerating FRP and stabilizing the oscillator (Figure 1C,E, Figure S1). 
However, we did observe that GI::LUC seedlings exposed to sucrose only during entrainment had a 
quicker FRP than seedlings never exposed to sucrose. This effect was temporal and restricted to the 
first-time window of the experiment. In later time windows, the period of the two sets of seedlings 
became similar (Figure 1C, Figure S1). This would suggest that sucrose is dynamically regulating 
both periodicity and stabilizing FRP periodicity but may have distinct short- and long-term effects as 
highlighted previously [25]. 

3.3. GI Has a Light Dependent Sucrose Phenotype 

Sucrose has been recently shown to signal directly to the oscillator by stabilizing GI to maintain 
robust oscillations during the dark [34]. To determine if GI was also involved in any light-dependent 
responses of sucrose, the response of gi-11 to sucrose was examined under constant BL or RL. As 
described previously, gi-11 GI::LUC (assayed under RL) or gi-11 CCA1::LUC (assayed under BL) with 
or without exposure to sucrose had weaker circadian rhythms when compared to wild type, 
although sucrose did increase the amplitude and robustness of these rhythms for a limited period of 
time (Figure 3A,B, Figure S2) [41]. Wild-type seedlings displayed a consistent response to sucrose 
regardless of the light conditions or reporter gene used as described earlier (Figure 3A,B). By 
contrast, gi-11 had distinct response to sucrose depending on whether BL or RL was used during 
free-running conditions. For BL, gi-11 seedlings grown in the presence of 3% w/v sucrose containing 
media had a longer circadian period than gi-11 seedlings grown in the absence of sucrose (Figure 
3C,D, Figure S2). By contrast, we found that gi-11 under RL displayed a wild-type response to 
sucrose in both the acceleration of free-running period and the stabilization of circadian rhythms 
over successive time windows (Figure 3A,B). However, in the absence of sucrose, gi-11 GI::LUC FRP 
under RL did not accelerate over successive time windows but instead de-accelerated (Figure 3A,B, 
Figure S2). As wild type responded consistently to BL and RL regardless of the reporter gene used, it 
would suggest that GI has a blue-light dependent role in sucrose signaling to the oscillator. 
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Figure 3. The effect of sucrose on oscillations in the gi-11 mutant. The effect of sucrose on gi-11 

GI::LUC (A) or gi-11 CCA1::LUC (C) oscillations under constant red light or constant blue light, 
respectively. (B) The paired RAE and circadian period of all plants under the different sucrose 
regimes, calculated as described in Figures 1 and 2. (D) Periodicity estimates of (C). Error bars 
represent SE. Two independent experiments were performed for each respective light condition. 
Representative experiments are shown in (A,C), while panels (B,D) show combined data from the 
independent experiments. 

3.4. CCA1 and LHY Have Functionally Distinct Roles in Sucrose Signaling to the Oscillator 

CCA1/LHY have been previously linked to sucrose signaling indirectly through a PIF 
metabolic-entrainment pathway, and separately through sugar-dependent regulation of PRR7 
[10,32]. To determine if CCA1/LHY could have a direct role in sugar signaling, the response of 
cca1-11, lhy-21, and cca1-11/lhy-21 mutants (all harboring CAB2::LUC) to sucrose was examined. The 
FRP of the respective mutants was firstly examined under RL across two consecutive free-running 
windows with varying concentrations of sucrose. As before, sucrose accelerated the FRP of 
CAB2::LUC (Figure 4A,B). This quickening of FRP occurred at even the lowest tested percentage of 
sucrose (0.5%), and there was an additive effect of increasing the percentage of sucrose on 
shortening FRP (Figure 4A,B). However, at higher percentages of sucrose, there was a decline in the 
magnitude of effect sucrose caused on FRP. Across all percentages of sucrose, the FRP remained 
stable across the two time windows, while the FRP of non-treated seedlings decreased as observed 
previously for CAB2::LUC (Figures 2 and 4A,B). As with wild-type plants, sucrose decreased the 
period of lhy-21, and this occurred in a sucrose percentage dependent manner. By contrast, cca1-11 
was insensitive to sucrose application; across all tested concentrations of sucrose, there was no 
decrease in FRP for the first-time window and there was only a slight decrease at 2% sucrose in the 
second-time window. In the presence of sucrose, cca1-11/lhy-21 mutants only had detectable 
oscillations for the 1st time window of free-running conditions before becoming arrhythmic as 
previously described [15]. During the first-time window, the FRP of cca1-11/lhy-21 responded to the 
sucrose gradient as was seen in wild type and lhy-21, but surprisingly, at 3% sucrose, the FRP 
increased (Figure 4A,B). 
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Figure 4. The effect of sucrose on oscillations of the CAB2::LUC marker in cca1-11, lhy-21, and 
cca1-11/lhy-21. (A,B) The free-running period of cca1-11, lhy-21, or cca1-11/lhy-21 mutant harboring 
CAB2::LUC was examined across a sucrose gradient in two consecutive time windows under 
constant RL. Data were analyzed as described in Figure 1. (C,D) The free-running period of cca1-11 
(C) or lhy-21 (D) under constant blue light was examined across two consecutive time windows. 
Seedlings were entrained with or no 3% w/v sucrose and then moved to media containing no or 3% 

w/v sucrose during free-running conditions. Data were analyzed as described in Figure 1. Error bars 
for (A–D) are standard error. Data represent the average of two independent experiments for both 
respective light conditions. 

As GI had a distinct response to sucrose depending on whether BL or RL was used, we looked 
to see if cca1-11 or lhy-21 also responded to sucrose differently depending on the light condition 
used. Plants were either entrained with or without 3% w/v sucrose and then transferred to 
free-running conditions (constant BL) with or without 3% w/v sucrose. As for RL, cca1-11 seedlings 
exposed to BL were insensitive to sucrose application during the first-time window regardless of 
when plants were first exposed to sucrose (Figure 4C,D). However, during the second time window, 
cca1-11 responded similarly to wild-type; seedlings exposed to sucrose during entrainment and 
under free-running conditions had an increase in CAB2::LUC FRP, while seedlings only exposed to 
sucrose during free-running conditions had no change in CAB2::LUC FRP when compared to the 
first time window (Figure 4C,D). As was seen for RL, sucrose supplied under free-running 
conditions shortened lhy-21 FRP, but lhy-21 was hypersensitive to the period shortening effects of 
sucrose compared to wild type. lhy-21 seedlings exposed to sucrose during entrainment but not 
under free-running conditions also had a much shorter period compared to lhy-21 seedlings never 
exposed to sucrose, as was seen previously for wild-type GI::LUC (Figures 1 and 4A,B). Such a 
response was not seen in wild-type CAB2::LUC seedlings (Figures 2B and 4D). By the second time 
window, this response was no longer observed, as was the case for GI::LUC before (Figures 1 and 
4D). CCA1 and LHY therefore seem to have functionally independent roles to sucrose signaling to 
the oscillator. 
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4. Discussion 

It has become established that sucrose has a critical role in regulating the period and phase of 
the Arabidopsis oscillator. We have confirmed that sucrose application shortens the circadian period 
and also shown that the magnitude of this effect is dependent on the reporter gene analyzed. For 
GI::LUC, sucrose “permanently” shortened FRP across the length of the experiment, and this occurs 
regardless of the Arabidopsis background used (Figure 1, Figure S1). However, for CAB2::LUC, 
when sucrose is supplied during entrainment and under free-running conditions, FRP is only 
shortened during the first time window. This effect is not seen when sucrose is supplied exclusively 
during free-running conditions with FRP becoming consistently accelerated across the experiment 
(Figure 2, Figure S1), highlighting a short- and long-term response of CAB2::LUC to sucrose. The 
mechanism regulating these distinct processes is still not fully clear [25]. 

We have also shown that sucrose acts to stabilize the circadian oscillator across consecutive 
windows of free-running conditions (Figures 1, 2, and 4, Figure S1). Regardless of the reporter gene 
used, FRP gradually decreased if sucrose was absent under free-running conditions and RAE 
increased. Exposure to sucrose during entrainment was not necessary for the buffering effect to be 
observed, suggesting that sucrose is dynamically stabilizing the oscillator rather than fixing the 
oscillator in a stable state during entrainment. It has been previously shown that sucrose stabilizes 
circadian rhythms during the dark, and this was dependent on GI [25]. However, our experiments 
were carried out under BL or RL, and we did not observe a requirement for GI. In fact, GI under RL 
promotes the gradual acceleration of FRP (Figure 4B, Figure S2). This suggests that sucrose acts to 
stabilize the oscillator both in the light and in the dark, and this effect is regulated through two 
separate pathways. 

It has been recently proposed that the Arabidopsis oscillator is not fixed but dynamically 
responds to both external and internal stimuli [23,42]. Our work here further supports such a fluid 
nature. When no sucrose was supplied during entrainment but then applied during free-running 
conditions, FRP shortened to the same extent as plants that have been entrained with sucrose 
(Figures 1–4, Figures S1 and S2). Conversely, if sucrose was applied during entrainment but then 
removed under free-running conditions, FRP was not shortened and remained similar to plants 
never exposed to sucrose. However, in some instances, there seemed a prior memory of exposure of 
sucrose application (Figures 1 and 4). The memory of sucrose was temporal and by the second time 
window, there was no or little difference in the FRP between the two treatment groups. This effect 
was also dependent on the reporter gene, highlighting again short- and long-term responses of 
circadian genes to sucrose availability. The oscillator also shows high sensitivity to sucrose, with 
concentrations as low as 0.5% w/v being sufficient to not only accelerate FRP but also to stabilize the 
circadian period under free-running conditions. Therefore, the effect of sucrose on the oscillator is 
not fixed but instead remains highly responsive to even low quantities of sucrose as availability 
fluctuates. 

The pathways through which sucrose signals to the oscillator have begun to be uncovered. The 
sugar-responsive transcription factor bZIP63 directly regulates PRR7, sucrose stabilizes GI in the 
dark, and AKIN10 and TIC form an input pathway to regulate the phase of GI expression [26,28,34]. 
CCA1/LHY have been previously linked to sucrose signaling indirectly, either as a target of a PIF4 
metabolic signaling pathway, or separately as a target of the SnRK1/bZIP63/PRR7 signaling module 
[32,34]. Here we found that CCA1 and LHY have direct but potentially independent roles in sucrose 
signaling to the oscillator. For both proteins, the effects of sucrose are dependent on the light 
condition. Under RL, cca1-11 mutants are insensitive to sucrose-mediated shortening of FRP at most 
percentages across multiple time windows (Figure 4A,B). By contrast, under BL, cca1-11 is 
insensitive to the effects of sucrose during the first time window but does respond to sucrose during 
the second time window in a similar manner to wild type (Figure 4C,D). This would therefore 
suggest that CCA1 forms part of a long-term, red-light dependent sucrose-signaling pathway but for 
BL is only part of a short-term signaling pathway. By contrast, LHY acts to restrict the effects of 
sucrose on the oscillator under BL across multiple time windows, indicating that LHY acts in a 
long-term signaling pathway. Additionally, LHY may also contribute to a short-term pathway, as lhy 
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mutants have a much shorter period when exposed to sucrose only during entrainment compared to 
seedlings never exposed to sucrose (Figure 4). However, lhy mutants displayed a wild-type response 
under RL. CCA1 and LHY have conventionally been viewed as a singular component within the 
Arabidopsis clock, but independence has been highlighted in both temperature compensation and 
entrainment of the oscillator [38,43]. However, it remains unclear how these two highly similar 
proteins could be acting separately. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/10/5/334/s1, Figure 
S1: The effect of sucrose on accuracy and periodicity of different luciferase markers in different ecotypes, Figure 
S2: Sucrose has a light specific effect in the gi-11 background. 
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