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Abstract We use paleoecological techniques to investigate how Canadian High Arctic wetlands
responded to a mid‐twentieth century increase in growing degree days. We observe an increase in
wetness, moss diversity, and carbon accumulation in a polygonmire trough, likely related to ice wedge thaw.
Contrastingly, the raised center of the polygon mire showed no clear response. Wet and dry indicator testate
amoebae increased concomitantly in a valley fen, possibly relating to greater inundation from snowmelt
followed by increasing evapotranspiration. This occurred alongside the appearance of generalist hummock
mosses. A coastal fen underwent a shift from sedge to shrub dominance. The valley and coastal fens
transitioned from minerogenic to organic‐rich wetlands prior to the growing degree days increase. A
subsequent shift to moss dominance in the coastal fen may relate to intensive grazing from Arctic geese. Our
findings highlight the complex response of Arctic wetlands to warming and have implications for
understanding their future carbon sink potential.

Plain Language Summary The response of Arctic wetland ecosystems and carbon stores to
climate change is uncertain. We investigate the response of wetland ecosystems in the Canadian High
Arctic to twentieth century climate warming. We use proxies for changes in vegetation (plant macrofossils)
and wetness (testate amoebae) preserved in the wetland soil in combination with radiocarbon dating to
reconstruct the past ecology of these wetlands. This approach allows us to explore beyond the timeframe of
monitoring studies. Our results suggest that wetland type is an important determinant of the response of
ecological, hydrological, and soil carbon accumulation to climate warming. Our findings highlight the clear
but complex response of Arctic wetlands to twentieth century warming. This has important implications for
understanding the future carbon sink potential of these ecosystems.

1. Introduction

Climate warming over the last century has been greatest in the Arctic and is projected to continue in the 21st
century at a rate above the global average (Christensen et al., 2013). Arctic warming is causing widespread
permafrost thaw (Jorgenson et al., 2006; Payette et al., 2004) and alteration of terrestrial ecosystem hydrology
(Smith et al., 2007), vegetation (Myers‐Smith et al., 2011), and wildfire regimes (Gibson et al., 2018; Myers‐
Smith et al., 2008). Changes to high‐latitude ecosystems are likely to influence their carbon budgets, includ-
ing global warming through enhanced carbon emissions (Dorrepaal et al., 2009). Permafrost soils in general
could become carbon sources with warming through greater aerobic (CO2) and anaerobic (CH4) decomposi-
tion rates (Natali et al., 2015; Schuur et al., 2015). However, longer, warmer growing seasons and changes in
Arctic precipitation regimes (Bintanja & Selten, 2014; Kattsov et al., 2007; Kopec et al., 2016) may stimulate
carbon capture through enhanced plant productivity in peatlands and the transition of minerotrophic wet-
lands into organic peatlands (Charman et al., 2013, 2015; Gallego‐Sala et al., 2018; Morris et al., 2018).
Recent evidence shows an inconsistent response of Arctic and sub‐Arctic peatlands to warming in terms
of carbon accumulation (Zhang, Gallego‐Sala, et al., 2018).

In the Arctic, wetlands occupy ~7% of the nonglaciated land area (Walker et al., 2005) and—although high‐
latitude carbon stocks are poorly constrained—wetlands store a disproportionate amount of carbon for their
extent (Tarnocai et al., 2009). Arctic wetlands exemplify the complexity of landscapes underlain by
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permafrost and typically occur in three locales: on ground affected by ice wedge formations (polygon mires),
on previously glaciated terrain with favorable topographic depressions (known as patchy wetlands), and in
coastal zones of isostatic uplift (coastal wetlands; Glenn & Woo, 1997; Woo & Young, 2006). Across Arctic
wetlands, warming has been linked to greater plant biomass (Hill & Henry, 2011), vegetation composition
changes and desiccation (Woo & Young, 2006, 2014; Zhang, Piilo, et al., 2018). Ice wedge polygon mires
specifically are complex and dynamic systems (de Klerk et al., 2011; Fritz et al., 2016), and degradation in
response to recent warming has led to changes in vegetation and drainage (Fraser et al., 2018; Jorgenson
et al., 2015; Liljedahl et al., 2016; Perreault et al., 2017). Similarly, vegetation in some sub‐Arctic and
Arctic coastal wetlands has been altered by increasing bird grazing pressures in recent decades (Jefferies
& Rockwell, 2002; Peterson et al., 2013).

Future hydrological changes, vegetation shifts and degradation of permafrost have been identified as key
areas of uncertainty in the prediction of permafrost carbon dynamics (Abbott et al., 2016). There is limited
information on the response of Arctic wetlands to climate change and their potential to transition into pro-
ductive peatlands on centennial timescales. For the first time in the Canadian High Arctic, we use a high‐
resolution paleoecological approach (testate amoebae and plant macrofossils) to reconstruct past moisture
conditions and vegetation histories in peat‐forming wetlands. We aim to investigate the ecological response
to twentieth century climate warming in the three main types of High Arctic wetland: (i) a polygon mire, (ii)
a valley fen (a type of patchy wetland), and (iii) a coastal fen.

2. Study Sites, Materials, and Method

The study region is in the continuous permafrost zone of the western Canadian Arctic tundra, between the
latitudes 68.5 and 74.5 °N (Figure 1). We study two wetlands on northern Banks Island, Northwest
Territories: a polygon mire (74.459 °N, 121.04 °E) and a valley fen (74.05 °N, 118.429 °E). The distinctive
topography of the polygonmire was captured by extracting a monolith from a raised center mound and from
a surrounding trough. Our third site is a coastal fen (68.65 °N, 105.455 °E) located on an island ~50‐km south
of Cambridge Bay, Nunavut, where two monoliths <10 m apart were collected as replicate paleorecords.

Figure 1. Study sites, nearby weather stations and the lake cores used for pollen‐based temperature reconstruction in
Gajewski (2015). Permafrost and the tree line data from Brown et al. (2002).
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Monoliths were sampled to the base of the active layer and subsampled in the laboratory at 1‐cm depth inter-
vals. Bulk density and organic matter content were calculated in accordance with Chambers et al. (2011).
Testate amoebae were prepared for analysis using the method outlined by Booth et al. (2010). In the absence
of an appropriate transfer function, testate amoebae were grouped into categories of hydrological preference
based on a detailed literature review (Table S2 in the supporting information). Plant macrofossils were pre-
pared in accordance with Gałka, Tobolski, et al. (2017). Aboveground plant macrofossils and bulk peat
(where reliable plant macrofossils were not present) were radiocarbon dated (Table S1). Radiocarbon dates
were calibrated using Clam 2.2 (Blaauw, 2010) in R 3.4.3 (R Core Team, 2018). The IntCal13 (Reimer et al.,
2013) calibration curve for pre‐bomb dates and Hua et al. (2013) for post‐bomb dates were used. When post‐
bomb dates demonstrated multiple probability distributions during calibration, we applied the principle of
superposition to determine the most likely probability distribution. Chronological uncertainty can be intro-
duced by cryoturbation in permafrost soils, particularly toward to base of the active layer (Bockheim &
Tarnocai, 1998; Ping et al., 2008). These factors are considered in our interpretation and are comprehensively
discussed in the supplementary materials (Table S1 and Text S3). The most appropriate age‐depth model for
each chronology was selected including linear interpolation, cubic spline, and polynomial regression.
Growing degree days above 0 °C (GDD0) were calculated for each site from monthly climate reanalysis data
spanning the period AD 1851–2011 (Compo et al., 2011). Changepoint analysis (Killick & Eckley, 2014) was
conducted in R 3.4.3 (R Core Team, 2018) on GDD0 time series data for each site. See full methods and study
site information in the supporting information (Figures S1 to S6, Tables S1 to S2, and Text S1 to S3).

3. Results
3.1. Twentieth Century Warming and Lengthening Growing Seasons in the Western Arctic

In the western Arctic following a warm period from ~10 to 7.5 Ka BP, there was general cooling throughout
the Holocene (Gajewski, 2015; Figure 2c). Weather station records beginning ~AD 1950 document twentieth

Figure 2. Recent warming in western Canadian Arctic. (a) Annual temperature data from nearby weather stations. (b) GDD0 modelled for each site from climate
reanalysis data (Compo et al., 2011). Stepped lines indicate changepoints. (c) Reconstructed mean July temperature for western Arctic during the Holocene
(Gajewski, 2015). Shading indicates one standard deviation.
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century climatic warming near to our sites (Figure 1) and across the Arctic (McBean et al., 2005). The
Cambridge Bay and Sachs Harbour stations show pronounced warming rates of 0.3 and 0.5 °C per decade,
respectively, contrasted to 0.1 °C per decade at Mould Bay, the highest latitude station (Figure 2a).
Reanalysis data (Compo et al., 2011) demonstrated a pronounced increase in GDD0 across all wetland sites
with changepoints detected between 1931 and 1940 (Figure 2b). Following respective changepoints, mean
GDD0 at the polygon mire increased from 49 ± 50 to 152 ± 46 °C days year−1 (changepoint: 1940) and at
the valley fen, from 105 ± 76 to 260 ± 6 °C days year−1 (changepoint: 1936; error terms indicate standard
deviation). After the 1931 changepoint, mean GDD0 at the coastal fen increased from 400 ± 132
to 605 ± 68.3 °C days year−1.

The rise in GDD0 in the 1930s (Figure 2b) is consistent with a well‐documented climatic fluctuation
(~1920–1940) around the North Atlantic. This event began in the 1920s and resulted in positive Arctic‐wide
average temperature anomalies for most of the 1930s (Johannessen et al., 2004; Polyakov et al., 2003). Causes
of the climatic fluctuation remain open to debate, with internal atmospheric variability, anthropogenic
greenhouse gas forcing, solar variability, volcanic forcing, and regional dynamic feedbacks proposed in
the literature (Wood & Overland, 2010). Bengtsson et al. (2004) suggested natural variability was the likely
cause, as reduced sea ice cover was critical in initiating warming of ~1.7 °C during the peak period between
1930 and 1940 at 60–90 °N. However, Wood and Overland (2010) interpreted the event as an intrinsically
forced albeit essentially random climatic phenomenon, superimposed on rising temperatures associated
with anthropogenic forcing. GDD0 have remained high following this event (Figure 2b) and increased else-
where in the Canadian High Arctic in the past few decades (Woo & Young, 2014).

3.2. Paleoecological Results
3.2.1. Polygon Mire
The polygon mire demonstrates contrasting responses to recent warming between the raised center and the
trough. The raised center monolith (11 cm; Figure 3a) is mainly composed of partially decomposed
Scorpidium cossonii (80%–90.5%), bulk density is relatively high (0.36 ± 0.1 g cm−3), while organic matter
is relatively low (29.8% ± 9.4%), and carbon accumulation increases toward the top of the profile. The trough
monolith (17 cm; Figure 3b) is more dynamic by comparison, recordingmultiple vegetation shifts. The lower
phase (17–7 cm) consists of a light brown, peaty soil undergoing a gradual transition (~AD 750–1800) from S.
cossonii (40%–85%) and Warnstorfia sarmentosa (0%–35%) moss to a more sedge (Cyperaceae) and
herb‐dominated wetland. During this phase, carbon accumulation is low (6.2 ± 2.1 g m−2 year−1), organic
matter is low (27.8% ± 8.7%), and there is relatively high bulk density (0.51 ± 0.16 g cm−3). In the upper
phase (0–7 cm), organic matter increases (max: 77.4%) and bulk density decreases (min: 0.04 g cm−3). A
sedge and herb‐dominated ecosystem is present from ~AD 1800 before an increase in moss diversity at
~AD 2000, including the presence of S. cossonii (20%–70%), Calliergon spp. (10%–30%), and Campylium cf.
stellatum (10%–20%). Coincident with this ~AD 2000 is a shift in hydrological conditions, with wet‐indicator
testate amoeba taxa increasing dramatically (68.8% ± 17.9%) and carbon accumulation increasing to
between 45.7 and 102.8 g m−2 year−1.
3.2.2. Valley Fen
The valley fen monolith (13 cm; Figure 3c) is composed of three main phases. Notwithstanding chronologi-
cal uncertainty, our age‐depth model suggests that the base of the record (13–9 cm) accumulated before ~AD
1780. The base phase is characterized by a pale‐colored mineral layer of low organic matter content (7.2%–
11.6%), high bulk density (1.08–1.52 g cm−3), and sedge‐dominated vegetation (>75%). At ~7 cm (~AD 1800),
there is a sharp increase in organic matter (11.6%–33.4%) and a decrease in bulk density (1.08–0.38 g cm−3).
Throughout the middle section of the profile (9–4 cm), there is a gradual increase in organic matter to 56.5%
and decrease in bulk density to 0.23 g cm−3 (~AD 1950). This change represents the development of a more
productive intermediate or rich fen system dominated by brown mosses (60%–75%), Calliergon spp. (<20%),
and Hamatocaulis vernicosus (<10%), with increasing carbon accumulation (10.9–20.1 g m−2 year−1). In the
top 4 cm (~AD 1950 onward), the wetland demonstrates properties more characteristic of a peatland. Organic
matter continues to increase to 78.8% and bulk density decreases further to 0.06 g cm−3. Tomentypnum
nitens (30%–50%) and Cinclidium stygium (0%–20%) now dominate the valley fen record alongside other
mosses. These mosses (including T. nitens and C. stygium) may have been present under the Brown moss
spp. classification; however, decomposition made species identification impossible.
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3.2.3. Coastal Fen
The peat monoliths analyzed from coastal fen A (CFA) and coastal fen B (CFB) demonstrate highly similar
responses, each recording two distinct phases (Figures 3d and 3e). Notwithstanding chronological uncer-
tainty, our age‐depth model suggests the lower phase (CFA 17–12 cm and CFB 16–10 cm) accumulated
before ~AD 1950. This lower phase is characterized by a pale‐colored minerogenic layer dominated by sedges
and herbs, with low organic matter (mostly 2%–26%) and a high bulk density (max: 2.44 g cm−3), which
decreases up the succession (min: 0.38 g cm−3). The upper phase (CFA 12–0 cm and CFB 10–0 cm) is char-
acterized by a darker‐colored peaty layer of poorly decomposed plant material and a sharp rise in organic
matter that remains consistently high (average of upper phases in both monoliths = 87% ± 4.8%) alongside
a relatively low bulk density (average of upper phases in both monoliths = 0.12 ± 0.02 g cm−3). The vegeta-
tion in the upper phase initially changes from sedge and herb dominance, to a transitional phase dominated

Figure 3. Summary stratigraphic diagram of paleoecological variables from polygon mire raised center (a), polygon mire trough (b), valley fen (c), and coastal fen
(d and e; yellow arrows indicate sampling locations). GDD0 CP is changepoint in GDD0. For detailed stratigraphic diagrams see Figures S7–S21. GDD0 = growing
degree days.
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by the moss Calliergon richardsonii (CFA 9–8 cm and CFB 9–8 cm). Shrubs then dominate (CFA 8–2 cm and
CFB 8–1 cm), before a return to a dominance of C. richardsonii (>50%) alongside the appearance of
Brachythecium mildeanum (in CFA; <40%). At the coastal fen site, the ecosystem shift to shrub dominance
is coincident with fast carbon accumulation rates (~AD 1980) of >100 g m−2 year−1.

4. Discussion

Under 21st century warming and in the presence of adequate moisture, Arctic wetlands such as our study
sites may become more productive and transition into peatlands—this could to some extent mitigate carbon
losses from degrading peatlands farther south (Charman et al., 2015; Gallego‐Sala et al., 2018). The Arctic
wetlands we studied did demonstrate ecological responses to a mid‐twentieth century increase in GDD0.
However, the pathway of these responses varied between wetland types, and therefore, their future carbon
balance is likely to be complex and may also vary between wetland types. In particular, our results highlight
the importance of ground ice dynamics, changing seasonal hydrological regimes, and herbivory.

4.1. Ground Ice Dynamics and Permafrost Feedbacks

Ground ice dynamics and feedbacks in permafrost regions are a key uncertainty in understanding the car-
bon cycling response of these systems to warming (Grosse et al., 2016; Schuur et al., 2015). We believe our
polygon mire site exemplifies the influence ground ice dynamics can have upon wetland structure and ecol-
ogy with warming. A changepoint increase in GDD0 was detected at the polygon mire in 1940 (Figure 2b). A
further increase in GDD0 from 1956 to 2016 at Sach Harbour has been documented and linked to increasing
active layer depth (Fraser et al., 2018). At the polygon mire, the raised center monolith showed no response
to recent warming, perhaps because permafrost thaw has not yet induced the collapse of the raised center
structure, as may be the case in some Siberian peatlands (c.f. Teltewskoi et al., 2016). In contrast, the trough
demonstrates high sedge abundance from ~AD 1800, consistent with stable or initially degrading ice wedges,
while the shift to dominance of hydrophilic moss (S. cossonii) from ~AD 2000 is characteristic of advanced ice
wedge degradation (Figure 3.6b; Jorgenson et al., 2015). Recent ice wedge degradation is further supported
by an increase in wet indicator testate amoeba from ~AD 2000 (Figure 3.5b). This decadal or subdecadal time-
scale of trough wetting is supported by observations from across the Arctic since the mid‐twentieth century
(Fraser et al., 2018; Jorgenson et al., 2015; Liljedahl et al., 2016). The previous periods of sedge and herb dom-
inance and moss dominance in the record (Figure 3.6b) may relate to previous ice wedge degradation and
stabilization cycles. However, accurate interpretation of these previous trough vegetation shifts is limited
by the absence of a testate amoeba hydrological record (barren below 7 cm). Local geomorphological and
autogenic vegetation processes are key in the formation and variability of polygon mires, but climate change
maymodify these patterns (Ellis & Rochefort, 2004). We suggest the magnitude of recent warming (Figure 2)
alongside background autogenic processes caused a threshold of ice wedge thaw to be reached ~AD 2000 in
the polygon mire.

Under advanced ice wedge degradation and the establishment of hydrological connectivity between troughs,
landscape‐scale drainage can be initiated (Liljedahl et al., 2016). Drainage could threaten wetland persis-
tence and expose partially decomposed carbon to increased aerobic decomposition—elevating CO2 emis-
sions (Schädel et al., 2016). However, the establishment of moss vegetation ~AD 2000, under wetter
conditions (Figure 3b), may represent a negative ecological feedback to ice wedge thaw in troughs. The accu-
mulated layer of moss since ~AD 2000may act as an insulating layer alongside slumpedmaterial from trough
banks to retard further thaw (Jorgenson et al., 2006, 2015). The slumping process was observed onsite
(Figure S2) and may explain an older bulk peat date (1–2 cm; AD 1956 ± 1) stratigraphically above a reliable
plant macrofossil date (4–5 cm; AD 1998 ± 2; Table S1). The negative ecological and geomorphological
(slumping) feedbacks could contribute to the deceleration of ice wedge degradation. Our results highlight
the importance of ground ice dynamics and autogenic factors in polygon mires with warming (c.f. Fritz
et al., 2016; Vardy et al., 2005).

4.2. Changing Hydrological Regime and Precipitation With Warming

The short growing season of around 2 months in the High Arctic creates a highly seasonal hydrological
regime, which our results suggest is being influenced by warming. When temperatures rise above 0 °C there
is an influx of water to catchments from the thaw of ground ice and snowbanks that have accumulated over
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the winter (Glenn & Woo, 1997)—this is particularly relevant at our valley fen site. An increase in GDD0 at
the valley fen from AD 1936 (Figure 2b) is followed at ~AD 1950 by a marked increase in wet indicator testate
amoeba taxa and slight increase in dry indicator taxa (Figure 3.5c). The apparent increase in wetness is likely
as a result of increased catchment thaw under warming conditions—a process that has been observed in
other Arctic and alpine regions (Fontana et al., 2010; Woo & Young, 2014). The increase in dry indicator tes-
tate amoeba taxa may represent increasingly dry conditions toward the end of the growing season as a result
of increased evapotranspiration over a longer and warmer summer (Oechel et al., 1998; Woo & Young, 2014;
Zhang, Piilo, et al., 2018). This increased variability in hydrological conditions from ~AD 1950 is further sup-
ported by the presence of the hummock mosses T. nitens (30%–50%) and Aulacomnium palustre (<5%).
Thesemosses have broad climatic and ecological ranges (Minke et al., 2009; Nicholson &Gignac, 1995) mak-
ing them suitable for the increasingly variable moisture conditions. T. nitens specifically has been observed
in both wet High Arctic (Steere & Scotter, 1979) and dry Boreal fens (Gignac et al., 1991), suggesting a certain
resilience to warming temperatures alongside more variable hydrology.

Under the likely scenario of further Arctic warming (Christensen et al., 2013), alterations to the hydrology of
the valley fen may threaten future persistence. Greater summer snowmelt may increase inundation in the
short term. However, there may come a point where snowbanks become sufficiently depleted by increased
evapotranspiration and no longer have the capacity to sustain wetlands (Woo & Young, 2006). Possible
increases in 21st century Arctic late autumn and winter precipitation (Bintanja & Selten, 2014; Kattsov
et al., 2007) may counteract increased evaporative losses to some extent. However, large uncertainties
remain in predicting future precipitation patterns. Since ~AD 1950, there has been no clear shift in precipita-
tion at the closest weather stations to our sites (Figure S1). Furthermore, increased future permafrost thaw
and active layer thickening could increase permeability and thus drainage (Avis et al., 2011). Under the sce-
nario of drying, CO2 emissions from aerobic decomposition are likely to increase and the wetland may
become a carbon source (Oechel et al., 1998). Carbon accumulation rates since ~AD 1950 remain consistent
around 20 g m−2 year−1 before a recent increase to 61.3 g m−2 year−1 (Figure 3.4c). This increase hints at
improved productivity with increased GDD0, indicating that the wetland ecosystem has not reached a
moisture‐limited point where carbon loss to decomposition outweighs input from litter. However, this car-
bon accumulation rate should be treated with caution because incomplete decomposition of recently accu-
mulated organic matter was not accounted for. Our results demonstrate a clear ecosystem shift in response to
recent warming, linked to a changing hydrological regime. The balance of possible increases in 21st century
precipitation against summer evapotranspiration losses—alongside potential changes to drainage with per-
mafrost thaw—is likely to determine the future sustainability and carbon accumulation capacity of this val-
ley fen and potentially similar Arctic wetlands.

4.3. Potential Impact of Herbivory on Arctic Coastal Wetlands

The timing andmagnitude of the ecosystem shift from sedges to shrubs is well established in both coastal fen
records by ~AD 1950 and is likely linked to warming. The subsequent shift to moss dominance in both
records since ~AD 2000 is likely linked to changes in Arctic geese grazing pressures. The increased domi-
nance of shrubs in this coastal wetland ~AD 1950 follows an increase in GDD0 at AD 1931 (Figure 2b).
Northward expansion of shrub communities and increased productivity in response to recent warming
has been widely documented across the tundra (Elmendorf et al., 2012; Myers‐Smith et al., 2011; Tape
et al., 2006) and directly linked to increased shrub and decreased sedge abundance in an Alaskan coastal
wetland (Carlson et al., 2018). Isostatic uplift can lead to a drop in relative sea level and lowering of the water
table, increasing dryness to facilitate sedge to shrub succession (Klinger & Short, 1996). However, any hydro-
logical shift associated with an increased abundance of shrubs is unclear in our testate amoeba data.
Furthermore, the projected range of sea‐level change for nearby Cambridge Bay by 2100 relative to 2010 is
between a 15 cm fall and 30 cm rise, depending upon future emissions scenarios (James et al., 2011).
Therefore, isostatic uplift is likely to be more relevant in regions where uplift outpaces global eustasy, such
as Hudson Bay and the Northwest Passage (James et al., 2015). We suggest the increase in GDD0 is the most
plausible mechanism driving this shift to shrub dominance at our site. The role of climate is further sup-
ported by evidence of a recent increase in shrub taxa in sub‐Arctic permafrost peatlands in Sweden
(Gałka, Szal, et al., 2017) and Alaska (Gałka et al., 2018)—areas of limited isostatic uplift (Geruo et al.,
2013; Peltier, 2004).
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The contemporary wetland ecosystem demonstrates minimal shrub cover and contains large sections of bare
substrate and patches of dead moss (Figure S4). Both coastal fen monoliths demonstrate a recent shift to
mosses ~AD 2000 (Figures 3d and 3e). Wildfire has reduced shrub cover in similar environments (Higuera
et al., 2008; Mack et al., 2011), but the absence of macrocharcoal at our site rules this out. An alternative pos-
sibility for the reappearance of moss is increased grazing by Arctic geese, for example, lesser snow geese
(Chen caerulescen) and Ross's geese (Anser rossi). Snow geese have demonstrated a preference for herbivory
of vascular plants and therefore across the coastal wetlands of northern Canada, areas that have been sub-
jected to destructive grazing often experience an increase in moss vegetation abundance (Abraham &
Jefferies, 1997; Alisauskas et al., 2006). In areas of more intense grazing, replacement of moss by bare peat
has been documented (Conkin & Alisauskas, 2017). Similarly, the recolonization of mosses toward the edge
of the wetland (Figure S4) is typical of disturbed wetlands (Speed et al., 2010).

Arctic geese populations are being driven up by improved food availability from agricultural production (via
artificial fertilizers and subsidy policies) in the wintering grounds of the southern United States (Fox et al.,
2005; Jefferies et al., 2004). Our coastal fen site is located ~20‐km northwest of Queen Maud Gulf
Migratory Bird Sanctuary, amajor summer nesting site for Arctic geese (Cooch et al., 2001) and bird presence
can be confirmed unambiguously at our coastal fen site by an abundance of tracks and excrement (Figure S4).
The QueenMaud Gulf Migratory Bird Sanctuary has seen Arctic geese nesting populations rise from ~44,300
in 1965 to ~2,251,900 in 2006, with over 50% of this increase occurring since 1998 (Kerbes et al., 2014). The
likely recent intensification of grazing in established summer nesting sites may have caused snow geese to
seek out more pristine habitats further north as they warm, such as our site, and begin to degrade them.
Therefore, we suggest either edge recolonization following Arctic geese disturbance or selective Arctic geese
herbivory provides a plausible explanation for the dramatic shift from a shrub to moss‐dominated ecosystem
~AD 2000. It remains unclear what implications this shift from shrub tomoss dominancewill have upon long‐
term carbon accumulation rates; however, our findings highlight the potential importance of Arctic geese
grazing (substantially influenced by nonclimate factors) in the context of future Arctic carbon cycling.

5. Conclusions

Warming of the western Canadian Arctic has caused a mid‐twentieth century increase in growing degree
days above 0 °C (GDD0). In the absence of long‐term monitoring data our high‐resolution multiproxy
paleoecological approach—the first of its kind in the Canadian High Arctic—allowed us to identify alternate
pathways for ecological responses to recent warming in three wetlands. Themain findings of our study are as
follows:

1. An increase in moss diversity, decrease in sedges and herbs, and an increase in carbon accumulation rate
occurred in the trough of a high centered polygon mire following the shift in GDD0. Testate amoeba data
suggest increased wetness at this time which may be related to ice wedge thaw driven by recent climate
warming. In comparison, the raised center of the polygon mire showed no clear response to recent
warming.

2. In a valley fen, the appearance of generalist mosses coincides with the shift in GDD0. This occurs along-
side an increase in both dry and wet indicator testate amoebae that may suggest increased seasonality in
hydrological conditions (wetter conditions during snowmelt and drier conditions in the late summer
owing to increased evapotranspiration). This site shifted from a minerogenic to an organic‐rich wetland
sometime prior to the shift in GDD0.

3. A coastal fen site experienced an ecosystem shift coincident with an increase in GDD0 from a sedge‐
dominated fen to a shrub‐dominated fen with a high carbon accumulation rate. This site shifted from a
minerogenic wetland to an organic‐rich peatland sometime before the shift in GDD0. The results from this
site have important implications for understanding the expansion of shrub communities in the Arctic.

4. A subsequent reduction in shrub cover in the coastal fen since ~AD 2000 and recolonization by mosses
may be related to an increase in destructive grazing by Arctic geese. This may affect long‐term carbon
accumulation rates.

5. Our results show clear, albeit complex ecological responses to warming in these Arctic wetlands. These
complexities have important implications for understanding of the future carbon sink potential of these
ecosystems under climate warming and are important areas for future research.
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