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Best Practices to Maximize the Use and Reuse of 
Quantitative and Systems Pharmacology Models: 
Recommendations From the United Kingdom Quantitative 
and Systems Pharmacology Network

Lourdes Cucurull-Sanchez1,*, Michael J. Chappell2, Vijayalakshmi Chelliah3, S. Y. Amy Cheung4,5, Gianne Derks6, Mark Penney7, 

Alex Phipps8, Rahuman S. Malik-Sheriff9, Jon Timmis10, Marcus J. Tindall11,12, Piet H. van der Graaf3,13, Paolo Vicini14,15 and  

James W. T. Yates16

The lack of standardization in the way that quantitative and systems pharmacology (QSP)  models are developed, tested, and 

documented hinders their reproducibility, reusability, and expansion or reduction to alternative contexts. This in turn under-

mines the potential impact of QSP in academic, industrial, and regulatory frameworks. This article presents a minimum set 

of recommendations from the UK Quantitative and Systems Pharmacology Network (UK QSP Network) to guide QSP practi-

tioners seeking to maximize their impact, and stakeholders considering the use of QSP models in their environment.

One of the key advantages of quantitative and systems 

pharmacology (QSP) modeling is its integrative and mod-

ular nature. This modular nature renders QSP an optimal 

scenario to reuse models by expanding them through the 

addition of more submodules, by reducing the number of 

submodels, or by translating existing modules to different 

contexts. 

QSP is gaining traction against the background of the 

exponential increase in the number of QSP publications in 

scientific journals since the release of two seminal papers1,2 

(see Figure 1), the emergence of the first scholarly jour-

nal dedicated to systems pharmacology,3 and the growing 

number of mathematical models of biology readily available 

through public databases (BioModels,4 CellML,5 DDMore6). 

However, QSP is only slowly climbing up the innovation 

 trigger slope of the Gartner Hype Cycle,7 which describes 

the maturity, adoption, and social application of emerging 

technologies through five consecutive phases (innova-

tion trigger, peak of inflated expectations, trough of disil-

lusionment, (positive) slope of enlightenment, and plateau 

of productivity). The consistent integration of QSP into the 

Model- Informed Drug Discovery and Development (MID3) 

strategy within the pharmaceutical industry still proves 

challenging. In addition, the growth rate of the number of 

QSP models in public databases is slow compared with 

the increase of QSP publications, as a result of the lack of 

resources, inadequate model documentation, and a decline 

in the direct submission of models to those repositories by 

their authors. Published models tend to be generated de 

novo rather than being the result of an expansion or modi-

fication of existing models. This situation is, to a significant 

extent, because of the lack of standardization in the way that 

QSP models are developed, tested, and documented when 

made available to the public community, which hinders 

their reproducibility, reusability, and expansion or reduc-

tion to alternative contexts. This gap has been somewhat 

quantified by Kirouac et al.,8 who found that only 4 out of 

12 model code files published in CPT: Pharmacometrics & 

Systems Pharmacology until October 2018 was executable. 

Transparency in reporting each stage of the modeling pro-

cess and the adoption of good practice in doing so would 

greatly increase the likelihood of a model being more widely 

adopted and used by others.9 This is particularly important 

if QSP is to become a standard accepted approach as part 

of regulatory submissions, as from a regulatory perspective, 

transparency and collaboration increase the validation and 

acceptance of a model. Regulatory reviewers of QSP mod-

els face the challenge of having only 1 to 3 months to repro-

duce the results, evaluate underlying assumptions, and test 

the model with other/new data.10

The ideal scenario is well illustrated by the filing in 2013 

of a recombinant human parathyroid hormone (rhPTH) for 
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the treatment of hypoparathyroidism.11 The US Food and 

Drug Administration (FDA) reviewers raised some concerns 

about the hypercalciuria being observed in the clinical study 

and used a publicly available calcium homeostasis QSP 

model12 to explore  alternative dosage regimens. This QSP 

model was built on two earlier published models: a model of 

systemic calcium homeostasis13 and a cellular model of the 

behavior of bone morphogenic units.14 The QSP simulations 

supported the hypothesis that increased dosing frequency 

or slow infusion could reduce hypercalciuria. This led the 

FDA to request from the sponsors a postmarketing clinical 

trial to evaluate the effects of dose and dosing regimens 

on the control of hypercalciuria, and to use a mechanistic 

model–based assessment of prior pharmacokinetic/phar-

macodynamic data to design this clinical trial.15 Had it not 

been for the publication and adequate development and de-

scription of those three models, the FDA would have missed 

the insight that led them to this impactful decision.

There are several common issues encountered by the 

modeling community when accessing models either from 

databases or peer- reviewed publications, which stem from 

this lack of documentation standards. They can be summa-

rized as follows:

1. The purpose and/or scope of the model is unclear 

and/or the underlying assumptions are either poorly 

or not stated. Often the structure of the model is 

provided without referring to the specific question 

or questions for which that model is intended. In 

other instances, the assumptions made to derive 

that structure or some of the parametric relationships 

are undeclared or vaguely described. The negative 

impact of poor descriptions of assumptions increases 

when the number of assumptions is high, which 

can be daunting to decision makers and collabo-

rators. These situations make it difficult for the reader 

to assess the contexts for which the model would 

be suitable for and/or to what extent it can be 

adapted to similar contexts.

2. The model and/or the publication lacks quantitative 

 information. Some models published in the mathemat-

ical biology space consist of little more than schema 

or networks describing the interactions between dif-

ferent players in biological or pharmacological sys-

tems, without any numerical information to inform on 

the frequency, extent, or rate of those interactions. 

Even in cases when the model is more quantitative, its 

parameter values, including units and uncertainty esti-

mates, are often omitted from the publication or scat-

tered inconsistently over text and figures. When those 

parameters are reported, the data, knowledge, and 

assumptions that underwrite their values are often 

missing or their adequacy, quality, and quantity are 

poorly discussed.

3. The paper in which the model is published provides 

its description but fails to provide the associated 

model file or programming code. The emergence of 

standardized markup languages (SBML),16 such as 

systems biology markup language,9 cell markup lan-

guage (CellML),5 pharmacometrics markup language 

PharmML,17 or model description language (MDL),18 

the existence of fully compatible modeling software 

(e.g., COPASI,19 SimBiology20), and the availability of 

open source tools to translate between them (e.g., 

Systems Biology Workbench21) should enable and 

encourage researchers to share their encoded 

model. However, although the provision of model 

files or computer code is encouraged by several 

scholarly journals, in practice some scientists are re-

luctant to give up their competitive advantage over 

other research groups. Some authors provide a high-

level description of the model to communicate their 

findings without necessarily including sufficient in-

formation to allow others to reproduce their findings. 

4. The model file or code is provided, but it is not prop-

erly documented. Sometimes the code is inade-

quately annotated, incorrectly encoded, lacks a 

complete set of initial conditions or parameters, or 

does not correspond to the accompanying model 

description, all of which prevents any further modifi-

cations, expansions, or reductions by a different re-

search group.

5. The model behavior does not correspond to what is 

presented in the paper. The simulations or analyses 

that are reported in the article cannot be reproduced 

with the governing equations and/or the simulation 

code provided. Model repositories such as BioModels4 

are trying to address this issue through a systematic 

curation process, for example, checking whether it is 

compliant with the Minimum Information Requested 

in the Annotation of Biochemical Models (MIRIAM) 

guidelines.22 This curation focuses on the correspond-

ence of an encoded model to its associated reference 

description. However, it is not exhaustive for each 

paper, and it is limited to only a fraction of the public 

model space, largely because of the lack of the ade-

quate documentation in the papers.

6. The impact of the model is overstated. In those cases 

where the modeling results can be reproduced, often 

the outcome does not inform the initial question(s) 

posed or has not been contrasted with experimental 

results or the authors extrapolate it to cases that are 

Figure 1 Annual number of PubMed abstracts containing the 
term “systems pharmacology” since the year 2000.

0

50

100

150

200

250

300

350

400

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

#
 A

r
t
ic

le
s

Year



3

www.psp-journal.com

Best Practices for QSP Models
Cucurull- Sanchez et al.

out of the model scope. Frequently the model appears 

to be a post hoc analysis of a data set rather than a 

novel analysis driven by a scientific question. This 

sheds significant doubt on whether the model is a 

good starting point for further decision making or 

model development. This is probably one of the most 

important challenges within the regulatory context.

The overall result from this state of affairs is a general lack 

of confidence in the models which coupled with their per-

ceived highly technical nature, can undermine the trust that 

the bench- based community and decision makers may have 

in QSP as a discipline. This situation also implies the need 

for a significant use of resources (industrial and academic, 

time-and cost-wise) in trying to implement, reapply, or further 

develop models of questionable reproducibility and/or reus-

ability. This in turn has a negative impact on the innovation 

trigger phase of the Gartner Hype Cycle for QSP.

The aim of this article is to present and discuss a mini-

mum set of recommendations that can enhance the qual-

ity, reproducibility, and further applicability of QSP models. 

This document summarizes the outcomes of a discussion 

held among academic and industrial members of the UK 

Quantitative and Systems Pharmacology Network (UK 

QSP Network).23 This network was created in 2015 by a 

group of UK and international scientists in industry and ac-

ademia to bring QSP to the forefront of UK research space 

and nurture its growth. The network is jointly funded by 

the Engineering and Physical Sciences Research Council 

(EPSRC)24 and the Medical Research Council (MRC)25 in 

the United Kingdom.

These recommendations focus on the issue of how to 

document QSP models when published, framing a check-

list of minimal requirements. Discussions about models’ 

 accessibility, exchange mechanisms, archiving, software, 

and visualization or coding language are out of scope for 

this article.

A number of publications have recently proposed guide-

lines or recommendations on modeling practices. Some 

of these focus on the design process of QSP models,26–28 

whereas others suggest methods for assessing the quality 

and/or adequacy of QSP models in particular27,28 or models 

that support the MID3 paradigm in general.29 If physiologi-

cally-based pharmacokinetic (PBPK) models are considered 

a special case of QSP modeling, then it is important to also 

mention the recent efforts by both the European Medicines 

Agency (EMA)30,31 and the FDA.22,32 

PURPOSE AND CONTEXT OF THE MODEL

When developing a computational model, the following 

two overriding questions need to be asked: “Do I need 

a model?” and “What is the purpose of the model?” It 

is tempting to become too involved in the details of the 

structure and implementation of a model early on in the 

modeling process. However, careful thought needs to be 

given to the aims of developing the model and, crucially, 

to the biological or biomedical questions that it should 

answer. Stepping back and asking these questions is im-

portant because they require the modeler to think carefully 

about the operational approach that will be taken, what 

data might be needed, which assumptions might have to 

be considered and critically, and what hypotheses will be 

tested. Models offer the possibility to explore relatively 

quickly scalable “what if” questions, serving as an extra 

component in the toolbox of the bench scientist to opti-

mize their experimental procedures, thus saving time and 

resources on experiments that may prove unproductive. 

A good example of this is the use of models to reduce, 

refine, or replace (the “3Rs”)33 certain types of preclin-

ical experiments. At the point of publication, the spe-

cific question that the model was developed to answer 

and/or the hypothesis that it was built to test should be 

clearly stated (e.g., “We tested the hypothesis that neg-

ative regulation of Syk protein phosphorylation by Tula2 

leads to periodic (oscillatory) time dependent solutions”). 

Clarifying this information will enable potential end users 

of the model to determine whether it is suitable or not for 

their own objectives, and in the latter case, how much 

effort it would take to modify it and make it fit for purpose.

To address this component of the modeling process, a 

critical aspect to success is the inclusion of stakeholders 

in the development of the model. Gadkar et al.28 already 

refer to this important step in the development of systems 

pharmacology models. There are usually two types of 

stakeholders in the process who provide different types 

of input.

The first type of stakeholder is the “end user.” This 

 person will be making use of the model simulations or anal-

yses to gain insights into the system under study, optimize 

the experimental protocol, inform his or her own work, or 

drive decision making (including regulatory submissions). 

The end user is able to provide the appropriate context for 

the model and, as with any project that involves delivery 

of a “product” to an intended user, he or she should be 

consulted at various points during the development of the 

model. By defining the context, this stakeholder allows for 

the precise distillation of the questions to be asked of the 

model. In addition, an idea of the impact that the model-

ing exercise will have should be provided in terms of the 

strategic go/no- go decision making, time reduction and/

or economical costs, or societal benefit. The following 

is a good question to ask to elicit this information from 

the stakeholder: “What will happen if we don’t build this 

model?”

The second type of stakeholder is the “domain expert.” 

This person can assist the modeler in understanding the 

mechanistic aspects of the system that is being modeled. 

Often what is modeled is complex and requires specific 

knowledge to help understand what is known and, criti-

cally, what is unknown about the system. This interaction 

helps to identify the assumptions that are needed or new 

data that may need to be found to create a model that is an 

appropriate abstraction and representation of the system 

under study. During this time, it is essential that a shared 

understanding of the terms used in the process is agreed 

on, as often the same word can be interpreted differently 

by different people. Sometimes the “end user” and the 

“domain expert” are one and the same person. Because 

domain expert knowledge can come from a variety of 
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sources and elicitation approaches, consideration should 

be given to how this prior knowledge has been handled 

and combined (e.g., through a Bayesian approach as pre-

sented by Weber and Koch34,35 in an EMA public workshop 

on the extrapolation of efficacy and safety in medicine 

development).

As proposed by Timmis et al.,26 QSP modelers could elicit 

and document the stakeholders’ input by borrowing a meth-

odology from the area of safety engineering to develop ro-

bust argumentation structures. In his presentation of a model 

qualification method (MQM©) for mechanistic physiological 

models, Friedrich29 presents a series of questions that could 

potentially apply to more general QSP model development 

and lead the conversations between modelers and their 

stakeholders. These could be complemented by the set of 

example questions summarized in Table 1 in the Peterson 

and Riggs publication11 about the impact of QSP on the reg-

ulatory domain.

The justification of the type of modeling approach se-

lected and the way it has been implemented should be 

derived from the questions and context provided by the 

stakeholders. Modelers can easily tend to favor those 

methodologies with which they are most experienced 

and comfortable instead of evaluating which approach 

is most adequate, such as algorithmic or mathematical, 

based on ordinary or on partial differential equations, de-

terministic or stochastic, or a  hybrid between different 

methods. If this choice is not properly considered, then 

the model may not provide useful and/or correct answers. 

In their article on QSP design and estimation methodolo-

gies, Ribba et al.27 describe a good example of how the 

need for a QSP model arises from a question that can-

not be solved by standard modeling approaches, such 

as empirical pharmacokinetic/pharmacodynamic (PKPD) 

modeling.

All of the information gathered during these initial phases 

of the modeling process should be communicated in a 

transparent way in the resulting publication, from a clear 

formulation of the questions addressed to their context, ex-

pected impact, and the reasons behind selecting a particular 

technical approach.

MODEL STRUCTURE AND MODELING 

METHODOLOGY

After defining the purpose and context of the model comes 

the model- building phase. A few initial decisions are made 

regarding the model structure and methodology, which 

do not require the use of experimental data. This section 

proposes good practice guidelines when reporting these 

decisions, which include the choice of model domain, 

structure, scale, modeling method, and software. The term 

“modeling” refers to both mathematical and computa-

tional modeling unless otherwise stated. The term “devel-

opment” infers the symbolic formulation of a mathematical 

model or the algorithmic articulation of a computational 

model.

1. The model domain and general structure. The  domain 

to which a model is to be applied should be clearly 

stated in the introduction to any work, as it influ-

ences other aspects of the modeling process such 

as model formulation and assumptions.28 “Domain” 

may have different contextual meanings. For example, 

it may represent (i) a therapeutic area (e.g., neuro-

degeneration, oncology, etc.), (ii) biological scales 

(organ/tissue level, cellular level, intracellular level, 

or multiscale), or (iii) a specific system to which the 

model applies (e.g., mammalian cells, a severe asthma 

patient, etc.). The model purpose, as defined in the 

previous section, plays a significant role in deter-

mining the model domain and in explaining it to 

other model developers and users. In addition, the 

biological knowledge elicited from stakeholders 

Table 1 Mock example of good practice in parameter value reporting in tabular form 

Name Definition Value Units Source Details

k Second- order rate constant of 

degradation of the inactive form upon 

interaction with the active form

1 (μM hour)−1 Smith et al. 

(2002)

The rate constant governing the interaction 

between the active and inactive proteins is 

reported to be in the order of 278 M−1 s−1 for this 

class of proteins

α First- order rate constant of inactive 

protein decay

0.2 hour−1 Doe et al. 

(2017)

Table 3 shows the half- life values measured for 

inactive proteins. We took the geometric mean of 

those values and derived the rate constant with 

the expression α = ln(2)/half- life

β Zero- order synthesis rate of the inactive 

protein

0.5 μM/hour Derived At steady state, β = a[α–kb] = 5[0.2–1.0.1] = 0.5

γ Zero- order synthesis rate of active 

protein

0.005 μM/hour Derived At steady state, γ = δb = 0.05·0.1 = 0.005

δ First- order rate constant of active protein 

decay

0.05 hour−1 Boggs et al. 

(1990)

Calculated from Figure 3 in the reference

A
0

Initial concentration of inactive protein 5 μM Grundy 

(2004)

Assumed equivalent to the average concentration 

of unphosphorylated Syk in untreated cells

B0
Initial concentration of active protein 0.1 μM Plakket 

et al. 

(2000)

Approximated from the average total of phospho-

rylated and unphosphorylated ERK, assuming 

the active protein correlates with that of 

phosphorylated ERK

ERK: extracellular signal-regulated kinase; Syk: spleen tyrosine kinase.
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determines how all of the different components of 

the model are connected. The domain and general 

structure of the model should be made clear to 

the reader by using some form of schematic rep-

resentation (see an example in Figure 2), showing 

the most significant elements of the model, such 

as compartments, species, processes, feedback 

loops, modules, submodules, and so on. Currently, 

several open source and commercial software pack-

ages provide tools to produce visualizations of the 

model structure. Whenever possible and appropriate, 

it is recommended to follow some sort of standard 

graphical notation, such as the systems biology 

graphical notation (SBGN), to facilitate the reader’s 

comprehension.36

2. Model formulation or algorithm. These recommenda-

tions depend on whether the method selected is 

mathematical (e.g., system of ordinary differential 

equations) or computational (e.g., agent-based 

models). For mathematical models, the formulation 

of the model needs to be correctly stated using rel-

evant notation and explanations. All dependent and 

independent variables need to be accompanied by 

written descriptions (e.g., “Here x(t) represents the 

total concentration of the metabolite, and t is time”), 

with explicit statements of dependencies, for exam-

ple, on time. All equations need to be clearly dis-

played on the page with relevant boundary and/or 

initial conditions stated. The mathematical domain of 

problem definition also ought to be stated (e.g., 

“∀t > 0”). A written explanation of each term in the 

equation should be given either before or after the 

stated mathematical formulation and/or overarching 

explanations of the biological or pharmacological 

meaning of each term stated (see Box 1 for an exam-

ple). This should include any abstractions and/or 

simplifications made. In the case of a computational 

model, all of the above applies to any equations 

Figure 2 Example of good practice in model structure visualization.  

Box 1 Example of good practice in mathematical formulation

The interaction between the inactive protein A(t) and its active form B(t) is given by the following governing equations:

dA
dt

=

Inactive protein production
⏞⏞⏞

β −

Inactive protein degradation via active form
⏞⏞⏞

kAB −

Inactive protein decay
⏞⏞⏞

αA ,

dB
dt

=

Active protein production
⏞⏞⏞

γ −

Active protein decay
⏞⏞⏞

δB ∀t>0,

with the initial conditions A(0) = A
0
 μM and B(0) = B μM, where t represents time in hours. Here k is the reaction rate 

constant in (hour μM)−1 units representing the rate at which the degradation of 1 μM of inactive protein (A) is triggered 

by its interaction with 1 μM of the active protein (B), α is the rate constant of inactive protein decay (hour−1), β is the 

production rate of the inactive protein (μM/hour), γ is that of the active protein (μM/hour), and δ is the rate constant of 

active protein decay (hour−1).
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associated to the algorithm, and the latter needs to 

be clearly stated using pseudo-code. For instance, 

in the case of an agent-based or cellular automata 

model, the definitions of all parameters and rules de-

scribing how each individual element of the model 

behaves need to be indicated. The transition be-

tween each state at each given temporal point or 

spatial point needs to be made clear (e.g., “individu-

als move between proliferative and apoptotic states 

at probabilistic rates selected randomly from a uni-

form distribution”), including the condition that trig-

gers each transition (e.g., “where the selected rate is 

less than 0.5”).26 In both mathematical and computa-

tional models, all definitions need to include a cor-

rect statement of the parameter units (generally from 

the International System of Units), their value (or 

range of values, if variability is considered), and 

source (for further details, see the “Input Data, 

Knowledge, and Assumptions Going Into the Model” 

section). Where space and word limitations do not 

allow for this information to be in the article main 

text, it can be provided as supplementary materials.

3. Model solving and simulation method. For mathemati-

cal models consisting of differential equations, these 

need to include a statement on the algorithm used to 

solve the governing equations and the value of algo-

rithm-relevant parameters for doing so (e.g., “The gov-

erning ordinary differential equations were solved 

using the Runge-Kutta fourth/fifth order method im-

plemented via the ode45 solver in MATLAB®.  The rel-

ative tolerance was set at 1 × 10−6”). The type of 

machine, platform, and, where applicable, package 

used to solve the equations needs to be stated (e.g., 

“The governing equations were solved using MATLAB 

version 2017a on an Apple iMac desktop running 

macOS Sierra Version 10.12.6”). The steps used by a 

computational model algorithm need to be made clear. 

Where models are considerably complex, pseudo-

code outlining the main steps should be generated, 

ideally via a schematic diagram or plan.

4. Code files. The recommendation is to make available to 

other users the code and/or model files generated to 

build and solve the models. This can be done in several 

ways, ideally by depositing them in online model re-

positories such as BioModels,4 CellML,5 or DDMore,6 

which provide a platform for easy model search and 

retrieval. Other ways to share models include the provi-

sion as supplementary material of scientific articles, 

the uploading of copies to academic author websites, 

and the sharing on public platforms for computational 

code such as GitHub.37 The best approach is to en-

code a model in standard formats when possible (e.g., 

SBML,9 CellML,38 PharmML,17 or MDL18 in the case of 

ordinary differential equation systems), as they allow 

interoperability.16 The code should be easy to follow, 

annotated and as error free as possible. Ulterior users 

should check it for consistency before using it, and it 

would be in the best interest of the modeling commu-

nity to report any errors found to a designated member 

of the research team (e.g., corresponding author) or to 

the curators of the model repository. Future mainte-

nance and the upgrading of the code by the original 

authors should not be a stipulation of it being depos-

ited in repositories.

INPUT DATA, KNOWLEDGE, AND ASSUMPTIONS 

GOING INTO THE MODEL

Once the model structure and methodology have been de-

fined and justified, the model then needs to be connected 

with experimental observations for it to fulfil its purpose. 

This means, first, informing the variables and parameters 

in the model with specific values in a process that is gen-

erally known as “model parameterization”. Second, ex-

perimental data are required to gain an idea of the quality 

of the performance of the model by comparing it to the 

known behavior of the biological system. This section 

deals specifically with the former aspect of experimental 

data usage.

The reproducibility of modeling results depends on the 

specific parameter values used, thus the reporting of those 

values, how they were determined, and the source of in-

formation for doing so is of high importance. A parameter 

description (most often in tabular form; see an example in 

Table 1) should be supplied, including the symbol or name 

representing the parameter, its definition, value, units, and 

the sources used to determine it. Details of how the param-

eter value was obtained need to be reported, specifically 

where parameter values have been derived as functions 

of other parameters not included in the model or by fitting 

model simulations to experimental data. Such parameter 

estimations usually yield statistical information related to 

parameter precision (importantly, not accuracy) such as 

standard errors or correlation matrices, and sometimes in-

formation derived from more sophisticated approaches such 

as profile likelihood.39 All of this information could be added 

to the parameter table and/or in an annex (e.g., “Parameter 

values were first determined by assuming equal rates of ab-

sorption and excretion. These were then varied to obtain a 

least- squares fit between the model and the patient cyto-

kine levels reported by Smith et al. The parameter values 

reported are those that gave the minimal error residuals”). 

It is important to note that the concept of “parameter” here 

is used in its widest meaning and includes scalars such as 

compartmental volumes as well as amounts or concentra-

tions of the interacting species in the system at steady state 

or at initial conditions.

Input data can come from a variety of sources. It can be 

extracted from public or in- house literature or databases, 

obtained from a personal communication (which ideally 

should be referenced), or from experiments specifically 

designed to inform one (or a subset) of the processes rep-

resented in the model. Data can also come in a variety 

of types, including kinetic or thermodynamic constants 

measured in vitro or ex vivo, physiological parameters, 

biomarker clinical data at pretreatment or from longitudi-

nal studies (including - omics data), drug pharmacokinetic 

profiles or parameters (fitted or allometrically scaled from 

in vivo parameters), and drug safety end points. Whatever 
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the source and form of the data, details of the key ques-

tions that drove the experiment and the experimental con-

ditions should be explicit and relevant to the system being 

modeled. Limitations of the data, such as known errors, 

outliers, high variability, or decisions on the removal of 

particular data points or data sets, should also be stated. 

Input data can be provided along with the code file as sup-

plementary information or as a reference to a repository for 

unstructured data such as BioStudies.40

Knowledge in the context of QSP model parameterization 

refers to the qualitative and/or semiquantitative information 

that the scientific community in general and the modeler 

stakeholders hold about the expected behavior of the 

model or the biological processes described therein. For 

example, a certain marker of drug activity may be known 

to reach a peak after about 3 hours of treatment and de-

cline to baseline levels after 12 hours, but no explicit data 

set is available to fit the model parameters describing that 

activity.

Assumptions come into play when there is not enough 

data available to parameterize the model and existing 

knowledge about the system is insufficient to inform pa-

rameterization or to reduce the number of parameters. 

The setting, testing, and evaluation of model assump-

tions have been previously referred to and described in 

the context of the MID3 paradigm.41 They have been di-

vided into the following six distinct types of assumptions: 

pharmacological, physiological, disease, data, mathe-

matical, and statistical. Assumptions are scoped by what 

the model is intended for (e.g., to understand process 

relationships, to simulate the effect of different scenarios 

on pharmacological events), as discussed in the previ-

ous section. Care should be taken to keep the number 

of assumptions as low as possible because an increase 

in the number and complexity of modeling assumptions 

can lead to higher uncertainty and risk around modeling 

results. The level of evaluation and testing of the assump-

tions (e.g., by sensitivity analysis, discussed in the next 

section) needs to be tailored accordingly. This is a key 

aspect in the selection of the right level of granularity in 

a QSP model which, as Ribba et al.27 point out, is one 

of the most difficult decisions during the QSP modeling 

process.

Careful documentation of the collation of sources and 

usage of input data, knowledge, and assumptions made 

in formulating and informing a model increases the confi-

dence in its results. It acts to ensure that quality assurance 

and quality control of the developed model have been un-

dertaken.41,42 A discussion of the potential limitations of 

the model in the context of the available data, knowledge, 

and assumptions also constitutes good practice because it 

allows modeling practitioners to reuse or extend the QSP 

model with new or expanded information.

MODEL VERIFICATION

The definition of model verification in the literature is rather 

unresolved. Some authors describe model verification as 

the part of a model qualification process that focuses on 

the correctness of the mathematical model structure.31 

They understand model qualification as a broad activity 

aimed at establishing confidence in the model to simulate a 

certain scenario in a specific context and showing its ability 

to predict with a certain purpose. Model qualification has 

also been described as an approach to determine whether 

a model is fit for purpose.29 On the other hand, other au-

thors30,32,43,44 define verification as the process of model 

testing with a data set that has not been used for initial 

model building, often part of a verification/modification it-

erative process of model refinement prior to its application. 

Here, we refer to model verification as the process in which 

the modeler determines the degree of self- consistency and 

robustness of the model prior to assessing its performance 

against experimental observations.43,45

At the very least, computational and mathematical mod-

els solved numerically should have their code tested for 

consistency. Such testing consists of ensuring the software 

code does not contain any coding errors (e.g., bona fide 

mistakes or additionally coded terms not included in the 

original formulation/statement) and checking that the solu-

tions to known results or limit conditions of the model (e.g., 

A  +  B → C yield no C when A or B are zero) are correctly 

produced. Such testing can greatly alleviate the likelihood of 

undertaking experimental work based on model predictions 

that are later found to be incorrect.

In addition, mathematical and statistical analyses can help 

us understand the range of applicability of a QSP model; 

it provides tools to allow us to explore behavior for which 

there is a lack of data. In fact, the analysis of any model is 

important in identifying a system’s overall behavior. Such an 

analysis can highlight aspects not previously conceived or 

considered and help provide a comprehensive understand-

ing of the system dynamics. The reporting of the mathe-

matical analyses of a model should include the methods of 

analysis used and outline the main steps required to repro-

duce the results. These results should be clearly stated and 

their meaning placed in the context of the overall  problem/

application considered.

There are certain key tests and analyses for QSP mod-

els that should be considered when performing model ver-

ification. One of them is structural identifiability analysis, 

which can help determine whether the model structure and 

parameter estimates inferred from the known or assumed 

properties of a system are suitable. This can help determine 

whether increasing the quality of the input data set used for 

parameter estimation (see the previous section) would help 

reduce uncertainty in the estimation, the uncertainty may 

stem from a poor model structure. This analysis considers 

the uniqueness (or otherwise) of the unknown model pa-

rameters from the input- output structure corresponding to 

experiments proposed to collect data for parameter estima-

tion. Such an a priori analysis applies under an assumption 

of the availability of perfect, noise- free observations. This is 

an important but often overlooked theoretical prerequisite 

to experiment design, system identification, and parameter 

estimation because estimates for unidentifiable parameters 

are effectively meaningless. If parameter estimates are to be 

used to inform about intervention or inhibition strategies or 

other critical decisions, then it is essential that the param-

eters be uniquely identifiable or otherwise supported from 
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independent, reliable information. This is particularly true if 

the model potentially may incorporate many unknown model 

parameters with relatively few model outputs. Numerous 

techniques for performing a structural identifiability anal-

ysis on linear parametric models exist, and this is a well- 

understood topic.46–48 In comparison, there are relatively 

few techniques available for nonlinear systems, and sig-

nificant (symbolic) computational problems can arise, even 

for relatively simple models.49–51 During the past few years, 

software packages have been developed and are generally 

widely available that can ease the burden in performing such 

analysis.52–55 These include (and are not limited to) struc-

tural identifiability analysis software using the exact arith-

metic rank approach (EAR),56 StrikeGoldd2,57 COMBOS,58 

DAISY,59 and Profile Likelihood.39 In addition, there are also 

techniques available in the literature60,61 to establish model 

parameter redundancy, which alongside structural iden-

tifiability analysis can support model reparameterization 

or lumping, should this be required.62 The introduction of 

recent techniques for the structural identifiability analysis 

of mixed- effects models (commonly applied in a popula-

tion PKPD context) widens the scope of the application of 

such analysis to QSP models.54 With the availability of such 

tools, there should be an expectation that a certain level of 

structural identifiability analysis of QSP models should be 

performed and reported as a prerequisite to parameter esti-

mation and as a component of experiment design.

In the case of dynamical mathematical models (e.g., dif-

ferential equations), one should also seek to determine the 

steady states of the system. In a QSP model, these should 

include the steady states in absence of drug. This allows two 

things to be achieved. First, such analysis acts as a consis-

tency check—is the model reproducing the baseline state? If 

not, is the model then correctly formulated? Second, it allows 

for a basic understanding of the system to be obtained. If 

multiple steady states are found, then changes in the param-

eters can lead to changes in the stability or even existence 

of these steady states, which can lead to dramatic changes 

in the overall dynamics of the model. A bifurcation analysis 

determines those curves in the parameter space at which 

such changes occur. If certain dynamics are not biologically 

feasible, then this gives bounds on the feasible parameter 

regions and thus helps determine when an extrapolation is 

likely to work and when it is probably going to fail. In ad-

dition, such an analysis can also aid parameter estimation. 

If such transitions have been observed experimentally, this 

can provide an implicit method to determine unknown pa-

rameters. For small- scale models (e.g., four governing dif-

ferential equations or fewer), such an analysis can generally 

be achieved analytically. For larger scale systems, such work 

can be undertaken using mathematical computer packages 

such as Maple,63 MATLAB®,64 and DsTool.65 Model reduc-

tion methods should also be considered as a means of gain-

ing further understanding of the system.66

Computational analysis of mathematical models should 

also be undertaken as a complement to the above analysis 

techniques or where such mathematical analysis is not possi-

ble. At the very least, the analysis of dynamic models (mathe-

matical or computational) should include a sensitivity analysis. 

Sensitivity analysis is commonly applied to parameterized 

models to establish those parameters that are most sensitive 

to perturbation and those that have the most effect on model 

responses when perturbed. Formal sensitivity has long been 

considered an important aspect of PKPD modeling (see, for 

example, Nestorov et al.67,68). Kirouac69 even suggests a 

methodology, underpinned by sensitivity analysis approaches, 

that could become a means to quantifying qualitative QSP 

simulation results, placing this technique in the realm of model 

“validation.” Clearly such an analysis is also a key component 

in the modeling of QSP systems, and with techniques such 

as generalized sensitivity functions, should be a fundamental 

component in QSP modeling.70 Indeed, a growing number of 

journals require such analysis be undertaken before a manu-

script is accepted for publication.

The robustness of model simulations to input perturbations 

should also be considered, potentially including μ- analysis, 

an approach to quantifying the effects of parameter uncer-

tainty as applied to models in systems biology, for example, 

to ascertain the extent of applicability of the models gener-

ated.71 This may also be performed in a statistical context.

However, there will always be uncertainties in the parame-

ter estimates even if the model is structurally identifiable and 

the quality and quantity of the experimental data are rela-

tively high. The combined effects of dynamical model analy-

sis (analytical and computational) and identifiability analysis 

can be greatly informative in assisting the design of further 

experiments to inform on unidentifiable parameters and their 

values without the need for a reduction of the model and 

thus loss of descriptive power. As well as this, an approach 

to further strengthen the plausibility of the model simulations 

is to use experimental data to validate the model.

MODEL VALIDATION

We refer to model validation as the process in which the 

modeler determines the degree to which the model is an 

accurate representation of the real world43,45 using exper-

imental observations that have not been used as input to 

estimate the model parameters.

In the context of QSP, this is equivalent to running a mul-

tiscale simulation of the model, where emerging properties 

of the whole or of a submodule of the model are compared 

with the behavior observed experimentally for that model or 

submodule. The validation of individual model submodules 

(e.g., the cell cycle of eosinophils in the human body, or the 

absorption, distribution, metabolism and excretion (ADME) 

cycle that a drug undergoes in a healthy volunteer) adds 

confidence in the parameter values for those submodules, 

whereas the validation of the whole model high- level behav-

ior (e.g., the forced expiratory volume in 1 second (FEV1) 

response in asthmatic patients under a specific drug treat-

ment) adds confidence on how those submodels were inte-

grated with each other and within the framework of human 

physiology. The latter is also the ultimate measure of credi-

bility of the simulations that will address the specific ques-

tions posed initially by the modeler. 

As mentioned in the “Input Data, Knowledge, and 

Assumptions Going Into the Model” section, experi-

mental observations can consist in data or in knowl-

edge about the behavior of the biological system. Where 
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quantitative data are available to assess the degree of 

performance of the model, this should be utilized. When 

no quantitative data are available, qualitative data and/

or “expert” stakeholder knowledge of the system trends 

can be applied, for example, to rule out certain hypoth-

eses about the intrinsic behavior of the system. In either 

case, at the point of publication, the data or knowledge 

used to validate the model should be clearly referenced 

and described and its relevance to the model context ad-

equately explained. Lu et al.,72 Kanodia et al.,73 Ortega 

et al.,74 Karelina et al.,75 and Peterson and Riggs,76 to 

name some examples, illustrate well the validation of a 

model and its reporting.

The modeler should aspire to produce plots of simula-

tions and overlay the experimental data onto these, includ-

ing any measures of their potential and perceived variability 

(i.e., standard error bars or 95% confidence intervals around 

the experimental data, shadows from ensemble simulations, 

etc.) whenever possible. As more data sets and increasingly 

diverse contexts and types of perturbations are compared 

with the model simulations, the more opportunities arise to 

learn about the domain of applicability of the model. The 

term “learn” here is substantially important—models are 

not only useful for their potential to predict the system be-

havior but also essentially for consolidating the knowledge 

and assumptions that exist about the system. A disagree-

ment between simulations and experimental observations, 

assuming experimental observations can be considered to 

be directly pertinent, highlights the fact that one or some 

of the underlying assumptions in the model are incorrect.77 

Thus, the model structure and/or its parameter values need 

to be reconsidered and potentially new experimental assays 

designed to fully understand from where the disagreement 

stems. Often, the trends in residual analysis, or qualitative 

features of the simulation, can help spot those assumptions 

that are potentially incorrect. Once those disagreements 

have been minimized or when the specific situations where 

those disagreements appear have been clearly identified, 

then confidence in the model simulations, the underlying 

assumptions, and the overall credibility of the model will 

increase.

Model quality tests usually run in the context of other in 

silico simulations, such as Akaike’s information criterion, 

Bayesian information criterion, R2, Q2, and so on may be in-

adequate here because the goal of QSP models is not to ob-

tain a highly precise estimate of the system readouts (e.g., 

biomarker levels changes), but to obtain a ballpark estimate 

with the limited knowledge that there is of the system com-

ponents, of what can be expected when all of those compo-

nents are put together.78

Ultimately, the validation of the model ought to be per-

formed in the strictest sense of the term validation: this is 

when the data available to test the model performance have 

been generated in an experiment designed on the basis of 

the model simulations. However, it is unusual at the time of 

publishing the model for the modelers to count on these 

data, so normally the reporting of the modeling exercise fin-

ishes with the application of the validated model to resolve 

those questions posed by the “end user” stakeholders.

MODEL RESULTS, APPLICATION, AND IMPACT

Once the model has been developed and has reached a 

satisfactory degree of maturity and performance, it can 

then be applied to answer the questions originally posed. 

The degree to which the model can answer those questions 

and the answers themselves will determine its impact.

The answers normally rely on some sort of graphical rep-

resentation of the model simulations and on the capture of 

the outcome values of key system elements (e.g., regarding 

molecular species, cell types, system agents, clinical bio-

markers, etc.) during and at the end of those simulations. 

All of these data, graphical or numerical, should be reported 

clearly as well as the model conditions in which those sim-

ulations were run, including initial conditions and simulation 

time.

The impact of the model is primarily measured in relation 

to the original purpose of the modeling exercise, that is, the 

questions posed and the anticipated output. The impact, 

including its type and extent, will be viewed differently in 

different types of environments (academic, industry, or reg-

ulatory) and by different types of roles (bioscientist, medic, 

pharmacologist, chemist, practitioner, manager, director). It 

is for this reason that regulatory vs. industry criteria for im-

pact have been developed.41,79

With respect to direct impact within our original list 

of stakeholders, for the “end user” the impact will be 

judged by whether key questions have been addressed 

and whether the model can be easily interrogated to an-

swer emerging questions. For the “domain expert”, judg-

ment may well be based on whether the model “sensibly” 

encodes biological knowledge. The assessment of the 

model’s impact by the modelers will be partly based on 

feedback from the stakeholders, but direct impact will 

depend on whether the modeling exercise has provided 

a reusable model and a deeper understanding of how to 

model a particular aspect of biology and pharmacology. It 

is important to note that the perception of added value that 

the “end user” stakeholder has of the modeling exercise is 

instrumental in achieving and measuring impact beyond 

the initial circle of influence.

Regarding the knowledge acquired, the value added by 

the QSP model could be the following:

1. A positive new discovery: the model allows the ex-

ploration of untested contexts, so it could become 

a source of new (ranges of) parameter values (e.g., 

“what is the required potency for the new drug?”) 

or of a completely new hypothesis (e.g., “what if 

we test this new dosing regimen?” as was the case 

with the rhPTH filing11).

2. A confirmation: the model may not venture into extrap-

olating to untested contexts, but because of its integra-

tive, bottom-up nature, QSP provides unique insights 

that are unavailable through alternative modeling tech-

niques, so it becomes a sandpit where existing data 

can be interpreted in data-rich contexts or where un-

certainty can be explored and delimited in data-poor 

contexts, enabling better informed decisions.
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Table 2 Abbreviated list of recommendations on best practice to maximize the use and reuse of QSP models 

QSP workflow step

Recommendations

Relevant referencesMathematical Computational

1. Purpose and context of the 

model

• Ask “Do I need a model?” and “What is the purpose of the model?”

• Engage with stakeholders: “end users” and “domain experts”

• Formulate clearly the questions addressed, their context, expected impact of 

the decisions derived from the model, and rationale for the selection of QSP as 

modeling methodology

Peterson & Riggs (2015)11

Timmis et al. (2017)26

Ribba et al. (2017)27

Gadkar et al. (2016)28

Friedrich (2016)29

2. Model 

structure and 

modeling 

methodology

i. Model domain 

and general 

structure

• Define clearly the model domain: therapeutic area, biological scale, biological/

clinical system

• Provide a schematic representation of the model domain and general structure 

(e.g., Figure 2)

• Whenever possible, follow standard graphical notation (e.g., SBGN)

Gadkar et al. (2016)28

Figure 2

Le Novère et al. (2009)36

ii. Model 

formulation or 

algorithm

• Provide all equations and boundary conditions 

(e.g., Box 1)

• Explain all the terms and their biological/

pharmacological meaning

• Clearly state the 

algorithm using 

pseudo-code and 

clearly state any 

associated equations

• Explain all the rules and 

parameters and their 

biological/pharmaco-

logical meaning

Box 1

Timmis et al. (2017)26

• Explain any abstractions and/or simplifications made

• Report units for each element in the model

iii. Model solving 

and simulation 

method

• State the method used to solve the system of 

equations (e.g., Runge-Kutta fourth/fifth order 

implemented via the ode45 solver in MATLAB
64) 

• Provide absolute/relative tolerance value

• Clearly state simulation 

engine used (and 

version)

Timmis et al. (2017)26

• Provide software package used and version

iv. Code files • Share code and model files generated to build and run the model via the 

following: 

○ Supplementary material of an article

○ Public online model repositories (e.g., BioModels
4
, DDMore

6
)

○ Academic author websites, or

○ Public platforms for computational code (e.g., GitHub
37

)

• Ensure code is easy to follow, adequately annotated, and as error free as 

possible

• Whenever possible, use a standard format (e.g., SBML, PharmML)

Chelliah et al. (2015)4

Lloyd et al. (2008)5

DDMore- Foundation 

(2012–2018)6

GitHub (2018)37

Hucka et al. (2003)9

Golebiewski (2019)16

Swat et al. (2015)17

Smith et al. (2017)18

Cuellar et al. (2003)38

3. Input data, knowledge and 

assumptions going into the model

• Use input data from systems under experimental conditions as relevant as 

possible to the system being modeled

• Provide a detailed model parameter description, including the following: 

○ Symbol/name of parameter

○ Definition

○ Parameter value (or range of values)

○ Units

○ Sources used to obtain it (literature citation, database, derivation from other 

parameters, experiment presented in the same report/article, in silico 

estimations, etc.)

○ Details of how the parameter value was determined (measured directly, fitted 

or assumed) and whether the underlying data has any limitations (suspected 

errors, outliers, high variability, excluded data points, etc.)

• Consider using a tabular format to present this information (e.g., Table 1)

• Consider providing actual data files along with code files (see 2. Model structure 

and modeling methodology, iv. Code files in this table)

• Describe the following in detail: 

○ Qualitative and/or semiquantitative knowledge obtained firsthand from 

stakeholders

○ Assumptions (pharmacological, physiological, disease, data, mathematical, 

statistical) and how they were tested

• Discuss potential limitations of model in the context of available input data, 

knowledge, and assumptions

Table 1

Sarkans et al. (2018)40

Marshall et al. (2016)41

Ribba et al. (2017)27

Bonate et al. (2012)42

(Continues)
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3. A realization of a misconception: when a modification 

of model assumptions is required to describe experi-

mental data, this points to a gap in biological knowl-

edge (e.g., “our current understanding of the drug 

target biology does not explain the observed in vitro 

phenomena quantitatively”), which generates a revision 

of the initial hypothesis; the QSP model can then help 

identify the key questions needed to expand our knowl-

edge sufficiently and design the studies required to in-

form them.77

The type of decision making that is affected by this 

knowledge will depend on the specific environment where 

the decision is made. In a pharmaceutical business, the 

knowledge acquired could translate into, for example, 

stopping or starting a project, seeking the reoptimization 

of certain candidate drug properties, or redesigning an 

experiment or clinical study. A good example of the lat-

ter was reported by Entelos80 in their publication about 

the optimization of a phase I clinical trial protocol for a 

first- in- class therapy against type 2 diabetes mellitus 

(T2DM): their QSP simulations led to the reduction from a 

“6 arms for 14 weeks” to a “2 arms for 8 weeks” design. 

In academia, the newly acquired knowledge could per-

haps lead to the decision of developing a new research 

program, seeking a collaboration with research teams 

of bench scientists, or publishing a high- impact, peer- 

reviewed article. In a regulatory setting, the knowledge 

derived from a QSP model can translate into an approval 

(e.g., the rhPTH example11) or a rejection of the license 

application.

The impact of a QSP modeling exercise can have a rip-

ple, multifold effect beyond the modeler’s initial stakehold-

ers. The success of modeling is especially compelling when 

impact can be translated into financial figures, reflecting any 

sort of cost or time savings in a business, in an academic 

institution, or even in the national budget. The article on the 

T2DM QSP model mentioned previously80 is an example of 

QSP workflow step

Recommendations

Relevant referencesMathematical Computational

4. Model verification • Test code for consistency: 

○ Eliminate detected coding errors

○ Ensure solutions or limit conditions reached by the model are correct (e.g., 

A + B -> C yields no C when A and B are set to zero)

• Determine the steady states of the system

• Run a sensitivity analysis to identify which parameters have the most effect on 

model responses and how significant is that effect

Anderson et al. (2007)43

Hicks et al. (2015)45

Nestorov et al. (1999)67

Nestorov et al. (1997)68

Kirouac (2018)69

Thomaseth & Cobelli 

(1999)70

• When model parameters are assumed, that is, not 

supported by independent, reliable input data or 

knowledge (see 3. Input data, knowledge and 

assumptions going into the model in this table): 

○ Check that those parameters are identifiable

○ Consider techniques to establish model 

parameter redundancy

• Consider running a bifurcation analysis to define 

the scope of extrapolations from the model

• Consider model reduction methods

Walter et al. (1987)48

Janzen et al. (2016)53

Raue et al. (2014)55

Karlsson et al. (2012)56

Villaverde et al. (2019)57

Meshkat et al. (2014)58

Saccomani et al. (2010)59

Choquet et al. (2012)60

Cole et al. (2010)61

Back et al. (1992)65

Snowden et al. (2017)66

5. Model validation • Describe and clearly reference the data or knowledge used to validate the model 

and explain its relevance to the model context

• Plot model simulations overlaying the corresponding experimental data onto them 

with measures of potential/perceived variability (e.g., standard error bars, 

confidence intervals, shadows from ensemble simulations)

Anderson et al. (2007)43

Hicks et al. (2015)45

Lu et al. (2014)72

Kanodia et al. (2014)73

Ortega et al. (2013)74

Karelina et al. (2012)75

Peterson and Riggs 

(2012)76

Agoram (2014)78

6. Model results, application, and 

impact

• Articulate a clear answer to the questions originally posed for the model (see 1. 

Purpose and context of the model in this table)

• Provide the simulation plots and/or outcome numerical values that underpin 

those answers

• Qualify the type of knowledge acquired through the modeling exercise: a 

positive new discovery, a confirmation, and/or a realization of a misconception.

• Describe the decisions that the modeling exercise enabled for the different 

stakeholders (user, domain expert, academic, industry, regulatory)—qualita-

tively and, whenever possible, quantitatively

• Describe the impact of the QSP modeling exercise beyond the initial stakehold-

ers, especially if the impact is societal and/or can be translated into financial 

figures

Marshall et al. (2016)41

Shepard (2011)79

Peterson & Riggs (2015)11

Hendricks (2013)77

Kansal & Trimmer (2005)80

Milligan et al. (2013)81

Allerheiligen (2014)82

Bueters et al. (2013)83

Nayak et al. (2018)84

PharmML, pharmacometrics markup language; QSP, quantitative and systems pharmacology; SBGN, systems biology graphical notation; SBML, systems 

biology markup language.

Table 2 (Continued)
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reporting this sort of impact: the authors estimated a reduc-

tion in 66% of the cost and 40% of the time length of the 

phase I trial. In the context of modeling, albeit not exclusively 

of QSP, there are a couple of significant examples by Pfizer81 

and Merck.82 Finally, there is the societal impact, including 

the enhanced 3Rs of animal usage,83 reduced patient bur-

den, or development of scientific talent among others.

Several groups have collated the impact of modeling 

and simulation, although only a limited subset of these 

would be considered QSP. The impact examples col-

lected by the American Society for Clinical Pharmacology 

and Therapeutics (ASCPT) Quantitative Pharmacology 

Network84 provide a number of case studies, including the 

key question that needed to be addressed, impact on de-

cision making, and estimated time saving. Of note are the 

translational medicine examples that generate predictions 

before clinical data are generated, including the optimiza-

tion of bispecific antibody affinities and the translation of the 

efficacy of antimicrobial agents using nonclinical data.

Reporting the impact of each QSP model developed and 

published, at all of these different levels, is of crucial impor-

tance if the QSP community aims to widen the adoption of 

this discipline.

CONCLUSIONS AND FUTURE WORK

This article attempts to summarize the considerations 

made by members of the UK QSP Network on good prac-

tice for the conduct and reporting of each stage of QSP 

model development and application. QSP is a very useful 

body of technologies but also a highly technical area, so 

the communication of both methods and results is of the 

utmost importance. In particular, sufficient information re-

garding the following should be given to enable the work to 

be reproduced:

1. The questions and objectives that the modeling ex-

ercise set out to answer and achieve

2. The modeling assumptions (biological and math  e matical)

3. The sources of data and prior parameter values

4. The mathematical model structure

5. Final parameter values

6. The existence of steady states and/or oscillations

7. The computational algorithms used

8. The conclusions that the modeling supported

A summary list of all recommendations, along with refer-

ences, can be found in Table 2.

The widespread adoption of these good practices should 

facilitate not only broad adoption of QSP but also the reuse 

of existing QSP models in new and exciting areas of pharma-

cology and drug discovery. These include, just as examples, 

the possibility to build on existing QSP models to extrapolate 

the results of drug treatment between diseases with common 

underlying mechanisms (e.g., different cancer types), and 

the definition and evaluation of optimal drug combinations85 

considering the sequence and timing of a given therapy.

An area where QSP holds much promise is in pediat-

ric and vulnerable populations.86 In particular, the under-

standing of neonatal, obstetric, and fetal pharmacology is 

important. Much progress has been made in terms of ex-

trapolation from adult or adolescent data to pediatric pop-

ulations (which currently is done outside of QSP, usually via 

pharmacometric and PBPK approaches).87 However, more 

needs to be achieved in terms of understanding the on-

togeny and maturation processes (fetal development, the 

placenta exchange process, neonates, pediatrics88,89). This 

would also support hypotheses on similarities of disease 

mechanisms between different stages of development. 

Another area where multiscale models have potential is in 

their use in concert with pharmacometric models to study 

how an observed variability in patient response can be ex-

plained by, for example, variables influencing trial design, 

variation in disease- specific covariates (not exclusively 

pharmacokinetics), or the complex pathway modulation 

that can be engendered by drug combinations. This sum-

mary will hopefully serve as a helpful guidance to QSP 

practitioners seeking to maximize their impact as well as 

to other stakeholders considering the use of QSP models 

in their projects.
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