Hindawi

Journal of Healthcare Engineering
Volume 2019, Article ID 4501502, 8 pages
https://doi.org/10.1155/2019/4501502

Research Article

Hindawi

Quantitative Assessment of Autonomic Regulation of the

Cardiac System

Jian Kang Wu ®,"* Zhipei Huang ®,' Zhigiang Zhang ®,’ Wendong Xiao @,

and Hong Jiang’

4

"The University of Chinese Academy of Sciences, Beijing, China
2Institute of Healthcare Technologies, Chinese Academy of Sciences, Nanjing, China

3University of Leeds, West Yorkshire, UK

*Beijing University of Science and Technology, Beijing, China

°China-Japan Friendship Hospital, Beijing, China

Correspondence should be addressed to Jian Kang Wu; jkwu@ucas.ac.cn and Zhipei Huang; zhphuang@ucas.ac.cn

Received 8 January 2019; Accepted 27 March 2019; Published 21 April 2019

Guest Editor: Jilong Kuang

Copyright © 2019 Jian Kang Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Autonomic neural system (ANS) regulates the circulation to provide optimal perfusion of every organ in accordance with its
metabolic needs, and the quantitative assessment of autonomic regulation is crucial for personalized medicine in cardiovascular
diseases. In this paper, we propose the Dystatis to quantitatively evaluate autonomic regulation of the human cardiac system, based
on homeostatis and probabilistic graphic model, where homeostatis explains ANS regulation while the probability graphic model
systematically defines the regulation process for quantitative assessment. The indices and measurement methods for three well-
designed scenarios are also illustrated to evaluate the proposed Dystatis: (1) heart rate variability (HRV), blood pressure variability
(BPV), and respiration synchronization (Synch) in resting situation; (2) chronotropic competence indices (CCI) in graded exercise
testing; and (3) baroreflex sensitivity (BRS), sympathetic nerve activity (SNA), and parasympathetic nerve activity (PNA) in or-
thostatic testing. The previous clinical results have shown that the proposed method and indices for autonomic cardiac system
regulation have great potential in prediction, diagnosis, and rehabilitation of cardiovascular diseases, hypertension, and diabetes.

1. Introduction

Autonomic neural system (ANS) regulates the circulation to
provide optimal perfusion of every organ in accordance with
its metabolic needs. Together with the endocrine and im-
munological systems, it adjusts the internal environment of
the organism to respond the changes in the external envi-
ronment [1]. Therefore, understanding the ANS and the way
it regulates body circulation is crucial for personalized
medicine in cardiovascular diseases. The understanding of the
ANS regulation in the cardiac system can be traced back to the
findings of two Nobel Prize winners: (1) Corneille Heymans in
1938 identified the carotid sinus nerves [2], which are tiny
baroreceptor and chemoreceptor nerves and can sense
changes in hemodynamic pressure and humoral factors and
send output to the sympathetic and parasympathetic nerves,

and (2) Axelrod [3], Von Euler [4], and Del and Katz [5]
identified acetylcholine (ACh) as a transmitter for the
parasympathetic nerves, norepinephrine (NE), and sympa-
thetic nerves. However, the ANS regulation of the cardiac
system can be viewed as a complex dynamic system, and it
can be well described by “Homeostasis” [6], which is now
regarded as one of the core competencies by the American
Association of Medical Colleges and Howard Hughes Medical
Institute and a core concept necessary for future physicians
[7].

In clinical settings, autonomic dysfunction has been
linked to direct detrimental effects towards heart failure and
chronic kidney disease [8]; thus, quantitative methods to
evaluate the ANS regulation has great potential to generate
innovative diagnostic and treatment approaches that limit
hypertension and target end-organ damage. Recent research
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has shown that the autonomic neurohumoral system can
dramatically influence morbidity and mortality from car-
diovascular disease through influences on the innate and
adaptive immune systems [9]. Due to the high metabolic rate
of brain tissue, the precise regulation of cerebral blood flow
(CBF) is critical for maintenance of constant nutrient and
oxygen supply to the brain [10]. The metabolic syndrome is
characterized by the clustering of various common meta-
bolic abnormalities in an individual, which is also associated
with increased risk for the development of type 2 diabetes
and cardiovascular diseases. The augmented sympathetic
activity in individuals with metabolic syndrome worsens
prognosis of this high-risk population [11]. Experimental
and clinical investigations have validated the hypothesis: the
origin, progression, and outcome of human hypertension
are related to dysfunctional autonomic cardiovascular
control, which is particularly true for abnormal activation of
the sympathetic division [12].

Since the quantitative assessment of the autonomic reg-
ulation is tremendously important for clinical and healthcare
applications, there is urgent need to quantitatively evaluate
the ANS regulation status. Unfortunately, there are only two
invasive methods to measure certain aspects of the ANS thus
far: (1) microneurography to assess muscle sympathetic nerve
activity and (2) the norepinephrine isotope dilution to de-
termine noradrenalin in the blood to evaluate spillover of the
sympathetic nervous system [13]. Although HRV is an in-
direct biomarker of the cardiac autonomic nervous system
activity [14], ANS regulation of the cardiac system is complex
in nature and existing HRV assessment is rather ad hoc
without any theoretical model. Therefore, HRV indices ob-
tained in different settings and by different persons are often
inconsistent, resulting in difficulties for clinical interpretation.

In summary, ANS regulation of the cardiac system plays
a central role in both research and clinical practices, and we
will focus on the quantitative assessment of autonomic
regulation of the cardiac system in this paper. The main
contributions are as follows:

(i) We propose the Dystatis to quantitatively evaluate
autonomic regulation of the human cardiac system,
based on homeostatis and the probabilistic graphic
model, where homeostatis explains ANS regulation
while the probability graphic model systematically
defines the regulation process for quantitative
assessment.

(ii) The Dystatis is elaborated in three well-designed
scenarios, where indices and measurement methods
for each scenario are also proposed and illustrated by
clinical applications:

(1) HRV, BRV, and Synch in resting situation:
Dystatis provides theoretical model and guide-
lines for the test design and data processing and
interpretations, in order to solve existing in-
consistence problems.

(2) CCI in graded exercise testing: Dystatis meta-
bolic requirement is enlarged by graded exercise
so that CCI can be obtained without considering
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effects from other internal and external in-
teractions. These are minor compared to graded
exercises.

(3) BRS, SNA, and PNA in orthostatic testing: based
on Dystatis, orthostatic testing creates a large
blood pressure drop and then a large BRS output
to sympathetic and parasympathetic nerves. As
such, the mathematical model for solution of
BRS, SNA, and PNA can be greatly simplified by
neglecting other internal and external in-
teractions in the ANS regulation.

2. Dystasis: Systematic Quantitative Assessment
Methodology for ANS Regulation of the
Cardiac System

Human body is a complex biological system, of which
homeostasis is a crucial property in maintaining the life. It is
the self-regulating process by which biological systems
maintain stability in order to adjust to conditions that are
optimal for survival. The stability attained is a dynamic
equilibrium, in which continuous change occurs yet rela-
tively uniform conditions prevail.

Dystasis is built up on homeostasis and defined as fol-
lows: ANS regulation of the cardiac system is a part of body’s
complex biological system. Through ANS self-regulating
process, the cardiac system tends to reach and maintain a
dynamic equilibrium state, in order to supply cells and
organs with their metabolic needs, e.g., oxygen, nutrients,
and removal of waste, survive in various internal and ex-
ternal environments, and support various physical and
mental activities. The characteristics of Dystasis are (1)
equilibrium: the ANS self-regulating process of the cardiac
system reaches and maintains an “equilibrium” state in a
relative steady internal and external environment, with no or
minor changes in terms of physical and mental activities. The
property and its numerical measures of the state of this
equilibrium of the individual’s ANS self-regulating process
shall provide quantitative performance evaluation of how
well one’s ANS regulation system works; (2) dynamic: the
ANS self-regulating process of cardiac system should be
“dynamic” enough, being able to work in dynamic envi-
ronment, support various physical and mental activities of
the body, and defend virus invasions. In other words, it
should be able to reach new equilibrium state as soon as
possible when there is a change of internal/external envi-
ronment or physical/mental activities. For instance, ANS
regulation interacts with the immune system to control
inflammation [15] and ANS regulation of the cardiac system
increases oxygen supply and reaches a new equilibrium
when the intensity of physical activity increases to a new
level. The capability of ANS regulation to accommodate
changes of internal and external environment, as well as
activity needs, is another important measure.

In order to quantitatively evaluate the state and capa-
bility of ANS regulation of the cardiac system, one feasible
approach is the probabilistic graphic model-based approach
[16], as shown in Figure 1. Principally, the interactions of
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FIGURE 1: Probabilistic graphic model of autonomic regulation of
the cardiac system with internal and external influences.

ANS with cardiac, respiration, vascular, metabolic, immune,
viscera, and mental systems are bidirectional [17]. Here, in
Figure 1, the objective is to estimate ANS state through all
possible observations, in case of ANS regulation of the heart
rate with major internal and external influences; i.e., RSA is a
terminology for heart rate modulation by respiration; blood
pressure formed in the vascular system and sensed by
baroreflex which then affects the heartbeat; physical activ-
ities stimulate metabolic needs and increase the heart rate;
inflammation in the immune system breaks the stability of
ANS regulation and then heart rate variations; the dorsal
vagal complex is responsible for the interaction between
viscera organs and ANS; and the ventral vagal complex is
responsible for mental activities [17]. The observation of
ANS regulation here is variations of the heart rate, blood
pressure, and respiration. The sympathetic innervation of
the heart and blood vessels is excitatory. It stimulates va-
soconstriction and increases the heart rate and cardiac
contraction. On contrary, the parasympathetic vagal in-
nervation is inhibitory, which decreases the heart rate and
cardiac contraction. The balance of the two appears as
variations of the heart rate and blood pressure and can be
characterized by indices which represent properties and
rules of those variations caused by regulation: The sympa-
thetic activity increases during the flight-or-fight response,
whereas parasympathetic activity increases to calm the heart
when there appears emotionally driven high blood pressure.

For the estimation purpose and from Figure 1, we can
obtain the following formula, via probabilistic graphic
model:

P = p(heart/A) p(A/mental) p(A/viscera)
- p(A/immune) p(A/metabolic) p(A/vascular)
- p(A/lung),
(1)

where A is the state of ANS to be estimated through ob-
servations connected with ANS in the graph of Figure 1.
However, not all nodes connected with the ANS node are
observable or measurable. For the quantitative assessment
purpose, it is the best to intentionally create assessment
scenario where the influences of the measurable nodes are
maximized whilst minimizing those of the unmeasurable
nodes. Therefore, we designed the following three assess-
ment scenarios:

(1) Variability of the heart rate and blood pressure (HRV
and BPV) while the subject is in resting or other
steady state: the ideal measurement scenario is zero or
known steady physical activity, minimal mental ac-
tivity, and minimal viscera disturbance. The vari-
ability indices are used to characterize the state of
equilibrium of individual’s ANS self-regulating pro-
cess, which directly reflects states of immune system,
linking with inflammation biomarkers.

(2) CCI in graded exercise testing: the effect of physical
activity on ANS is maximized so that the influences
from the rest sources can be neglected. CCI provide
numerical measures to characterize the capability of
ANS regulation to accommodate changes of exercise
intensity.

(3) BRS, SNA, and PNA are obtained by model-based
analysis of blood pressure (BP) and heart rate (HR)
pairs acquired in orthostatic testing: Via orthostatic
test, large blood pressure drops around 30 mmh is
obtained. The input from baroreflex to SNA and
PNA becomes the major effect, and the rest can be
neglected. As such, the mathematical model for the
solution can be simplified as a subgraph of the
graphic model in Figure 1.

3. Variabilities in Resting or Steady
Testing Scenario

The indices of HRV and BPV consist of time-domain second-
order statistics, for example, standard deviation of ECG
normal-to-normal intervals (SDNN) and standard deviation
of differences of neighboring normal-to-normal intervals
(SDSD). Frequency-domain indices are calculated at very low
frequency band (VLEF, 0.004-0.04 Hz), low frequency band
(LF, 0.04-0.15Hz), and high frequency band (0.15-0.4 Hz).
The problem is then to quantitatively evaluate the state of
ANS and infer the physiological and psychological implica-
tions, given measured variabilities of the heart rate, blood
pressure, respiration, and assessment scenario that the
physical activity is zero or constant. Based on Dystasis
framework, according to equation (1) and graphic model in
Figure 1, there are still three nodes: mental activities and the
states of viscera organs are not known or unmeasurable and
inflammations in the immune system are the ones to be
inferred. Now, in this assessment scenario, in order to obtain
the stable and consistent quantitative measures, we have to
minimize the influences of mental activities and viscera or-
gans. To fulfill this requirement, variabilities are best to be
measured when the subject is in deep sleep or in a coherence
state between respiration and heart rate where mental ac-
tivities and viscera influences are purposely minimized.
HRYV has been studied for a long time to reflect the states
of ANS regulation [14, 18]. In clinical practice, HRV is
usually evaluated using Holter device and software, without
consideration of physical activities and other influences. This
has resulted in inconsistences in various studies and limited
the clinical applications of HRV. To quantitatively evaluate
the physical activities and define the testing scenario, in case



of using Holter device, a three-dimensional accelerometer
sensor is used to detect and classify posture and activity into
laying, sitting or standing, walking, or running. HRV indices
are then calculated when any of those postures and activities
keeps for more than 10 minutes [19].

The interaction between heartbeat and respiration is the
well-known respiratory sinus arrhythmia (RSA). The wis-
dom of the body to maintain the homeostasis is achieved by
synchronizing heartbeats with breathing and consequently
to maximize the efficiency of the cardiopulmonary system in
metabolic and circulation process. This equilibrium state is
the result of resonance of the cardiopulmonary system.
There are indices proposed to evaluate the degree of the
resonance of the cardiopulmonary system. The most com-
mon used one is coherence measure (Coh), the cross power
spectral density of the heart rate and respiration signals [20].

The resonance of the cardiopulmonary system represents
the equilibrium of ANS regulation, where one reaches both
physiological and psychological healthy state. Therefore, Coh
can be used to compose numerical measures to visually rep-
resent one’s health state, especially psychological health state,
and then, variability-biofeedback training is used to help one to
gain resonance state. A clinic trial was conducted in the Uni-
versity of Chinese Academy of Sciences (UCAS) Hospital to test
the effectiveness of HRV biofeedback (HRVB) for pregnant
women in managing anxiety and depression [21]. 20 pregnant
women at last trimester (28-32™ week) without pregnancy-
induced hypertension and diabetes were randomly assigned to
the HRVB group and the control group. Participants in the
HRVB group practiced HRVB for 30 minutes per day, while
participants in the control group did not. Following checks are
conducted for all participants every two weeks: blood pressure
(BP), fasting blood glucose (FBG), HRV of pregnant women
(PHRYV) and their fetuses (FRHV), and subjective assessment
on pressure using Pregnancy Pressure Scale (PPS), depression
using Edinburgh Postnatal Depression Scale (EPDS), and sleep
quality using Pittsburgh Sleep Quality Index (PSQI). The clinical
trial continued for subjects until they are in hospital for delivery.
In the trial, the HRVB group has shown significant improve-
ment over the control group with respect to blood pressure
stability (p > 0.05), depression reduction (p = 0.013), and sleep
quality improvement, while fetuses in the HRVB group has
shown significant improvement with respect to HRV SDNN
(p<0.01) and LF spectrum power (p <0.01).

HRYV and BPV can be used as a noninvasive assessment
tool for autonomic nervous system function, and reduced
and/or abnormal HRV and BPV are associated with in-
creased risk of mortality in cardiac patients. For both adults
and children, increased blood pressure variability (BPV)
appears to be directly related to sympathetic overactivity
with increased risk of end-organ damage and cardiovascular
events. Decreased HRV has been observed in adults and
children with chronic kidney disease and is an independent
predictor of mortality [22].

Autonomic dysfunctions are the most common non-
motor symptoms of Parkinson’s disease (PD) and often
precede the motor symptoms of the disease. Clinical study has
shown that HRV and BPV can be used as markers to indicate
the treatment progress and stages of the disease [23].
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A review of research literature [24] tells that affected
central nervous system structures and implicated autonomic
nervous system regulation coexist in Alzheimer’s disease.
Assessment of autonomic dysfunction can be used as an
early marker of Alzheimer’s disease and used for differential
diagnosis among dementia subtypes.

4. Chronotropic Competence Indices in Graded
Exercise Testing Scenario

Graded exercise tests, such as cardiopulmonary exercise test
(CPX), have been used in clinical practice to test the exercise
capability in terms of maximum oxygen metabolism [25]. In
Dystasis family, CCI are designed to evaluate the capability
of the ANS regulation of the cardiac system in response to
exercise, where the subject does not necessarily reach the
maximum exercise intensity.

Chronotropic incompetence (CI) is a terminology de-
scribing the status of attenuated heart rate response to exer-
cises. CI has been studied for the last 50 years [26]. Typical CI-
related measurements include the maximum heart rate and
heart rate recovery after exercise. There have been a lot of
research efforts to explore the usefulness of CI parameters in
clinical applications, i.e., their diagnosis value of coronary
artery [27], prognosis and management of heart failure
[28, 29], diabetes [30, 31], and hypertension [32, 33]. Although
Clis an independent predictor of major adverse cardiovascular
events and overall mortality, the importance of CI is under-
estimated [34]; this may be in part due to multiple definitions,
the confounding effects of aging and medications, and the
need for formal exercise testing for definitive diagnosis.

We have formally defined CCI as part of Dystasis in a
systematic way and in terms of ANS regulation capabilities
and endowed CCI with clear physiological and clinical
implications. CCI are defined as follows:

(1) Resting heart rate (HRrest) and resting blood pressure
(BPrest): The resting heart rate and resting blood
pressure are defined as the heart rate and blood pressure
when a person is awake, in a neutrally temperate en-
vironment, and has not been subject to any recent
exertion or stimulation, such as stress or surprise.

(2) Chronotropic rate (CRyr and CRgp): chronotropic
rate represents the rate at which the heart rate and
blood pressure increase as exercise intensity increases.
It is measured as the amount of heart rate or blood
pressure increase in response to every unit of meta-
bolic equivalent (MET) exercise intensity increase. In
practice, it can be measured and calculated as

CRuos = (HRstage - HRrest)
T (MET - 1)
(2)
CRBP _ (BPstage - BPrest)

(MET 1)

CRyg is similar with the “Exercise HR” in EACPR/
AHA Joint Scientific Statement [25]. It directly
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relates to sympathetic nerves activation and provides
insight into chronotropic competence and cardiac
response to exercise. It normally increases ~10 beats
per MET. The chronotropic rate is an important
parameter to provide personalized quantitative re-
lation between HR and exercise intensity so that the
target heart rate (THR) can be used to prescribe
exercise intensity in exercise training. However, the
chronotropic rate of a person may vary due to
medication or rehab progress; it is recommended to
measure the chronotropic rate promptly or monitor
chronotropic rate changes in order to keep exercise
prescription updated [35].

(3) Chronotropic limit (CL): chronotropic limit repre-
sents the maximal heart rate an individual can
achieve without severe problems through exercise
stress, as well as the blood pressure measured at the
same time. It is measured as heart rate reserve and
calculated as

(HRmax - HRrest)

CL =HRR = ,
(HRPredM - HRrest)

(3)

where HR,,,, is the maximal heart rate one achieves
during the exercise test and HRp,eqn is the predicted
maximal heart rate, usually calculated as 220 —age.
The maximal heart rate is usually obtained when
reaching peak exercise, which can be identified
during CPX testing. In this case, the normal value of
CL is 0.8-1.3. However, when CPX testing or peak
exercise is not achievable, then CL normal values are
different for types of exercises. For example, in a 6-
minute walking test, CL=0.4 for a 60-year-old
person should be considered normal. With a rest-
ing heart rate of 75bpm, CR would be 10 beats per
MET and the maximal heart rate would be 109 bpm
with an exercise intensity of 4.4 MET.

(4) Chronotropic acceleration (CA): ANS requires cer-
tain time to adjust the heart rate and blood pressure
to reach a new stable state or equilibrium when the
exercise intensity increases to a new level in the
graded exercise test. CA is defined as the time taken
to reach new equilibrium after exercise intensity
increases. CA is measured in seconds and represents
the ability of the ANS regulation of the cardiac
system in fulfilling metabolic needs.

(5) Chronotropic recovery at 1minute after exercise
(HR(ecoveryt and BP ecovery1): it is defined as the re-
duction in the heart rate and blood pressure 1 minute
after stopping exercise. The measurement of HR,..
coveryl aNd BPrecovery1 requires the testee to try his
best in the exercise, but not necessarily to reach one’s
maximum capacity. EACPR/AHA Joint Scientific
Statement [25] considers that HR ccoveryr provides
insight into speed of parasympathetic reactivation
and that the normal value of HR(ccoveryr should
be > 12 beats. There have been a number of clinical
studies on prognosis value of HRyecovery- For

example, Dhoble et al. [36] examined conventional
cardiovascular risk factors and exercise test pa-
rameters in 6546 individuals (mean age 49 years, 58%
men) between 1993 and 2003. A total of 285 patients
died during the follow-up period. HR;ecovery1 < 12
beats were found independently associated with
mortality (P <0.001).

A clinical trial in cardiac rehabilitation was conducted in
Jiangsu Provincial Hospital to evaluate the usability of CCI
[37], which are measured by Cardiac Chronotropic Com-
petence Testing (3CT), a device produced by SmartHealth
Electronics Ltd. 61 participants were recruited, including
patients of unilateral ischemic or hemorrhagic stroke within
the previous 6 months with some voluntary movement and
preserved cognitive function. Participates are randomly
assigned to the rehab group (30) and control group (31).
Each patient from both groups was evaluated at the be-
ginning and after 3 months using both subjective/qualitative
and objective/quantitative measures, namely, the In-
ternational Classification of Functioning, Disability and
Health (ICF), and chronotropic competence indices (CCI)
and 6 minute walking test (6MWT). Patients in the control
group were given personalized rehab advices after the
baseline test. Patients in the rehab group were equipped with
a Microsens rehab assistant for regular rehab exercise at
home. Personalized exercise prescription based on CCI is
downloaded into MicroSens rehab assistant, which consists
of rehab app on a smartphone and a wearable device.

Comparison between control and rehab groups after
3months of rehab training using the t-test shows that,
through out the rehab training, all the four ICF measure-
ments, namely, walking, doing house-hold work, in-
terpersonal interactions, and muscle power, have significant
improvement (p = 0.0070, 0.0209, 0.0089, and 0.0000, re-
spectively). Consistently, after 3 months of rehab training,
the rehab group is significantly better over the control group
with respect to all three 3CT objective measures: 6-minute
walking distance, chronotropic rate, and 1-minute heart rate
recovery (p = 0.0445, 0.0121, and 0.0414, respectively).

5. BRS, SNA, and PNA in Orthostatic
Testing Scenario

Estimation of BRS, SNA, and PNA is carried out in orthostatic
testing scenario where the subject is requested to suddenly
stand up from a sitting position. As a result, blood pools in the
vessels of the legs for alonger period and less is returned to the
heart, thereby leading to a reduced cardiac output and fall in
blood pressure. In order to counteract these changes, the
frequency of afferent impulses in the aortic and carotid sinus
nerves is reduced, which leads to parasympathetic withdrawal
and sympathetic activation. Here, the nerve activity will be
referred to as the baroreflex firing rate or simply the firing
rate. Sympathetic activation leads to a growing release of
norepinephrine which contributes to restoration of BP by
increasing HR, cardiac contractility, and vasoconstrictor tone.
In addition, parasympathetic withdrawal leads to decreased
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release of acetylcholine which also causes the increase of HR.
This whole ANS regulation process can be described by a
mathematical model [29, 38].

In the measurement, the subject wears a device which
measures ECG, radial artery pulse wave and branchial artery
pulse wave, and acceleration data to locate phases of the or-
thostatic posture. The orthostatic testing protocol is as follows:

(1) The subject wears the device and sits on a chair, with
the upper body straight up until reaching a stable
state of heart rate

(2) The subject stands up and keeps standing for
40 seconds

(3) The above process is repeated for three times

The device records all the data and sends the data to the
computer wirelessly. The heart rate is calculated from ECG
signal. The average blood pressure is estimated via pulse
transmission time from radial artery pulse wave and branchial
artery pulse wave with assumption that the physical properties
of the blood vessel and the blood do not change within the
measurement time. Figure 2 shows a sample of the mea-
surement data.

The blood pressure change in the orthostatic test is
maximized, and the mathematical model defining the ANS
regulation of heart rate due to blood pressure changes can
then be simplified as a small subgraph of the probability
graphic model in Figure 1. Based on the mathematical
model, using a series of blood pressure and heart rate data
pairs obtained in the orthostatic testing, we can perform the
following.

(i) For each BP and HR pair, the following is performed:

(a) BP is used to calculate the baroreflex firing rate

(b) With baroreflex firing rate, sympathetic and
parasympathetic outflows are predicted

(c) Concentrations of noradrenaline and acetyl-
choline are computed as functions of the sym-
pathetic and parasympathetic outflows

(d) Heart rate is computed as a function of these two
chemical concentrations

(e) Computed HR is compared with the measured
HR

(ii) For all BP and HR pairs, optimization for the
minimizing error is performed between computed
HR and measured HR to get curves of baroreflex
firing rate and sympathetic and parasympathetic
outflows. Figure 3 shows these curves for a healthy
young person and a 50 hypertension person. Other
parameters, such as baroreflex sensitivity, can be
derived from those curves and BP and HR data.

Noninvasive measurement of BRS, SNA, and PNA
provides useful meanings to discover mechanisms that act to
keep cerebral blood flow (CBF) constant, to understand
immune system, for better management of metabolic syn-
drome and hypertension. The quantitative estimation of
baroreflex sensitivity has been regarded as a synthetic index
of neural regulation at the sinus atrial node, which has been
shown to provide clinical and prognostic information in a
variety of cardiovascular diseases, including myocardial
infarction and heart failure [39]. Chronic hyperglycemia is
the primary risk factor for the development of complications
in diabetes mellitus (DM). Postprandial spikes in blood
glucose, as well as hypoglycemic events, are blamed for
increased cardiovascular events in DM. Glycemic variability
(GV) includes both of these events. However, defining GV
remains a challenge primarily due to the difficulty of
measuring it [40]. A multicenter, prospective, open-label
clinical trial including a total of 102 patients with type 2
diabetes [41] has found that GV was inversely related to BRS



Journal of Healthcare Engineering

Baroreflex firing rate
95 T T T T

Firing rate (times/min)

—— Health
- - - Patient

FIGURE 3: Baroreflex firing rate as a function of time. Results are
shown from a healthy person (solid) and a hypertensive patient
(dash).

independent of blood glucose levels in type 2 diabetic pa-
tients and that measurement of BRS may have the potential
to predict CV events in consideration of GV.

6. Conclusion and Remarks

We have described a systematic method for the quantitative
assessment of autonomic cardiac system regulation, named
Dystatis. The fundamental part of Dystatis is a quantitative
assessment methodology based on homeostatis and the
probabilistic graphic model, where homeostatis explains
ANS regulation while the probability graphic model for-
mally defines the regulation process and provides quanti-
tative assessment basis. As instances of Dystatis, indices and
measurement methods for three well-designed scenarios are
also described together with clinical applications: (1) HRV,
BPV, and Synch in resting situation, (2) CCI in graded
exercise testing, and (3) BRS, SNA, and PNA in orthostatic
testing.

Numerous clinical research results have shown that the
proposed method and indices for autonomic cardiac system
regulation have great application potential in the prediction,
prognosis, and rehabilitation of cardiovascular diseases,
hypertension, diabetes, and other autonomic nerves-related
areas. Further researches are being carried out to work with
various research institutions and hospitals to conduct
multicenter clinical research to investigate potential appli-
cations of the proposed methods in the prediction, prog-
nosis, and rehabilitation of cardiovascular diseases,
hypertension, diabetes, and other autonomic nerves-related
problems.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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