
This is a repository copy of Efficient Parametric Model Checking Using Domain
Knowledge.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/145222/

Version: Accepted Version

Article:

Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260, Paterson, Colin
orcid.org/0000-0002-6678-3752 and Johnson, Kenneth Harold Anthony (2019) Efficient
Parametric Model Checking Using Domain Knowledge. IEEE Transactions on Software
Engineering. 8698796. ISSN 0098-5589

https://doi.org/10.1109/TSE.2019.2912958

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Efficient Parametric Model Checking Using
Domain Knowledge

Radu Calinescu, Colin Paterson, and Kenneth Johnson

Abstract—We introduce an efficient parametric model checking (ePMC) method for the analysis of reliability, performance and other

quality-of-service (QoS) properties of software systems. ePMC speeds up the analysis of parametric Markov chains modelling the

behaviour of software by exploiting domain-specific modelling patterns for the software components (e.g., patterns modelling the

invocation of functionally-equivalent services used to jointly implement the same operation within service-based systems, or the

deployment of the components of multi-tier software systems across multiple servers). To this end, ePMC precomputes closed-form

expressions for key QoS properties of such patterns, and uses these expressions in the analysis of whole-system models. To evaluate

ePMC, we show that its application to service-based systems and multi-tier software architectures reduces the analysis time by several

orders of magnitude compared to current parametric model checking methods.

Index Terms—Parametric model checking; Markov models; model abstraction; probabilistic model checking; quality of service

✦

1 INTRODUCTION

Parametric model checking (PMC) [19], [32], [34] is a formal
technique for the analysis of Markov chains with transition
probabilities specified as rational functions over a set of
continuous variables. When the analysed Markov chains
model software systems, these variables represent config-
urable parameters of the software or environment param-
eters unknown until runtime. The properties of Markov
chains analysed by PMC are formally expressed in prob-
abilistic computation tree logic (PCTL) [33] extended with
rewards [2], and the results of the analysis are algebraic
expressions over the same variables.

In software engineering, Markov chains are used to
model the stochastic nature of software aspects including
user inputs, execution paths and component failures, and
the expressions generated by PMC correspond to reliability,
performance and other quality-of-service (QoS) properties
of the analysed software. The availability of algebraic ex-
pressions for these key QoS properties has multiple ap-
plications. First, evaluating the expressions for different
parameter values enables the fast comparison of alternative
system designs, e.g., in software product lines [28], [29].
Second, self-adaptive software can efficiently evaluate the
expressions at runtime, when the unknown environment
parameters can be measured and suitable new values for
the configuration parameters need to be selected [22]. Third,
PMC expressions allow the algebraic calculation of pa-
rameter values such that a QoS property satisfies a given
constraint [19]. Finally, they enable the precise analysis of
the sensitivity of QoS properties to changes in the system
parameters [24].

PMC is supported by the model checkers PARAM [31],
PRISM [38] and Storm [21]. However, despite significant

• R. Calinescu and C. Paterson are with the Department of Computer
Science at the University of York, UK.

• K. Johnson is with the School of Engineering, Computer and Mathematical
Sciences at the Auckland University of Technology, New Zealand.

advances in recent years [19], [32], [34], the current PMC
techniques (which these model checkers implement) are
computationally very expensive, generate expressions that
are often extremely large and inefficient to evaluate, and
do not support the analysis of parametric Markov chains
modelling important classes of software systems.

Our work addresses these major limitations of existing
PMC techniques and tools. To this end, we introduce an
efficient parametric model checking (ePMC) method that
exploits domain-specific modelling patterns, i.e., “fragments” of
parametric Markov chains occurring frequently in models of
software systems from a domain of interest, and correspond-
ing to typical ways of architecting software components
within that domain.

As shown in Fig. 1, ePMC comprises two stages. The first
stage is performed only once for each domain that ePMC is
applied to. This stage uses domain-expert input to identify
modelling patterns for components of systems from the con-
sidered domain, and precomputes closed-form expressions
for key QoS properties of these patterns. For example, the
modelling patterns for the service-based systems domain
(described in detail in Section 6) correspond to different
ways in which n ≥ 1 functionally-equivalent services can
be used to execute an operation of the system. One option
is to invoke the n services sequentially, such that service 1
is always invoked, and service i > 1 is only invoked if the
invocations of services 1, 2, . . . , i−1 have all failed. The com-
ponent modelling pattern labelled ‘SEQ’ at the top of Fig. 1
depicts this option. The graphical representation of the pat-
tern shows the invocations of the n services as states labelled
1, 2, . . . , n, and the successful and failed completion of the
operation as states labelled with a tick ’✓’ and a cross ’✗’,
respectively. QoS properties such as the probability of reach-
ing the success state and the expected execution time and
cost of the operation for this pattern can be computed as

prob = p1 + (1− p1)p2 + . . .+
(∏n−1

i=1 (1− pi)
)
pn

time = t1 + (1− p1)t2 + . . .+
(∏n−1

i=1 (1− pi)
)
tn

2

Domain-specific
component

modelling patterns
(Markov chains)

QoS properties
(PCTL formulae)

P=?[F success]

Domain
experts

SEQ

QoS properties
(PCTL formulae)

P=?[F success]

Software
engineers

High-level system
model (Markov chain)
annotated with pattern

instances

Pattern-aware
parametric

model checker

Probabilistic
model checking

QoS
property
formulae

3x1+
(1�x 1)y2+
· · ·

Domain-specific repository
of QoS-property expressions

Stage 2. Efficient QoS property analysis

Stage 1. Modelling pattern identification & QoS property precomputation

success

SEQ(...)

SEQ (p1; c1; t1; p2; c2; t2)

PROB(...)

PAR(...)

Manual
calculation

and/or

success

n1 2

Fig. 1. Two-stage efficient parametric model checking

cost = c1 + (1− p1)c2 + . . .+
(∏n−1

i=1 (1− pi)
)
cn

where pi, ti and ci are the probability of successful invoca-
tion, the execution time and the cost of service i, 1 ≤ i ≤ n,
respectively. As illustrated in Fig. 1, these calculations can be
carried out using an existing probabilistic model checker or
manually. The resulting expressions are stored in a domain-
specific repository, and are used in the next ePMC stage.

The second ePMC stage is performed for each struc-
turally different variant of a system and QoS property
under analysis. The stage involves the PMC of a parametric
Markov chain that models the interactions between the
system components. This Markov model can be provided by
software engineers with PMC expertise, or can be generated
from more general software models, such as UML activity
diagrams annotated with probabilities as in [7], [18], [25].
The model states associated with system components are
labelled with pattern instances that specify the modelling
pattern used for each component and its parameters. For
instance, the pattern instance SEQ(p1, c1, t1, p2, c2, t2) from
Fig. 1 labels a component implemented using the sequential
pattern described earlier and n = 2 services with success
probabilities p1, p2, costs c1, c2 and mean execution times
t1, t2. The pattern-annotated Markov model is analysed by
a model checker with pattern manipulation capabilities. The

result of the analysis is a set of formulae comprising:

• A formula for the system-level QoS property, specified
as a function over the component-level QoS property
values. This formula is obtained by applying standard
PMC to the pattern-annotated Markov model;

• Formulae for the relevant component-level QoS prop-
erties. These formulae are obtained by instantiating the
appropriate closed-form expressions from the domain-
specific repository produced in the first ePMC stage.

All ePMC formulae are rational functions that can be effi-
ciently evaluated for any combinations of parameter values,
e.g., using tools such as Matlab and Octave.

The main contributions of our paper are:

1) A theoretical foundation for the ePMC method.

2) An open-source tool that automates the application of
the method, and is freely available from our project
website https://www.cs.york.ac.uk/tasp/ePMC/.

3) Repositories of modelling patterns for the service-based
systems and multi-tier software architecture domains.

4) An extensive evaluation which shows that ePMC is
several orders of magnitude faster and produces much
smaller algebraic expressions compared to the PMC
techniques currently implemented by the leading model
checkers PARAM, PRISM and Storm, in addition to
supporting the analysis of parametric Markov chains
that are too large for these model checkers.

These contributions build on our preliminary work from
[12], extending it with a theoretical foundation, tool support,
repositories of modelling patterns for two domains, and a
significantly larger evaluation.

The rest of the paper is structured as follows. Section 2
provides a brief introduction to the model checking of para-
metric Markov chains. Section 3 describes a simple service-
based system that we then use as a running example when
presenting the ePMC theoretical foundation in Section 4.
Section 5 covers the implementation of the ePMC tool, while
Sections 6 and 7 detail the application of ePMC to the
service-based systems and multi-tier software architectures
domains, respectively. Section 8 presents our experimental
results, and Section 9 compares our method with related
work. Finally, Section 10 provides a brief summary and
discusses our plans for future work.

2 PRELIMINARIES

2.1 Parametric Markov chains

Markov chains (MCs) are finite state transition systems used
to model the stochastic behaviour of real-world systems.
MC states correspond to relevant configurations of the
modelled system, and are labelled with atomic proposi-
tions which hold in those states. State transitions model all
possible transitions between states, and are annotated with
probabilities as specified by the following definition.

Definition 1. A Markov chain M over a set of atomic
propositions AP is a tuple

M = (S, s0,P, L), (1)

where S is the finite set of MC states; s0 ∈ S is the initial
state; P : S × S → [0, 1] is a transition probability matrix

3

where, for any states s, s′ ∈ S, P(s, s′) is the probability of
transitioning to state s from state s′; and L : S → 2AP is the
state labelling function.

A state s of a Markov chain M is an absorbing state if
P(s, s)=1 and P(s, s′)=0 for all s′ 6=s, and a transient state
otherwise. A path π over M is a possibly infinite sequence
of states from S such that for any adjacent states s and s′

in π, P(s, s′) > 0. The m-th state on a path π, m ≥ 1, is
denoted π(m). For any state s, PathsM (s) represents the set
of all infinite paths over M that start with state s. Finally,
we assume that every state s ∈ S is reachable from the
initial state, i.e., there exists a path π∈PathsM (s0) such that
π(i) = s for some i > 0.

To compute the probability that a Markov chain (1) be-
haves in a specified way when in state s, we use a probability
measure Prs defined over PathsM (s) such that [3], [37]:

Prs({π∈PathsM(s) |π=s1s2 . . . sm . . .})=

P(s1s2 . . . sm) =
∏m−1

i=1 P(si, si+1),

where {π∈PathsM | π = s1s2 . . . sm . . .} is the set of all in-
finite paths that start with the prefix s1s2 . . . sm (i.e., the
cylinder set of this prefix). Further details about this proba-
bility measure and its properties are available from [3], [37].

To allow the verification of a broader set of QoS prop-
erties, MC states can be annotated with nonnegative values
termed rewards [2]. These values are interpreted as “costs”
(e.g. energy used) or ”gains” (e.g. requests processed).

Definition 2. A reward structure over a Markov chain M =
(S, s0,P, L) is a function ρ : S → R≥0. For any state s ∈ S,
ρ(s) represents the reward “earned” on leaving state s.

Our work focuses on the analysis of parametric Markov
chains (sometimes called incomplete Markov chains [5] or
uncertain Markov chains [40]).

Definition 3. A parametric Markov chain is an MC comprising
transition probabilities P(s, s′) and/or rewards ρ(s) defined
as rational functions over a set of continuous variables [19],
[32], [34].

2.2 Property specification

The properties of Markov chains are formally expressed
in probabilistic variants of temporal logic. In our work
we use probabilistic computation tree logic (PCTL) [17],
[33] extended with rewards [2], which is supported by
all leading probabilistic model checkers. Rewards-extended
PCTL allows the specification of probabilistic and reward
properties using the probabilistic operator P⊲⊳p[·] and the
reward operator R⊲⊳r[·], respectively, where p ∈ [0, 1] is a
probability bound, r ∈ R≥0 is a reward bound, and ⊲⊳∈
{≥, >,<,≤} is a relational operator. Formally, a state formula
Φ and a path formula Ψ in PCTL are defined by the grammar:

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P⊲⊳p[Ψ] (2)

Ψ ::= XΦ | Φ U Φ | Φ U≤k Φ (3)

and a reward state formula is defined by the grammar:

Φ ::= R⊲⊳r[I
=k] | R⊲⊳r[C

≤k] | R⊲⊳r[F Φ] | R⊲⊳r[S], (4)

where k∈N>0 is a timestep bound and a∈AP is an atomic
proposition. When multiple reward structures are defined

over a Markov chain, the extended notation Rrwd
⊲⊳r [I

=k],
Rrwd

⊲⊳r [C
≤k], etc. is used to specify that a reward state formula

refers to the reward structure named ‘rwd’.
The PCTL semantics is defined using a satisfaction rela-

tion |= over the states S and the paths PathsM (s), s ∈ S,
of a Markov chain (1). Given a state s and a path π of the
Markov chain, s |= Φ means “Φ holds in state s”, π |= Ψ
means “Ψ holds for path π”, and we have:

– s |= true for all s ∈ S;

– s |= a iff a ∈ L(s);

– s |= ¬Φ iff ¬(s |= Φ);

– s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2;

– s |= P⊲⊳p[Ψ] iff Prs({π ∈ PathsM (s) | π |= Ψ}) ⊲⊳ p.

– the next path formula XΦ holds for path π iff π(2) |= Φ;

– the time-bounded until path formula Φ1 U
≤k Φ2 holds for

path π iff Φ2 holds in the i-th path state, i ≤ k, and Φ1

holds in the first i− 1 path states, i.e.:

∃i ≤ k.(π(i) |= Φ2 ∧ ∀j < i.π(j) |= Φ1).

– the unbounded until formula Φ1 UΦ2 removes the bound
k from the time-bounded “until” formula.

The notation FΦ ≡ true UΦ is used when the first part of an
until formula is true . Thus, the reachability property P⊲⊳p[FΦ]
holds if the probability of reaching a state where Φ is true
satisfies ⊲⊳ p. Finally, the reward state formulae specify the
expected values for: the instantaneous reward at timestep k,
R⊲⊳r[I

=k]; the cumulative reward up to timestep k, R⊲⊳r[C
≤k];

the reachability reward cumulated until reaching a state that
satisfies a property Φ, R⊲⊳r[FΦ]; and the steady-state reward
in the long run, R⊲⊳r[S]. For a detailed description of the
PCTL semantics, see [2], [17], [33].

2.3 Parametric model checking

Probabilistic model checkers including MRMC [36], PRISM
[38] and Storm [21] support the verification of PCTL proper-
ties of Markov chains. To verify whether a formula P⊲⊳p[Ψ]
holds in a state s, these tools first compute the probability p′

that Ψ holds for MC paths starting at s, and then compare p′

to the bound p. The actual probability p′ can also be returned
(for the outermost operator P of a formula) so PCTL was
extended to include the formula P=?[Ψ] denoting this prob-
ability. Likewise, the extended-PCTL formulae R=?[I

=k],
R=?[C

≤k], R=?[F Φ], and R=?[S] denote the actual values
of the expected rewards from (4).

Parametric model checking (PMC) represents the verifica-
tion of quantitative PCTL properties P=?[.] without nested
probabilistic operators and reward properties R=?[.] of
parametric Markov chains using algorithms such as [19],
[32], [34]. The PMC verification result is a rational function
of the variables used to define the transition probabilities
of the verified parametric Markov chain. PMC is supported
by verification tools including the dedicated model checker
PARAM [31], the latest versions of PRISM [38], and the
recently released model checker Storm [21].

3 RUNNING EXAMPLE

We will illustrate the theoretical aspects and the application
of our ePMC method using a service-based system that

4

result(op3)
false

y

true

1− y

Operation op1

Operation op2 result(op1) Operation op3
true

x

false

1− x

Fig. 2. UML activity diagram of the system used as a running example

implements the simple workflow from Fig. 2. This workflow
handles user requests by first performing an operation op1.
Depending on the result of op1, its execution is followed by
the execution of either operation op2 or operation op3. The
execution of op2 completes the workflow, while after the ex-
ecution of op3 the workflow may terminate or may need to
re-execute op1. The outgoing branches of the decision nodes
from Fig. 2 are annotated with their unknown probabilities
of execution (x and 1− x, and y and 1− y).

We suppose that multiple functionally-equivalent ser-
vices svci1, svci2, . . . can be used to perform each operation
opi, i ∈ {1, 2, 3}, and that these services have probabilities
of successful invocation pi1, pi2, . . ., expected response times
ti1, ti2, . . . and invocation costs ci1, ci2, . . . Accordingly, the
workflow can be implemented using different system ar-
chitectures and service combinations. Our running example
considers the implementation where:

• Operation op1 is executed by invoking services svc11
and svc12 sequentially, such that service svc11 is always
invoked, and service svc12 is only invoked if the invoca-
tion of svc11 fails (i.e., times out or returns an error). As
a result, the operation completes successfully whenever
either service invocation is successful, and fails when the
invocations of both services fail.

• Operation op2 is executed using services svc21 and svc22
probabilistically, such that svc2j is invoked with probabil-
ity αj for j ∈ {1, 2}, where α1 + α2 = 1.

• Operation op3 is executed by invoking services svc31 and
svc32 sequentially with retry. This involves invoking the
two services sequentially (as for op1) and, if both service
invocations fail, retrying the execution of the operation
by using the same strategy with probability r ∈ (0, 1).

The parametric Markov chain from Fig. 3a models this
implementation of the workflow. For instance, the MC states
s0 and s1 (labelled ‘op1’) model the execution of operation
op1 by first invoking service svc11 (state s0) and, if service
service svc11 fails (which happens with probability 1− p11),
also invoking svc12 (state s1). The invocation of svc12 fails
with probability 1−p12, in which case the system transitions
to state s3 and then to the ‘fail’ state s13. If either svc11
or svc12 succeeds (state s2), there is a probability x that
operation op2 (modelled by states s4–s8) is executed next,
and a probability 1 − x that the next operation is op3
(modelled by states s9–s12).

To model the execution of operation op2, the MC in-
cludes transitions with probabilities α1 and α2 from s4 to

state s5 (which corresponds to the invocation of service
svc21) and to state s6 (which corresponds to the invocation
of service svc22), respectively. The successful execution of
svc21 or svc22 results in state s7 being reached and in the
successful completion of the workflow (state s14, labelled
‘succ’), while a failed invocation results in state s8 being
reached and in the failure of the workflow (state s13). States
s9–s12 model the execution of operation op3 similarly to
how op1 is modelled by s0–s3, except that a successful exe-
cution of op3 is followed by op1 (with probability y) or the
successful end of the workflow (with probability 1− y), and
failed invocations of svc32 lead to a retry of the operation
(with probability r) or to the failure of op3 and thus of the
entire workflow (with probability 1−r). Finally, two reward
structures are defined in Fig. 3a. These structures, named
‘time’ and ’cost’, map the MC states associated with service
invocations to the expected execution time and the cost of
these services, respectively.

Parametric model checking applied to the MC from
Fig. 3a can compute closed-form expressions for a wide
range of QoS properties of the system. These properties can
then be evaluated very efficiently for different combinations
of services with different parameters. For our running
example, we assume that the software engineers developing
the system are interested to analyse the following properties:

(i) The probability P1 that the workflow implemented
by the system completes successfully;

(ii) The probability P2 that the workflow fails due to a
failed execution of operations op1 or op2;

(iii) The expected execution time T of the workflow;
(iv) The expected cost C of executing the workflow.

Table 1 presents these properties formalised in PCTL, and
their closed-form expressions computed using the proba-
bilistic model checker Storm and significantly simplified
through manual factorisation. These results, included in
order to show how large and complex the PMC expressions
can be even for a simple model, already suggest that PMC
might not be feasible for larger systems and models. The
experimental results presented later in Section 8 confirm
that indeed the PMC techniques implemented by current
model checkers do not scale to much larger systems than
the one from Fig. 2—a limitation addressed by our ePMC
method described next.

4 EPMC THEORETICAL FOUNDATION

ePMC is essentially a model abstraction method, as ad-
vocated, among others, by Abrial [1] and by McIver and
Morgan [39]. Given a parametric MC that is too large
to be efficiently analysed or whose analysis is unfeasible,
ePMC derives a smaller, abstract version of it. The ePMC
abstraction method may be applicable repeatedly, yielding
successively smaller abstract models, potentially leading to
an abstract model that is sufficiently small to be analysed
efficiently. When this analysis is feasible, its results for
certain types of PCTL properties are equivalent to those that
would have been obtained by analysing the initial model.
The method works by replacing a fragment of the original
model (i.e., a subset of states that satisfy specific constraints)
with a single state, thus generating an abstract MC induced by
the fragment. Furthermore, closed-form expressions for the

5

a. Parametric Markov chain model of the workflow implementation under analysis, with shaded fragments F1 (corresponding to operation
op

1
), F2 (corresponding to op

2
) and F3 (corresponding to op

3
). The `tij jcij ' combinations annotating the states that model service

invocations define `time' and `cost' reward structures for analysing the expected execution time and cost of the workflow, respectively.

1 1

s13 s14

fail succ

1

1

1

1

1−y

y

x

1−x

1

b. Parametric Markov chains associated with fragments F1{F3 from Fig. 3a

e1

1

e2

1

e3

e1 e2 e3

z1

op
1

1

1

z2

s13 s14

fail succ

z1

op
1

op
2

z3

op
3

(1−prob
3
)(1−y)

prob
2

1−prob
2

(1−prob
3
)y

prob
3

(i) (ii)

c. Abstract Markov chains induced by (i) fragment F1, and (ii) fragments F1{F3 of the parametric Markov chain from Fig. 3a

1 1

s13 s14

fail succ

1

1

1

1−y

y

prob
1
x

prob
1
(1−x)

1−prob
1

time1jcost1

prob
1
x

prob
1
(1−x)

1−prob
1

time1jcost1

time2jcost2

time3jcost3

Fig. 3. ePMC application to a parametric Markov chain model of the workflow from the running example

TABLE 1
Parametric model checking of the four QoS properties from the running example

Prop. PCTL formula PMC expression

P1 P=?[F succ]
{
p11p12

[
x(α2p31p22p32r − α1p31p21r + α1p21r − α1p21p32r − α2p22 + α1p31p21p32r − yp32 + p31 − p31p32 +

p31yp32 − α2p22p32r + α2p22r + p32 − p31y − α2p31p22r − α1p21)
]
+ p11

[
x(α1(p21 − p31p21p32r + p21p32r −

p21r+ p31p21r) +α2(p31p22r− p31p22p32r− p22r+ p22p32r+ p22))
]
+ p12

[
x(α1(p21p32r− p21r− p31p21p32r+

p21 + p31p21r) + α2(p22 + p22p32r − p22r + p31p22r − p31p22p32r)) + (p11p12 − (p11 + p12)(1 − x))(p31p32 −
p31 − p32)(1− y)

]}
/
{[

(1− x)y(p11 + p12 − p12p12)− r
]
(p31p32 − p31 − p32) + 1− r

}

P2 P=?[¬op3 U fail] p11
[
x(α1(p12p21−p12+1−p21)+α2(p12p22−p12+1−p22))+p12−1

]
+p12

[
x(α1(1−p21)+α2(1−p22))−1

]
+1

T Rtime
=? [F succ ∨ fail]

{
p11p12

[
x(α1(t21r−t21−t21p32r−p31t21r+p31t21p32r)+α2(p31t22p32r−t22+t22r−t22p32r−p31t22r)+t32+

t31 − p31t32)+ t12p31p32r− t32 − t31 + p31t32 − t12 + t12r− t12p32r− t12p31r
]
+ p11

[
x(α2(t22 − t22r+ t22p32r+

p31t22r−p31t22p32r)+α1(t21− t21r+ t21p32r+p31t21r−p31t21p32r)− t32− t31+p31t32)+ t32+ t31−p31t32−
t12r+ t12p32r+ t12p31r− t12p31p32r− t11 + t11r− t11p32r− t11p31r+ t11p31p32r+ t12

]
+ p12

[
x(α1(t21p32r+

p31t21r− p31t21p32r+ t21 − t21r)+α2(t22 − t22r+ t22p32r+ p31t22r− p31t22p32r)− t32 − t31 + p31t32)+ t31 −
p31t32 + t32 + t12 − t12r+ t12p32r+ t12p31r− t12p31p32r

]
+ t11 − t11r+ t11p32r+ t11p31r− t11p31p32r

}
/
{[

(1−
x)y(p11 + p12 − p11p12)− r

]
(p31p32 − p31 − p32) + 1− r

}

C Rcost
=? [F succ ∨ fail] expression (similar to the PMC expression for property T) not included for brevity, but available on project website

6

outgoing transition probabilities and rewards of the new
state can be obtained through the analysis of a parametric
MC associated with the fragment, where the size of this MC
is similar to that of the fragment. We formally define these
concepts below.

Definition 4. A fragment of a parametric Markov chain M =
(S, s0,P, L) is a tuple F = (Z, z0, Zout), where:

- Z ⊂ S is a subset of transient MC states;

- z0 is the (only) entry state of F , i.e., {z0}= {z ∈Z | ∃s∈
S\Z .P(s, z) > 0};

- Zout = {z ∈ Z | ∃s ∈ S \ Z . P(z, s) > 0} is the
non-empty set of output states of F , and all outgoing
transitions from the output states are to states outside
Z , i.e., P(z, z′) = 0 for all (z, z′) ∈ Zout × Z .

According to this definition, the output states of a fragment
cannot have outgoing transitions to other states within the
same fragment. However, a simple model transformation
can be used to form a fragment from a state set Z that
includes states z with outgoing transitions to states both
inside and outside Z . This transformation replaces each
such state z with states z′ and z′′ such that: z′ “inherits”
all incoming transitions of z and its outgoing transitions
to states within Z , and has an additional outgoing tran-
sition to z′′ (with transition probability calculated so that
the transition probabilities of z′ add up to 1.0); and z′′

only has the incoming transition from z′, and inherits the
output transitions from z to states outside Z (with transition
probabilities scaled to add up to 1.0).

Example 1. The shaded areas of the parametric MC from
Fig. 3a (each corresponding to an operation of the workflow
from our running example) contain three MC fragments:

F1 = ({s0, s1, s2, s3}, s0, {s2, s3})
F2 = ({s4, s5, s6, s7, s8}, s4, {s7, s8})
F3 = ({s9, s10, s11, s12}, s9, {s11, s12})

As shown by this example, MC fragments may or may not
contain cycles.

Given a fragment F of a parametric MC M , ePMC per-
forms parametric model checking by separately analysing
two parametric MCs determined by F , and combining the
results of the two analyses. As each of the two parametric
MCs has fewer states and transitions than M , the overall
result can be obtained in a fraction of the time required to
analyse the original model M . The first of these parametric
MCs is defined below.

Definition 5. The Markov chain associated with a fragment
F = (Z, z0, Zout) of a parametric MC M = (S, s0,P, L) is
the Markov chain MZ = (Z ∪ {e}, z0,PZ , LZ), where e is
an additional, “end” state, the transition probability matrix
PZ : (Z ∪ {e})× (Z ∪ {e}) → [0, 1] is given by

PZ(z, z
′) =

1, if z ∈ Zout ∪ {e} ∧ z′ = e
P(z, z′), if z ∈ Z \ Zout ∧ z′ 6= e
0, otherwise

,

and the atomic propositions for state z ∈ Z are given by

LZ(z) =

L(z) ∪ {z}, if z ∈ Zout

{e}, if z = e
L(z), otherwise

,

where z and e are atomic propositions that hold in state
z ∈ Zout and state e, respectively.1 Additionally, any reward
structure ρ : S → R≥0 over M naturally maps to a reward
structure ρZ : Z ∪ {e} → R≥0 over MZ , where ρZ(e) = 0
and, for all z ∈ Z , ρZ(z) = ρ(z).

Example 2. Fig. 3b shows the parametric MCs associated
with fragments F1–F3 from Example 1, obtained by:

(i) adding transitions of probability 1 from the output states
in Zout1 ={s2, s3}, Zout2 ={s7, s8} and Zout3 ={s11, s12}
to additional states e1, e2 and e3, respectively;

(ii) labelling the output states with the additional atomic
propositions s2 and s3, s7 and s8, and s11 and s12, and
the end states with the new atomic propositions e1 to e3.

The second parametric MC determined by a fragment F
and analysed by ePMC is obtained from the original MC by
replacing all states from F with a single state.

Definition 6. Given a fragment F = (Z, z0, Zout) of a
parametric Markov chain M =(S, s0,P, L), the abstract MC
induced by F is M ′=(S′, s′0,P

′, L′), where:

- The state set S′ = (S \Z)∪{z}, where z is a new, abstract
state that stands for all the states from Z ;

- The initial state s′0 = s0, if s0 is not the initial state of Z
(i.e., z0 6= s0), and s′0 = z otherwise;

- The transition probability between states s, s′ ∈ S′ is

P
′(s, s′)=

P(s, s′), if s 6= z ∧ s′ 6= z
P(s, z0), if s 6= z ∧ s′ = z∑
z∈Zout

probz·P(z, s′), if s = z ∧ s′ 6= z

0, otherwise

where

probz = P=?[F z] (5)

is a reachability property calculated over the parametric
Markov chain associated with the fragment F , for all
output states z ∈ Zout;

2

- The labelling function L′ coincides with L for the states
from the original MC, and maps the new state z to the
(potentially empty) set of atomic propositions common
to all states from F ,3

L′(s) =

{
L(s) if s ∈ S \ Z⋂
z∈Z

L(z) otherwise (i.e. if s = z)

Finally, for every reward structure defined over the Markov
chain M , state z from the induced Markov chain is anno-
tated with a reward

rwd = Rrwd
=? [F e] (6)

1. As shown later in this section, these new atomic propositions allow
the computation of the reachability probabilities P=?[F z] for the states
z ∈ Zout and of the reachability reward Rrwd

=? [F e] for any reward
structure rwd defined over F .

2. Note that
∑

s′∈S′ P
′(z, s′) =

∑
s′∈S\Z

∑
z∈Zout

probzP(z, s′) =∑
z∈Zout

probz
∑

s′∈S\ZP(z, s′)=
∑

z∈Zout
probz ·1=P=?[F

∨
z∈Zout

z]
= 1 as required.

3. Since the occurrence of z on a path of the abstract MC stands for
all paths through the fragment, including any other atomic proposition
ap would be equivalent to (invalidy) stating that ap is true in all states
from F .

7

calculated over the parametric MC MZ associated with F .
Thus, rwd represents the cumulative reward to reach the
end state of MZ .

Example 3. Consider again the parametric Markov chain
from our running example (Fig. 3a). The corresponding ab-
stract MC induced by fragment F1 from Example 1 is shown
in Fig. 3c(i). This abstract MC is obtained by replacing all the
states from F1 with the single abstract state z1, and by using
the rules from Definition 6 to find the outgoing transition
probabilities and atomic propositions for z1. For example,
the transition probability from z1 to s4 is calculated as:

P
′(z1, s4) =

∑

z∈{s2,s3}

probz ·P(z, s4)

= probs2 ·P(s2, s4) + probs3 ·P(s3, s4)

= probs2 · x+ probs3 · 0

= probs2 · x,

where probs2= P=?[Fs2] and probs3= P=?[Fs3] = 1−probs2
are reachability properties calculated over the parametric
MC associated with fragment F1 (cf. Fig. 3b). As the two
output-state reachability probabilities (5) for fragment F1

can be expressed in terms of a single probability, we use the
notation prob1=probs2 for this probability in Fig. 3c(i). The
transition probabilities from z1 to s9 and s13 are calculated
similarly, and the transition probability from s12 to z1 is
simply P

′(s12, z1) = P(s12, s0) = y (since the entry state
of F1 is s0). All other transition probabilities from z1 to
other states and from other states to z1 are zero. State z1 is
labelled with the atomic proposition op1, which is the only
label common to all states from the fragment F1. Finally, z1
is annotated with the rewards time1=Rtime

=? [F s2 ∨ s3] and
cost1 =Rcost

=? [F s2 ∨ s3] computed over the parametric MC
associated with F1.

Fig. 3c(ii) shows the abstract Markov chain obtained after
all three fragments F1–F3 from Example 1 were used to
simplify the initial MC from Fig. 3a. Note how even for
the small MC from our running example, the abstract MC
from Fig. 3c(ii) is much simpler than the initial MC from
Fig. 3a; the abstract MC has only 5 states and 10 transitions,
compared to 15 states and 25 transitions for the initial MC.

The ePMC computation of unbounded until proper-
ties P=?[Φ1 UΦ2] (and thus also of reachability properties
P=?[FΦ] = P=?[true UΦ]) is based on the following result.4

Theorem 1. Let F be a fragment of a parametric Markov
chain M , and Φ1 and Φ2 two PCTL state formulae over M . If
every atomic proposition ap that appears in Φ1 or Φ2 either
holds in every fragment state z (i.e., ap ∈ L(z)) or holds in
no such state,5 then the PMC of the until PCTL formula
P=?[Φ1 UΦ2] over M yields an expression equivalent to
that produced by the PMC of the formula over the abstract
Markov chain induced by F .

4. The computation of bounded until properties is not supported be-
cause path lengths are not preserved by the ePMC abstraction process.

5. While this requirement restricts the state formulae that the the-
orem applies to (or, alternatively, the fragments that can be usefully
constructed), the evaluation presented later in the paper shows that
the theorem supports the efficient analysis of multiple properties of
practical relevance.

Proof. Let A,A′ be the sets of paths that satisfy the PCTL
formula Φ1U Φ2 for the MC M(S, s0,P, L) and for the MC
M ′(S′, s′0,P

′, L′) induced by F (Z, z0, Zout):

A={π∈PathsM(s0) |∃i>0.(π(i) |=Φ2 ∧ ∀j<i.π(j) |=Φ1)}

A′={π′∈PathsM
′

(s′0) |∃i>0.(π′(i) |=Φ2 ∧∀j<i.π′(j) |=Φ1)}

According to the semantics of PCTL (cf. Section 2.2), we
need to show that Prs0(A) = Pr′s′

0
(A′), where Prs0 and

Pr′s′
0

are probability measures defined over PathsM(s0) and

PathsM
′

(s′0), respectively, as explained in Section 2.1. A path
π ∈ A has the general form

π = π0ω1π1ω2π2 . . . ωnπn . . . , (7)

where π0, π1, . . . , πn are subpaths comprising only states
from S \ Z , ω1, ω2, . . . , ωn are subpaths comprising only
states from Z , and the first state of π that satisfies Φ2 is the
last state from the path prefix π0ω1π1ω2π2 . . . ωnπn. Note
that (7) subsumes the scenarios when the path prefix starts
with a state from Z (subpath π0 empty), ends with a state
from Z (subpath πn empty), contains only states from S \Z
(n = 0), or contains only states from Z (n = 1, and subpaths
π0 and π1 empty). We have three cases.

Case 1) If n > 0 and πn is non-empty, the subpaths ω1,
ω2, . . . , ωn must all start with z0 and end with a state z ∈
Zout (as paths can only “enter” and “exit” MC fragments
through their only entry state and one of their output states,
respectively). Furthermore, z0 and z must satisfy Φ1 (since
it belongs to the prefix of path π), so all states from Z also
satisfy Φ1 (as required by the theorem). This means that
substituting any subset of ω1, ω2, . . . , ωn from π with any
combination of fragment subpaths starting at z0 and ending
with a state from Zout changes π into a sequence of states
that either belongs to A (if it is a path from PathsM (s0)) or
has probability 0 of occurring in M (otherwise). Given the
set of all paths X(π0, π1, . . . , πn) ⊆ A that can be obtained
through such substitutions, and using the notation πlast

i for
the last state on subpath πi, 1 ≤ i ≤ n, we have:

Prs0(X(π0, π1, . . . , πn)) =

n−1∏

i=0

P(πi)P(πlast
i , z0)

∑

z∈Zout

probzP(z, πi+1(1))

P(πn)=

[
n−1∏

i=0

P
′(πi)P

′(πlast
i , z)P′(z, πi+1(1))

]
P

′(πn)=

Pr′s′
0
(X ′(π0, π1, . . . , πn))

where X ′(π0, π1, . . . , πn) = {π′∈PathsM
′

(s′0) | π
′ = π0zπ1

zπ2 . . . zπn . . .} ⊆ A′ (since all states π0, π1, . . . , πn and z
satisfy Φ1, and πlast

n satisfies Φ2). We can similarly show that
any subset X ′(π0, π1, . . . , πn) of A′ with paths of the form
π0zπ1 zπ2 . . . zπn . . . and on which Φ2 first holds in state
πlast
n corresponds to a subset X(π0, π1, . . . , πn) ⊆ A such

that Pr′s′
0
(X ′(π0, π1, . . . , πn)) = Prs0(X(π0, π1, . . . , πn)).

Case 2) If n > 0 and πn is empty, then the last state of ωn

from (7) satisfies Φ2, and (since one state from Z satisfies Φ2

and the theorem requires that every atomic proposition from
Φ2 either is true for all states from Z or is false for all states
from Z), all states from Z must satisfy Φ2. This includes the

8

states from ω1 and its initial state, z0, so the set of paths π
form the set X(π0)={π∈PathsM(s0) | π = π0z0 . . .} ⊆ A,
and we have:

Prs0(X(π0)) = P(π0)P(πlast
0 , z0) =

P
′(π0)P

′(πlast
0 , z) = Pr′s′

0
(X ′(π0)),

where X ′(π0) = {π′∈ PathsM
′

(s′0) | π
′ = π0z . . .} ⊆ A′.

In a similar way, we can show that any subset A′(π0) of A′

with paths of the form πoz . . . and on which Φ2 first holds
in state z corresponds to a subset X(π0) of A such that
Pr′s′

0
(X ′(π0)) = Prs0(X(π0)).

Case 3) Finally, if n = 0, the path π from (7) becomes π =
π0 . . ., and equiprobable sets X(π0) ⊆ A and X ′(π0) ⊆ A′

are straightforward to identify.
We have shown that A and A′ can be partitioned into

pairs of corresponding subsets X ⊆ A and X ′ ⊆ A′ that are
equiprobable according to the probability metrics Prs0 and
Pr′s′

0
, which completes the proof.

The repeated application of Theorem 1 reduces the com-
putation of until properties P=?[Φ1 UΦ2] of a parametric
MC with multiple fragments F1, F2, . . . to computing:

1) the output-state reachability probabilities for the para-
metric MCs associated with F1, F2, . . . ;

2) P=?[Φ1 UΦ2] for the parametric MC induced by the
fragments,

and combining the results from the two ePMC stages into
a set of algebraic formulae over the parameters of the
original MC. The parametric MCs from these stages are
typically much simpler than the original, “monolithic” MC,
and much faster to analyse. In addition, ePMC focuses on
frequently used domain-specific fragments F1, F2, . . . , and
thus stage 1 only needs to be executed once for a domain.
Note that a result similar to Theorem 1 is not available
for bounded until properties P=?[Φ1 U

≤k Φ2] because the
abstract MC induced by a set of fragments F1, F2, . . . does
not preserve the path lengths from the original MCs.

Example 4. We use the above two-stage method to compute
properties P1 and P2 from our running example (cf. Table 1).

In stage 1 we compute the output-state reachability prop-
erties for the parametric MCs associated with fragments F1–
F3 (cf. Fig. 3b):

• for the MC associated with F1, prob1= p11+(1−p11)p12;

• for the MC associated with F2, prob2 = α1p21 + α2p22;

• for the MC associated with F3, prob3= (p31 + (1− p31)
p32)/ (1− (1−p31)(1−p32)r).

We computed these algebraic expressions manually, based
on the MCs from Fig. 3b. However, they can also be obtained
using one of the model checkers mentioned earlier (i.e.,
PARAM, PRISM and Storm), or can be taken directly from
our ePMC repository of such expressions for the service-
based systems domain (see Section 6 later in the paper).

In stage 2, we use a probabilistic model checker (we used
Storm) to compute P1 and P2 over the induced parametric

MC from Fig. 3c. The shaded formulae from Table 2 show
the expressions obtained for P1 and P2, preceded by the
results from the first ePMC stage.

TABLE 2
ePMC of the QoS properties from the running example

Output-state reachability formulae computed in stage 1 of ePMC

prob1 = p11 + (1− p11)p12 prob2 = α1p21+α2p22

prob3 =
p31+(1−p31)p32

1−(1−p31)(1−p32)r

time1 = t11 + (1− p11)t12 cost1 = c11 + (1− p11)c12

time2 = α1t21+α2t22 cost2 = α1c21+α2c22

time3 =
t31+(1−p31)t32

1−(1−p31)(1−p32)r
cost3 =

c31+(1−p31)c32
1−(1−p31)(1−p32)r

Property-specific formulae computed in stage 2 of ePMC

Prop. PCTL formula ePMC set of formulae

P1

P2

T

C

P=?[F succ]

P=?[¬op3 U fail]

Rtime
=? [F succ ∨ fail]

Rcost
=? [F succ ∨ fail]

P1 =
prob1(xprob2+(1−x)(1−y)prob3)

1−(1−x)yprob1prob3

P2 = 1− prob1 + xprob1(1− prob2)

T =
time1+prob1(xtime2+(1−x)time3)

1−(1−x)yprob1prob3

C =
cost1+prob1(xcost2+(1−x)cost3)

1−(1−x)yprob1prob3

Expectedly, the set of formulae from Table 2 is much
simpler than the “monolithic” P1 and P2 formulae from
Table 1. As we will show in Section 8, this difference is even
more significant for larger models, making the computation
and evaluation of “monolithic” formulae challenging for
existing PMC techniques.

The final result from this section allows the efficient para-
metric model checking of reachability reward properties.

Theorem 2. Let F be a fragment of a parametric Markov
chain M , and T a set of states from M . If T includes no
state from F , then the PMC of the reachability reward PCTL
formula R=?[F T] over M yields an expression equivalent
to that produced by the PMC of the formula over the
abstract MC M ′ induced by F .

Proof. We adopt one of the alternative definitions for the
reachability reward R=?[FT] from [3, §10.5.1]. Given the
set A of all finite paths π = s0s1 . . . sm from M such that
sm ∈ T and s0, s1, . . . , sm−1 /∈ T , we have:

R=?[FT] =

{
0, if P<1[FT]∑

π∈A P(π)ρ(π), otherwise
(8)

where ρ(π) =
∑m−1

i=0 ρ(si).
According to Theorem 1, if P<1[FT] over M then

P<1[FT] over M ′ too, so R=?[FT] = 0 over both M and
M ′ and the theorem holds. The theorem also holds trivially
when A contains no paths with states from Z : in this case,
it is straightforward to show that A is also the set of all
finite paths s0s1 . . . sm from M ′ such that sm ∈ T and
s0, s1, . . . , sm−1 /∈ T . As such, the rest of the proof considers
the case when P≥1[FT] and A contains paths with states
from Z . The first state from Z on such a path will be z0 (the
only entry state of the fragment F), immediately followed
by other states from Z until a state from Zout is reached,
and then followed by at least one state from S \ Z (since

9

T ∩ Z = ∅ and Zout states are followed by a state from
outside Z). Thus, the generic form of such a path is

π =

∈S\Z
︷ ︸︸ ︷
s0 . . . si

=z0︷︸︸︷
si+1

∈Z︷ ︸︸ ︷
si+2 . . . sj−1

∈Zout︷︸︸︷
sj

∈S\Z
︷︸︸︷
sj+1

∈S︷ ︸︸ ︷
sj+2 . . . sm−1︸ ︷︷ ︸

/∈T

sm︸︷︷︸
∈T

(9)
We consider the subset of all paths A1 ⊆ A that start
with the prefix s0 . . . siz0 and, using the notation πx,y =
sxsx+1 . . . sy , we calculate their contribution to the sum
from the second row of (8):

C(s0, s1, . . . , si, z0) =
∑

π∈A1
P(π)ρ(π) =∑

π∈A1
P(π0,i+1)P(πi+1,m)(ρ(π0,i+1)+ρ(πi+1,m)) =

P(π0,i+1)
[(∑

π∈A1
P(πi+1,m)

)
ρ(π0,i+1)+∑

π∈A1
P(πi+1,m)ρ(πi+1,m)

]
=

P(π0,i+1)
[
1 · ρ(π0,i+1) +

∑
π∈A1

P(πi+1,m)ρ(πi+1,m)
]
,

since P≥1[FT] requires that
∑

π∈A1
P(πi+1,m) = 1. Addi-

tionally, using the shorthand notation πz0→z and πj+1→T

for the set of all sub-paths si+1si+2 . . . sj associated with
a fixed sj = z ∈ Zout and for the set of all sub-paths
sj+1sj+2 . . . sm from (9), respectively, we have:
∑

π∈A1
P(πi+1,m)ρ(πi+1,m) =∑

z∈Zout

∑
π1∈πz0→z

∑
π2∈πj+1→T

P(π1)P(z, sj+1)P(π2)

(ρ(π1) + ρ(z) + ρ(π2)) =∑
z∈Zout

∑
π1∈πz0→z

[
P(π1)(ρ(π1) + ρ(z))·∑

π2∈πj+1→T
P(z, sj+1)P(π2)

]
+∑

z∈Zout

[(∑
π1∈πz0→z

P(π1)
)
·∑

π2∈πj+1→T
P(z, sj+1)P(π2)ρ(π2))

]
=∑

z∈Zout

∑
π1∈πz0→z

[
P(π1)(ρ(π1) + ρ(z)) · 1

]
+∑

z∈Zout

[
probz ·

∑
π2∈πj+1→T

P(z, sj+1)P(π2)ρ(π2)
]
=

rwd +
∑

π2∈πj+1→T

(∑
z∈Zout

probzP(z, sj+1)
)
P(π2)ρ(π2) =

rwd +
∑

π2∈πj+1→T
P

′(z, sj+1)P(π2)ρ(π2),

where rwd , probz and P
′(z, sj+1) are those from Defini-

tion 6, and where we used the fact that P≥1[FT] to infer that∑
π2∈πj+1→T

P(z, sj+1)P(π2) = 1 and to include all non-
zero-probability sub-paths at every step of the calculation.
Combining the results so far, we obtain

C(s0, s1, . . . , si, z0)=P(π0,i+1)
(
ρ(π0,i+1) + rwd +∑

π2∈πj+1→T
P

′(z, sj+1)P(π2)ρ(π2)).

This reward “contribution” is equivalent to that obtained
by replacing all sub-paths from F appearing in paths from
A1 immediately after the prefix s0s1 . . . si with state z
comprising a reward value rwd and transition probabilities
P

′(z, sj+1) to states sj+1 ∈ S \ Z . By repeating this process
to replace all occurrences of sub-paths from F appearing in
A, we obtain an expression equivalent to

∑
π∈A P(π)ρ(π),

but corresponding to the parametric model checking of
R=?[FT] over the abstract MC M ′ induced by F , which
completes the proof.

The previous theorem reduces the computation of reach-
ability reward properties R=?[F T] of a parametric MC with
fragments F1, F2, . . . to computing:

1) the per-fragment cumulative reachability reward prop-
erties for the MCs associated with F1, F2, . . . ;

2) R=?[F T] for the MC induced by these fragments,

and combining the results from the two stages into a set of
algebraic formulae over the parameters of the original MC.
Note that results similar to Theorem 2 are not available for
instantaneous, cumulative and steady-state rewards formu-
lae because the abstract MC induced by F1, F2, . . . does not
preserve the path lengths and the rewards structures of the
original MC.

Example 5. We use ePMC to calculate properties time and
cost from our running example (cf. Table 1), starting with
the cumulative reachability reward properties for fragments
F1–F3, i.e., ti and ci for i = 1, 2, 3. The resulting formu-
lae, which we obtained manually (but which can also be
obtained using a PMC tool) are shown in the top half of
Table 2. For the second ePMC stage, we used the model
checker Storm to obtain the algebraic expressions for time

and cost from the lower half of Table 2.
As in Example 4, ePMC produced a set of formulae that

is far simpler than the “monolithic” time and cost from
Table 1. Note that we do not compare the analysis time
of our ePMC method with that of existing PMC here or in
Example 4 because for the simple system from our running
example the two analysis times are similar. However, we do
provide an extensive comparison of these analysis times for
larger systems in our evaluation of ePMC from Section 8.

5 IMPLEMENTATION

We developed a pattern-aware parametric model checker that
implements the theoretical results from the previous section.
This tool automates the second stage of ePMC. As shown in
Fig. 1, the ePMC tool uses a domain-specific repository of
QoS-property expressions to analyse PCTL-specified QoS
properties of a parametric Markov chain annotated with
pattern instances.

The domain-specific repository comprises entries with
the general format:

pattern name (p a r a m e t e r l i s t) :
property name=expr , . . . , property name=expr ;

Each such entry defines algebraic expressions for the reach-
ability properties and the reachability reward properties
of a parametric MC fragment commonly used within the
domain of interest, i.e., a modelling pattern.

Example 6. Table 3 shows a part of the ePMC repository
for the service-based systems domain. This part includes
the three patterns used by the operations from our running
example (SEQ for op1, PROB for op2, and SEQ R for op3),
such that the formulae from the top half of Table 2 can
be obtained (without any calculations) by instantiating the
relevant patterns:

prob1 = SEQ(p11, c11, t11, p12, c12, t12).prob
prob2 = PROB(α1, p21, c21, t21, α2, p22, c22, t22).prob
prob3 = SEQ R(p31, c31, t31, p32, c32, t32, r).prob
time1= SEQ(p11, c11, t11, p12, c12, t12).time

cost1 = SEQ(p11, c11, t11, p12, c12, t12).cost
time2= PROB(α1, p21, c21, t21, α2, p22, c22, t22).time

cost2 = PROB(α1, p21, c21, t21, α2, p22, c22, t22).cost
time3= SEQ R(p31, c31, t31, p32, c32, t32, r).time

cost3 = SEQ R(p31, c31, t31, p32, c32, t32, r).cost
(10)

10

TABLE 3
Fragment of the ePMC repository of QoS-property expressions for the

service-based systems domain, comprising expressions for the
probability of pattern invocation success prob, expected cost, and

expected execution time

SEQ(p1 , c1 , t1 , p2 , c2 , t2) :
prob=p1+(1−p1)∗p2 , c o s t =c1+c2∗(1−p1) ,
time=t1 +(1−p1)∗ t 2 ;

. . .
PROB(x1 , p1 , c1 , t1 , x2 , p2 , c2 , t2) :

prob=x1∗p1+x2∗p2 , c o s t =x1∗c1+x2∗c2 ,
time=x1∗ t 1+x2∗ t 2 ;

. . .
SEQ R(p1 , c1 , t1 , p2 , c2 , t2 , r) :

prob =(p1+(1−p1)∗p2)/(1−(1−p1)∗(1−p2)∗ r) ,
c o s t =(c1+(1−p1)∗ c2)/(1−(1−p1)∗(1−p2)∗ r) ,
time =(t1 +(1−p1)∗ t 2)/(1−(1−p1)∗(1−p2)∗ r) ;

. . .

The ePMC model checker supports the analysis of
pattern-annotated parametric Markov chains specified in
the PRISM high-level modelling language. This language
models a system as the parallel composition of a set of
modules. The state of a module is encoded by a set of
finite-range local variables, and its state transitions are
defined by probabilistic guarded commands that change
these variables, and have the general form:

[action] guard → e1: update1 + . . . + eN : updateN ;

In this command, guard is a boolean expression over all
model variables. If guard evaluates to true , the arithmetic
expression ei, 1 ≤ i ≤ N , gives the probability with
which the updatei change of the module variables occurs.
When the label action is present, all modules comprising
commands with this action have to synchronise (i.e., can
only carry out one of these commands simultaneously).

Example 7. Fig. 4 shows how the parametric MC from
Fig. 3c(ii) and its reward structures and labels are specified
in this high-level modelling language. The values z = 1 to
z = 5 of the local variable z from the Workflow module
correspond to states z1, z2, z3, s13 and s14 from Fig. 3c(ii),
respectively. The model parameters prob1 to prob3, cost1
to cost3 and time1 to time3 are associated with the pattern
annotations from the lines starting with a triple forward
slash ‘///’. These annotations tell the ePMC model checker
that the model has parameters associated with QoS prop-
erties of modelling patterns from the repository in Table 3.
For example, the shaded pattern annotation at the top of
Fig. 4 specifies that the QoS properties prob, cost and time

of the SEQ modelling pattern appear as parameters named
prob1, cost1 and time1 in the model, where the id ‘1’ is
provided before the pattern name. The occurrences of these
parameters are also shaded in Fig. 4.

The general format of an ePMC pattern annotation is:

/// id : pattern name (a c t u a l p a r a m e t e r l i s t)

This annotation indicates that some or all QoS properties of
the pattern appear as parameters in the parametric MC, with
the name of each such parameter obtained by appending the
id from the annotation to the name of the QoS property.

/// 1: SEQ(p11,c11,t11,p12,c12,t12)
/// 2: PROB(alpha1,p21,c22,t21,alpha2,p22,c22,t22)
/// 3: SEQ R(p31,c31,t31,p32,c32,t32,r)

const double x;
const double y;
const double prob1;
const double cost1;
const double time1;
. . .

module Workflow
z : [1..5] init 1;
[] z=1 ! x*prob1:(z'=2) + (1-x)*prob1:(z'=3) + (1-prob1):(z'=4);
[] z=2 ! prob2:(z'=5) + (1-prob2):(z'=4);
[] z=3 ! y*prob3:(z'=1) + (1-y)*prob3:(z'=5) + (1-prob3):(z'=4);
[] z=4 ! true;
[] z=5 ! true;

endmodule

rewards "cost"
z=1: cost1;
z=2: cost2;
z=3: cost3;

endrewards

rewards "time"
z=1: time1;
z=2: time2;
z=3: time3;

endrewards

label "success" = (z=5);
label "fail" = (z=4);
label "op3" = (z=3);

Fig. 4. Pattern-annotated parametric Markov chain for the service-based
system from the running example

Given a domain-specific repository of QoS-property ex-
pressions, a pattern-annotated parametric MC and a set of
PCTL-encoded QoS properties, the ePMC model checker
uses the theoretical results from Section 4 to compute a set
of algebraic formulae comprising:

1. Formulae for every MC parameter associated with a
modelling pattern listed in the model annotations. These
formulae are obtained by instantiating the expressions
from the repository, as shown in (10). The top half of
Table 2 shows these formulae for the MC in Fig. 4.

2. A formula for each analysed QoS property, obtained by
applying standard parametric model checking, i.e., by
ignoring the pattern annotations of the parametric MC.
The bottom half of Table 2 shows these formulae for the
four QoS properties from our running example.

The ePMC tool can be configured to use PRISM or Storm
for the computation of the latter formulae, and outputs the
combined set of algebraic formulae as a MATLAB file, ready
for evaluation or further analysis with MATLAB.

6 EPMC OF SERVICE-BASED SYSTEMS

Service-based systems (SBSs) enable the effective develop-
ment of new applications through the integration of third-
party and in-house components implemented as services.
SBSs are widely used, including in business-critical applica-
tions from e-commerce, online banking and e-government,

11

TABLE 4
Modelling patterns for the implementation of SBS operations using n functionally-equivalent services

Pattern Description

SEQ(p1, c1, t1, . . . , pn, cn, tn) The n services are invoked in order, stopping after the first successful invocation or after the
last service.

PAR(p1, c1, t1, . . . , pn, cn, tn)† The n services are all invoked at the same time, and the operation uses the first result returned
by a successful invocation (if any).

PROB(x1, p1, c1, t1, . . . , xn, pn, cn, tn) A single service is invoked; xi gives the probability that this is service i, where
∑n

i=1 xi = 1.

SEQ R(p1, c1, t1, . . . , pn, cn, tn, r) The n services are invoked in order as for the SEQ pattern; if all n invocations fail, the
execution of the operation is retried (from service 1) with probability r or the operation fails
with probability 1− r.

SEQ R1(p1, c1, t1, r1, . . . , pn, cn, tn, rn) The services are invoked in order. If service i fails, it is reinvoked with probability ri; with
probability 1− ri, the operation is attempted using service i+ 1 (if i < n) or fails (if i = n).

PAR R(p1, c1, t1, . . . , pn, cn, tn, r)† All n services are invoked as for the PAR pattern; if all n invocations fail, the execution of the
operation is retried with probability r or the operation fails with probability 1− r.

PROB R(x1, p1, c1, t1, . . . ,
xn, pn, cn, tn, r)

Like for PROB, a single service i is invoked; if the invocation fails, the PROB pattern is retried
with probability r or the operation fails with probability 1− r.

PROB R1(x1, p1, c1, t1, r1, . . . ,
xn, pn, cn, tn, rn)

Like for PROB, a single service i is invoked; however, its invocation is retried after failure(s)
with probability ri or the operation fails with probability 1− ri.

†Pattern unsuitable for non-idempotent operations (e.g. credit card payment in an e-commerce SBS)

and evolve frequently as a result of maintenance or self-
adaptation. This evolution often requires the QoS analysis
of alternative SBS implementations which deliver the same
functionality, to select an implementation that meets the QoS
requirements of the system. The alternative SBS implemen-
tations differ in the way in which they use the multiple
functionally-equivalent services that are available for each
of their operations. Given n ≥ 1 services that can perform
the same SBS operation with probabilities of success p1, p2,
. . . , pn, costs c1, c2, . . . , cn, and execution times t1, t2, . . . , tn,
the operation can be implemented using one of the patterns
from the (potentially non-exhaustive) pattern set described
in Table 4. As we discuss further in Section 9, variants of
the first three patterns have been widely used in related
research (e.g. in [6], [14], [42]), while—to the best of our
knowledge—the remaining patterns from Table 4 have not
been considered before.

As indicated earlier in the paper, our ePMC method is
well suited for the SBS domain, as the operation imple-
mentation patterns from Table 4 correspond to component
modelling patterns whose reliability, cost and execution
time can be obtained in the first stage of the method.
Table 5 and the following theorem provide the repository of
(manually derived) closed-form expressions for all patterns
from Table 4 and three key QoS properties of SBS operations.

Theorem 3. The closed-form expressions from Table 5
specify the success probability, the expected cost, and the
expected execution time for each of the SBS-operation im-
plementation patterns from Table 4.

Proof. We prove the SEQ results by induction. For the base
case, we have n = 1, corresponding to an SBS operation
carried out by a single service with success probability p1,
cost c1 and execution time t1. As required, pSEQ = p1 =
1− (1− p1), cSEQ = c1 and tSEQ = t1. Assume now that the
SEQ expressions from Table 5 are correct for n services, and
consider an SEQ pattern comprising n+1 services. There are
two ways in which the n+1 services can complete the oper-
ation successfully: (i) either the first n services complete the

operation successfully (with probability 1 −
∏n

i=1(1 − pi)),
or (ii) each of the first n services fails, and the invocation of
the (n+ 1)-th service is successful. Accordingly, the success
probability for the (n+ 1)-service SEQ pattern is:

(1−
∏n

i=1(1−pi))+((
∏n

i=1(1−pi)) pn+1)=1−
∏n+1

i=1 (1−pi).

To calculate the expected cost and execution time for the
(n+1)-service SEQ pattern, recall that the (n+1)-th service
is invoked iff the invocations of all previous n services
failed, i.e. with probability

∏n
i=1(1 − pi). Accordingly, us-

ing the (n + 1)-th service adds a supplementary expected
cost of (

∏n
i=1(1− pi)) cn+1 and a supplementary expected

execution time of (
∏n

i=1(1− pi)) tn+1 to the expected cost
and execution time of an n-service SEQ pattern, respectively.
Thus, the expected cost for the (n + 1)-service SEQ pattern
is given by
(
c1+

∑n
i=2

(∏i−1
j=1(1−pj)

)
ci
)
+ (

∏n
i=1(1−pi)) cn+1 =

= c1 +
∑n+1

i=2

(∏i−1
j=1(1−pj)

)
ci

and the expected execution time can be calculated similarly,
which completes the induction step.

For the PAR pattern, the probability that the parallel
invocations of the n (independent) services will all fail is∏n

i=1(1 − pi), so the probability that the operation will be
completed successfully is 1−

∏n
i=1(1−pi) as required. Also,

since all n services are always invoked, the cost for the
pattern is given by the sum of the n service costs. Finally, to
calculate the expected execution time for the PAR pattern,
assume (as stated in Table 5 and without loss of generality)
that the n services are ordered such that t1 ≤ t2 ≤ · · · ≤ tn.
Under this assumption, service i will be the first service
that completes execution successfully (in time ti) iff: (i) the
invocations of the faster services 1, 2, . . . , i − 1 have all
failed (which happens with probability

∏i−1
j=1(1 − pj)); and

(ii) the invocation of service i is successful (which happens
with probability pi). Thus, the execution time for the PAR

patterns follows a discrete distribution with probability(∏i−1
j=1(1− pj)

)
pi of successful completion in time ti, and

12

TABLE 5
Complete ePMC repository of QoS-property expressions for the SBS domain

Pattern Success probability Expected cost Expected execution time

SEQ pSEQ = 1−
∏n

i=1(1− pi) cSEQ = c1 +
∑n

i=2

(∏i−1
j=1(1− pj)

)
ci tSEQ = t1 +

∑n
i=2

(∏i−1
j=1(1− pj)

)
ti

PAR† pPAR = pSEQ cPAR =
∑n

i=1 ci tPAR = p̃1t1 +
∑n

i=2

(∏i−1
j=1(1− pj)

)
p̃iti

PROB pPROB =
∑n

i=1 xipi cPROB =
∑n

i=1 xici tPROB =
∑n

i=1 xiti

SEQ R pSEQ R =
pSEQ

1−(1−pSEQ)r
cSEQ R =

cSEQ
1−(1−pSEQ)r

tSEQ R =
tSEQ

1−(1−pSEQ)r

SEQ R1‡ pSEQ R1 = 1−
∏n

i=1(1− p′i) cSEQ R1 = c′1 +
∑n

i=2

(∏i−1
j=1(1− p′j)

)
c′i tSEQ R1 = t′1 +

∑n
i=2

(∏i−1
j=1(1− p′j)

)
t′i

PAR R pPAR R = pSEQ R cPAR R = cPAR
1−(1−pPAR)r

tPAR R = tPAR
1−(1−pPAR)r

PROB R pPROB R = pPROB
1−(1−pPROB)r

cPROB R = cPROB
1−(1−pPROB)r

tPROB R = tPROB
1−(1−pPROB)r

PROB R1‡ pPROB R1 =
∑n

i=1 xip
′
i cPROB R1 =

∑n
i=1 xic

′
i tPROB R1 =

∑n
i=1 xit

′
i

†assuming that the n services are ordered such that t1 ≤ t2 ≤ · · · ≤ tn, with p̃i = pi for i < n and p̃n = 1
‡ p′i =

pi
1−(1−pi)ri

, c′i =
ci

1−(1−pi)ri
and t′i =

ti
1−(1−pi)ri

for all i = 1, 2, . . . , n

probability
∏n

j=1(1−pj) of unsuccessful completion in time
tn. As a result, the expected execution time for the pattern
is given by:

∑n
i=1

(∏i−1
j=1(1− pj)

)
piti +

(∏n
j=1(1− pj)

)
tn = p1t1+

+
∑n−1

i=2

(∏i−1
j=1(1− pj)

)
piti +

[(∏n−1
j=1 (1− pj)

)
pntn +

+
(∏n−1

j=1 (1− pj)
)
(1− pn)tn

]
=

= p1t1+
∑n−1

i=2

(∏i−1
j=1(1− pj)

)
piti+

(∏n−1
j=1 (1− pj)

)
tn,

which can be easily rearranged in the format from Table 5
by introducing the notation p̃i = pi for i < n and p̃n = 1.

For the PROB pattern, the results from Table 5 follow
immediately from the fact that the success probability, cost
and execution time of the operation have a discrete distri-
bution with probabilities x1, x2, . . . , xn of taking the values
p1, p2, . . . , pn (for the success probability), c1, c2, . . . , cn (for
the cost), and t!, t2, . . . , tn (for the execution time).

For the SEQ R1 pattern, we first focus on a single
service i with success probability pi, cost ci and execution
time ti. If unsuccessful invocations of the service (which
happen with probability (1 − pi)) are followed by its re-
invocation with probability ri, then the overall probability
of successfully invoking the service is given by:

p′i = pi + (1− pi)ri

(
pi + (1− pi)ri

(
pi + . . .

))
=

= pi + [(1− pi)ri]pi + [(1− pi)ri]
2pi + . . . =

= limm→∞

∑m
j=0[(1− pi)ri]

jpi =

= limm→∞ pi
1−[(1−pi)ri]

m+1

1−[(1−pi)ri]
= pi

1−(1−pi)ri
.

(11)

A similar reasoning can be used to show that the expected
cost and execution time of the service with re-invocations
are

c′i =
ci

1− (1− pi)ri
and t′i =

ti
1− (1− pi)ri

, (12)

respectively. Thus, the n-service SEQ R1 pattern from Ta-
ble 5 is equivalent to an n-service SEQ pattern whose
services have success probabilities p′1, p′2, . . . , p′n, costs c′1,
c′2, . . . , c′n, and execution times t′1, t′2, . . . , t′n. As a result,
the expressions for the success probability, expected cost
and expected execution time of the SEQ R1 pattern can

be obtained by using these parameters in the analogous
expressions of the SEQ pattern, as shown in Table 5.

The SEQ R pattern is equivalent to having a single
service with success probability pSEQ, cost cSEQ and exe-
cution time tSEQ, and re-invoking this service with proba-
bility r after unsuccessful invocations. As such, the success
probability, expected cost and expected execution time for
the SEQ R pattern are obtained by applying the formulae
from (11) and (12) to this equivalent service, which yields
the expressions from Table 5.

Using the same reasoning as for the SEQ R pattern, it
is straightforward to show that Table 5 provides the correct
expressions for the PAR R and PROB R patterns.

Finally, the n-service PROB R1 pattern is equivalent to
an n-service PROB pattern whose i-th service has success
probability p′i given by (11), and cost c′i and execution time
t′i given by (12). Using these three formulae as parameters in
the expressions giving the success probability, expected cost
and expected execution time of the PROB pattern yields the
results for the PROB R1 pattern.

As we show experimentally in Section 8, ePMC can use
the repository of closed-form expressions from Table 5 to
efficiently compute reliability, cost and response-time QoS
properties of realistic SBS designs that leading model check-
ers take a very long time to verify, or cannot handle at
all due to out-of-memory or timeout errors. Furthermore,
as also shown in Section 8, our method yields closed-form
expressions that are more compact and take far less time to
evaluate than the expressions produced by traditional PMC.

7 EPMC OF MULTI-TIER ARCHITECTURES

As a second application domain for ePMC, we consider
the deployment of software systems with a multi-tier ar-
chitecture on a set of servers. For improved reliability and
throughput, these systems often use horizonal distribution
within some or all tiers, i.e. they have instances of these
tiers running on multiple servers. In this section, we devise a
repository of server modelling patterns for analysing reliability
properties of such systems. To this end, we consider an m-
tier software system comprising n1, n2, . . . , nm≥1 instances

13

of tiers 1 through m, and we assume that these tier instances
are deployed across multiple servers of different types.

Our (non-exhaustive) set of server modelling patterns
is presented in Table 6. The BASIC pattern from this table
corresponds to a server whose failure leads to the im-
mediate loss of all tier instances running on the server,
while the VIRTUALIZED and VIRTUALIZED-M(onitored)
patterns correspond to servers where each instance of a
tier is running within a separate virtual machine (VM). The
difference between the two types of virtualized server is
that the second type has a monitor component capable of
detecting imminent server failures early enough to allow
the migration of the VMs to other servers.

We assume that the engineers responsible for deploying
a multi-tier software system on a combination of such
servers need to assess the following reliability properties
of alternative deployment options:

1) The probability PFAIL of system failure due to all in-
stances of a tier failing within a time period of interest;

2) The probability PSPF of a single point of failure (i.e. a tier
with a single operational instance) occurring within the
analysed time period.

ePMC can support the analysis of these properties by using
a repository of QoS-property expressions comprising entries
for each probability pb1,b2,...,bm that bi∈{0, 1, 2+} instances
of tier i, i ∈ {1, 2, . . . ,m}, remain operational on the types
of server from Table 6 at the end of the analyzed time
period. For example, p0,2+ represents the probability that a
server running instances of two tiers at the beginning of the
analysed period is left with no instance of the first tier and
with two or more instances of the second tier at the end of
the period. Although 3m expressions need to be computed
for these probabilities and each type of server, this is feasible
because m is a small number (e.g., m ≤ 3 for a three-tier
architecture).

Table 7 and the following theorem provide the repository
of (manually derived) closed-form expressions for all server
modelling patterns from Table 6.

Theorem 4. The pb1,b2,...,bm expressions from Table 7 spec-
ify the probabilities that b1, b2, . . . , bm instances of tiers
1, 2, . . . ,m remain operational on a BASIC, VIRTUALIZED
and VIRTUALIZED-M server, respectively.

Proof. For the BASIC pattern, either the server remains oper-
ational and all n1, n2, . . . , nm tier instances are still running
at the end of the analysed time period, or the server fails
and no instance is left running. The former scenario occurs
with probability p, so pb1,b2,...,bm = p iff bi = 1 for all tiers
i for which ni = 1 and bi = 2+ for all tiers i for which
ni > 1; and the latter scenario occurs with probability 1− p,
so p0,0,...,0 = 1− p. Otherwise, pb1,b2,...,bm = 0 since there is
no scenario in which only some of the tier instances are left
running and others are lost.

For the VIRTUALIZED pattern, we first consider the
scenario where at least one of b1, b2, . . . , bm is non-zero. This
requires that m + 1 independent events occur: server stays
up; and the appropriate number of VMs running instances
of tier i ∈ {1, 2, . . . ,m} (i.e. zero, one, or greater than one)
remain operational. The probability of the first event is p,
and the probability of each of the other events is given by

Client1 Client2Business1 Business2

Database1 Database2VM VM VM VM

BASIC
Server C

BASIC
Server D

VIRTUALIZED
Server A

VIRTUALIZED
Server B

Deployment view

Logical view

Client Tier
(Presentation)

Business Tier
(Application Logic)

Data Management Tier
(Database)

Fig. 5. Three-tier system deployed across four servers

the probability that the value of a random variable with
binomial distribution B(ni, pVM) is: zero (i.e. (1− pVM)

ni =
f(0, ni)); one (i.e. nipVM(1 − pVM)

ni−1 = f(1, ni)); or
greater than one (i.e. 1 − f(0, ni) − f(1, ni) = f(2+, ni)).
The first part of the result from Table 7 is obtained by
multiplying these m + 1 probabilities. Finally, the scenario
b1 = b2 = · · · = bm = 0 occurs in two circumstances: when
the server fails—which happens with probability (1 − p),
and when the server stays up but all n1 + n2 + · · ·nm VMs
running tier instances fail—which happens with probability
p(1 − pVM)

∑m
i=1

ni , giving the last part of the result for the
VIRTUALIZED pattern.

Finally, for the VIRTUALIZED-M pattern, the scenario
where at least one of b1, b2, . . . , bm is non-zero can occur
in two cases. In the first case, the server stays up and the
appropriate number of VMs from each tier remains oper-
ational, which has probability p

∏m
i=1 f(bi, ni) (as shown

above for the VIRTUALIZED pattern); this corresponds to
the first term from the definition of pb1,b2,...,bm from Table 7.
In the second case, the server fails but the failure is detected
(which happens with probability (1− p)pdetect), and bi VMs
running tier i are successfully migrated to other servers and
remain operational for i = 1, 2, . . . ,m. To prove that the
second term from the definition of pb1,b2,...,bm is correct, we
will show that the probability of this last event is g(bi, ni)
from Table 7 for all three values of bi. We start by noting
that a given VM from tier i is successfully migrated with
probability

pmigrate

1−(1−pmigrater)
, a result that can be obtained as

in (11); so the VM will be migrated and remain operational
with probability

pmigratepVM

1−(1−pmigrater)
. Accordingly, g(0, ni), g(1, ni)

and g(2+, ni) represent the probabilities that a random vari-

able with binomial distribution B
(
ni,

pmigratepVM

1−(1−pmigrater)

)
takes

values 0, 1, or greater than or equal to 2, respectively,
which corresponds to the definition of g(bi, ni) from Table 7.
We complete the proof by noting that the scenario where
b1 = b2 = · · · = bm = 0 occurs in the same two cases, as
well as when the server fails and its failure is not detected
(which happens with probability (1−p)(1−pdetect), and cor-
responds to the last term from the definition of pb1,b2,...,bm
for this scenario).

Example 8. We consider a three-tier system adapted from
[13], [35], and comprising client, business and data man-
agement tiers. We assume that there are two instances of
each tier, and that these instances are deployed on four
servers as shown in Fig. 5. To compute systems of closed-

14

TABLE 6
Server modelling patterns for the reliability analysis of multi-tier architecture deployments

Pattern Description

BASIC(n1, n2, . . . , nm, p) The n1, n2, . . . , nm tier instances are deployed on a server whose probability of remaining
operational throughout a time period of interest (e.g. a month) is p; if the server fails, all tier
instances are lost.

VIRTUALIZED(n1, n2, . . . , nm, p, pVM) Each of the n1, n2, . . . , nm tier instances runs within its own virtual machine (VM) on a
server whose probability of remaining operational during the time period of interest is p;
additionally, each VM has a probability pVM of remaining operational during the same time
period, independently of the other VMs.

VIRTUALIZED-M(n1, n2, . . . , nm, p,
pdetect, pmigrate, r, pVM)

The n1, n2, . . . , nm tier instances are deployed within different VMs (each with probability
pVM of not failing), on a server whose probability of remaining operational is p. If the server
does fail, there is a probability pdetect that a software monitor will detect the approaching
failure before it happens, allowing the VMs to be migrated to other servers. The migration of
each VM succeeds with probability pmigrate, and is retried with probability r in case of failure.

TABLE 7
ePMC repository of QoS-property expressions for the multi-tier architecture domain

Pattern Probability that bi∈{0, 1, 2+} tier-i instances, i ∈ {1, 2, . . . ,m}, remain operational

BASIC pb1,b2,...,bm =

p, if ∀i ∈ {1, 2, . . . ,m}.(ni > 1 ∧ bi = 2+) ∨ (ni = 1 ∧ bi = 1)
1− p, if b1 = b2 = . . . = bm = 0
0, otherwise

VIRTUALIZED pb1,b2,...,bm =

{
p
∏m

i=1 f(bi, ni), if ∃i ∈ {1, 2, . . . ,m}.bi 6= 0

p
∏m

i=1 f(bi, ni) + (1− p), if b1 = b2 = . . . = bm = 0

VIRTUALIZED-M pb1,b2,...,bm =

{
p
∏m

i=1 f(bi, ni) + (1− p)pdetect
∏m

i=1 g(bi, ni), if ∃i ∈ {1, 2, . . . ,m}.bi 6= 0

p
∏m

i=1 f(bi, ni) + (1− p)pdetect
∏m

i=1 g(bi, ni) + (1− p)(1− pdetect), if b1 = b2 = . . . = bm = 0

with f(bi, ni)=

(1− pVM)ni , if bi = 0

nipVM(1− pVM)ni−1, if bi = 1

1− f(0, ni)− f(1, ni), if bi = 2+

; g(bi, ni)=

(
(1−pmigrate)(1−r)+pmigrate(1−pVM)

1−(1−pmigrate)r

)ni

, if bi = 0

ni
pmigratepVM

1−(1−pmigrate)r

(
(1−pmigrate)(1−r)+pmigrate(1−pVM)

1−(1−pmigrate)r

)ni−1
, if bi = 1

1− g(0, ni)− g(1, ni), if bi = 2+

form expressions for the reliability properties PFAIL and
PSPF introduced earlier in this section, we built the pattern-
annotated Markov chain from Fig. 6.

The transient states of this MC are organised into four
stages (separated by dashed vertical lines in the diagram),
where the states from each stage and their outgoing tran-
sitions model the effect of possible failures associated with
one of the servers from Fig. 5. For example, stage 1 corre-
sponds to server A. This stage has a single state, which is
labelled ‘2, 2, 2’ to indicate that, before considering failures
on any of the servers, the system has precisely two active
instances within each tier. The four outgoing transitions
of this state correspond to the possible outcomes for the
two tier instances on server A: neither instance fails; only
the business-tier instance Business1 fails; only the client-
tier instance Client1 fails; or both tier instances fail. Stage 2
corresponds to server B, and its four initial states (which
reflect the four possible outcomes of stage 1) have outgoing
transitions that model the failures which may occur on
server B. The outcomes due to possible failures on servers
C and D are modelled in a similar way by the other two
stages of the MC. The MC states within the four stages
are annotated with the relevant server modelling patterns,
i.e., VIRTUALIZED(1, 1, pA, pAVM) for server A, VIRTUAL-

IZED(1, 1, pB , pBVM) for server B, BASIC(1, pC) for server C,
and BASIC(1, pD) for server D.

p
B
1;1

p
B
1;0

p
B
0;1

p
B
0;0

p
A
1;1

p
A
1;0

p
A
0;1

p
A
0;0

1

2,2,2

2,1,2

1,2,2

2,2,2

1,1,2

2,2,1

2,1,1

p
D
1

p
D
0

2,2,2

1,2,1

1,1,1

SPF

FAIL

2,2,2

1

1

p
B
1;1

p
B
1;0

p
B
0;1

p
B
0;0

p
B
1;1

p
B
1;0

p
B
0;1

p
B
0;0

p
B
1;1

p
B
1;0

p
B
0;1

p
B
0;0

p
C
1

p
C
0

2,1,2

1,2,2

2,2,2

1,1,2

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

p
C
1

p
C
0

p
C
1

p
C
0

p
C
1

p
C
0

SPF

SPF

p
D
1

p
D
0

p
D
1

p
D
0

p
D
1

p
D
0

p
D
1

p
D
0

VIRTUALIZED

(1; 1; pB ; pBVM)

BASIC(1; pC) BASIC(1; pD)

(1; 1; pA; pAVM)

VIRTUALIZED

SPF

stage 1: server A stage 2: server B stage 3: server C stage 4: server D

transition to
the SPF stateSPF

transition to
the FAIL stateFAILKey: ;

Fig. 6. Pattern-annotated Markov chain for the three-tiered system de-
ployment from Fig. 5

15

TABLE 8
Probability of failure (PFAIL) and probability of single point of failure

(PSPF) for the three-tier system from Fig. 5

PFAIL = pA0,0p
B
1,1p

C
0 pD0 + pA0,0 + pA0,1p

B
1,0p

C
0 pD0 + pA1,1p

B
0,0p

C
0 pD0 +

pA0,1p
B
1,1p

C
0 pD0 + pA1,1p

B
1,1p

C
0 pD0 + pA1,1p

B
1,0p

C
0 pD0 + pA0,1p

B
0,1+

pA1,0p
B
1,1p

C
0 pD0 + pA1,0p

B
1,0 + pA1,0p

B
0,0 + pA0,1p0,0B + pA1,1p

B
0,1p

C
0 pD0 +

pA1,0p
B
0,1p

C
0 pD0 − pA0,0p

B
1,1

PSPF = pA0,0p
B
1,1p

C
0 pD1 + pA0,1p

B
1,0p

C
0 pD1 + pA1,0p

B
0,1p

C
1 + pA1,0p

B
0,1p

C
0 pD1+

pA0,1p
B
1,0p1C + pA1,1p

B
0,0p1C + pA0,1p

B
1,1p

C
0 pD1 + pA1,1p

B
0,1p

C
1 +

pA1,1p
B
1,1p

C
1 pD0 + pA1,1p

B
1,1p

C
0 pD1 + pA1,1p

B
1,0p1C + pA1,1p

B
1,0p

C
0 pD1 +

pA1,0p
B
1,1p

C
0 pD1 + pA0,1p

B
1,1p

C
1 + pA1,0p

B
1,1p1C + pA1,1p

B
0,1p

C
0 pD1 +

pA1,1p
B
0,0p

C
0 pD1 + pA0,0p

B
1,1p

C
1

pA1,1 = pA(pA
VM

)2 pA1,0 = pApA
VM

(1− pA
VM

)

pA0,1 = pApA
VM

(1− pA
VM

) pA0,0 = (1− pA) + pA(1− pA
VM

)2

pB1,1 = pB(pB
VM

)2 pB1,0 = pBpB
VM

(1− pB
VM

)

pB0,1 = pBpB
VM

(1− pB
VM

) pB0,0 = (1− pB) + pB(1− pB
VM

)2

pC1 = pC pC0 = 1− pC pD1 = pD pD0 = 1− pD

To keep the model simple, all states with zero instances
within at least one tier are joined together into a single
state (labelled ‘FAIL’); and all non-FAIL states reached after
modelling all four servers and comprising a single instance
within at least one tier are combined into a “single point
of failure” (‘SPF’) state. The other MC states are labelled
‘x, y, z’, to denote the presence of x client-tier instances, y
business-tier instances and z database-tier instances. FAIL

and SPF are absorbing states, as is a state labelled ‘2, 2, 2’
and corresponding to no failures occurring in the system.

Given this pattern-annotated parametric MC and the
repository from Table 7, ePMC computes the set of formulae
from Table 8 for the properties PFAIL = P=?[F FAIL] and
PSPF = P=?[F SPF]. The first two formulae from this table
were obtained using Storm [21] to verify the parametric MC
from Fig. 6, and the other formulae were obtained from the
repository in Table 7.

8 EVALUATION

We carried out extensive experiments to compare the fea-
sibility, scalability and efficiency of ePMC to those of the
model checkers PRISM, Storm and PARAM. All experi-
ments were performed on a Ubuntu-16 server with i7-
4770@3.40GHz × 8 processors and 16GB of memory, on
which we installed the latest versions of the three model
checkers downloaded from their websites and our ePMC
pattern-aware parametric model checker from Section 5. To
ensure the reproducibility of our results, we made the mod-
els and verified properties from our experiments available
on the ePMC website.

To also assess the generality of our method, we evaluated
it for both the service-based systems domain introduced in
Section 6 and the multi-tier architectures domain presented
in Section 7. The experimental results for these two domains
are reported in the next two sections, followed by a discus-
sion of the threats to the validity of our results in Section 8.3.

8.1 Service-based systems domain

We evaluated ePMC by using it to analyse a six-component
service-based system initially introduced in [27] and also

Order

normal modeexpert mode

objectives
satisfied

error

objectives
not met

Notification

Market
Watch

Analysis
FundamentalTechnical

Analysis

end

retry
perform

transaction

x 1−x

y1

y2

1−y1−y2

Alarm

z2

z1 1−z1−z2

Fig. 7. Foreign exchange system from the SBS domain

used in [8], [26]. This system implements a workflow used
to carry out foreign exchange (FX) trading transactions as
illustrated by the UML activity diagram in Fig. 7. Traders
can use the FX system in “normal” or “expert” operation
modes. In its normal mode, the system uses a Fundamen-
tal Analysis component to decide whether a transaction
should be performed, or the fundamental analysis should
be retried, or the normal-mode session should be ended.
Performing a transaction involves using an Order compo-
nent to carry out the operation, and is followed by the
invocation of a Notification component to inform the trader
about the outcome of the transaction. In its expert mode, the
system uses a Market Watch component to obtain exchange
market data that is then processed by a Technical Analysis
component. The result of this analysis may satisfy a set of
trader-specified objectives (in which case a transaction is
performed), may not meet these objectives (so the Market
Watch is reinvoked for an update) or may be erroneous (in
which case an Alarm component is used to warn the trader).
In our experiments, we assumed that the probabilities that
annotate the decision points from the diagram in Fig. 7 (i.e.,
the operational profile of the FX system) were unknown
parameters x, y1, y2, z1 and z2.

To evaluate ePMC, we considered multiple ways in
which the six FX components could be implemented using
the SBS modelling patterns from Table 4 with between one
and five functionally-equivalent services per component. To
analyse this large set of alternative designs using ePMC,
we developed a pattern-annotated parametric MC similar
to the MC from Fig. 3c(ii) but modelling the FX system. To
analyse the same designs with the model checkers PRISM,
Storm and PARAM, we obtained an individual “monolithic”
model for each design by using a dedicated parametric MC
generator that we implemented for this purpose.

Three QoS properties of the system were analyzed:
(P1) the probability of successful completion; (P2) the ex-
pected execution time; and (P3) the expected cost. Table 9
compares the PMC time required to produce the sets of

16

TABLE 9
Parametric model checking time (seconds) for the FX service-based system

ePMC PRISM Storm PARAM
Pattern #services P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

SEQ 1 0.33 0.34 0.33 0.32 8.10 8.51 0.06 0.077 0.075 0.012 0.862 0.883

SEQ 2 0.35 0.35 0.38 32.87 M M 3.61 7.61 7.59 5.24 T T
SEQ 3 0.34 0.34 0.34 M - - T T T T - -
SEQ 4 0.36 0.35 0.36 - - - - - - - - -
SEQ 5 0.34 0.34 0.34 - - - - - - - - -

PAR 2 0.33 0.34 0.34 8.75 M M 1.69 8.54 3.92 5.14 T T
PAR 3 0.33 0.36 0.34 M - - T T T T - -
PAR 4 0.48 0.35 0.35 - - - - - - - - -
PAR 5 0.34 0.35 0.35 - - - - - - - - -

PROB 2 0.34 0.34 0.35 M M M 0.46 0.89 0.87 T T T
PROB 3 0.35 0.35 0.34 - - - 2.81 4.34 4.30 - - -
PROB 4 0.36 0.35 0.35 - - - 48.23 50.08 50.33 - - -
PROB 5 0.35 0.37 0.35 - - - 545.33 395.12 387.27 - - -

SEQ R 2 0.35 0.36 0.35 M M M 830.24 T T T T T
SEQ R 3 0.37 0.36 0.36 - - - - - - - - -
SEQ R 4 0.36 0.36 0.37 - - - - - - - - -
SEQ R 5 0.36 0.37 0.35 - - - - - - - - -

SEQ R1 2 0.36 0.35 0.37 M M M T T T T T T
SEQ R1 3 0.35 0.35 0.37 - - - - - - - - -
SEQ R1 4 0.35 0.36 0.37 - - - - - - - - -
SEQ R1 5 0.36 0.39 0.36 - - - - - - - - -

PAR R 2 0.35 0.36 0.36 M M M 566.18 T T T T T
PAR R 3 0.36 0.36 0.36 - - - - - - - - -
PAR R 4 0.35 0.37 0.38 - - - - - - - - -
PAR R 5 0.34 0.37 0.35 - - - - - - - - -

PROB R 2 0.37 0.35 0.38 M M M 70.27 68.90 69.42 T T T
PROB R 3 0.37 0.36 0.35 - - - T T T - - -
PROB R 4 0.35 0.36 0.37 - - - - - - - - -
PROB R 5 0.37 0.37 0.36 - - - - - - - - -

PROB R1 2 0.36 0.37 0.36 M M M T T T T T T
PROB R1 3 0.35 0.36 0.37 - - - - - - - - -
PROB R1 4 0.35 0.36 0.35 - - - - - - - - -
PROB R1 5 0.36 0.36 0.36 - - - - - - - - -

20 random min 0.31 0.31 0.31 T T T 2.25 2.79 1.12 T T T
combinations max 0.54 0.34 0.37 520.45 817.58 661.80
of 2/3-service mean 0.33 0.32 0.32 52.12 88.41 67.18

SEQ/PAR/PROB stdev 0.06 0.01 0.01 112.93 178.01 148.62

M=out of memory, T=timeout (no result returned within 15 minutes), –=experiment skipped as PMC of smaller model failed

formulae for these three properties using ePMC to the time
required to produce a single formula for each property using
PRISM, Storm and PARAM. With the exception of the last
row, the results correspond to experiments in which every
FX component used the same pattern (SEQ, PAR, etc.) and
the same number of services.

Table 9 shows that the PMC time required to analyse the
three properties using ePMC is always better, and typically
orders of magnitude smaller, than the PMC times of PRISM,
Storm and PARAM (except for the trivial case when a
single service is used for each SBS component, cf. row 1).
Moreover, the three tools ran out of memory or timed out
when components used four (and sometimes even two or
three) services, with the exception of the Storm analyses of
the PROB pattern, which were all completed. The reason
for this is that PROB is by far the SBS modelling pattern
with the simplest QoS-property expressions, i.e., just linear
combinations of the service parameters, as shown in Table 5.
Note also that ePMC analysis times are almost identical
irrespective of the property analysed and of the pattern and
number of services used. This is because the time required
to run our ePMC tool is dominated by the time used to read
the files containing the ePMC repository of QoS-property
expressions and the annotated MC, to start Storm and to
parse the MC, all of which do not depend on the analysed

property or the patterns from the model annotations.
The last row from Table 9 reports the minimum, maxi-

mum and mean PMC time and the standard deviation over
20 experiments in which the pattern and number of services
(two or three) used for each component were chosen ran-
domly and independently of those of the other components.
We only used the patterns SEQ, PAR and PROB in these ex-
periments so that at least Storm could complete the analysis,
albeit with PMC times much longer than ePMC; PRISM and
PARAM timed out in all 20 experiments.

To assess the efficiency of evaluating ePMC-generated
expressions, we plotted graphs of the three QoS properties
of the FX system using both the sets of formulae gen-
erated by our ePMC tool and the “monolithic” formulae
generated by Storm (the best performing of the current
model checkers in our experiments). Fig. 8 shows three such
graphs, generated with Matlab. These graphs correspond
to the following fixed values for the FX operational profile
parameters (which can be obtained in practice from system
logs): x = 0.66, y1 = 0.61, y2 = 0.11, z1 = 0.27 and
z2 = 0.53. Table 10 shows that ePMC yields far smaller and
more efficient to evaluate formulae than traditional PMC.
The only system instance for which the Storm formula size
and graph generation time are comparable to (but still larger
than) those of ePMC corresponds to PROB, i.e., the simplest

17

Fig. 8. QoS analysis showing increase in FX success probability and (as fewer FX sessions fail halfway) in expected execution time and cost when
the reliability pi of (all) services used for the i-th FX component, 1 ≤ i ≤ 6, increases; for simplicity, all services are assumed to have the same
mean execution time (1s, 2s or 3s) and the same cost of 1

TABLE 10
Comparison of ePMC and Storm formulae sizes and graph generation
times for the graphs from Fig. 8 and system instances using the same
SBS modelling pattern (with three services) for each FX component

SBS modelling ePMC formulae Storm formula
Graph pattern #operations time #operations time

P1 PROB R 287 2.6s 285425 8.2 hours
P2 PROB 174 2.9s 9686 16.9s
P3 PAR 198 1.3s 171166 2.5 hours

SBS modelling pattern as discussed earlier in this section.
For the other patterns from Table 10, the ePMC sets of
formulae are several orders of magnitude smaller and faster
to evaluate than the Storm formulae.

8.2 Multi-tier software architectures domain

We evaluated ePMC within this domain by using it to
analyse the properties PFAIL and PSPF from Section 7 for
eight four-server deployments of a three-tier system. The
characteristics of these deployments and the time taken by
the parametric model checking of the two properties are
shown in Table 11; the timing information was collected
through logging the output of the model checkers.

As for the SBS domain, the ePMC model checking time
is largely unaffected by the system size, remaining under 1s
when the total number of tier instances increases from six
instances for deployments D1 and D2 to 40 instances for
deployments D7 and D8. In contrast, the model checking
time for PRISM, Storm and PARAM increases rapidly with
the system size. As D1, D3, D5 and D7 use only the simpler,
loop-free deployment patterns BASIC and VIRTUALIZED,
the three model checkers can successfully analyse deploy-
ments D1, D3 and D5. However, the analysis times of these
tools are already orders of magnitude larger than those of
ePMC for the larger deployment D5 (and their analyses of
deployment D7 time out). The better efficiency of ePMC is
even clearer for deployments D2, D4, D6 and D8, which
use the more complex deployment pattern VIRTUALIZED-

M—out of these deployments, only D2 can be successfully
analysed by PRISM, Storm and PARAM.

Finally, Table 12 shows the combined sizes of the PFAIL

and PSPF formulae generated by ePMC and by the current
model checkers for the deployments from Table 11. As for

the SBS domain, the ePMC formulae are always smaller
than those produced by the current model checkers. More-
over, they are over two orders of magnitude smaller for
deployment D2, which is the only deployment that uses the
more complex modelling pattern VIRTUALIZED-M and that
PRISM, Storm and PARAM can analyse.

8.3 Threats to validity

External validity threats may arise if ePMC modelling
patterns do not occur for other types of systems than those
considered in our paper. To mitigate this threat, we eval-
uated ePMC for systems from two significantly different
domains—service-based systems, and multi-tier software
architectures. Furthermore, probabilistic model checking is
increasingly used to analyse Markov chains comprising
interchangeable modules within the important and broad
domain of software product lines (e.g., [16], [29], [41]). These
interchangeable modules represent ideal ePMC modelling
pattern candidates, although further research is needed to
confirm this hypothesis.

Construct validity threats may be due to the assump-
tions made when choosing and modelling the SBS and
multi-tier software architecture systems from our evalu-
ation. To mitigate these threats, we focused on systems,
models and QoS properties adapted from previous case
studies from the software engineering literature (e.g., [8],
[13], [26], [27], [35]).

Internal validity threats can originate from how the
experiments used to evaluate ePMC were performed, and
from bias in the interpretation of the results. To address
these threats, we carried out all the experiments on the same
server (whose specification is provided at the beginning of
Section 8); we used the latest probabilistic model checker
versions available when we conducted the evaluation; and
we made all models and experimental results publicly
available on our project website in order to enable other
researchers to replicate and verify our results.

9 RELATED WORK

Since its introduction in Daws’ seminal work [19] in 2004,
parametric model checking has underpinned the develop-
ment of a vast array of methods for the modelling and anal-
ysis of software and other computer-based systems. These
include methods for comparing alternative system designs

18

TABLE 11
Parametric model checking time (seconds or T=15-minute timeout) for eight deployments of a three-tier system

Tier instances† Server type‡ | Instances of tiers 1, 2, 3 ePMC PRISM Storm PARAM

ID T1 T2 T3 Total Server A Server B Server C Server D PFAIL PSPF PFAIL PSPF PFAIL PSPF PFAIL PSPF

D1# 2 2 2 6 V | 1,1,0 V | 1,1,0 B | 0,0,1 B | 0,0,1 0.26 0.26 0.39 0.15 0.55 0.10 0.06 0.03
D2 2 2 2 6 V-M | 1,1,0 V-M | 1,1,0 B | 0,0,1 B | 0,0,1 0.25 0.26 3.14 7.33 5.08 4.92 12.88 33.06
D3 4 4 2 10 V | 2,1,0 V | 2,1,0 V | 0,1,1 V | 0,1,1 0.26 0.26 2.50 1.86 1.00 1.01 0.53 0.53
D4 4 4 2 10 V-M | 2,1,0 V-M | 2,1,0 V-M | 0,1,1 V-M | 0,1,1 0.27 0.27 T T T T T T
D5 8 8 4 20 V | 4,2,0 V | 4,2,0 V | 0,2,2 V | 0,2,2 0.29 0.31 742.85 1074.59 25.19 26.92 12.78 14.11
D6 8 8 4 20 V-M | 4,2,0 V-M | 4,2,0 V-M | 0,2,2 V-M | 0,2,2 0.29 0.30 T T T T T T
D7 16 16 8 40 V | 8,4,0 V | 8,4,0 V | 0,4,4 V | 0,4,4 0.29 0.29 T T T T T T
D8 16 16 8 40 V-M | 8,4,0 V-M | 8,4,0 V-M | 0,4,4 V-M | 0,4,4 0.30 0.30 T T T T T T
† T1=Tier 1 instances; T2=Tier 2 instances; T3=Tier 3 instances
‡ B=BASIC; V=VIRTUALIZED; V-M=VIRTUALIZED-M
Deployment used in Example 8

TABLE 12
Combined size of PFAIL and PSPF formulae (#operations or T=timeout)

for the parametric model checking experiments from Table 11

ID ePMC PRISM Storm PARAM

D1 143 204 258 240
D2 189 30584 34719 33667
D3 1688 1892 2234 2124
D4 1868 T T T
D5 9082 21952 25394 24248
D6 9404 T T T
D7 9086 T T T
D8 9412 T T T

[28], [29], sensitivity analysis [24], parameter synthesis [9],
[20], [30], probabilistic model repair [4], [15], dynamic recon-
figuration of self-adaptive systems [22], [23], and synthesis
of confidence intervals for the QoS properties of software
systems [10], [11]. These methods address very different
problems, and yet most researchers who developed them
mention the same limitation of parametric model checking:
its computationally intensive nature. Addressing this one
limitation can greatly improve the scalability and applicabil-
ity of all the methods that use parametric model checking.
Despite this significant incentive, research to improve PMC
efficiency has been very limited so far. To the best of our
knowledge, this research includes only the results from [32],
[34]. As we explain in the rest of this section, these results
represent significant advances, but are both complementary
to our ePMC work.

The PMC technique presented in [32] provides major
performance improvements over the initial PMC approach
from [19]. While the language-theoretic PMC approach from
[19] uses a regular expression to encode the probability that
a PCTL path formula is satisfied, [32] computes a rational
expression for the probability of reaching a set of parametric
MC states, and mitigates the explosion in expression size
relative to the number of MC states by exploiting algebraic
symmetry and cancelation properties of rational functions.
A further improvement introduced in [32] is the application
of arithmetic operations during the state elimination stage of
the PMC algorithm, to simplify the rational expression as it
is calculated. The technique is implemented by the paramet-
ric model checkers PARAM [31] and PRISM [38], and shown
to considerably reduce the complexity of PMC in [32]. Our

work builds on the PMC technique from [32] (when using
the parametric model checking functionality of PRISM in
the second ePMC stage, cf. Section 5). Furthermore, ePMC
complements the results from [32] by further speeding up
parametric model checking through the pre-computation of
PMC expressions for domain-specific modelling patterns.

The research from [34] introduces a compositional tech-
nique for parametric model checking. This technique de-
composes the underlying state transition graph of the anal-
ysed MC into strongly connected components (SCCs). Ra-
tional functions are then computed independently for each
SCC and then combined to obtain the PMC result. In addi-
tion, [34] defines new polynomial factorisations that further
improve the handling of the large expressions generated
by PMC, and optimises the computation of the greatest
common divisor used to simplify PMC rational expressions.
The PMC technique from [34] is implemented by the re-
cently released probabilistic model checker Storm [21], and
achieves significant performance improvements over the
previously developed PMC techniques. Like the technique
from [34], ePMC is a compositional PMC method. However,
while [34] operates with SCCs, the ePMC “components”
are Markov chain fragments that may contain zero or more
SCCs, or even parts of SCCs. This makes ePMC particularly
flexible, and different from the technique from [34]. Fur-
ther advantages of our method include the precomputation
of the PMC expression associated with the Markov chain
fragments, and the use of sets of formulae that include
these PMC expressions without combining them. Finally,
through using Storm in its second stage (cf. Section 5), ePMC
leverages and extends the PMC technique from [34]. As
shown in Section 8, this significantly improves the efficiency
and scalability of parametric model checking.

One other characteristic that distinguishes ePMC from
the techniques in [19], [32], [34] is its use of a domain-specific
repository of precomputed QoS property expressions. As
such, our ePMC method and pattern-aware probabilistic
model checker do not offer the generality of the other
techniques and model checkers. In return—for the domains
for which such a repository has been built—ePMC can
analyse parametric Markov chains up to several orders
of magnitude faster, and yields much smaller and much
more efficient to evaluate formulae than the current PMC
approaches.

19

10 CONCLUSION

We presented ePMC, a tool-supported method for efficient
parametric model checking. ePMC can efficiently analyse
unbounded until and reachability reward PCTL formulae by
precomputing closed-form expressions for the QoS proper-
ties of modelling patterns used frequently within a domain
of interest. These expressions are then employed to consid-
erably speed up the analysis of Markov chain models of
systems from the same domain, and to generate sets of QoS
property formulae that can be evaluated very efficiently.
These improvements extend the applicability of parametric
model checking to much larger models than previously
feasible.

In our future work, we plan to extend the use of ePMC
to further types of component-based systems. In particular,
probabilistic model checking is increasingly used to analyse
Markov chains comprising interchangeable modules within
the important and broad domain of software product lines
(e.g., [16], [28], [29], [41]). These interchangeable modules
represent ideal ePMC modelling pattern candidates.

Furthermore, we envisage that the benefits of our work
will extend to multiple applications of probabilistic and
parametric model checking, and we plan to exploit ePMC
in several of these applications. Thus, we intend to integrate
ePMC with probabilistic model synthesis [26], [27], which is
currently very computationally intensive due to the need to
analyse numerous probabilistic model variants correspond-
ing to different parameter values. Additionally, we plan to
use ePMC instead of traditional parametric model checking
in our recently introduced technique for formal verification
with confidence intervals [10], [11], which can only analyse
QoS properties defined by small to medium size closed-
form expressions. Last but not least, we will build on our
recent work from [8] to explore the use of ePMC within
self-adaptive systems where not only the system parameters
but also the system architecture needs to be reconfigured at
runtime.

ACKNOWLEDGEMENTS

This work was partly funded by the Assuring Autonomy
International Programme.

REFERENCES

[1] J.-R. Abrial and S. Hallerstede, “Refinement, decomposition, and
instantiation of discrete models: Application to event-b,” Funda-
menta Informaticae, vol. 77, no. 1-2, pp. 1–28, 2007.

[2] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time rewards
model-checked,” in First International Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS), 2004, pp. 88–104.

[3] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[4] E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, and S. Smolka,
“Model repair for probabilistic systems,” in 17th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2011, pp. 326–340.

[5] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking of
interval Markov chains,” in 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2013, pp. 32–46.

[6] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS management and optimization in
service-based systems,” IEEE Transactions on Software Engineering,
vol. 37, no. 3, pp. 387–409, May 2011.

[7] R. Calinescu, K. Johnson, and Y. Rafiq, “Developing self-verifying
service-based systems,” in 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2013, pp. 734–737.

[8] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and
T. Kelly, “Engineering trustworthy self-adaptive software with dy-
namic assurance cases,” IEEE Transactions on Software Engineering,
vol. 44, no. 11, pp. 1039–1069, 2018.

[9] R. Calinescu, M. Autili, J. Cámara, A. Di Marco, S. Gerasimou,
P. Inverardi, A. Perucci, N. Jansen, J.-P. Katoen, M. Kwiatkowska
et al., “Synthesis and verification of self-aware computing sys-
tems,” in Self-Aware Computing Systems. Springer, 2017, pp. 337–
373.

[10] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq, and
G. Tamburrelli, “Formal verification with confidence intervals to
establish quality of service properties of software systems,” IEEE
Transactions on Reliability, vol. 65, no. 1, pp. 107–125, 2016.

[11] R. Calinescu, K. Johnson, and C. Paterson, “FACT: A probabilistic
model checker for formal verification with confidence intervals,”
in 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2016, pp. 540–546.

[12] ——, “Efficient parametric model checking using domain-specific
modelling patterns,” in 40th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE:NIER), 2018, pp.
61–64.

[13] R. Calinescu, S. Kikuchi, and K. Johnson, “Compositional reveri-
fication of probabilistic safety properties for large-scale complex
IT systems.” in 17th Monterey Workshop: Large-Scale Complex IT
Systems, 2012, pp. 303–329.

[14] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of
service for workflows and web service processes,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 3, pp.
281–308, 2004.

[15] T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, and
L. Zhang, “Model repair for Markov decision processes,” in In-
ternational Symposium on Theoretical Aspects of Software Engineering
(TASE), 2013, pp. 85–92.

[16] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier, “ProFeat:
feature-oriented engineering for family-based probabilistic model
checking,” Formal Aspects of Computing, vol. 30, no. 1, pp. 45–75,
2018.

[17] F. Ciesinski and M. Größer, “On probabilistic computation tree
logic,” in Validation of Stochastic Systems: A Guide to Current Re-
search, C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen, and
M. Siegle, Eds. Springer, 2004, pp. 147–188.

[18] C. E. da Silva, J. D. S. da Silva, C. Paterson, and R. Calinescu,
“Self-adaptive role-based access control for business processes,”
in 12th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 193–203.

[19] C. Daws, “Symbolic and parametric model checking of discrete-
time Markov chains,” in First International Conference on Theoretical
Aspects of Computing (ICTAC), 2005, pp. 280–294.

[20] C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruint-
jes, J.-P. Katoen, and E. Ábrahám, “PROPhESY: A PRObabilistic
ParamEter SYnthesis Tool,” in 27th International Conference on
Computer Aided Verification (CAV), 2015, pp. 214–231.

[21] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is com-
ing: A modern probabilistic model checker,” in 29th International
Conference Computer Aided Verification (CAV), 2017, pp. 592–600.

[22] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 341–350.

[23] A. Filieri and G. Tamburrelli, “Probabilistic verification at runtime
for self-adaptive systems.” Assurances for Self-Adaptive Systems, vol.
7740, pp. 30–59, 2013.

[24] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-
adaptation via quantitative verification and sensitivity analysis at
run time,” IEEE Transactions on Software Engineering, vol. 42, no. 1,
pp. 75–99, 2016.

[25] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality
prediction of service compositions through probabilistic model
checking,” in 4th International Conference on Quality of Software-
Architectures (QoSA), 2008, pp. 119–134.

[26] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of
probabilistic models for quality-of-service software engineering,”
Automated Software Engineering Journal, vol. 25, no. 4, pp. 785–831,
2018.

20

[27] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based
synthesis of probabilistic models for quality-of-service software
engineering,” in 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2015, pp. 319–330.

[28] C. Ghezzi and A. M. Sharifloo, “Verifying non-functional prop-
erties of software product lines: Towards an efficient approach
using parametric model checking,” in 15th International Conference
on Software Product Lines SPLC, 2011, pp. 170–174.

[29] ——, “Model-based verification of quantitative non-functional
properties for software product lines,” Information & Software
Technology, vol. 55, no. 3, pp. 508–524, 2013.

[30] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for pctl in paramet-
ric markov decision processes,” in NASA Formal Methods Sympo-
sium. Springer, 2011, pp. 146–161.

[31] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “PARAM:
A model checker for parametric Markov models,” in 22nd Inter-
national Conference on Computer Aided Verification (CAV), 2010, pp.
660–664.

[32] E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reach-
ability for parametric Markov models,” International Journal on
Software Tools for Technology Transfer, vol. 13, no. 1, pp. 3–19, 2011.

[33] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[34] N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Ábrahám, J.-P.
Katoen, and B. Becker, “Accelerating parametric probabilistic ver-
ification,” in 11th International Conference on Quantitative Evaluation
of Systems (QEST), 2014, pp. 404–420.

[35] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental verifi-
cation framework for component-based software systems,” in 16th
ACM SIGSOFT Symposium on Component Based Software Engineering
(CBSE), 2013, pp. 33–42.

[36] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker
MRMC,” Performance Evaluation, vol. 68, no. 2, pp. 90–104, 2011.

[37] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov
Chains, 2nd edition, ser. Graduate Texts in Marhematics. Springer,
1976, vol. 40.

[38] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Ver-
ification of probabilistic real-time systems,” in 23rd International
Conference on Computer Aided Verification (CAV), 2011, pp. 585–591.

[39] A. McIver and C. Morgan, Abstraction, Refinement and Proof
for Probabilistic Systems, ser. Monographs in Computer Science.
Springer, 2005.

[40] K. Sen, M. Viswanathan, and G. Agha, “Model-checking Markov
chains in the presence of uncertainties,” in 12th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2006, pp. 394–410.

[41] M. Ter Beek, A. Legay, A. L. Lafuente, and A. Vandin, “A
framework for quantitative modeling and analysis of highly
(re)configurable systems,” IEEE Transactions on Software Engineer-
ing (Early Access), 2018.

[42] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-aware middleware for web services compo-
sition,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp.
311–327, 2004.

Radu Calinescu is a Senior Lecturer within the
Department of Computer Science at the Uni-
versity of York, UK. His main research inter-
ests are in formal methods for self-adaptive,
autonomous, secure and dependable software,
cyber-physical and AI systems, and in perfor-
mance and reliability software engineering. He is
an active promoter of formal methods at runtime
as a way to improve the integrity and predictabil-
ity of self-adaptive and autonomous software
and cyber-physical systems and processes.

Colin Paterson is a Research Associate in the
Assuring Autonomy International Programme at
the University of York, where his research con-
siders techniques for the verification of artifi-
cial intelligence. Colin recently completed a PhD
which concerns the formal verification of oper-
ational processes using observation data to en-
hance the modelling of such processes and the
accuracy of verification techniques.

Prior to this Colin obtained a PhD in con-
trol systems engineering in a collaboration with

Jaguar Cars, before moving into industry where he designed bespoke
web-based software solutions as well as a product suite for local gov-
ernment focused on governance, risk and compliance.

Kenneth Johnson is a Senior Lecturer in The
School of Computer and Mathematical Sci-
ences at Auckland University of Technology,
New Zealand. He received his PhD in Com-
puter Science from Swansea University, UK in
2007. He has held post-doctorate research po-
sitions at the University of York, Aston Univer-
sity and INRIA, Rennes. His research interests
are formal modelling and verification of large-
scale systems. Most recently, he has focused
on automated model-based analysis of quality-

of-service properties of systems at runtime. He is a member of the IEEE
and serves on several program committees for international conferences
featuring formal methods and cloud computing technology.

