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Summary 

We consider the problem of how to analyse data from experiments conducted on 

multiple species. This seems to have been largely overlooked in the literature, and we 

highlight that the use of species as experimental units creates issues for both the 

design and analysis of experiments. We distinguish fully randomized experiments in 

which all treatments are applied to all species from those experiments in which the 

factor of interest varies at the species level, i.e. treatments are not randomly allocated 

to species. In this latter case, the distribution of the experimental factor across species 

may be random, phylogenetically structured, or species may be chosen in order to 

phylogenetically balance the sample (e.g. through sister-species comparisons). We 

show using simulations that the structure of the experimental factor can affect power 

and Type I error, and that commonly used approaches (Linear Mixed Models and 

ANOVAs) may have poor statistical properties when both the predictors and response 

data show strong phylogenetic signal. We highlight that the true phylogenetic 

generalized least squares model yield has good statistical properties but show that in 

some cases the true variance structure may be difficult to identify empirically. 

Moreover many current comparative tools do not allow such analyses to be easily 

applied, and we highlight some of those that do.  
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Introduction 

The comparative method is amongst the most widely used approaches for addressing 

questions in ecology and evolutionary biology ((Harvey and Pagel, 1991); Freckleton 

& Pagel 2010; Nunn 2012). The rationale of the comparative method is that a group 

of species will contain more variation than a single species, or is possible to create 

using experimental manipulation (Maynard Smith, 1978). Consequently, comparative 

methods can be used to test extremely broad hypotheses. Moreover, comparative 

methods typically use data collated from the literature and are therefore extremely 

efficient in terms of time, expense of data collection and reuse.  

 The potential problems with comparative approaches are well known, and 

result from the statistical and evolutionary non-independence of species (Harvey, 

1996, Harvey and Pagel, 1991). Evolutionary non-independence of species results in 

similarities within assemblages that are the result of common ancestry rather than 

independent evolution. Because of this comparative data cannot be safely regarded as 

being statistically independent, and a suite of approaches have been developed to 

analyse comparative data whilst incorporating the phylogenetic relationships between 

the species and these are now routinely used (e.g. (Grafen, 1989);(Martins and 

Hansen, 1996); (Pagel, 1997, Pagel, 1999);(Hadfield and Nakagawa, 2010)).  

 Some authors have argued that the problem of phylogeny is not as severe as 

originally claimed (e.g. Westoby et al. 1995; Starck & Ricklefs 1996), although these 

claims have been largely dismissed (Harvey, 1996, Harvey et al., 1995). The lessons 

from simulations are that it is possible for phylogenetic non-independence to generate 

both incorrect inference and loss of power (Martins and Garland, 1991), and that 

small amounts of phylogenetic non-independence can create increasingly severe 

problems as datasets become larger (Freckleton et al. 2011). Although in many ways 
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the state of the art in comparative methods has for the past decade focused more on 

the use of evolutionary models to uncover the processes generating current trait 

diversity (e.g. Pagel 1997; Losos 2008; Freckleton et al. 2011), nevertheless probably 

the majority of users of the comparative method are primarily aiming to correct 

statistical analyses for non-independence. 

 Conceptually the opposite of the comparative method is the experimental 

approach (Maynard Smith, 1978). Comparative methods are typically observational, 

and rely on uncovering correlations, with possible confounding effects eliminated 

statistically. A correlative analysis can never eliminate all confounding effects, nor 

can causation be distinguished from correlation on purely statistical grounds. On the 

other hand, experiments are intended to manipulate only the factors of interest, with 

nuisance and confounding effects eliminated by design and randomization (Mead 

1988). The randomized block experiment is, for example, described as the ‘gold 

standard’ in testing ecological hypotheses (e.g. Newman et al. 1995).  

 Experimental and comparative approaches need not be completely divorced, 

however, and the dichotomy between the two becomes blurred in experiments that use 

multiple species. Comparative experiments have always been common, and classic 

examples include mass screening experiments on plants (e.g. (Grime et al., 1990)). In 

principle the control available in experiments should allow the ‘species’ effect to be 

accounted for and treatments randomized across species. Consequently it might be 

expected that experimental comparative approaches should be less prone to 

confounding than purely correlative studies.  

 Unfortunately this is not likely to be a general or safe assumption to make. 

The reason for this is illustrated in Figure 1, which highlights four designs that are 

commonly used. The first approach (Figure 1A) is a factorial experiment, in which all 
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species receive each of the treatments. Species are effectively treated as randomized 

blocking factors. This design would be used when it is possible to manipulate the 

factor of interest (e.g. when applying different nutrient regimes to plants in growth 

experiments).  

 Frequently, however, the factors analysed in an experiment are properties of 

the species themselves. For instance, in an example we discuss below plant species 

may be characterized as possessing one of two photosynthetic pathways (C3 vs C4). 

Each species is in only of one of two states, and consequently this factor cannot be 

randomly applied to species. In such situations, the design of the experiment will 

depend on how species are chosen and/or how traits are distributed across the 

phylogeny. Figure 1B - D illustrate three idealized cases.  

1) Variation in the trait across the phylogeny is random (Figure 1B). 

Consequently, the levels of treatment factor are distributed randomly through 

the tree, and there is no phylogenetic structure to the character being analysed.  

2) Variation in the factor studied is not distributed randomly across the 

phylogeny: as shown in Figure 1C. It may be that there is phylogenetic signal 

and groups of related species share the trait of interest, and are similar in other 

respects.  

3) The sample of species used might be chosen to maximize differences between 

closely related species, for example as in sister-species comparisons (Figure 

1D). In this case, the trait analysed has an over-dispersed distribution. 

 Several approaches have been employed in the literature for the analysis of 

data from comparative experiments, although the question of how to analyse 

phylogenetically referenced experimental data does not appear to have been explicitly 

addressed. The simplest approach would be to ignore species identity completely, and 
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treat data as phylogenetically independent: this is potentially defensible if the 

experiment is appropriately randomised. However, a drawback could be that inter-

species variation would add variance to the data and reduce power. Consequently 

including species identity in the analysis would usually seem preferable. The simplest 

way to do this would be to introduce ‘species’ as a factor into the analysis, and test as 

a fixed or random factor. For a fully orthogonal design, the choice of whether to treat 

as fixed or random is arbitrary (since either way the effect of species is estimated 

marginally with respect to the other experimental factors).  

 In the case where there is phylogenetic structure in the factor of interest, the 

choice of how to proceed within a conventional statistical framework is not obvious. 

One approach might be to regard ‘species’ as the level of replication in the analysis 

and therefore to stratify the analysis appropriately, e.g. by effectively treating species 

as a ‘split-plot factor’ in the parlance of classic ANOVA. The efficacy of this 

approach would be expected to depend on the precise nature of the phylogenetic 

structure of the factor, however. Another approach is sister-species comparisons (e.g. 

see (Weir and Lawson, 2015) for a recent method), however comparisons among 

sister species may ignore higher level (e.g. above genus level) confounding.  

 Currently the most widely employed approach to analysing comparative data 

is based on linear models and generalized least squares (e.g. Felsenstein 1973, 1985; 

Grafen 1989; Pagel 1997, 1999; Martins & Hansen 1996; Freckleton et al. 2002). This 

approach is a generalization of classic regression and ANOVA methods to account for 

phylogenetic non-independence by the explicit inclusion of a variance-covariance 

matrix that represents species’ phylogenetic relationships. Conceptually there is little 

difference between this and the approaches that one might use in the analysis of 

comparative or experimental data. For example, fitting a block in an experimental 
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design simultaneously accounts for uncontrolled variation and reduces non-

independence between experimental units. This is akin to the function of a 

phylogenetic correction (Rees 1995).  

 Despite the conceptual links, there is currently a gulf between approaches used 

to analyse comparative, experimental data and the approaches used in correlative 

analyses. This is reflected in the software that is currently available (e.g. (Paradis et 

al., 2004); geiger (Pennell et al., 2014); caper (Orme, 2013)) in which the response 

variable is assumed to be a single value for each species, and the ability to account for 

experimental design is not emphasized. For example, in such packages it is not clear 

how one might include blocking or more sophisticated designs such as error structures 

that vary between strata (but this may be possible with packages developed in other 

fields, e.g. see coxme package (Therneau, 2015)). Methods have been developed to 

account for intra-specific variability ((Felsenstein, 2008); (Ives et al., 2007)), which is 

similar to doing this. These analyses have shown that there are potentially impacts of 

accounting for intra-specific structure (e.g. (Silvestro et al., 2015)), and the same 

would be expected to be true in experimental data.  

 In this paper we consider the problem of how to analyse data within a 

comparative, experimental framework. We use the four experimental schemes 

outlined in Figure 1 as the basis for exploring the performance of different analytical 

methods. We highlight that the experimental design and phylogenetic structure of the 

variables analysed have important consequences for the expected performance of 

methods. Analysis of simulations and real data show that, depending on the structure 

of the data, application of the incorrect method can lead to either loss of power or 

Type I error. The results show that, with the correct variance structure, Generalized 

Least Squares approaches outperform other methods. However, our results also 
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highlight that comparative experiments with small numbers (<20) of species have 

limited power to estimate the variance structure, and that in many such cases the 

correct analysis may remain in doubt.  

 

Methods 

Simulations 

The four schemes shown in Figure 1 were used as the basis for our simulations. To 

mimic the type of analysis commonly employed we used a randomized-block 

experiment. For simplicity we assumed that the treatment of interest was a binary 

variable (as outlined in the discussion, it is straightforward to generalize our results to 

more complex treatments).  

 Phylogenies were generated according to a birth-death process using the 

package TreeSim ((Stadler, 2015)) in R (R Core (Team, 2015)). Exploratory analysis 

indicated that the results below are relatively insensitive to the method used to 

generate the phylogeny, so we held the birth rate of the phylogeny constant at 0.9 and 

the death rate constant at 0.3. Phylogenies of between 4 and 200 species were 

generated, representing a typical range that might be encountered in real data.  

 The basis for the simulations is a general phylogenetic mixed model in which 

there is a treatment, a blocking structure and residual variance associated with both 

the individual measurement (e.g. plant-to-plant or pot-to-pot variation in a growth 

experiment) and with phylogeny.  

The model for the vector of observations y was: 

     (1) 

In the fully randomized, block design with a binary treatment and b blocks and n 

species (Figure 1A), B is a b x 2n design matrix representing the blocking structure. 

y =Bb
b

+Xb
x
+ e
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We assume that the entries of B are ordered such that all members of the same block 

are ordered sequentially. X is a k x b x n design matrix representing the experimental 

factor with k levels, with the treatments ordered within blocks. bb and bx are 

coefficients that model the differences between blocks and the effects of the 

treatments, respectively. Finally e is a vector of errors.  

 The errors e were assumed to follow a multivariate normal distribution with a 

variance-covariance matrix W, given by:  𝑊 =  𝜎[𝜆(1 − 𝜓)𝐃 ⊗ 𝐕 + 𝜓𝐃 ⊗ 𝐈𝑛 + (1 − 𝜆)(1 − 𝜓)𝐈𝑘𝑏𝑛]  (2)  

In equation (2)  is a scale parameter and  denotes the Kronecker product. V is an n 

x n variance-covariance matrix given by the phylogeny, and scaled so the leading 

diagonal entries are all one (all trees were ultrametric). D is kb x kb covariance matrix 

representing the covariance between species across k treatments and b blocks: this 

measures the degree to which the phylogenetic variance structure is the same across 

different treatments and blocks. We saw no reason to make any assumption about 

how this would vary, so the entries of D were all set to unity, i.e. the phylogenetic 

effect is the same across the whole experiment. DÄ I
n
 is a kbn x kbn matrix that 

codes for species identity (entries corresponding to pairs of experimental units 

relating to the same species are 1, those corresponding to different species are 0).  

There are three components to the variance in equation (2). The first 

component is the variance among species means that results from phylogenetic 

dependence ( ). The second describes variation in the species means that is 

independent of phylogeny ( ). The final variance is that between replicate 

experimental units independent of phylogeny or species identity, i.e. the error 

variance ( ).  
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 In equation (2) the parameters, λ and , perform similar but slightly different 

roles.  alters the degree of phylogenetic signal in the mean response for each species 

and thus alters the proportion of variance between species contributed by V relative to 

non-phylogenetic variation ( ).  On the other hand,  generates variance in the 

species means independent of that generated by the phylogeny. This allows for 

differences between species, unrelated to phylogeny. If  is 1 then the phylogenetic 

component makes no contribution to overall variance. If  is 0 then there is no 

additional species-level variation, i.e. all observations from a species are identical.  If 

0 <   < 1 and 0 < λ < 1 then both phylogeny and independent species differences 

play a role.  

In order to understand the differences between these different components, it 

is useful to highlight that the net covariance W contains 3 different types of 

(co)variances. The first is the expected variance of a species i in a given block and 

treatment: 𝑤𝑖,𝑖 = 𝜎[𝜆(1 − 𝜓)𝑣𝑖,𝑖 + 𝜓 + (1 − 𝜆)(1 − 𝜓)]    (3) 

The second is the expected covariance of species i in a given block and treatment with 

the value measured from species i in another block (b) and treatment (k): 𝑤𝑖,𝑘𝑏𝑖 = 𝜎[𝜆(1 − 𝜓)𝑣𝑖,𝑖 + 𝜓]      (4) 

Although both (3) and (4) refer to intra-specific (co)variance, the covariance (4) is 

less than the expected variance for an observation (3) because of the additional 

observation error in (3). This does not arise in (4) because (4) refers only to 

covariance, i.e. expected similarity. Finally there is the expected covariance of species 

i with species j: 𝑤𝑖,𝑗 = 𝜎[𝜆(1 − 𝜓)𝑣𝑖,𝑗]       (5) 



Analyse as you randomize 11 

Although alternative parameterisations to that used in equation (2) are possible 

they are not necessarily simpler. One possibility would be to redefine λ as the 

proportion of the total variance explained by phylogeny (i.e. 𝜎𝑃2 𝜎𝑇𝑜𝑡𝑎𝑙2⁄ ). However, 

this adds complexity to the error component of equation (2), which simple algebra 

shows to be proportional to [(1 − 𝜆)(1 − 𝜓) − 𝜆𝜓].  The subtracted variance λ in 

this formulation relates to any variance attributable to both phylogeny and species 

differences, which is a difficult quantity to understand intuitively. The formulation in 

equation (2) ensures that λ and  are independent, with the components due to 

phylogeny and species differences clearly separated.  

To summarise, the overall variance decomposition is: 

Total variance across all observations: 𝜎𝑇𝑜𝑡𝑎𝑙2 =  𝜎𝑃2 +  𝜎𝑆2 + 𝜎𝑒2      (6)    

Proportion of phylogenetic variance in individual observations relative to 

phylogenetic variance and error: 𝜆 = 𝜎𝑃2𝜎𝑃2+𝜎𝑒2       (7) 

Proportion of total variance in observations explained by differences between species 

means, independent of phylogeny: 𝜓 = 𝜎𝑠2𝜎𝑃2+𝜎𝑆2+𝜎𝑒2       (8) 

Proportion of total variance in observations attributable to phylogeny: 𝜆′ = 𝜆(1 − 𝜓) = 𝜎𝑃2𝜎𝑃2+𝜎𝑆2+𝜎𝑒2     (9) 

Proportion of total variance that is attributable to error: 𝜀 = (1 − 𝜆)(1 − 𝜓) = 𝜎𝑒2𝜎𝑃2+ 𝜎𝑆2+𝜎𝑒2    (10) 
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As we note below, although the two parameters λ and  can play a similar role in 

determining the relative amounts of variance contributed by phylogenetic and non-

phylogenetic sources, they are clearly identifiable.  

 For the cases in Figure 1B – D, it was assumed that each species was only 

assigned one treatment, i.e. the dimensions of X were k x n, the dimension of B were 

b x n and the dimensions of y were 1 x n. To generate random samples according to 

the scheme in Figure 1B half of the species were chosen at random and assigned to 

one treatment, the other half were assigned to another. In order to generate the 

phylogenetically structured distribution of treatments in Figure 1C we used the 

phylogeny to create a variance-covariance matrix and then generate a multivariate 

normal distribution using the mvtnorm package in R ((Genz et al., 2014, Genz and 

Bretz, 2009)). Species in the bottom 50% quartile of this random variable were 

assigned to one treatment, the rest were assigned to the other treatment. Finally, in 

order to generate the scheme shown in Figure 1D, species were ordered according to 

phylogenetic relatedness and assigned alternating states.  

 

Methods of analysis 

In the comparison of methods we outline six different approaches for analysing the 

data generated according to these models. (1), (2) and (4)-(6) may be used to fit to the 

experimental scheme shown in Figure 1A, whilst, (1) and (3) – (6) can be applied to 

data generated according to the schemes shown in Figure 1B-D.  To make the models 

fully explicit we include R formulae for the models where appropriate. The full 

simulation code is available as a supplement.  

 In the models below, yi,j,k is the observation. 0,i is the intercept term with 

separate intercepts for the i = 1...b blocks.  X,j is the effect of treatment j, where j 
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=1...t representing the t treatments. We assume that both block and treatment are fitted 

as fixed effects. Typically there are either too few blocks in an experiment or no 

within-block replication, so that it is not possible to efficiently or reliably treat blocks 

as random factors. Subscript k refers to species k = 1...n. The approaches to modelling 

the data differ with respect to how the species-specific effects are included. All 

models incorporate an error term ei,j,k which is a random error for each experimental 

observation, which is assumed to be normally distributed 𝑒𝑖,𝑗,𝑘~𝑁(0, 𝜎𝑒2). 

 

Model (1) OLS ANOVA.  

This is undoubtedly an inappropriate model whenever data contain phylogenetic 

signal. However, this approach is still commonly employed in the literature. We show 

the results obtained using this approach to demonstrate unequivocally the importance 

of accounting for phylogeny in such analyses. We simply fit ‘block’ and ‘treatment’ 

as fixed factors and species identity was ignored. The model fitted is: 𝑦𝑖,𝑗,𝑘 = 𝛽0,𝑖 + 𝛽𝑋,𝑗 + 𝑒𝑖,𝑗,𝑘 (11) 

In [R] format, the model is: 

model1 <- lm( y ~ block + treatment ) 

 

Model (2) OLS ANOVA with species as a ‘fixed’ factor.  

This is the simplest approach to including phylogenetic effects, by adding ‘species’ as 

an additional fixed factor, i.e. 𝑦𝑖,𝑗,𝑘 = 𝛽0,𝑖 + 𝛽𝑘 + 𝛽𝑋,𝑗 + 𝑒𝑖,𝑗,𝑘  (12) 

In this model, the additional term k models species-specific variation. This is fitted in 

[R] using the model: 

model2 <- lm( y ~ block + species + treatment ) 
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Model (3) OLS ANOVA stratified by species. 

For traits which species are assigned one treatment only (i.e. schemes B – D in Figure 

1), model 2 will not fit because species and treatment are confounded. In this case the 

appropriate error for the model is the species level. This is the same as treating 

species as a split plot factor. In this case the fitted model is: 

 𝑦𝑖,𝑗,𝑘 = 𝛽0,𝑖 + 𝛽𝑋,𝑘 + 𝑒𝑘 + 𝑒𝑖,𝑗,𝑘  (13) 

The term ek is a species-specific error term, 𝑒𝑘~𝑁(0, 𝜎𝑆2) . The treatment is also 

species-specific, i.e. 𝛽𝑋,𝑘  does not include the j subscript and consequently, the 

effective level of replication is the species. Hence the appropriate error term for 

testing the treatment effect is the variance at the species level. In [R] this is done by 

fitting the following: 

model3 <- aov( y ~ block + treatment + Error( species ) ) 

 

Model (4) Linear Mixed Model with species as a ‘random’ factor. 

In this model we treat ‘species’ as a random factor. For an orthogonal balanced design 

(e.g. scheme A in Figure 1), this offers no advantage over Model 2, and would yield 

identical results in terms of parameter errors and variances for the fixed effects. This 

is because the fixed effects in Model 4 are calculated marginally with respect to the 

random effects. The complication with Model 4 is the calculation of statistical 

significance for the main effects as the calculation of residual degrees of freedom is 

not straightforward (e.g. (Pinheiro and Bates, 2000)). We therefore fitted model 4 by 

maximum likelihood (rather than REML) and used likelihood ratio tests to test the 

fixed effect ‘treatment’.  The model fitted is: 𝑦𝑖,𝑗,𝑘 = 𝛽0,𝑖 + 𝑏𝑘 + 𝛽𝑋,𝑗 + 𝑒𝑖,𝑗,𝑘    (14) 
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𝑏𝑘~𝑁(0, 𝜎𝑆2)  

In this model, the random effects term bk is assumed to be normally distributed with 

mean 0 and variance 𝜎𝑆2. The R command for fitting this model is: 

model4 <- lmer( y ~ block + treatment + (1 | species) ) 

 

Model (5) PGLS model with known variance components 

This model directly fits the ‘true’ variance structure with  and  set to their true 

values. The reason for fitting this model is to demonstrate how the ‘ideal’ model for 

the system behaves relative to other approaches. We would expect this approach to 

behave well but we show that in some cases the other methods do approximate this 

model. As we outline below (model 6) it is possible to estimate the data-generating 

model.  

We fitted model (1) directly to the data, using a PGLS approach (e.g.(Pagel, 

1997, Pagel, 1999); (Hansen and Martins, 1996); (Freckleton et al., 2002)). The 

additional element here is that we account for the blocking and treatment structure 

inherent in an experiment of this design. In contrast the majority of previous analyses 

of comparative and cross-species experimental analyses focus on the analysis of data 

in which each species is represented by only a single measurement. Models for the 

analysis of data in which each species is measured more than once are described by 

(Felsenstein, 2008), (Ives et al., 2007) and (Hadfield and Nakagawa, 2010). Assuming 

that  is known, we fitted a pgls model with block and treatment as fixed effects using 

maximum likelihood.  

 

Model (6) Phylogenetic generalized least squares with estimated variance 

components.  
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At risk of giving away the punchline, our simulations shows that Model 5 is the only 

method that behaves well in all circumstances. Model 5 assumes that the parameter  

and  are known. However in real applications these parameters are unknown. Using 

the technique of ‘Estimated’ Generalised Least Squares (EGLS) (e.g. mentioned in a 

phylogenetic context by (Freckleton et al., 2002) and (Ives and Zhu, 2006)), the 

variance structure may be estimated from the data. We used the function lmekin() in 

the R package coxme ((Therneau, 2015)) to fit equation (1) to the data and estimate 

the variance components in equation (2). 

 Models (1) and (4) can be expressed as special cases of (5), specifically: 

= 0 and  = 1: this is model (1) 

= 0 and 0 <  < 1: this is model (4) 

0 <   < 1 and 0 <  < 1: this is model (5) 

The middle model requires some explanation: in this model the phylogenetic variance 

structure is reduced to a diagonal matrix representing the model for the mean species 

responses. This implies no covariance among species resulting from phylogeny, but 

does represent a variance structure for within species variance. In the models 

considered here, this means that replicates from the same species are more similar to 

each other than to other species because . The difference between models (4) 

and (5) is that model (4) allows for species differences unrelated to phylogeny, 

whereas (5) models these differences as a function of phylogenetic distance.  

 

Simulation details 

Phylogenies of between 4 and 200 species were generated. The value of  was set at 1 

(high phylogenetic signal) generating a situation where species mean responses show 
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strong phylogenetic signal or set to zero, i.e. no phylogenetic signal in the mean 

response.  

The effect of between species variation unrelated to phylogeny was assumed 

to be low (= 0) or high (= 0.8). Block effects were included throughout, 

although initial analysis showed that the assumptions about these were unimportant so 

long as all species x treatment combinations are present in each block. The treatment 

was assumed to be binary, and we either assumed no treatment effect (i.e. testing 

Type I error), or that there was a low to moderate treatment effect (i.e. testing power; 

b0  = 0, b1 = 0.05, 0.1).  

All of the methods described above would be expected to yield unbiased 

estimates of the model coefficients (bb and bX) in equation (1) ((McCullagh and 

Nelder, 1989)), so we did not study the behaviour of the parameter estimates further.  

 For each set of parameters we calculated the P-value for the inclusion of the 

treatment variable in the model as the main output of the simulation. This focus on P-

values might seem a bit retro given the modern emphasis on effect sizes and model 

selection. However, in this context, in which we are studying the effect of including a 

binary factor in the model, the test effectively reduces to a t-test on the inclusion of an 

additional parameter, i.e. t = (bobs – btest) / se(b) with n – k degrees of freedom, where 

k is the number of estimated parameters. Given that we we know from theory that 

(bobs – btest) is unbiased (McCullagh & Nelder 1989), the P-value effectively 

summarises the information on both the variance and degrees of freedom ((Murtaugh, 

2014)). In the simulations we found large effects of the method employed on the P-

value, so this seems to be an informative metric. Moreover, in an experimental 

context, the primary aim of the analysis is usually to test the significance of the 

treatment variable, so this is a practically relevant measure.  
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Case study 

In order to demonstrate the consequences of phylogenetic structure and method of 

analysis for the conclusions drawn from experimental data, we present an analysis of 

data taken from (Taylor et al., 2011)). We chose this dataset because the fully blocked 

experiment included treatments that were both fully randomized and phylogenetically 

structured. This dataset thus encompasses a broad range of scenarios considered in the 

simulations. 

 The data are taken from 13 species of grasses, 7 of which have C4 

photosynthesis and 6 of which have C3 photosynthesis. Five experimental blocks were 

set up in which plants were either exposed to drought or were watered.  One plant was 

assigned to each treatment within each block. There were 5 (blocks) x 2 (treatments) x 

13 (species) = 130 experimental units at the start of the experiment. Full details are 

given in (Taylor et al., 2011). We report the analysis of measurements of 

photosynthetic rate (log transformed).  

 The two factors of interest in this experiment are the watering treatment and 

the photosynthetic pathway. The watering treatment was assigned in a fully 

randomized manner, whilst photosynthetic pathway was not. Photosynthetic pathway 

is a property of the species, and cannot be allocated at random to species. The 

experimental design involved some degree of phylogenetic balancing, so this 

treatment is somewhere between case (C) and (D) (see Figure 4).  

 We used this approach to analyse the effects of watering and photosynthetic 

type. The effect of watering treatment (watering versus drought) was first analysed 

using models (1) – (3). The effect of photosynthetic type (C3 versus C4) was analysed 
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using models (1), (2) and (4). The results are summarized in Table 1. To analyse the 

data from this experiment we used Model (6).  

 

Results 

Simulation results 

The simulations show that the results of analyses of experimental data on multiple 

species are dependent on both the structure of the data and the method of analysis 

employed (Table 1 & 2). The only situation where results are robust to varying the 

analysis method employed is a fully randomized experiment in which all treatments 

are applied to each species (scenario A in Figure 1). Apart from Model 1, which 

ignores species identity completely, all methods have acceptable Type I error (Table 

1A) and the same power (Table 2A & E). Model 1 ignores species identity and 

consequently is very conservative and has low power. This is because the variance 

resulting from species differences is not accounted for.  

 When each species does not receive every treatment, the results of the 

analyses are sensitive to the experimental design, method of analysis and degree of 

phylogenetic dependence. When phylogenetic dependence is strong, the difference in 

Type I error between phylogenetically balanced versus randomly distributed 

treatments in only evident for the non-phylogenetic analysis (Table 1B, D). Otherwise 

in these cases the performance of the phylogenetically corrected approaches is 

unaffected by the distribution of the traits. These methods are thus reasonably robust 

in terms of Type I errors.  

 On the other hand, phylogenetic structure in the treatment variable leads to 

high Type I errors for all methods apart from PGLS when phylogenetic signal is 

strong (Table 1C). Notably, the Type I error rate increases with the number of species 
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in the analysis, reflecting the misattribution of variance. Even for methods such as 

mixed models and ANOVA that ‘control’ for species differences, the rates of Type I 

error can exceed 50% for larger phylogenies.   

 In terms of power PGLS yields the highest or equal-highest power for all 

parameter combinations (Table 2). This emphasises the importance of accurately 

identifying the correct variance structure even in experimental analyses. Table 2 

measures effective power, i.e. the proportion of times a statistically significant result 

is recorded, minus the proportion of times a Type I error is expected. Thus the power 

of tests that have high Type I errors in Table 1 is naturally low in Table 2.  

 In terms of design, fully randomised experiments have consistently high 

power (Table 2). Phylogenetically random and balanced designs combined with 

PGLS methods yield moderate to high power, with phylogenetically structured 

treatments yielding experiments with considerably lower effective power. When there 

is power over the allocation of treatments in an experiment, therefore, choice of 

design is important.  

 There is a qualitative difference between the effect of varying λ and Ψ. When 

λ is 1 and ψ is 0, PGLS (Model 5) has high power (Table 2), appropriate Type I error 

(Table 1) and other methods perform poorly. However, when ψ is high (0.8), then 

irrespective of the value of λ, the power of all techniques is low. The reason is that 

when ψ is high, there are large unknown differences between species, and these 

differences have to be estimated from the data. The effect of setting ψ greater than 

zero is akin to including phylogenetic branch lengths that are unknown resulting in 

unaccounted differences between species. In contrast when λ is high and the 

phylogeny is known, the expected covariance among species is known and can be 

potentially corrected for. The need to estimate species effects from the data when ψ is 
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high therefore reduces the power. Note, that the same is true for models (2)-(4) when 

applied to data in which ψ is 0, but λ is high. In this case these methods are attempting 

to deal with phylogenetic independence without an estimate of the covariance 

structure among the species and yield similarly low power (Table 2).  

 In summary, each of models (1) – (5) can yield statistically acceptable or 

equivalent results under some circumstances. However, PGLS is the only method to 

perform well under all tested scenarios. The problem, of course is that our simulations 

with PGLS assume that the true variance structure is known. In reality the true 

variance structure can never be known, with one course of action being that we 

estimate this from the data. The EGLS simulations in which the variance structure is 

estimated from the data indicate that the outcome of this can be mixed.  

 EGLS performs well in terms of Type I errors (Table 1) or power (Table II) 

when phylogenetic signal is low (λ = 0). In this case the method is accurate at 

identifying a lack of phylogenetic signal (e.g. see simulations in Freckleton et al. 

2002) and the results are almost identical to those from the PGLS in which ψ is fixed 

to its true value. 

 When phylogenetic signal is high (λ = 1), then there are two circumstances 

under which EGLS performs below PGLS in terms of power: (i) when the number of 

species is small and experiments are not fully randomised; (ii) when the treatments 

are phylogenetically structured. Particularly in the latter case the rates of Type I error 

can be considerable, although not as high as those of methods that do not 

appropriately account for phylogeny.  Unfortunately when phylogenetic signal exists 

in the treatment variable, our results indicate that it may be difficult to reliably fit 

models to experimental data.  
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Analysis of real data 

As shown in Figure 2, the structure of the data mirrors the situations envisaged in 

Figure 1. The watering treatment was fully randomized as in Figure 1A. The 

photosynthetic type varies with a combination of phylogenetic balancing by design 

(Figure 1D) and phylogenetic structure (Figure 1C). The analysis of the effect of the 

watering treatment indicated that the conclusions drawn were relatively invariant to 

the choice of method of analysis. In this case, the results obtained from ANOVA, 

random effects model and the PGLS were very similar indeed (Table 3a). The 

probability value for the OLS model ignoring phylogeny altogether was larger 

reflecting the lower power of this method observed in the simulations. Note that in 

this dataset the maximum likelihood value of  is zero, which means that the PGLS 

model and the REML mixed model produce equivalent parameter estimates (to within 

a trivial numerical difference).  

 The analysis of effect of photosynthetic type however indicated that the choice 

of method was important. Depending on the approach chosen, the result was 

statistically highly significant (OLS), clearly non-significant (ANOVA), marginally 

non-significant (random effects model) or marginally significant (EGLS) (Table 1b). 

This reinforces the conclusion from the modelling, namely that when phylogenetic 

signal is strong in both the data and the test variables, the results obtained may be 

very sensitive to the choice of model.  

 

 

Discussion 

The strongest message from the results presented above is that the power of 

comparative experiments is maximized when the correct variance structure is 
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incorporated into the analysis. Depending on the design of the experiment, there may 

also be increased Type I error rates when the correct variance structure is not 

included. This occurs particularly if the treatments are naturally varying ones that 

show phylogenetic structure, and in this case the more commonly used methods for 

experimental data analysis can perform poorly. The Type I error rate for EGLS is 

frequently high, which is a concern: the acceptable rates for PGLS rely on knowing 

the correct variance structure, however this can only ever be estimated empirically.  

The only experimental design that is completely robust is the fully randomized 

design, with all treatments applied to each species. For many factors of interest, 

however, this is not possible and consequently the method of analysis is important. To 

illustrate this, we presented a simple case study in which it is possible to get a range 

of answers depending on the method employed.  

The analysis of experimental data seems to have been overlooked in the 

comparative literature. In the development of new methods it is typically assumed that 

phylogenetic comparative methods are applied in a correlative manner, frequently to 

literature-derived observational data. On the other hand, many studies report 

experiments performed on multiple species and our results highlight that these should 

carefully consider the choice of analysis.  

One approach to analyzing the data from multiple species in an experiment is 

to generate a single mean for the response for each species, and use this in 

conventional phylogenetic analysis (e.g. PGLS). In the example considered in the 

simulations above, this would involve averaging values across the blocks. In the case 

of the fully randomized design (Figure 1A) this would generate two values per 

species; in the case of the others (Figure 1B – D) this would yield one value per 

species. This analysis is effectively the same as model (3) if no further phylogenetic 
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correction is applied. This is justifiable, but with three limitations: (i) the design of the 

experiment must permit simple averaging of species traits (e.g. ideally completely 

balanced). (ii) Consequently there can be no missing data as the means are taken 

across experimental replicates. (iii) The estimates of phylogenetic signal and 

experimental error cannot be disentangled, i.e.  and  cannot be separately 

estimated. If the experimental design is not simple (e.g. split plot or repeated 

measures are included) then the model could not be fit using this approach without 

carefully and appropriately averaging across clusters, and we are aware of no 

examples of studies that have analysed such designs in a phylogenetic comparative 

context.  

If these three conditions hold, then the implementation of the phylogenetic 

approach described above (Model 6) can be simplified. Recall the net variance matrix 

for all observations is (equation 2): 𝐖 =  𝜎[𝜆(1 − 𝜓)𝐃 ⊗ 𝐕 + 𝜓𝐒 + (1 − 𝜆)(1 − 𝜓)𝟏] 
 

This can be simplified to the following model for just the species means: 𝐖 =  𝜎[𝜆′𝐃 ⊗ 𝐕 + 𝚺] 
 (17) 

In equation (17) Σ is a vector of variances, comprising the individual variance for 

each species and the variance about the mean resulting from error. In constructing Σ it 

would be tempting to calculate the variance across experimental units for each species 

and use these values as species-specific estimates of variance. In the above 

simulations, for example, this would be the variance in measurements for each species 

across the blocks (in each treatment where relevant). This approach has been used to 

model measurement errors in comparative analyses (e.g. (Silvestro et al., 2015)). 

However, this would be inadvisable in the analysis of experimental data, as the 

individual species-level values will individually be poor estimates of the residual 
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variance. This is particularly so if the number of blocks is small (typical values being 

in the range 3 – 10 for most experiments). It is advised that measurement error cannot 

be accurately calculated from fewer than ~12 observations (Hansen and Bartoszek, 

2012). The better approach would be to use a pooled estimate of variance across all of 

the replicates, as in conventional ANOVA.  

It should also be noted that Σ in equation (17) includes the variance attributed 

to species mean differences generated by non-zero values of ψ.  Adding a vector of 

expected intra-specific variances will not account for such differences. Empirically, 

however, this should be compensated through the estimate of : as pointed out above 

the effects of varying  and ψ are not separable when data are summarised to species 

means.  

 Models for intra-specific variation in comparative data have been described, 

and these are closely related to the approaches for analysing experimental data 

described here (e.g. (Felsenstein, 2008)). Such models allow for intra-specific 

variation and are specifically designed to consider the variation within measured 

units, which is typically assumed to have a deterministic basis. These methods are 

essentially the same as the pgls approach: for example, through including additional 

variables experimental designs such as blocking could be included. 

 Linear mixed models are frequently used to analyse data from experiments, 

with species specified as a random factor (e.g. (Jamil et al., 2013, Brown et al., 

2014)). The problems with using LMMs are two-fold. First, although they account for 

differences between species, they do not allow for higher level phylogenetic 

dependence. They assume that = 0, although the inclusion of higher level taxonomic 

grouping factors could improve the performance of this approach providing the 

taxonomic relationships reflect the underlying phylogeny. The second problem with 
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LMMs is that it is not straightforward to calculate degrees of freedom relating to the 

random components of the model. If the random components of the models are not 

varied then this is not an issue for examining the fixed effects.  It is worth noting that 

in the situations simulated above the parameter estimates and error variances from the 

LMM and the fixed effect models were identical. This strongly suggests that in the 

LMMs the number of grouping factors (i.e. # of species) is a number of estimated 

parameters.  

 Our analyses of real data showed that in one case the results obtained were 

relatively insensitive to the choice of method. But in another, the results in terms of 

the fixed factor of interest varied widely. Depending on the choice of method, the 

treatment effect was highly significant, non-significant, marginally non-significant or 

marginally significant.  

 The comparative method is typically thought of as an observational approach 

(Harvey & Pagel 1990). In practice, however, there are many studies that integrate 

comparative and experimental methods (Weber & Agrawal 2012). Arnold & Nunn 

(2010) considered one aspect of this integration, namely how one chooses species in 

order to maximise the power of analyses. They highlighted that appropriate 

phylogenetic targeting could considerably enhance the power of tests and that even 

for the same number of species, power could vary considerably depending on how 

they are distributed phylogenetically. Our results similarly show that the phylogenetic 

distribution of traits play an important role in determining both the Type I error and 

power of experimental studies.  

 

Recommendations 
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In designing experiments our results highlight some clear recommendations. Most 

importantly if the effects of naturally varying traits are examined, then the 

phylogenetic distribution of these is extremely important. Our simulation analysis 

assumed that this was generated according to a discretized Brownian process. This 

model generates phylogenetic structure (e.g. see also ) but more extreme cases are 

possible. For example, “grade shifts” occur when the values of entire clades are 

identical. In the Brownian model the outcome is not as extreme and there is usually 

variation within clades (e.g. See case (C) in Figure 1). Examples could include sexual 

determinations systems, which are XY for mammals and WZ for birds (). 

Comparative analysis on such traits would be more complex: Model 3 would be 

relevant with the stratum (Error(…) in the model function) defined by clades rather 

than species in such cases.  

We recommend that the phylogenetic distribution of experimental factors is 

checked prior to undertaking an experiment. For example, the phylogenetic signal of a 

binary predictor can be assessed using the D statistic (Fritz and Purvis, 2010). For a 

multi-level predictor, the phylogenetic distribution of each level could be assessed 

using the same approach. Our results clearly indicate that all empirically applicable 

methods, including EGLS, may be severely compromised if experimental factors 

show strong phylogenetic dependence, and that approaches such as phylogenetic 

balancing can help to ensure that power and Type I error are improved.  

 The technique of phylogenetic balancing is closely related to the sister-species 

approach that has been used a great deal over several decades (e.g. see (Weir and 

Lawson, 2015) for a recent application). The sister species approach is based on 

choosing closely related pairs of species that differ in some key characteristic. 

Differences between other traits of the sister species are then tested. This is akin to 
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blocking in a conventional experimental design. The ANOVA and LMM approaches 

considered here are related, but lack power when there is considerable phylogenetic 

signal (Table 2D & H). When phylogenetic signal is considerable, both PGLS and 

EGLS are able to both deal yield high power and appropriate Type I error. Sister 

species comparisons would ignore higher level confounding  (being based on 

comparisons at the species-pair level only) and also reduce sample sizes relative to 

fully phylogenetically explicit methods (being based on n/2 comparisons for n 

species).  

We would also recommend the use of simulations to test the statistical 

performance of experimental designs prior to analyses. Such simulations are relatively 

straightforward to implement and would give insights into the likely pitfalls of any 

proposed experimental schemes, or the relative performance of alternative designs.  

 The results with varying  indicated that high values of  led to low power 

for all tests apart from fully randomized experiments, irrespective of sample size. As 

noted above, high values of  yield large species specific mean differences that 

detract from the power to compare species in terms of other traits. Fully randomised 

experiments perform better because these differences are controlled through design 

and, indeed, the results are thus insensitive to the method of analysis. It cannot be 

predicted in advance whether species differ in this way, and hence a risk of any 

experiment that relies on natural variation is that species-specific non-phylogenetic 

variation might obscure treatment effects.  

 

Concluding remarks 

Despite the popularity of comparative methods, the bottom line in our analysis is that 

the fully randomized block experiment remains the gold standard for experimental 



Analyse as you randomize 29 

cross-species studies. Our results highlight several pitfalls, notably when natural 

variation among species is used to define experimental treatments and this variation is 

phylogenetically structured, as well as when species show large non-phylogenetic 

mean differences. Techniques such as EGLS can under many circumstances 

approximate the ideal PGLS solution, however our simulations reveal that there are 

conditions under which methods perform poorly. Our overall recommendation is that 

such eventualities are considered and to the greatest extent possible dealt with at the 

design rather than analysis stage.  
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Table 3 Analysis of real experiment data using different approaches. The data are 

taken from Taylor et al. (2011). The response variable is log( photosynthetic rate ). 

The predictors in the model are watering treatment (assigned in a randomized, fully 

factorial manner) and photosynthetic type (C3 or C4, with each species being one or 

the other). The data were analysed in 4 ways: (i) OLS: the predictors were fitted 

singly, not accounting for phylogeny. (ii) ANOVA: in the case of watering treatment, 

species was fitted as an additional fixed factor; photosynthetic type varies at the 

species level, so a split-plot ANOVA was used; (iii) Random effects: species identity 

was fitted as a random effect. This was fitted by Maximum Likelihood (ML) and the 

effect of the predictor tested using a likelihood ratio test, relative to a simpler model. 

(iv) PGLS: as described in the text, a phylogenetic variance matrix was included in 

the model, and the parameters  and  were estimated to measure the effects of 

phylogenetic structure and species-specific variation, respectively.  

 

Model (a) Watering Treatment (b) Photosynthetic type 

OLS  -0.078 0.520 

se 0.131 0.123 

t -0.598 4.237 

P 0.551 0.000 

ANOVA  -0.083     - 

se 0.094     - 

t -0.884 F = 1.081 

P 0.379 0.370 

Random ML REML ML REML 

Effects  -0.083 -0.083 0.499 0.498 
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se 0.092 0.094 0.258 0.281 

t -0.900 -0.880 1.934 1.776 

P* 0.369 0.070 

PGLS  -0.083  = 0 0.493 = 0.483 

se 0.092  = 0.487 0.234  = 0 

t -0.900 2.100 

P 0.370 0.036 

 

* - tested by likelihood ratio test.  
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Figure Legends 

Figure 1 Possible experimental designs by which two treatments are assigned to 

multiple species. (A) A fully randomized design, with both treatments assigned to 

each species. In (B), (C) and (D), treatments are a property of the species and are not 

fully randomized. (B) Treatments are assigned at random to species. (C) Treatments 

are phylogenetically non-randomly distributed, such that closely related species are 

more similar to each other than to distantly related ones. (D) Phylogenetically 

balanced treatments, i.e. species are chosen so that sister species differ in the factor 

studied.  

Figure 2 Experimental design in an example dataset. There are 13 species related by 

the phylogeny shown. There were two factors considered. Watering treatment was a 

binary variable, with each treatment applied to each species. Photosynthetic type is a 

binary variable, but each species was either C3 or NADP.  
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Table 1 Type I error rates for different methods of analysis of experimental data generated according to a range of different designs and 

assuming a 5% threshold for statistical significance. Type I errors proportions of 0.1 and higher (i.e. twice the nominal rate and higher) are 

highlighted in red.  

 

 

 = 1 /  = 0.8  = 1 /  =0  = 0 /  =0.8 

   Number of species   Number of species   Number of species  

Experiment 

Design 

Analysis 

Method 10spp 20spp 50spp 100spp 10spp 20spp 50spp 100spp 10spp 20spp 50spp 100spp 

Effect Size = 0               

(A) Fully (1) OLS 0.04 0.04 0.04 0.04  0.00 0.00 0.00 0.00  0.03 0.03 0.03 0.03 

randomized (2) Anova 0.05 0.05 0.06 0.06  0.05 0.05 0.05 0.04  0.05 0.06 0.05 0.05 

 (3) Anova - - - -  - - - -  - - - - 

 (4) LMM 0.05 0.05 0.06 0.06  0.05 0.06 0.05 0.04  0.06 0.06 0.05 0.05 

 (5) PGLS 0.05 0.04 0.05 0.05  0.03 0.02 0.01 0.00  0.06 0.06 0.05 0.05 

 (6) EGLS 0.07 0.06 0.06 0.06  0.04 0.03 0.03 0.04  0.06 0.06 0.06 0.04 

(B) Phylo- 

genetically (1) OLS 0.11 0.13 0.10 0.12  0.47 0.43 0.41 0.40  0.20 0.16 0.15 0.16 

random (2) Anova - - - -  - - - -  - - - - 
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 (3) Anova 0.05 0.05 0.05 0.06  0.05 0.05 0.06 0.04  0.07 0.05 0.05 0.06 

 (4) LMM 0.07 0.06 0.05 0.06  0.09 0.07 0.06 0.05  0.10 0.06 0.05 0.06 

 (5) PGLS 0.05 0.05 0.05 0.05  0.04 0.04 0.06 0.05  0.07 0.05 0.05 0.06 

 (6) EGLS 0.08 0.05 0.04 0.03  0.22 0.12 0.09 0.07  0.09 0.05 0.06 0.05 

                

(C) Phylo- (1) OLS 0.21 0.29 0.46 0.60 0.67 0.75 0.81 0.86 0.17 0.15 0.18 0.16 

genetically  (2) Anova - - - - - - - - - - - - 

structured (3) Anova 0.11 0.21 0.36 0.51 0.23 0.37 0.56 0.67 0.05 0.05 0.05 0.05 

(4) LMM 0.16 0.23 0.37 0.52 0.30 0.40 0.57 0.67 0.08 0.06 0.06 0.05 

(5) PGLS 0.04 0.05 0.06 0.05 0.06 0.06 0.07 0.06 0.05 0.04 0.05 0.04 

 (6) EGLS  0.13 0.16 0.16 0.11  0.36 0.33 0.29 0.26  0.05 0.04 0.05 0.04 

                

(D) Balanced (1) OLS 0.07 0.06 0.04 0.05 0.24 0.15 0.04 0.02 0.17 0.15 0.15 0.15 

Design (2) Anova - - - - - - - - - - - - 

(3) Anova 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.05 0.05 0.04 0.05 

(4) LMM 0.05 0.03 0.02 0.02 0.02 0.00 0.00 0.00 0.09 0.06 0.05 0.05 

(5) PGLS 0.06 0.06 0.05 0.06 0.07 0.04 0.05 0.06 0.05 0.05 0.06 0.05 

 (6) EGLS 0.05 0.05 0.05 0.05  0.11 0.05 0.02 0.01  0.06 0.07 0.06 0.04 
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Table 2 Power of different methods of analysis of experimental data generated according to a range of different designs. In this Table, power is 

measured as the proportion of times that a statistically significant result is recorded, minus the proportion of times a Type I error is expected 

(Table 1).  

 

 = 1 /  = 0.8  = 1 /  = 0  = 0 /  = 0.8 

   Number of species   Number of species   Number of species  

Experiment 

Design 

Analysis 

Method 10spp 20spp 50spp 100spp 10spp 20spp 50spp 100spp 10spp 20spp 50spp 100spp 

Effect Size = 0.05 

(A) Fully (1) OLS 0.01 0.02 0.06 0.08  0.00 0.01 0.04 0.16  0.02 0.02 0.04 0.09 

randomized (2) Anova 0.01 0.02 0.07 0.10  0.95 0.95 0.96 0.96  0.02 0.02 0.06 0.12 

 (3) Anova - - - -  - - - -  - - - - 

 (4) LMM 0.02 0.03 0.07 0.10  0.95 0.94 0.95 0.96  0.02 0.02 0.06 0.13 

 (5) PGLS 0.02 0.03 0.07 0.12  0.96 0.98 1.00 1.00  0.01 0.02 0.06 0.12 

 (6) EGLS 0.01 0.03 0.06 0.12  0.96 0.97 0.97 0.96  0.00 0.02 0.04 0.11 

                

(B) Phylo- (1) OLS 0.01 0.01 0.03 0.05  0.02 0.02 0.04 0.08  0.00 0.01 0.04 0.03 

genetically (2) Anova - - - -  - - - -  - - - - 

random (3) Anova 0.01 0.01 0.00 0.04  0.00 0.00 0.00 0.03  0.00 0.02 0.02 0.00 
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 (4) LMM 0.01 0.01 0.01 0.03  0.00 0.00 0.00 0.04  0.00 0.01 0.02 0.00 

 (5) PGLS 0.00 0.02 0.01 0.07  0.04 0.12 0.55 0.89  0.00 0.00 0.01 0.00 

 (6) EGLS 0.00 0.01 0.02 0.02  0.00 0.04 0.14 0.42  0.00 0.03 0.00 0.01 

                

(C) Phylo- (1) OLS 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.03 0.01 0.05 

genetically  (2) Anova - - - - - - - - - - - - 

structured (3) Anova 0.00 0.01 0.00 0.00 0.00 0.01 0.04 0.02 0.01 0.00 0.02 0.03 

(4) LMM 0.00 0.01 0.00 0.00 0.00 0.01 0.05 0.02 0.02 0.01 0.02 0.03 

(5) PGLS 0.01 0.01 0.00 0.01 0.00 0.02 0.06 0.20 0.01 0.02 0.02 0.04 

 (6) EGLS 0.01 0.00 0.00 0.02  0.00 0.00 0.04 0.10  0.00 0.00 0.03 0.02 

                

(D) Balanced (1) OLS 0.00 0.02 0.02 0.04 0.01 0.02 0.07 0.11 0.00 0.01 0.02 0.07 

(2) Anova - - - - - - - - - - - - 

(3) Anova 0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 

(4) LMM 0.00 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 

(5) PGLS 0.01 0.01 0.02 0.04 0.05 0.20 0.73 0.94 0.00 0.00 0.01 0.03 

 (6) EGLS 0.00 0.02 0.02 0.01  0.02 0.06 0.21 0.56  0.02 0.03 0.00 0.03 

Effect size = 0.1 
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(E) Fully (1) OLS 0.01 0.08 0.22 0.41  0.06 0.13 0.52 0.79  0.04 0.07 0.17 0.37 

randomized (2) Anova 0.02 0.10 0.24 0.43  0.95 0.95 0.96 0.96  0.05 0.08 0.21 0.45 

 (3) Anova - - - -  - - - -  - - - - 

 (4) LMM 0.02 0.11 0.25 0.43  0.95 0.94 0.95 0.96  0.05 0.08 0.21 0.45 

 (5) PGLS 0.02 0.10 0.24 0.43  0.97 0.98 1.00 1.00  0.04 0.08 0.22 0.45 

 (6) EGLS 0.06 0.09 0.23 0.46  0.96 0.97 0.97 0.96  0.05 0.09 0.23 0.48 

                

(F) Phylo- (1) OLS 0.03 0.04 0.13 0.17  0.01 0.03 0.09 0.17  0.00 0.04 0.11 0.16 

genetically (2) Anova - - - -  - - - -  - - - - 

random (3) Anova 0.01 0.02 0.04 0.09  0.00 0.01 0.03 0.10  0.00 0.02 0.06 0.08 

 (4) LMM 0.01 0.02 0.04 0.09  0.00 0.01 0.03 0.10  0.00 0.02 0.06 0.08 

 (5) PGLS 0.01 0.02 0.06 0.10  0.11 0.38 0.88 0.95  0.00 0.01 0.05 0.08 

 (6) EGLS 0.02 0.02 0.04 0.09  0.05 0.17 0.42 0.83  0.00 0.03 0.03 0.09 

                

(G) Phylo- (1) OLS 0.01 0.05 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.05 0.06 0.17 

genetically  (2) Anova - - - - - - - - - - - - 

structured (3) Anova 0.01 0.03 0.03 0.10 0.01 0.03 0.00 0.03 0.00 0.03 0.03 0.09 

(4) LMM 0.01 0.05 0.02 0.10 0.01 0.04 0.00 0.03 0.00 0.04 0.03 0.10 
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(5) PGLS 0.02 0.04 0.05 0.10 0.03 0.08 0.25 0.52 0.01 0.03 0.03 0.10 

 (6) EGLS 0.01 0.02 0.05 0.10  0.04 0.01 0.13 0.28  0.01 0.02 0.06 0.07 

                

(H) Balanced (1) OLS 0.00 0.00 0.08 0.14 0.06 0.10 0.28 0.47 0.02 0.04 0.10 0.18 

(2) Anova - - - - - - - - - - - - 

(3) Anova 0.00 0.02 0.04 0.09 0.01 0.00 0.01 0.02 0.01 0.01 0.06 0.10 

(4) LMM 0.00 0.03 0.06 0.10 0.00 0.01 0.01 0.02 0.01 0.02 0.06 0.11 

(5) PGLS 0.00 0.02 0.04 0.09 0.17 0.57 0.94 0.94 0.01 0.01 0.05 0.09 

 (6) EGLS 0.00 0.02 0.04 0.09  0.10 0.20 0.60 0.95  0.02 0.02 0.04 0.11 
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All treatments applied

to each species

Treatments distributed

at random

Phylogenetically structured

treatments

Phylogenetically balanced

treatments

Figure 1 (A) (B) (C) (D)



Analyse as you randomize 44 


