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Chambers, Fellow, IEEE

Abstract

A novel robust Rauch-Tung-Striebel smoothing framework is proposed based on a generalized

Gaussian scale mixture (GGScM) distribution for a linear state-space model with heavy-tailed and/or

skew noises. The state trajectory, mixing parameters and unknown distribution parameters are jointly

inferred using the variational Bayesian approach. As such, a major contribution of this work is unifying

results within the GGScM distribution framework. Simulation and experimental results demonstrate that

the proposed smoother has better accuracy than existing smoothers.
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I. INTRODUCTION

The Rauch-Tung-Striebel (RTS) smoother is an off-line state estimator and employs the

Kalman filter as its building block. The RTS smoother has better estimation accuracy than

the Kalman filter, and it has been extensively used in a large number of applications, such

as positioning, navigation, target tracking, and signal processing [1]. The RTS smoother is an

optimal state estimator in terms of minimum mean square error for a linear state-space model

with Gaussian state and measurement noises, but the estimation accuracy of the RTS smoother

degrades dramatically for a state-space model with non-Gaussian noises [2]. In general, it is

very difficult to derive an analytical non-Gaussian smoother for a state-space model with non-

Gaussian noises because there is no general mathematical formulation for non-Gaussian noises

nor a closed form for a non-Gaussian posterior probability density function (PDF). The particle

filter and smoother can provide approximate solutions for non-Gaussian state estimation by

approximating the posterior PDF as a set of weighted random samples based on the sequential

Monte Carlo sampling technique [3], [4]. Unfortunately, the particle filter and smoother suffer

from particle degeneracy and substantial computational complexities in high-dimensional state

estimation [5].

A class of non-Gaussian smoothing problems has been attracting more and more attention,

in which the state and/or measurement noises of the state-space model may have heavy-tailed

and/or skew distributions. Recently, a large number of robust smoothers have been proposed

to solve such non-Gaussian smoothing problems, in which the state and/or measurement noises

are modelled by Student’s t-distribution or skew t-distribution [6]–[14]. These robust smoothers

can be divided into three categories: robust and trend-following Student’s t RTS (RTF-ST-RTS)

smoother [7], [8], Student’s t-smoother [10], [11] and robust Student’s t or skew t-based RTS

smoother [6], [9], [12]–[14]. The RTF-ST-RTS smoother is a robust maximum a posteriori (MAP)

estimator, in which the convex composite extension of the Gauss-Newton method is utilized to

find an approximate MAP estimate of the state trajectory [8]. The Student’s t-smoother and

robust Student’s t or skew t-based RTS smoother are, respectively, the smoothing extensions of

the Student’s t-filter [10], [11], [15] and robust Student’s t or skew t-based Kalman filter [2], [13],

[14], [16]–[19]. For the Student’s t-filter and smoother, the posterior PDF of the state vector is

approximated by a Student’s t-distribution with fixed degrees of freedom (dof) parameter using
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the Bayesian rule [10], and many advanced Student’s weighted integral rules have been also

proposed to implement the nonlinear Student’s t filter and smoother [20]–[24]. On the contrary,

for the robust Student’s t or skew t-based Kalman filter and RTS smoother, the posterior PDF

of the state vector is approximated by a Gaussian distribution, where the Student’s t-distribution

or skew t-distribution is formulated as a hierarchical Gaussian form conditioned on an auxiliary

random variable, and the state vector and auxiliary random variable are jointly inferred based on

the variational Bayesian (VB) approach [6], [14]. These filtering and smoothing algorithms have

been used in many applications, including manoeuvring target tracking [15], [25], [26], visual

tracking [5], and cooperative navigation and localization of autonomous underwater vehicles

(AUVs) [27], [28], [29], in which the heavy-tailed and/or skew distributions of state and/or

measurement noises are often induced by the impulsive interferences, outliers and modelling

artifacts. Furthermore, the adaptive Kalman filter and RTS smoother based on the VB approach

can to some extent address heavy-tailed state and measurement noises by adaptively modifying

the one-step prediction error covariance and noise covariance matrices [30], [31].

To better model heavy-tailed and/or skew noises, Gaussian scale mixture (GScM) distribution

based Kalman filters (GScM-KFs) have been proposed using the VB approach [32], which

can achieve better estimation accuracy than Student’s t or skew t-based filters. Unfortunately,

the GScM distribution only covers limited non-Gaussian heavy-tailed and/or skew distributions

since it employs a fixed skew function and three fixed mixing densities so that modelling errors

may exist in some applications. More importantly, the existing GScM-KFs suffer from some

drawbacks as follows. Firstly, in GScM-KFs, the unknown mixing parameters are approximated

by their maximum a posterior estimates that are very crude Bayesian approximations since they

only include the mode information of the posterior PDF [33]. As a result, the estimation accuracy

may degrade. Secondly, in GScM-KFs, the dof parameter of the GScM distribution requires to be

selected beforehand in terms of simulation or engineering experience, which reduces engineering

practicality. Furthermore, so far, a general framework of robust RTS smoother based on a

generalized non-Guassian heavy-tailed and/or skew distribution has not been proposed, which can

further improve the estimation accuracy of robust Kalman filters. Although the existing GScM-

KFs can be extended to robust RTS smoothers by modelling state and measurement noises as

GScM distributed, the resultant robust RTS smoothers will inherit the drawbacks of existing

GScM-KFs.
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Advanced approaches are needed that are able to improve the estimation accuracy of non-

Gaussian smoothers in two aspects: 1) Non-Gaussian noises must be modelled in a better way as

compared with the GScM distribution. 2) Efficient approaches are required for the joint estimation

of state trajectory, mixing parameters and unknown parameters of modelling distributions.

In this paper, a generalized Gaussian scale mixture (GGScM) distribution is proposed to better

model the heavy-tailed and/or skew noises, for which the existing GScM distribution is a special

case. The GGScM distribution can be formulated as a hierarchical Gaussian form conditioned

on a random mixing parameter that follows a continuous probability distribution with a positive

orthant as support. Different GGScM distributions can be achieved when the mixing parameter

is sampled from carefully chosen distributions. As such, a major contribution of this work is to

provide unified results on the basis of the exemplary GGScM distribution framework.

A new hierarchical Gaussian state-space model is constructed based on the GGScM distribu-

tion, from which the state trajectory, mixing parameters and unknown distribution parameters are

jointly inferred using the VB approach. A novel robust RTS smoothing framework is proposed

based on the GGScM distribution for a linear state-space model with heavy-tailed and/or skew

state and measurement noises. The posterior PDFs of state trajectory, shape parameters, scale

matrices and dof parameters are, respectively, approximated by Gaussian, Gaussian, inverse-

Wishart and Gamma distributions, and the posterior PDFs of mixing parameters are approximated

by a weighted set of particles using the Monte Carlo approach. The existing adaptive RTS

smoother [31] is a special case of the proposed robust RTS smoothing framework when the state

and measurement noises are modelled by a Gaussian distribution. The proposed robust RTS

smoothing framework degrades into the existing robust VB and Student’s t based RTS (VB-ST-

RTS) smoother [6] when the state and measurement noises are modelled by a Gaussian-Gamma

mixture distribution that is a special form of the GGScM distribution.

To illustrate the proposed robust RTS smoothing framework, several particular solutions corre-

sponding to the exemplary GGScM distributions are derived, in which both the analytical update

and Monte Carlo update of posterior PDFs of mixing parameters are provided. The robustness

analyses of the proposed robust RTS smoothers based on exemplary GGScM distributions are

provided to reveal the advantages of the proposed method. Moreover, a new Kullback-Leibler

divergence (KLD)-based scheme is proposed to facilitate the selection of GGScM distributions in

practical applications. The proposed method has the potential to be used in some applications,
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such as the cooperative navigation and localization of AUVs, the radio signal based indoor

localization, and the inertial navigation system and global positioning system based integrated

navigation, which may suffer from heavy-tailed and/or skew noises. The proposed robust RTS

smoothers and existing state-of-the-art smoothers are compared by two representative examples:

stochastic volatility model and cooperative localization of an AUV. Simulation and experimental

results show that the proposed robust RTS smoothers have better estimation accuracy but higher

computational complexities than existing state-of-the-art smoothers.

The remainder of this paper is organized as follows. In Section II, the notations that are used in

this paper are given. In Section III, a new GGScM distribution is proposed, and brief descriptions

and comparisons of the exemplary GGScM distributions are provided. In Section IV, a novel

robust RTS smoothing framework based on the GGScM distribution is proposed using the VB

approach. In Section V, robust RTS smoothers based on the exemplary GGScM distributions

are derived, and robustness analyses are provided, and a new KLD-based selection scheme

for GGScM distributions is proposed. In Section VI, simulation and experimental comparisons

between the proposed robust RTS smoothers and existing state-of-the-art smoothers are given.

Concluding remarks are drawn in Section VII.

II. NOTATIONS

Throughout this paper, we denote yi:j , {yk|i ≤ k ≤ j}, and i, j and k denote the

time samples i, j and k, respectively; N(µ,Σ) denotes the multivariate Gaussian distribution

with mean vector µ and covariance matrix Σ; g(x;µ,Σ) denotes the PDF of x ∼ N(µ,Σ);

IW(·; ν,Σ) denotes the inverse-Wishart PDF with dof parameter ν and inverse scale matrix Σ;

W(·; ν,Σ) denotes the Wishart PDF with dof parameter ν and scale matrix Σ; G(·; a, b) denotes

the Gamma PDF with shape parameter a and rate parameter b; IG(·; a, b) denotes the inverse-

Gamma PDF with shape parameter a and scale parameter b; Ex(·;λ) denotes the exponential

distribution with rate parameter λ; IEx(·;λ) denotes the inverse exponential distribution with

scale parameter λ; Be(·; a, b) denotes the Beta PDF with shape parameters a and b; GIG(·; a, b, p)
denotes the generalized inverse Gaussian PDF with shape parameters a, b and p; log denotes the

natural logarithm; exp denotes the natural exponential; In denotes the n×n identity matrix; Ex[·]
is the expectation operator with respect to the distribution of x; the superscript “−1” denotes the

inverse operation of a matrix; the superscript “T” denotes the transpose operation of a vector or
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matrix; tr(·) denotes the trace operation of a matrix; δ(·) denotes the Dirac delta function;
∪

denotes the union operation; Kρ(·) denotes a modified Bessel function of the second kind with

the order ρ; and ψ(·) denotes the digamma function.

III. GGSCM DISTRIBUTION

In practical engineering application, many types of non-Gaussian noises, which are induced

by impulsive interferences, outliers and modelling artifacts, often have heavy-tailed and/or skew

distributions. In this paper, we propose a GGScM distribution which is able to model such non-

Gaussian noises. A random vector x follows a GGScM distribution if its PDF can be formulated

as

p(x) =

∫ +∞

0

g(x;µ+ β/s(y),Σ/κ(y))π(y; ν)dy (1)

where y > 0 is the mixing parameter, and µ, Σ and ν are, respectively, the location parameter,

scale matrix and dof parameter, and s(·) and κ(·) are, respectively, positive skew and scale

functions, i.e., s(y) > 0 and κ(y) > 0 for ∀y > 0, and π(·; ν) is the mixing density with a dof

parameter ν defined on (0, +∞), and β is a shape parameter. The shape parameter β dominates

the symmetry and skewness of a GGScM distribution. The GGScM distribution is symmetric

when β = 0 and non-symmetric when β ̸= 0, and it is positive skew when βi > 0 and negative

skew when βi < 0, where βi is the i-th element of β. The GGScM distribution can be divided

into two categories: symmetric GGScM distribution and skew GGScM distribution. The GGScM

distribution degrades into a GScM distribution when β = 0 [34], and the GGScM distribution

becomes a Gaussian distribution when β = 0, κ(y) = y and π(y; ν) = δ(y − 1).

Next, we compare the tail behaviours of the proposed GGScM distribution and Gaussian

distribution. Without loss of generality, a one-dimensional GGScM distribution and a one-

dimensional Gaussian distribution are considered, in which both the location parameter of the

GGScM distribution and the mean value of the Gaussian distribution are set as µ = 0. The

GGScM and Gaussian distributions are, respectively, formulated as






pGGScM(x) =
∫ +∞

0
g(x; β/s(y),Σ/κ(y))π(y; ν)dy

pG(x) = g(x; β/s(y),Σ)
(2)

where pGGScM(·) and pG(·) denote the GGScM and Gaussian PDFs, respectively. Using (2), the

logarithm of the GGScM PDF can be written as

log pGGScM(x) = log Ey[g(x; β/s(y),Σ/κ(y))] (3)
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Considering the natural logarithm function log which is a convex function and employing

Jensen’s inequality, we have

log Ey[g(x; β/s(y),Σ/κ(y))] ≥ Ey[log g(x; β/s(y),Σ/κ(y))] (4)

Exploiting (3)-(4) yields

log pGGScM(x) ≥ Ey[log g(x; β/s(y),Σ/κ(y))] (5)

According to the definition of the Gaussian PDF and using (2), the expectation Ey[log g(x; β/

s(y),Σ/κ(y))] and log pG(x) can be formulated as

Ey[log g(x; β/s(y),Σ/κ(y))] = −0.5 log 2πΣ + 0.5Ey[log κ(y)]−
0.5Ey[κ(y)]

Σ
x2+

βEy[κ(y)/s(y)]

Σ
x− 0.5β2Ey[κ(y)/s

2(y)]

Σ
(6)

log pG(x) = −0.5 log 2πΣ− 0.5

Σ
x2 (7)

Subtracting (7) from (6) gives

Ey[log g(x; β/s(y),Σ/κ(y))]− log pG(x) = 0.5Ey[log κ(y)] +
0.5(1− Ey[κ(y)])

Σ
x2+

βEy[κ(y)/s(y)]

Σ
x− 0.5β2Ey[κ(y)/s

2(y)]

Σ
(8)

Taking the limit operation on both sides of the equation (8) yields

lim
x→±∞

{Ey[log g(x; β/s(y),Σ/κ(y))]− log pG(x)} = lim
x→±∞

{

0.5(1− Ey[κ(y)])

Σ
x2+

Ey[κ(y)/s(y)]

Σ
βx

}

(9)

If Ey[κ(y)] ≤ 1 and βx ≥ 0, then equation (9) can be rewritten as

lim
x→±∞

{Ey[log g(x; β/s(y),Σ/κ(y))]− log pG(x)} ≥ 0 (10)

Substituting (5) in (10), we have

lim
x→±∞

{log pGGScM(x)− log pG(x)} ≥ 0 if Ey[κ(y)] ≤ 1, βx ≥ 0 (11)

Employing (11) yields

lim
x→±∞

pGGScM(x)

pG(x)
≥ 1 if Ey[κ(y)] ≤ 1, βx ≥ 0 (12)
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TABLE I: Exemplary symmetric GGScM distributions and their parameters.

Symmetric GGScM distributions Shape parameter Scale function Mixing density Constraints

GGM β = 0 κ(y) = y π(y; ν) = G(y; ν
2
, ν
2
) y > 0, ν > 0

GEM β = 0 κ(y) = y π(y; ν) = Ex(y; ν) y > 0, ν > 0

GBM β = 0 κ(y) = y π(y; ν) = Be(y; ν, 1) 0 < y < 1, ν > 0

GIGM β = 0 κ(y) = y π(y; ν) = IG(y; ν
2
, ν
2
) y > 0, ν > 0

GIEM β = 0 κ(y) = y π(y; ν) = IEx(y; ν) y > 0, ν > 0

It is observed from (12) that the proposed GGScM distribution has heavier tails than the

Gaussian distribution when Ey[κ(y)] ≤ 1 and βx ≥ 0. The condition βx ≥ 0 implies that the

range of x depends on the shape parameter β, and β and x have the same sign. This means

that if the shape parameter is positive, i.e., β > 0, then x has to be positive to satisfy the

condition βx ≥ 0, and vice versa. Thus, the tail behaviour of the proposed GGScM distribution

is determined by both the dof parameter ν and the shape parameter β.

A. Symmetric GGScM distribution

The symmetric GGScM distribution is a special case of the GGScM distribution when the

shape parameter β = 0. The symmetric GGScM distribution has heavier tails than the Gaussian

distribution, which makes it more suitable for modelling heavy-tailed noises as compared with

the Gaussian distribution. Different symmetric GGScM distributions can be achieved when

different scale functions and mixing densities are selected. For example, five symmetric GGScM

distributions can be obtained when the scale function is set as κ(y) = y and mixing densities

are, respectively, chosen as Gamma, exponential, Beta, inverse Gamma, and inverse exponential

distributions. In this paper, the five exemplary symmetric GGScM distributions are, respectively,

named Gaussian-Gamma mixture (GGM) distribution, Gaussian-exponential mixture (GEM)

distribution, Gaussian-Beta mixture (GBM) distribution, Gaussian-inverse-Gamma mixture (GIG-

M) distribution, and Gaussian-inverse-exponential mixture (GIEM) distribution. Five exemplary

symmetric GGScM distributions and their parameters are listed in Table I. Substituting β = 0

and κ(y) = y in (1), the PDFs of the five exemplary symmetric GGScM distributions can be
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Fig. 1: Gaussian and exemplary symmetric GGScM densities, corresponding log plots, and

influence functions for a scalar case.

formulated as a general form

p(x) =

∫ +∞

0

g(x;µ,Σ/y)π(y; ν)dy (13)

The existing Student’s t, slash, and variance-gamma distributions [34] can be formulated as

(13) with mixing densities π(y) = G(y; ν
2
, ν
2
), π(y) = Be(y; ν, 1) and π(y) = IG(y; ν

2
, ν
2
),

respectively. It is seen from Table I and equation (13) that the GGM, GBM, GIGM distributions

are, respectively, identical to the existing Student’s t, slash, variance-gamma distributions.

Comparisons of the Gaussian and exemplary symmetric GGScM densities and corresponding

influence functions are shown in Fig. 1, where the localization parameter, scale parameter and

dof parameter are, respectively, selected as µ = 0, Σ = 1 and ν = 1. It is seen from Fig. 1 that the

exemplary symmetric GGScM distributions all have heavier tails than the Gaussian distribution,

and they have different tail behaviours. We can also see from Fig. 1 that the exemplary symmetric

GGScM distributions all have limited influence functions. As a result, the heavy-tailed noises

have limited influences on the state estimator, which can resist negative effects of heavy-tailed

noises.

B. Skew GGScM distribution

The skew GGScM distribution is non-symmetric, and its shape parameter β ̸= 0. The skew

GGScM distribution has both heavier tails and higher skewness than the Gaussian distribution,

which makes it more suitable for modelling heavy-tailed and skew noises as compared with the

Gaussian distribution. By choosing different skew and scale functions and mixing densities, dif-

ferent skew GGScM distributions can be obtained. For instance, five skew GGScM distributions
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10

TABLE II: Exemplary skew GGScM distributions and their parameters.

Skew GGScM distributions Shape parameter Skew and scale functions Mixing density Constraints

SGGM β ̸= 0 s(y) = κ(y) = y π(y; ν) = G(y; ν
2
, ν
2
) y > 0, ν > 0

SGEM β ̸= 0 s(y) = κ(y) = y π(y; ν) = Ex(y; ν) y > 0, ν > 0

SGBM β ̸= 0 s(y) = κ(y) = y π(y; ν) = Be(y; ν, 1) 0 < y < 1, ν > 0

SGIGM β ̸= 0 s(y) = κ(y) = y π(y; ν) = IG(y; ν
2
, ν
2
) y > 0, ν > 0

SGIEM β ̸= 0 s(y) = κ(y) = y π(y; ν) = IEx(y; ν) y > 0, ν > 0
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Fig. 2: Skew normal, skew t and exemplary skew GGScM densities, corresponding log plots,

and influence functions for a scalar case.

can be achieved when the skew and scale functions are set as s(y) = κ(y) = y and mixing

densities are, respectively, selected as Gamma, exponential, Beta, inverse Gamma, and inverse

exponential distributions, and the corresponding skew GGScM distributions are, respectively,

named skew Gaussian-Gamma mixture (SGGM) distribution, skew Gaussian-exponential mixture

(SGEM) distribution, skew Gaussian-Beta mixture (SGBM) distribution, skew Gaussian-inverse-

Gamma mixture (SGIGM) distribution, and skew Gaussian-inverse-exponential mixture (SGIEM)

distribution. Five exemplary skew GGScM distributions and their parameters are listed in Table

II. Employing s(y) = κ(y) = y in (1), the PDFs of the five exemplary skew GGScM distributions

can be written in a unified form

p(x) =

∫ +∞

0

g(x;µ+ β/y,Σ/y)π(y; ν)dy (14)
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Using y = 1/z, (14) can be rewritten as

p(x) =

∫ +∞

0

g(x;µ+ zβ, zΣ)
1

z2
π(

1

z
; ν)dz

=

∫ +∞

0

g(x;µ+ yβ, yΣ)
1

y2
π(

1

y
; ν)dy (15)

Utilizing (15), the PDFs of SGGM and SGIGM distributions can be, respectively, reformulated

as 





p(x) =
∫ +∞

0
g(x;µ+ yβ, yΣ)IG(y; ν

2
, ν
2
)dy

p(x) =
∫ +∞

0
g(x;µ+ yβ, yΣ)G(y; ν

2
, ν
2
)dy

(16)

We can observe from (16) that the SGGM and SGIGM distributions are, respectively, identical

to the existing generalized hyperbolic skew Student’s t-distribution and generalized hyperbolic

variance-gamma distribution [34].

Comparisons of the skew normal, skew t, and exemplary skew GGScM densities and cor-

responding influence functions are shown in Fig. 2, where the localization parameter, scale

parameter, dof parameter and shape parameter are, respectively, selected as µ = 0, Σ = 1, ν = 1

and β = 2. It is observed from Fig. 2 that the skew t-distribution and the exemplary skew GGScM

distributions all have heavier tails than the skew normal distribution, and the exemplary skew

GGScM distributions have different tail behaviours and skew properties. We can also observe

from Fig. 2 that the exemplary skew GGScM distributions all have limited influence functions.

As a result, the heavy-tailed and skew noises have limited influences on the state estimator,

which is able to resist negative influences of heavy-tailed and skew noises.

IV. A NOVEL ROBUST RTS SMOOTHING FRAMEWORK

A. Novel hierarchical Gaussian state-space model

Consider the following discrete-time linear stochastic system as represented by a linear state-

space model






xk = Fkxk−1 +wk−1 (state equation)

zk = Hkxk + vk (measurement equation)
(17)

where k = 1, . . . , T is the discrete time index, xk ∈ R
n is the state vector, zk ∈ R

m is the

measurement vector, Fk ∈ R
n×n and Hk ∈ R

m×n are, respectively, the known state transition

matrix and measurement matrix, and wk ∈ R
n and vk ∈ R

m are, respectively, state and
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measurement noise vectors. The initial state vector x0 is assumed to have a Gaussian distribution,

i.e., x0 ∼ N(x̂0|0,P0|0), where x̂0|0 and P0|0, respectively, denote the initial state estimate and the

initial estimation error covariance matrix. Moreover, x0, wk and vk are assumed to be mutually

independent. Our aim is to estimate the state trajectory x0:T based on the linear state-space

model and available measurements z1:T from time sample 1 to time sample T .

In this paper, the state and measurement noises are assumed to have heavy-tailed and/or skew

distributions, which are modelled as GGScM distributed as






p(wk−1) =
∫ +∞

0
g(wk−1;β1/s1(ξk),Q/κ1(ξk))π1(ξk;ω)dξk

p(vk) =
∫ +∞

0
g(vk;β2/s2(λk),R/κ2(λk))π2(λk; ν)dλk

(18)

where Q, R, β1, β2, ξk, λk, ω, ν, s1(·), s2(·), κ1(·), κ2(·), π1(·; ·) and π2(·; ·) are, respectively,

the scale matrices, shape parameters, mixing parameters, dof parameters, positive skew functions,

positive scale functions and mixing densities of the state and measurement noises.

The scale matrices Q and R, shape parameters β1 and β2, and dof parameters ω and ν are

unknown, whose joint prior PDF is defined over a limited support and assumed to be a constant,

i.e.,

p(Q,R,β1,β2, ω, ν) = c (19)

and they will be jointly estimated using the VB approach. Equation (19) means that the joint

prior PDF of the scale matrices, shape parameters and dof parameters is uninformative. Such a

prior model is reasonable since the scale matrices, shape parameters and dof parameters often

have no prior information available in practical applications. Note that, in order to estimate the

scale matrices, shape parameters and dof parameters accurately, a large amount of measurement

data is required when there is no prior information available.

Exploiting (17)-(18), the state transition PDF p(xk|xk−1) and the likelihood PDF p(zk|xk) can

be expressed as

p(xk|xk−1) =

∫ +∞

0

g(xk;Fkxk−1 + β1/s1(ξk),Q/κ1(ξk))π1(ξk;ω)dξk (20)

p(zk|xk) =

∫ +∞

0

g(zk;Hkxk + β2/s2(λk),R/κ2(λk))π2(λk; ν)dλk (21)

April 18, 2019 DRAFT



13

According to (20)-(21), the state transition PDF and the likelihood PDF can be, respectively,

written in the following hierarchical Gaussian forms






p(xk|xk−1, ξk) = g(xk;Fkxk−1 + β1/s1(ξk),Q/κ1(ξk))

p(ξk) = π1(ξk;ω), s.t. ξk > 0
(22)







p(zk|xk, λk) = g(zk;Hkxk + β2/s2(λk),R/κ2(λk))

p(λk) = π2(λk; ν), s.t. λk > 0
(23)

Equations (19) and (22)-(23) constitute a novel hierarchical Gaussian state-space model based

on the proposed GGScM distribution. The fixed interval smoothing estimation problem for a

linear state-space model with heavy-tailed and/or skew state and measurement noises is trans-

formed into the fixed interval smoothing estimation problem for a hierarchical Gaussian state-

space model formulated in (19) and (22)-(23). Next, we propose to jointly estimate the s-

tate trajectory, mixing parameters, scale matrices, shape parameters and dof parameters, i.e.,

Θ = {x0:T , ξ1:T , λ1:T ,Q,R,β1,β2, ω, ν}, based on the constructed hierarchical Gaussian state-

space model using the VB approach.

B. Joint estimates of state trajectory, mixing parameters and unknown distribution parameters

To jointly infer state trajectory, mixing parameters and unknown distribution parameters, the

joint posterior PDF p(Θ|z1:T ) needs to be calculated. Unfortunately, the optimal solution of the

joint posterior PDF is unavailable for hierarchical Gaussian state-space model (19) and (22)-

(23) since the marginal posterior PDF of the state trajectory x0:T does not have a closed-form

expression due to the model lacking conjugacy properties. In this paper, the standard VB approach

is utilized to achieve an approximation to the true joint posterior PDF p(Θ|z1:T ) as follows

p(Θ|z1:T ) ≈ q(Θ) = q(x0:T )q(ξ1:T )q(λ1:T )q(Q)q(R)q(β1)q(β2)q(ω)q(ν) (24)

where q(θ) denotes a free form factored approximation of the true posterior PDF p(θ), and

θ ∈ Θ is an arbitrary element of the set Θ.

In the standard VB approach, the KLD is used as a measure to evaluate the difference between

the approximate joint posterior PDF q(Θ) and the true joint posterior PDF p(Θ|z1:T ), and

the approximate posterior PDF q(θ) is achieved by minimizing the KLD between q(Θ) and

p(Θ|z1:T ), i.e., q(θ) = argminKLD(q(Θ)||p(Θ|z1:T )). However, it is not possible to minimize
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KLD(q(Θ)||p(Θ|z1:T )) directly because the true joint posterior PDF p(Θ|z1:T ) is not available.

In the standard VB approach, the minimization of KLD(q(Θ)||p(Θ|z1:T )) is transformed into

the maximization of the lower bound of the log-likelihood F (q(Θ)) =
∫

q(Θ) log p(Θ,z1:T )
q(Θ)

, and

the approximate posterior PDF q(θ) satisfies the following equation [33], [30]

log q(θ) = EΘ(−θ) [log p(Θ, z1:k)] + cθ (25)

where Θ(−θ) is a subset of Θ and it has all elements in Θ except for θ, i.e., {θ}
∪

Θ(−θ) = Θ,

and cθ denotes a constant value with respect to variable θ.

Due to the mutual dependence and coupling, it is not possible to achieve an analytic solution

of q(θ) using (25). To address this problem, a fixed-point iteration is employed to achieve an

approximation of q(θ) by iteratively solving (25), and a local optimum approximation can be

obtained. That is to say, at the i + 1-th iteration, for an arbitrary element θ, its approximate

posterior PDF q(θ) is updated as q(i+1)(θ) by using q(i)(Θ(−θ)) to calculate the expectation in

(25).

1) Variational approximations of posterior PDFs: Using (19) and (22)-(23), the joint PDF

p(Θ, z1:T ) can be formulated as

p(Θ, z1:T ) = cg(x0; x̂0|0,P0|0)
T
∏

k=1

[g(xk;Fkxk−1 + β1/s1(ξk),Q/κ1(ξk))g(zk;Hkxk+

β2/s2(λk),R/κ2(λk))π1(ξk;ω)π2(λk; ν)] (26)

Let θ = x0:T and utilizing (26) in (25), q(i+1)(x0:T ) can be updated as Gaussian, i.e.,

q(i+1)(x0:T ) = g(x0:T ; x̂
(i+1)
0:T |T ,P

(i+1)
0:T |T ) (27)

where the smoothing estimate x̂
(i+1)
0:T |T and corresponding estimation error covariance matrix P

(i+1)
0:T |T

are obtained using the standard RTS smoother [36] with modified mean vectors q̃
(i)
k and r̃

(i)
k and

covariance matrices Q̃
(i)
k and R̃

(i)
k for the state and measurement noises, which are, respectively,

given by










q̃
(i)
k =

E(i)[
κ1(ξk)

s1(ξk)
]E(i)[β1]

E(i)[κ1(ξk)]
, Q̃

(i)
k =

{E(i)[Q−1]}−1

E(i)[κ1(ξk)]

r̃
(i)
k =

E(i)[
κ2(λk)

s2(λk)
]E(i)[β2]

E(i)[κ2(λk)]
, R̃

(i)
k =

{E(i)[R−1]}−1

E(i)[κ2(λk)]

(28)

where the derivations of (27)-(28) are given in Appendix A.
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Let θ = β1 and using (26) in (25), q(i+1)(β1) is updated as Gaussian, and let θ = β2 and

employing (26) in (25), and q(i+1)(β2) is updated as Gaussian, i.e.,






q(i+1)(β1) = g(β1; β̂
(i+1)
1 ,P

(i+1)
β1

)

q(i+1)(β2) = g(β2; β̂
(i+1)
2 ,P

(i+1)
β2

)
(29)

where the mean vectors β̂
(i+1)
1 and β̂

(i+1)
2 and covariance matrices P

(i+1)
β1

and P
(i+1)
β2

are, respec-

tively, given by






















β̂
(i+1)
1 =

T
∑

k=1
E(i)[

κ1(ξk)

s1(ξk)
]a

(i+1)
k

T
∑

k=1

E(i)[
κ1(ξk)

s21(ξk)
]

P
(i+1)
β1

=

{

E(i)[Q−1]
T
∑

k=1

E(i)[κ1(ξk)

s21(ξk)
]

}−1
(30)























β̂
(i+1)
2 =

T
∑

k=1
E(i)[

κ2(λk)

s2(λk)
]b

(i+1)
k

T
∑

k=1
E(i)[

κ2(λk)

s22(λk)
]

P
(i+1)
β2

=

{

E(i)[R−1]
T
∑

k=1

E(i)[κ2(λk)

s22(λk)
]

}−1
(31)

and a
(i+1)
k and b

(i+1)
k are, respectively, given by







a
(i+1)
k = E(i+1)[xk − Fkxk−1]

b
(i+1)
k = E(i+1)[zk −Hkxk]

(32)

where the derivations of (29)-(32) are given in Appendix B.

Let θ = ξ1:T and using (26) in (25), log q(i+1)(ξ1:T ) is calculated as (33), and let θ = λ1:T and

employing (26) in (25), log q(i+1)(λ1:T ) is calculated as (34), i.e.,

log q(i+1)(ξ1:T ) = 0.5n
T
∑

k=1

log κ1(ξk)− 0.5
T
∑

k=1

κ1(ξk)tr
{

E(i+1)[(xk − Fkxk−1 − β1/s1(ξk))

(xk − Fkxk−1 − β1/s1(ξk))
T]E(i)[Q−1]

}

+
T
∑

k=1

E(i)[log π1(ξk;ω)] + cξ1:T (33)

log q(i+1)(λ1:T ) = 0.5m
T
∑

k=1

log κ2(λk)− 0.5
T
∑

k=1

κ2(λk)tr
{

E(i+1)[(zk −Hkxk − β2/s2(λk))

(zk −Hkxk − β2/s2(λk))
T]E(i)[R−1]

}

+
T
∑

k=1

E(i)[log π2(λk; ν)] + cλ1:T
(34)
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Using (33)-(34), log q(i+1)(ξk) and log q(i+1)(λk) can be formulated as

log q(i+1)(ξk) = 0.5n log κ1(ξk)− 0.5∆
(i+1)
1,k κ1(ξk) + ∆

(i+1)
2,k

κ1(ξk)

s1(ξk)
− 0.5∆

(i+1)
3,k

κ1(ξk)

s21(ξk)
+

E(i)[log π1(ξk;ω)] + cξk (35)

log q(i+1)(λk) = 0.5m log κ2(λk)− 0.5∆̄
(i+1)
1,k κ2(λk) + ∆̄

(i+1)
2,k

κ2(λk)

s2(λk)
− 0.5∆̄

(i+1)
3,k

κ2(λk)

s22(λk)
+

E(i)[log π2(λk; ν)] + cλk
(36)

where the parameters ∆
(i+1)
1,k , ∆̄

(i+1)
1,k , ∆

(i+1)
2,k , ∆̄

(i+1)
2,k , ∆

(i+1)
3,k and ∆̄

(i+1)
3,k are, respectively, given

by






















































∆
(i+1)
1,k = tr

{

A
(i+1)
k E(i)[Q−1]

}

∆̄
(i+1)
1,k = tr

{

B
(i+1)
k E(i)[R−1]

}

∆
(i+1)
2,k =

(

a
(i+1)
k

)T

E(i)[Q−1]E(i+1)[β1]

∆̄
(i+1)
2,k =

(

b
(i+1)
k

)T

E(i)[R−1]E(i+1)[β2]

∆
(i+1)
3,k = tr

{

E(i+1)[β1β
T
1 ]E

(i)[Q−1]
}

∆̄
(i+1)
3,k = tr

{

E(i+1)[β2β
T
2 ]E

(i)[R−1]
}

(37)

and A
(i+1)
k and B

(i+1)
k are, respectively, given by







A
(i+1)
k = E(i+1)[(xk − Fkxk−1)(xk − Fkxk−1)

T]

B
(i+1)
k = E(i+1)[(zk −Hkxk)(zk −Hkxk)

T]
(38)

In this paper, the prior distributions π1(ξk;ω) and π2(λk; ν) are selected so that the following

equations hold






E(i)[log π1(ξk;ω)] = log π1(ξk; E
(i)[ω])

E(i)[log π2(λk; ν)] = log π2(λk; E
(i)[ν])

(39)

Substituting (39) in (35)-(36), q(i+1)(ξk) and q(i+1)(λk) can be rewritten as






q(i+1)(ξk) = c1c2 exp(f1(ξk))π1(ξk; E
(i)[ω])

q(i+1)(λk) = c̄1c̄2 exp(f2(λk))π2(λk; E
(i)[ν])

(40)

where c1, c2, c̄1, and c̄2 are normalizing constants, and nonlinear functions f1(ξk) and f2(λk)

are given by

f1(ξk) = 0.5n log κ1(ξk)− 0.5∆
(i+1)
1,k κ1(ξk) + ∆

(i+1)
2,k

κ1(ξk)

s1(ξk)
− 0.5∆

(i+1)
3,k

κ1(ξk)

s21(ξk)
(41)
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f2(λk) = 0.5m log κ2(λk)− 0.5∆̄
(i+1)
1,k κ2(λk) + ∆̄

(i+1)
2,k

κ2(λk)

s2(λk)
− 0.5∆̄

(i+1)
3,k

κ2(λk)

s22(λk)
(42)

Define the likelihood PDFs l1(ξk) and l2(λk) as follows

l1(ξk) = c2 exp(f1(ξk)), l2(λk) = c̄2 exp(f2(λk)) (43)

Employing (43) in (40) yields






q(i+1)(ξk) = c1l1(ξk)π1(ξk; E
(i)[ω])

q(i+1)(λk) = c̄1l2(λk)π2(λk; E
(i)[ν])

(44)

It is observed from (44) that q(i+1)(ξk) can be deemed as a posterior PDF of ξk with prior

PDF π1(ξk; E
(i)[ω]) and likelihood PDF l1(ξk), and q(i+1)(λk) can be deemed as a posterior PDF

of λk with prior PDF π2(λk; E
(i)[ν]) and likelihood PDF l2(λk). Thus, the Monte Carlo approach

can be used to obtain the approximations of posterior PDFs q(i+1)(ξk) and q(i+1)(λk).

Draw M random samples
{

ξjk
}M

j=1
and

{

λjk
}M

j=1
from the prior PDFs π1(ξk; E

(i)[ω]) and

π2(λk; E
(i)[ν]), respectively, and the prior PDFs can be, respectively, approximated as















π1(ξk; E
(i)[ω]) ≈ 1

M

M
∑

j=1

δ(ξk − ξjk)

π2(λk; E
(i)[ν]) ≈ 1

M

M
∑

j=1

δ(λk − λjk)

(45)

where M denotes the number of random samples.

Utilizing (43)-(45), the posterior PDFs q(i+1)(ξk) and q(i+1)(λk) can be, respectively, approx-

imated by a set of weighted particles, i.e.,














q(i+1)(ξk) ≈
M
∑

j=1

w
(i+1)j
ξ,k δ(ξk − ξjk)

q(i+1)(λk) ≈
M
∑

j=1

w
(i+1)j
λ,k δ(λk − λjk)

(46)

where the weights w
(i+1)j
ξ,k and w

(i+1)j
λ,k are, respectively, given by















w
(i+1)j
ξ,k = exp(f1(ξ

j
k))

/

M
∑

l=1

exp(f1(ξ
l
k))

w
(i+1)j
λ,k = exp(f2(λ

j
k))

/

M
∑

l=1

exp(f2(λ
l
k))

(47)

Let θ = Q and exploiting (26) in (25), q(i+1)(Q) is updated as an inverse-Wishart PDF, and

let θ = R and utilizing (26) in (25), q(i+1)(R) is updated as an inverse-Wishart PDF, i.e.,






q(i+1)(Q) = IW(Q; t(i+1),T(i+1))

q(i+1)(R) = IW(R; u(i+1),U(i+1))
(48)
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where the dof parameters t(i+1) and u(i+1) and inverse scale matrices T(i+1) and U(i+1) are,

respectively, given by






t(i+1) = T − n− 1, T(i+1) = E(i+1)

u(i+1) = T −m− 1, U(i+1) = F(i+1)
(49)

where E(i+1) and F(i+1) are, respectively, calculated as

E(i+1) =
T
∑

k=1

{

E(i+1)[κ1(ξk)]A
(i+1)
k − E(i+1)[

κ1(ξk)

s1(ξk)
]E(i+1)[β1]

(

a
(i+1)
k

)T

−

E(i+1)[
κ1(ξk)

s1(ξk)
]a

(i+1)
k E(i+1)[β1]

T + E(i+1)[
κ1(ξk)

s21(ξk)
]E(i+1)[β1β

T
1 ]

}

s.t. Ei+1 > 0 (50)

F(i+1) =
T
∑

k=1

{

E(i+1)[κ2(λk)]B
(i+1)
k − E(i+1)[

κ2(λk)

s2(λk)
]E(i+1)[β2]

(

b
(i+1)
k

)T

−

E(i+1)[
κ2(λk)

s2(λk)
]b

(i+1)
k E(i+1)[β2]

T + E(i+1)[
κ2(λk)

s22(λk)
]E(i+1)[β2β

T
2 ]

}

s.t. Fi+1 > 0 (51)

where the derivations of (48)-(51) are given in Appendix C.

Let θ = ω and θ = ν, respectively, and utilizing (26) in (25) results in

log q(i+1)(ω) =
T
∑

k=1

E(i+1)[log π1(ξk;ω)] + cω (52)

log q(i+1)(ν) =
T
∑

k=1

E(i+1)[log π2(λk; ν)] + cν (53)

In the paper, the prior distributions π1(ξk;ω) and π2(λk; ν) are chosen such that the posterior

PDFs can be updated as Gamma, i.e.,






q(i+1)(ω) = G(ω; c(i+1), d(i+1))

q(i+1)(ν) = G(ν; a(i+1), b(i+1))
(54)

where the shape parameters c(i+1) and a(i+1) and rate parameters d(i+1) and b(i+1) will be given

in the next section.
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The smoothing estimates of the state trajectory, mixing parameters and unknown distribution

parameters are approximated as






























































x̂k|T ≈ x̂
(N)
k|T , Pk|T = P

(N)
k|T , 0 ≤ k ≤ T

ξ̂k|T ≈
M
∑

j=1

w
(N)j
ξ,k ξjk, 1 ≤ k ≤ T

λ̂k|T ≈
M
∑

j=1

w
(N)j
λ,k λjk, 1 ≤ k ≤ T

β̂1 ≈ β̂
(N)
1 , β̂2 = β̂

(N)
2

Q̂ ≈ T(N)/t(N), R̂ ≈ U(N)/u(N)

ω̂ ≈ c(N)/d(N), ν̂ ≈ a(N)/b(N)

(55)

where N is the minimum number of iterations to guarantee convergence.

2) Calculation of expectations: Using (46), the expectations of nonlinear functions of mixing

parameters can be approximated by the Monte Carlo approach as follows


































E(i+1)[κ1(ξk)] ≈
M
∑

j=1

w
(i+1)j
ξ,k κ1(ξ

j
k)

E(i+1)[κ1(ξk)
s1(ξk)

] ≈
M
∑

j=1

w
(i+1)j
ξ,k

κ1(ξ
j
k
)

s1(ξ
j
k
)

E(i+1)[κ1(ξk)

s21(ξk)
] ≈

M
∑

j=1

w
(i+1)j
ξ,k

κ1(ξ
j
k
)

s21(ξ
j
k
)

(56)



































E(i+1)[κ1(λk)] ≈
M
∑

j=1

w
(i+1)j
λ,k κ1(λ

j
k)

E(i+1)[κ2(λk)
s2(λk)

] ≈
M
∑

j=1

w
(i+1)j
λ,k

κ2(λ
j
k
)

s2(λ
j
k
)

E(i+1)[κ2(λk)

s22(λk)
] ≈

M
∑

j=1

w
(i+1)j
λ,k

κ2(λ
j
k
)

s22(λ
j
k
)

(57)

Employing (29), the first and second order moments of the shape parameters are calculated

as follows


















E(i+1)[β1] = β̂
(i+1)
1 , E(i+1)[β2] = β̂

(i+1)
2

E(i+1)[β1β
T
1 ] = P

(i+1)
β1

+ β̂
(i+1)
1

(

β̂
(i+1)
1

)T

E(i+1)[β2β
T
2 ] = P

(i+1)
β2

+ β̂
(i+1)
2

(

β̂
(i+1)
2

)T

(58)

According to (48), the posterior PDFs of scale matrices Q−1 and R−1 are updated as Wishart,

i.e.,






q(i+1)(Q−1) = W(Q−1; t(i+1),
(

T(i+1)
)−1

)

q(i+1)(R−1) = W(R−1; u(i+1),
(

U(i+1)
)−1

)
(59)
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Utilizing (59), the expectations of scale matrices Q−1 and R−1 are calculated as






E(i+1)[Q−1] = t(i+1)
(

T(i+1)
)−1

E(i+1)[R−1] = u(i+1)
(

U(i+1)
)−1

(60)

Exploiting (54) yields

E(i)[ω] = c(i+1)/d(i+1), E(i)[ν] = a(i+1)/b(i+1) (61)

Substituting (27) in (32) and (38), a
(i+1)
k , b

(i+1)
k , A

(i+1)
k and B

(i+1)
k are, respectively, calculated

as follows 





























a
(i+1)
k = x̂

(i+1)
k|T − Fkx̂

(i+1)
k−1|T , b

(i+1)
k = zk −Hkx̂

(i+1)
k|T

B
(i+1)
k = (zk −Hkx̂

(i+1)
k|T )(zk −Hkx̂

(i+1)
k|T )T +HkP

(i+1)
k|T HT

k

A
(i+1)
k = (x̂

(i+1)
k|T − Fkx̂

(i+1)
k−1|T )(x̂

(i+1)
k|T − Fkx̂

(i+1)
k−1|T )

T+

P
(i+1)
k|T −

(

FkG
(i+1)
k−1 P

(i+1)
k|T

)T

− FkG
(i+1)
k−1 P

(i+1)
k|T + FkP

(i+1)
k−1|TF

T
k

(62)

where G
(i+1)
k−1 denotes the RTS smoothing gain at the i+ 1th iteration.

The proposed robust RTS smoothing framework is composed of variational approximations

of posterior PDFs in (27)-(55) and calculations of expectations in (56)-(62). To implement the

proposed robust RTS smoothing framework, the skew functions s1(·) and s2(·), the scale functions

κ1(·) and κ2(·), and the mixing densities π1(·; ·) and π2(·; ·) require to be firstly selected. Next,

to illustrate how to implement the proposed robust RTS smoothing framework, several special

solutions based on the exemplary symmetric and skew GGScM distributions will be derived.

V. ROBUST RTS SMOOTHERS BASED ON EXEMPLARY GGSCM DISTRIBUTIONS

In this section, we will derive several particular solutions when the GGM, GEM, GBM, GIGM,

GIEM, SGGM, SGEM, SGBM, SGIGM and SGIEM distributions are employed to model state

and measurement noises.

A. Updates of q(i+1)(x0:T ), q
(i+1)(β1), q

(i+1)(β2), q
(i+1)(Q) and q(i+1)(R)

1) Exemplary symmetric GGScM distributions: It is observed from Table I that, for the

exemplary symmetric GGScM distributions, β1 = 0, β2 = 0, κ1(ξk) = ξk and κ2(λk) = λk.

Then, the exemplary symmetric GGScM distributions have the same update forms for posterior

PDFs q(i+1)(x0:T ), q
(i+1)(β1), q

(i+1)(β2), q
(i+1)(Q) and q(i+1)(R). Since β1 = 0 and β2 = 0,
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for the exemplary symmetric GGScM distributions, both the estimates of shape parameters and

corresponding estimation error covariance matrices are zeros, i.e.,






β̂
(i+1)
1 = 0, P

(i+1)
β1

= 0

β̂
(i+1)
2 = 0, P

(i+1)
β2

= 0
(63)

Substituting (63) in (58) gives






E(i+1)[β1] = 0, E(i+1)[β1β
T
1 ] = 0

E(i+1)[β2] = 0, E(i+1)[β2β
T
2 ] = 0

(64)

Employing κ1(ξk) = ξk, κ2(λk) = λk and (64) in (28) and (50)-(51) results in






q̃
(i)
k = 0, Q̃

(i)
k =

{E(i)[Q−1]}−1

E(i)[ξk]

r̃
(i)
k = 0, R̃

(i)
k =

{E(i)[R−1]}−1

E(i)[λk]

(65)















E(i+1) =
T
∑

k=1

E(i+1)[ξk]A
(i+1)
k

F(i+1) =
T
∑

k=1

E(i+1)[λk]B
(i+1)
k

(66)

For the exemplary symmetric GGScM distributions, the posterior PDFs q(i+1)(x0:T ), q
(i+1)(β1),

q(i+1)(β2), q
(i+1)(Q) and q(i+1)(R) are, respectively, updated as Gaussian, Gaussian and inverse-

Wishart distributions by (27), (29) and (48), where the required parameters are given (49), (63)

and (65)-(66).

2) Exemplary skew GGScM distributions: It is seen from Table II that, for the exemplary skew

GGScM distributions, β1 ̸= 0, β2 ̸= 0, s1(ξk) = κ1(ξk) = ξk and s2(λk) = κ2(λk) = λk. Then,

the exemplary skew GGScM distributions also have the same update forms for posterior PDFs

q(i+1)(x0:T ), q
(i+1)(β1), q

(i+1)(β2), q
(i+1)(Q) and q(i+1)(R). Exploiting s1(ξk) = κ1(ξk) = ξk

and s2(λk) = κ2(λk) = λk in (28), (30)-(31) and (50)-(51) yields






q̃
(i)
k = E(i)[β1]

E(i)[ξk]
, Q̃

(i)
k =

{E(i)[Q−1]}−1

E(i)[ξk]

r̃
(i)
k = E(i)[β2]

E(i)[λk]
, R̃

(i)
k =

{E(i)[R−1]}−1

E(i)[λk]

(67)











































β̂
(i+1)
1 =

T
∑

k=1

a
(i+1)
k

T
∑

k=1
E(i+1)[ 1

ξk
]

, β̂
(i+1)
2 =

T
∑

k=1

b
(i+1)
k

T
∑

k=1
E(i+1)[ 1

λk
]

P
(i+1)
β1

=

{

E(i)[Q−1]
T
∑

k=1

E(i+1)[ 1
ξk
]

}−1

P
(i+1)
β2

=

{

E(i)[R−1]
T
∑

k=1

E(i+1)[ 1
λk
]

}−1

(68)
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





































E(i+1) =
T
∑

k=1

{

E(i+1)[ξk]A
(i+1)
k − E(i+1)[β1]

(

a
(i+1)
k

)T

−

a
(i+1)
k E(i+1)[β1]

T + E(i+1)[ 1
ξk
]E(i+1)[β1β

T
1 ]
}

F(i+1) =
T
∑

k=1

{

E(i+1)[λk]B
(i+1)
k − E(i+1)[β2]

(

b
(i+1)
k

)T

−

b
(i+1)
k E(i+1)[β2]

T + E(i+1)[ 1
λk
]E(i+1)[β2β

T
2 ]
}

(69)

For the exemplary skew GGScM distributions, the posterior PDFs q(i+1)(x0:T ), q
(i+1)(β1),

q(i+1)(β2), q
(i+1)(Q) and q(i+1)(R) are, respectively, updated as Gaussian, Gaussian and inverse-

Wishart distributions by (27), (29) and (48), where the required parameters are given (49) and

(67)-(69).

B. Analytical updates of q(i+1)(ξk) and q(i+1)(λk)

For the exemplary symmetric GGScM distributions, substituting (64) in (37) results in

∆
(i+1)
2,k = ∆̄

(i+1)
2,k = ∆

(i+1)
3,k = ∆̄

(i+1)
3,k = 0 (70)

As an example, next, we derive the analytical updates of posterior PDFs q(i+1)(ξk) and

q(i+1)(λk) when state and measurement noises are modelled by the GIGM distribution. It is

observed from Table I that, for the GIGM distribution, π1(ξk;ω) = IG(ξk;
ω
2
, ω
2
), π2(λk; ν) =

IG(λk;
ν
2
, ν
2
), κ1(ξk) = ξk, κ2(λk) = λk, ξk > 0 and λk > 0. Substituting prior distributions and

scale functions in (35)-(36) and using (70) yields

log q(i+1)(ξk) =
(

0.5n− 0.5E(i)[ω]− 1
)

log ξk − 0.5∆
(i+1)
1,k ξk − 0.5E(i)[ω]/ξk + cξk (71)

log q(i+1)(λk) =
(

0.5m− 0.5E(i)[ν]− 1
)

log λk − 0.5∆̄
(i+1)
1,k λk − 0.5E(i)[ν]/λk + cλk

(72)

Exploiting (71)-(72), q(i+1)(ξk) and q(i+1)(λk) are updated as generalized inverse Gaussian

PDFs, i.e.,






q(i+1)(ξk) = GIG(ξk;α
(i+1)
k , β

(i+1)
k , ρ

(i+1)
k )

q(i+1)(λk) = GIG(λk; η
(i+1)
k , φ

(i+1)
k , ϱ

(i+1)
k )

(73)

where shape parameters are given by


























α
(i+1)
k = ∆

(i+1)
1,k , β

(i+1)
k = E(i)[ω]

ρ
(i+1)
k = 0.5n− 0.5E(i)[ω]

η
(i+1)
k = ∆̄

(i+1)
1,k , φ

(i+1)
k = E(i)[ν]

ϱ
(i+1)
k = 0.5m− 0.5E(i)[ν]

(74)
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Similarly, the analytical updates of posterior PDFs q(i+1)(ξk) and q(i+1)(λk) for other exemplary

GGScM distributions can be also obtained, and the results are given in Table III, where c3, c̄3,

c4 and c̄4 are all normalizing constants.

For the GGM and GEM distributions, the posterior PDFs q(i+1)(ξk) and q(i+1)(λk) of the

mixing parameters are updated as Gamma PDFs, and then the required expectations of the

mixing parameters are analytically calculated as [6]


























E(i+1)[ξk] = α
(i+1)
k /β

(i+1)
k

E(i+1)[log ξk] = ψ(α
(i+1)
k )− log β

(i+1)
k

E(i+1)[λk] = η
(i+1)
k /φ

(i+1)
k

E(i+1)[log λk] = ψ(η
(i+1)
k )− logφ

(i+1)
k

(75)

For the GBM distribution, the posterior PDFs q(i+1)(ξk) and q(i+1)(λk) of the mixing param-

eters are updated as truncated Gamma PDFs, and then the required expectations of the mixing

parameters are calculated as


























E(i+1)[ξk] = c3
∫ 1

0
ξkG(ξk;α

(i+1)
k , β

(i+1)
k )dξk

E(i+1)[log ξk] = c3
∫ 1

0
log ξkG(ξk;α

(i+1)
k , β

(i+1)
k )dξk

E(i+1)[λk] = c̄3
∫ 1

0
λkG(λk; η

(i+1)
k , φ

(i+1)
k )dλk

E(i+1)[log λk] = c̄3
∫ 1

0
log λkG(λk; η

(i+1)
k , φ

(i+1)
k )dλk

(76)

For the GIGM, GIEM, SGGM, SGEM, SGIGM and SGIEM distributions, the posterior PDFs

q(i+1)(ξk) and q(i+1)(λk) of the mixing parameters are updated as GIG PDFs, and then the

required expectations of the mixing parameters are analytically calculated as [35]










































































































E(i+1)[ξk] =

√

β
(i+1)
k

K
ρ
(i+1)
k

+1
(

√

α
(i+1)
k

β
(i+1)
k

)

√

α
(i+1)
k

K
ρ
(i+1)
k

(

√

α
(i+1)
k

β
(i+1)
k

)

E(i+1)[ 1
ξk
] =

√

α
(i+1)
k

K
ρ
(i+1)
k

+1
(

√

α
(i+1)
k

β
(i+1)
k

)

√

β
(i+1)
k

K
ρ
(i+1)
k

(

√

α
(i+1)
k

β
(i+1)
k

)
− 2ρ

(i+1)
k

β
(i+1)
k

E(i+1)[log ξk] = log

√

β
(i+1)
k

√

α
(i+1)
k

+
∂ logKρ(

√

α
(i+1)
k

β
(i+1)
k

)

∂ρ
|
ρ=ρ

(i+1)
k

E(i+1)[λk] =

√

φ
(i+1)
k

K
ϱ
(i+1)
k

+1
(

√

η
(i+1)
k

φ
(i+1)
k

)

√

η
(i+1)
k

K
ϱ
(i+1)
k

(

√

η
(i+1)
k

φ
(i+1)
k

)

E(i+1)[ 1
λk
] =

√

η
(i+1)
k

K
ϱ
(i+1)
k

+1
(

√

η
(i+1)
k

φ
(i+1)
k

)

√

φ
(i+1)
k

K
ϱ
(i+1)
k

(

√

η
(i+1)
k

φ
(i+1)
k

)
− 2ϱ

(i+1)
k

φ
(i+1)
k

E(i+1)[log λk] = log

√

φ
(i+1)
k

√

η
(i+1)
k

+
∂ logKρ(

√

η
(i+1)
k

φ
(i+1)
k

)

∂ρ
|
ρ=ϱ

(i+1)
k

(77)
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where the partial derivatives in (77) are calculated using a numerical approach.

For the SGBM distribution, the posterior PDFs q(i+1)(ξk) and q(i+1)(λk) of the mixing pa-

rameters are updated as truncated GIG PDFs, and then the required expectations of the mixing

parameters are calculated as


















































E(i+1)[ξk] = c4
∫ 1

0
ξkGIG(ξk;α

(i+1)
k , β

(i+1)
k , ρ

(i+1)
k )dξk

E(i+1)[ 1
ξk
] = c4

∫ 1

0
1
ξk
GIG(ξk;α

(i+1)
k , β

(i+1)
k , ρ

(i+1)
k )dξk

E(i+1)[log ξk] = c4
∫ 1

0
log ξkGIG(ξk;α

(i+1)
k , β

(i+1)
k , ρ

(i+1)
k )dξk

E(i+1)[λk] = c̄4
∫ 1

0
λkGIG(λk; η

(i+1)
k , φ

(i+1)
k , ϱ

(i+1)
k )dλk

E(i+1)[ 1
λk
] = c̄4

∫ 1

0
1
λk
GIG(λk; η

(i+1)
k , φ

(i+1)
k , ϱ

(i+1)
k )dλk

E(i+1)[log λk] = c̄4
∫ 1

0
log λkGIG(λk; η

(i+1)
k , φ

(i+1)
k , ϱ

(i+1)
k )dλk

(78)

C. Monte Carlo updates of q(i+1)(ξk) and q(i+1)(λk)

For the exemplary symmetric GGScM distributions, employing κ1(ξk) = ξk, κ2(λk) = λk and

(70) in (41)-(42), we obtain






f1(ξk) = 0.5n log ξk − 0.5ξk∆
(i+1)
1,k

f2(λk) = 0.5m log λk − 0.5λk∆̄
(i+1)
1,k

(79)

For the exemplary skew GGScM distributions, exploiting s1(ξk) = κ1(ξk) = ξk and s2(λk) =

κ2(λk) = λk in (41)-(42) yields






f1(ξk) = 0.5n log ξk − 0.5ξk∆
(i+1)
1,k +∆

(i+1)
2,k − 0.5∆

(i+1)
3,k

ξk

f2(λk) = 0.5m log λk − 0.5λk∆̄
(i+1)
1,k + ∆̄

(i+1)
2,k − 0.5∆̄

(i+1)
3,k

λk

(80)

We can see from Tables I and II that, for the exemplary symmetric and skew GGScM

distributions, the prior distribution can be, respectively, selected as Gamma, exponential, Beta,

inverse Gamma and inverse exponential distributions. According to Appendix D, we can see that

equation (39) holds when the prior distributions are, respectively, chosen as Gamma, exponential,

Beta, inverse Gamma, and inverse exponential distributions. Then, q(i+1)(ξk) and q(i+1)(λk) can be

updated by (46)-(47), where the samples of mixing samples
{

ξjk
}M

j=1
and

{

λjk
}M

j=1
are randomly

drawn from the prior distributions with the dof parameters E(i)[ω] and E(i)[ν], and f1(ξk) and

f2(λk) are given by (79) and (80) for the exemplary symmetric and skew GGScM distributions,

respectively.
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TABLE III: Analytical updates of posterior PDFs q(i+1)(ξk) and q(i+1)(λk) for exemplary GGScM

distributions.

GGScM distributions q(i+1)(ξk) and q(i+1)(λk) Shape parameters and rate parameters

GGM
q(i+1)(ξk) = G(ξk;α

(i+1)
k

, β
(i+1)
k

) α
(i+1)
k

= 0.5n+ 0.5E(i)[ω], β
(i+1)
k

= 0.5∆
(i+1)
1,k + 0.5E(i)[ω]

q(i+1)(λk) = G(λk; η
(i+1)
k

, φ
(i+1)
k

) η
(i+1)
k

= 0.5m+ 0.5E(i)[ν], φ
(i+1)
k

= 0.5∆̄
(i+1)
1,k + 0.5E(i)[ν]

GEM
q(i+1)(ξk) = G(ξk;α

(i+1)
k

, β
(i+1)
k

) α
(i+1)
k

= 0.5n+ 1, β
(i+1)
k

= 0.5∆
(i+1)
1,k + E(i)[ω]

q(i+1)(λk) = G(λk; η
(i+1)
k

, φ
(i+1)
k

) η
(i+1)
k

= 0.5m+ 1, φ
(i+1)
k

= 0.5∆̄
(i+1)
1,k + E(i)[ν]

GBM
q(i+1)(ξk) = c3G(ξk;α

(i+1)
k

, β
(i+1)
k

) α
(i+1)
k

= 0.5n+ E(i)[ω], β
(i+1)
k

= 0.5∆
(i+1)
1,k , ξk ∈ (0, 1)

q(i+1)(λk) = c̄3G(λk; η
(i+1)
k

, φ
(i+1)
k

) η
(i+1)
k

= 0.5m+ E(i)[ν], φ
(i+1)
k

= 0.5∆̄
(i+1)
1,k , λk ∈ (0, 1)

GIGM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k , β

(i+1)
k

= E(i)[ω], ρ
(i+1)
k

= 0.5n− 0.5E(i)[ω]

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k , φ

(i+1)
k

= E(i)[ν], ϱ
(i+1)
k

= 0.5m− 0.5E(i)[ν]

GIEM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k , β

(i+1)
k

= 2E(i)[ω], ρ
(i+1)
k

= 0.5n− 1

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k , φ

(i+1)
k

= 2E(i)[ν], ϱ
(i+1)
k

= 0.5m− 1

SGGM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k + E(i)[ω], β

(i+1)
k

= ∆
(i+1)
3,k , ρ

(i+1)
k

= 0.5(n+ E(i)[ω])

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k + E(i)[ν], φ

(i+1)
k

= ∆̄
(i+1)
3,k , ϱ

(i+1)
k

= 0.5(m+ E(i)[ν])

SGEM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k + 2E(i)[ω], β

(i+1)
k

= ∆
(i+1)
3,k , ρ

(i+1)
k

= 0.5n+ 1

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k + 2E(i)[ν], φ

(i+1)
k

= ∆̄
(i+1)
3,k , ϱ

(i+1)
k

= 0.5m+ 1

SGBM
q(i+1)(ξk) = c4GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k , β

(i+1)
k

= ∆
(i+1)
3,k , ρ

(i+1)
k

= 0.5n+ E(i)[ω], ξk ∈ (0, 1)

q(i+1)(λk) = c̄4GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k , φ

(i+1)
k

= ∆̄
(i+1)
3,k , ϱ

(i+1)
k

= 0.5m+ E(i)[ν], λk ∈ (0, 1)

SGIGM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k , β

(i+1)
k

= ∆
(i+1)
3,k + E(i)[ω], ρ

(i+1)
k

= 0.5(n− E(i)[ω])

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k , φ

(i+1)
k

= ∆̄
(i+1)
3,k + E(i)[ν], ϱ

(i+1)
k

= 0.5(m− E(i)[ν])

SGIEM
q(i+1)(ξk) = GIG(ξk;α

(i+1)
k

, β
(i+1)
k

, ρ
(i+1)
k

) α
(i+1)
k

= ∆
(i+1)
1,k , β

(i+1)
k

= ∆
(i+1)
3,k + 2E(i)[ω], ρ

(i+1)
k

= 0.5n− 1

q(i+1)(λk) = GIG(λk; η
(i+1)
k

, φ
(i+1)
k

, ϱ
(i+1)
k

) η
(i+1)
k

= ∆̄
(i+1)
1,k , φ

(i+1)
k

= ∆̄
(i+1)
3,k + 2E(i)[ν], ϱ

(i+1)
k

= 0.5m− 1

For the Monte Carlo updates of posterior PDFs q(i+1)(ξk) and q(i+1)(λk), the required expec-
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Fig. 3: Monte Carlo update and analytical update of q(i+1)(ξk) and q(i+1)(λk) for the SGGM

distribution when M ∈ {103, 104, 105, 106}.

tations of mixing parameters can be approximated as


















































E(i+1)[ξk] ≈
M
∑

j=1

w
(i+1)j
ξ,k ξjk, E(i+1)[λk] ≈

M
∑

j=1

w
(i+1)j
λ,k λjk

E(i+1)[ 1
ξk
] ≈

M
∑

j=1

w
(i+1)j
ξ,k

1

ξ
j
k

, E(i+1)[ 1
λk
] ≈

M
∑

j=1

w
(i+1)j
λ,k

1

λ
j
k

E(i+1)[log ξk] ≈
M
∑

j=1

w
(i+1)j
ξ,k log ξjk

E(i+1)[log λk] ≈
M
∑

j=1

w
(i+1)j
λ,k log λjk

(81)

To illustrate the effectiveness of the proposed Monte Carlo update method, the Monte Carlo

update and analytical update of the posterior PDFs q(i+1)(ξk) and q(i+1)(λk) are compared.

As an example, the results of the SGGM distribution are given, where the parameters are set

as n = m = 1, ∆
(i+1)
1,k = ∆̄

(i+1)
1,k = 5, ∆

(i+1)
2,k = ∆̄

(i+1)
2,k = 2, ∆

(i+1)
3,k = ∆̄

(i+1)
3,k = 0.5, and

E(i)[ω] = E(i)[ν] = 5. Based on such parameter selections, the mixing parameters ξk and λk

have the same posterior PDFs, i.e., q(i+1)(ξk) = q(i+1)(λk), and only the results of one of the

mixing parameters will be shown in the next numerical comparisons.

The Monte Carlo update and analytical update of q(i+1)(ξk) and q(i+1)(λk) for the SGGM

distribution when M = 103, M = 104, M = 105 and M = 106 are shown in Fig. 3. It is
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TABLE IV: Shape parameters and rate parameters of q(i+1)(ω) and q(i+1)(ν) for exemplary

GGScM distributions.

GGScM distributions Shape parameters and rate parameters

GGM and SGGM
c(i+1) = 0.5T + 1, d(i+1) = −0.5T − 0.5

T
∑

k=1

(E(i+1)[log ξk]− E(i+1)[ξk])

a(i+1) = 0.5T + 1, b(i+1) = −0.5T − 0.5
T
∑

k=1

(E(i+1)[log λk]− E(i+1)[λk])

GEM and SGEM
c(i+1) = T + 1, d(i+1) =

T
∑

k=1

E(i+1)[ξk]

a(i+1) = T + 1, b(i+1) =
T
∑

k=1

E(i+1)[λk]

GBM and SGBM
c(i+1) = T + 1, d(i+1) = −

T
∑

k=1

E(i+1)[log ξk]

a(i+1) = T + 1, b(i+1) = −
T
∑

k=1

E(i+1)[log λk]

GIGM and SGIGM
c(i+1) = 0.5T + 1, d(i+1) = −0.5T + 0.5

T
∑

k=1

(E(i+1)[log ξk] + E(i+1)[ 1
ξk

])

a(i+1) = 0.5T + 1, b(i+1) = −0.5T + 0.5
T
∑

k=1

(E(i+1)[log λk] + E(i+1)[ 1
λk

])

GIEM and SGIEM
c(i+1) = T + 1, d(i+1) =

T
∑

k=1

E(i+1)[ 1
ξk

]

a(i+1) = T + 1, b(i+1) =
T
∑

k=1

E(i+1)[ 1
λk

]

observed from Fig. 3 that the Monte Carlo update has almost the same outlines as the analytical

update when M = 103, and the Monte Carlo update approaches the analytical update as the

number of random samples increases, and the Monte Carlo update and analytical update are

almost identical when M = 105 and M = 106. The KLDs between Monte Carlo update and

analytical update when M = 103, M = 104, M = 105 and M = 106 are, respectively, 2.4×10−2,

4.0× 10−3, 9.6× 10−4 and 2.6× 10−4. The KLDs between Monte Carlo update and analytical

update reduce gradually as the number of random samples raises. Thus, the posterior PDFs of

mixing parameters are well updated based on the Monte Carlo approach with M = 103 random

samples, and the accuracy of the Monte Carlo update can be further improved by increasing the

number of random samples.

D. Updates of q(i+1)(ω) and q(i+1)(ν)

As an example, next, we derive the updates of q(i+1)(ω) and q(i+1)(ν) when state and mea-

surement noises are modelled by the GIGM distribution. Substituting π1(ξk;ω) = IG(ξk;
ω
2
, ω
2
)

and π2(λk; ν) = IG(λk;
ν
2
, ν
2
) in (52)-(53) and using Stirling’s approximation: log Γ(0.5y) ≈

April 18, 2019 DRAFT



28

TABLE V: The proposed robust RTS smoother based on the GGM and SGEM distributions.

Inputs: x̂0|0, P0|0, {Fk,Hk, zk|1 ≤ k ≤ T}, Q̄, R̄, ω̄, ν̄, ϵ, M , Nm.

1. Initialization: E(0)[ξk] = 1, E(0)[λk] = 1, E(0)[β1] = 0, E(0)[β2] = 0, E(0)[Q−1] = Q̄−1, E(0)[R−1] = R̄−1,

E(0)[ω] = ω̄, E(0)[ν] = ν̄.

for i = 0 : N − 1

Update q(i+1)(x0:T ) by (27):

2. Calculate the modified mean vector q̃
(i)
k and covariance matrix Q̃

(i)
k of state noise from time sample 1 to time sample

T using (65).

3. Calculate the modified mean vector r̃
(i)
k and covariance matrix R̃

(i)
k of measurement noise from time 1 to T using (67).

4. Calculate {x̂(i+1)

k|T ,P
(i+1)

k|T ,G
(i+1)
k−1 |0 ≤ k ≤ T} by running standard RTS smoother [36] with inputs z1:T , x̂0|0, P0|0,

and
{

Fk,Hk, q̃
(i)
k , r̃

(i)
k , Q̃

(i)
k , R̃

(i)
k |1 ≤ k ≤ T

}

.

5. Calculate A
(i+1)
k , B

(i+1)
k , a

(i+1)
k and b

(i+1)
k using (62).

Update q(i+1)(β1) and q(i+1)(β2) by (29):

6. Calculate the mean vector β̂
(i+1)
1 and covariance matrix P

(i+1)
β1

using (63).

7. Calculate the mean vector β̂
(i+1)
2 and covariance matrix P

(i+1)
β2

using (68).

8. Calculate E(i+1)[β1], E
(i+1)[β1β

T
1 ], E

(i+1)[β2] and E(i+1)[β2β
T
2 ] using (64) and (58), respectively.

Update q(i+1)(ξk) and q(i+1)(λk) by analytical method in Table VI or Monte Carlo approach in Table VII.

Update q(i+1)(Q) and q(i+1)(R) by (48):

9. Calculate E(i+1) and F(i+1) using (66) and (69), respectively.

10. Calculate the dof parameters t(i+1) and u(i+1) and inverse scale matrices T(i+1) and U(i+1) using (49).

11. Calculate E(i+1)[Q−1] and E(i+1)[R−1] using (60).

Update q(i+1)(ω) and q(i+1)(ν) by (54):

12. Calculate the shape parameter c(i+1) and rate parameter d(i+1) of GGM distribution in Table IV.

13. Calculate the shape parameter a(i+1) and rate parameter b(i+1) of SGEM distribution in Table IV.

14. Calculate E(i+1)[ω] and E(i+1)[ν] using (61).

15. If

∥

∥

∥
x̂
(i+1)
0:T |T

−x̂
(i)
0:T |T

∥

∥

∥

∥

∥

∥
x̂
(i)
0:T |T

∥

∥

∥

<= ϵ, stop iteration.

end

16. Calculate the smoothing estimates of the state trajectory, mixing parameters and unknown distribution parameters

using (53).

Outputs: {x̂k|T ,Pk|T |0 ≤ k ≤ T}, {ξ̂k|T , λ̂k|T |1 ≤ k ≤ T}, β̂1, β̂2, Q̂, R̂, ω̂, ν̂.

(0.5y − 0.5) log(0.5y) −0.5y yields






































log q(i+1)(ω) ≈ 0.5T logω − {−0.5T+

0.5
T
∑

k=1

(E(i+1)[log ξk] + E(i+1)[ 1
ξk
])

}

ω + cω

log q(i+1)(ν) ≈ 0.5T log ν − {−0.5T+

0.5
T
∑

k=1

(E(i+1)[log λk] + E(i+1)[ 1
λk
])

}

ν + cν

(82)
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TABLE VI: Analytical update of mixing parameters based on the GGM and SGEM distributions.

Update q(i+1)(ξk) and q(i+1)(λk) by Table III.

1. Calculate the parameters ∆
(i+1)
1,k , ∆̄

(i+1)
1,k and ∆̄

(i+1)
3,k using (37).

2. Calculate the parameter ∆
(i+1)
3,k using (70).

3. Calculate the shape parameter α
(i+1)
k and rate parameter β

(i+1)
k for GGM distribution in Table III.

4. Calculate the shape parameters η
(i+1)
k , φ

(i+1)
k and ϱ

(i+1)
k for SGEM distribution in Table III.

5. Calculate the expectations E(i+1)[ξk] and E(i+1)[log ξk] using (75).

6. Calculate the expectations E(i+1)[λk], E
(i+1)[ 1

λk
] and E(i+1)[log λk] using (77).

TABLE VII: Monte Carlo update of mixing parameters based on the GGM and SGEM

distributions.

Update q(i+1)(ξk) and q(i+1)(λk) by (46)-(47).

1. Calculate the parameters ∆
(i+1)
1,k , ∆̄

(i+1)
1,k , ∆̄

(i+1)
2,k and ∆̄

(i+1)
3,k

using (37).

2. Calculate the parameters ∆
(i+1)
2,k and ∆

(i+1)
3,k using (70).

3. Draw M random samples
{

ξjk
}M

j=1
from the prior PDF G

(

ξk;
E(i)[ω]

2
, E(i)[ω]

2

)

using (45).

4. Draw M random samples
{

λj
k

}M

j=1
from the prior PDF Ex(λk; E

(i)[ν]) using (45).

5. Calculate the weights
{

w
(i+1)j
ξ,k

}M

j=1
using (47) and (79).

6. Calculate the weights
{

w
(i+1)j
λ,k

}M

j=1
using (47) and (80).

7. Calculate E(i+1)[ξk], E
(i+1)[log ξk], E

(i+1)[λk], E
(i+1)[ 1

λk
] and E(i+1)[log λk] using (81).

According to (82), q(i+1)(ω) and q(i+1)(ν) can be updated as Gamma through (54), where the

shape and rate parameters c(i+1), d(i+1), a(i+1) and b(i+1) are, respectively, given by


























c(i+1) = 0.5T + 1, a(i+1) = 0.5T + 1

d(i+1) = −0.5T + 0.5
T
∑

k=1

(E(i+1)[log ξk] + E(i+1)[ 1
ξk
])

b(i+1) = −0.5T + 0.5
T
∑

k=1

(E(i+1)[log λk] + E(i+1)[ 1
λk
])

(83)

Similarly, for other exemplary GGScM distributions, the posterior PDFs q(i+1)(ω) and q(i+1)(ν)

can be also updated as Gamma through (54), and the shape parameters and rate parameters are
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Fig. 4: Diagram of prior, likelihood and posterior PDFs for the exemplary GGScM distributions.

given in Table IV.

The proposed robust RTS smoothers based on exemplary GGScM distributions are composed

of the updates of posterior PDFs of state trajectory, mixing parameters and unknown distribution

parameters and the calculations of expectations. Different robust RTS smoothers can be derived

when different exemplary GGScM distributions are employed to model state and measurement

noises. As an example, the implementation pseudo-code for the proposed robust RTS smoother

based on the GGM and SGEM distributions is illustrated in Table V, where the state and

measurement noises are, respectively, modelled by the GGM and SGEM distributions, and Q̄

and R̄ denote the nominal state and measurement noise covariance matrices, respectively, and ω̄

and ν̄ denote the initial dof parameters of the GGM and SGEM distributions, respectively, and ϵ

denotes the iteration threshold, and Nm denotes the maximum number of iterations. In Table V,

the posterior PDFs of mixing parameters can be updated using the analytical method or Monte

Carlo approach, which are, respectively, shown in Tables VI and VII.

E. Robustness analyses

Generally, in the RTS smoothing framework, the covariance matrices of state and measurement

residuals will automatically increase when the state and measurement noises have abnormal and
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TABLE VIII: The modes and mean values of posterior PDF q(y) for the exemplary GGScM

distributions.

GGScM distributions Mode y+ Mean value [y]+ Parameters

GGM (α− 1)/β α/β α = 0.5s+ 0.5ν, β = 0.5∆1 + 0.5ν

GEM (α− 1)/β α/β α = 0.5s+ 1, β = 0.5∆1 + ν

GBM (α− 1)/β \ α = 0.5s+ ν, β = 0.5∆1

GIGM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1, β = ν, ρ = 0.5s− 0.5ν

GIEM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1, β = 2ν, ρ = 0.5s− 1

SGGM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1 + ν, β = ∆3, ρ = 0.5s+ 0.5ν

SGEM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1 + 2ν, β = ∆3, ρ = 0.5s+ 1

SGBM β√
(ρ−1)2+αβ+(1−ρ)

\ α = ∆1, β = ∆3, ρ = 0.5s+ ν

SGIGM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1, β = ∆3 + ν, ρ = 0.5s− 0.5ν

SGIEM β√
(ρ−1)2+αβ+(1−ρ)

√
βKρ+1(

√
αβ)√

αKρ(
√

αβ)
α = ∆1, β = ∆3 + 2ν, ρ = 0.5s− 1

infrequent values which are induced by the heavy-tailed and/or skew state and measurement

noises. That is to say, for the proposed robust RTS smoothing framework, the parameters A
(i+1)
k

and B
(i+1)
k will increase when the abnormal and infrequent noise values appear. Then, according

to (37), the parameters ∆
(i+1)
1,k and ∆̄

(i+1)
1,k also increase. For the proposed robust RTS smoothers

based on the exemplary GGScM distributions, the modified mean vectors and covariance matrices

of non-Gaussian state and measurement noises are time-varying and adaptively adjusted based

on the estimates of mixing parameters ξk and λk, as is shown in (65) and (67). To accommodate

the heavy-tailed and/or skew state and measurement noises, the posterior mean values of mixing

parameters ξk and λk need to decrease adaptively when the parameters ∆
(i+1)
1,k and ∆̄

(i+1)
1,k raise. To

this end, next, we will analyse the behaviours of the posterior mean values of mixing parameters

ξk and λk in terms of the parameters ∆
(i+1)
1,k and ∆̄

(i+1)
1,k .

Before presenting the analyses, four important inequalities are firstly given as follows






∆
(i+1)
1,k > 0, ∆̄

(i+1)
1,k > 0

∆
(i+1)
3,k ≥ 0, ∆̄

(i+1)
3,k ≥ 0

(84)

where ∆
(i+1)
3,k = 0 and ∆̄

(i+1)
3,k = 0 if and only if E(i+1)[β1β

T
1 ] = 0 and E(i+1)[β2β

T
2 ] = 0 . The
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proof of (84) is given in Appendix F.

Employing (80) in (43), the likelihood PDFs of the exemplary GGScM distributions can be

written as






l1(ξk) = c2 exp(0.5n log ξk − 0.5ξk∆
(i+1)
1,k +∆

(i+1)
2,k − 0.5∆

(i+1)
3,k /ξk)

l2(λk) = c̄2 exp(0.5m log λk − 0.5λk∆̄
(i+1)
1,k + ∆̄

(i+1)
2,k − 0.5∆̄

(i+1)
3,k /λk)

(85)

where ∆
(i+1)
3,k = ∆̄

(i+1)
3,k = 0 for the exemplary symmetric GGScM distributions.

According to (85), the likelihood PDFs of the exemplary GGScM distributions can be ex-

pressed as a unified form

l(y) = c exp(0.5s log y − 0.5∆1y +∆2 − 0.5∆3/y) s.t. y > 0, ∆1 > 0, ∆3 ≥ 0 (86)

where l(y) becomes l1(ξk) and l2(λk) when the following equations hold






y = ξk, c = c2, s = n,∆1 = ∆
(i+1)
1,k ,∆2 = ∆

(i+1)
2,k ,∆3 = ∆

(i+1)
3,k

y = λk, c = c̄2, s = m,∆1 = ∆̄
(i+1)
1,k ,∆2 = ∆̄

(i+1)
2,k ,∆3 = ∆̄

(i+1)
3,k

(87)

Using (40) and (86), the posterior PDFs can be also expressed as a unified form

q(y) = cl(y)π(y; ν), s.t. y > 0, ∆1 > 0, ∆3 ≥ 0 (88)

where c denotes a normalizing constant, and π(y; ν) denotes a prior PDF, and q(y) becomes

q(i+1)(ξk) and q(i+1)(λk) when the following equations hold






c = c1, l(y) = l1(ξk), π(y; ν) = π1(ξk; E
(i)[ω])

c = c̄1, l(y) = l2(λk), π(y; ν) = π2(λk; E
(i)[ν])

(89)

Employing (86), we obtain

log l(y) = 0.5s log y − 0.5∆1y − 0.5∆3/y + cy s.t. y > 0, ∆1 > 0, ∆3 ≥ 0 (90)

It is observed from (90) that the likelihood PDF l(y) is a generalized inverse Gaussian PDF

with shape parameters ∆1, ∆3 and 0.5s+ 1, i.e.,

l(y) = GIG(y; ∆1,∆3, 0.5s+ 1) (91)

Then, according to (91), it is apparent that the likelihood PDF l(y) is unimodal and has a

unique mode y∗ that is given by

y∗ =
s

2∆1

+

√

(

s

2∆1

)2

+
∆3

∆1

(92)
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The modes and mean values of posterior PDF q(y) for the exemplary GGScM distributions

are listed in Table VIII, where y+ and [y]+, respectively, denote the mode and mean value of

the posterior PDF. The modes and mean values are obtained using the analytical posterior PDFs

of mixing parameters, and the modes and mean values of the GBM and SGBM distributions are

unavailable since the posterior PDFs of mixing parameters for the GBM and SGBM distributions

are, respectively, truncated Gamma and generalized inverse Gaussian distributions. It is seen from

(92) that the mode y∗ of the likelihood PDF reduces with the increase of parameter ∆1, which

makes the likelihood PDF move left. We can see from Table VIII that the mode y+ of the

posterior PDF decreases with the increase of parameter ∆1. Then, the posterior PDF with a

fixed prior PDF also moves left, and the mean value [y]+ of the posterior PDF decreases. Thus,

the mean value [y]+ of the posterior PDF reduces as the parameter ∆1 raises. The diagram of

the prior PDF π(y; ν), likelihood PDF l(y) and posterior PDF q(y) for the exemplary GGScM

distributions is shown in Fig. 4, where y− and [y]−, respectively, denote the mode and mean

value of the prior PDF.

Based on the above discussions, both the posterior mean values E(i+1)[ξk] and E(i+1)[λk] of

the mixing parameters ξk and λk reduce with the increases of ∆
(i+1)
1,k and ∆̄

(i+1)
1,k . Then, according

to (67), the modified mean vectors q̃
(i)
k and r̃

(i)
k and covariance matrices Q̃

(i)
k and R̃

(i)
k of the

state and measurement noises all raise with the increases of the parameters ∆
(i+1)
1,k and ∆̄

(i+1)
1,k ,

which accommodates the heavy-tailed and/or skew state and measurement noises.

F. A KLD-based selection scheme for GGScM distributions

In practical applications, two GGScM distributions need to be selected to model the state

and measurement noises. The optimal selection of the two GGScM distributions can minimize

the KLD between the approximate joint PDF qγ1,γ2(wk−1)qγ1,γ2(vk) and the true joint PDF

p(wk−1,vk) of the state and measurement noises, i.e.,

{γ1,o, γ2,o} = argmin
γ1,γ2

KLD{qγ1,γ2(wk−1)qγ1,γ2(vk) ∥ p(wk−1,vk)} (93)

where γ1 and γ2 represent the GGScM distributions for modelling the state and measurement

noises, respectively, and {γ1,o, γ2,o} is the optimal selection of {γ1, γ2}, and qγ1,γ2(wk−1) and

qγ1,γ2(vk) denote, respectively, the GGScM approximations of state and measurement noises

based on the selection of GGScM distributions {γ1, γ2}.
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Employing (18) and (55), the approximate PDFs qγ1,γ2(wk−1) and qγ1,γ2(vk) of state and

measurement noises are formulated as






qγ1,γ2(wk−1) =
∫ +∞

0
g
(

wk−1; β̂1,γ1,γ2/s1,γ1(ξk), Q̂γ1,γ2/κ1,γ1(ξk)
)

π1,γ1(ξk; ω̂γ1,γ2)dξk

qγ1,γ2(vk) =
∫ +∞

0
g
(

vk; β̂2,γ1,γ2/s2,γ2(λk), R̂γ1,γ2/κ2,γ2(λk)
)

π2,γ2(λk; ν̂γ1,γ2)dλk
(94)

where s1,γ1(·), s2,γ2(·), κ1,γ1(·), κ2,γ2(·), π1,γ1(·) and π2,γ2(·) denote the skew functions, scale

functions and mixing densities of GGScM distributions γ1 and γ2, respectively, and β̂1,γ1,γ2 ,

β̂2,γ1,γ2 , Q̂γ1,γ2 , R̂γ1,γ2 , ω̂γ1,γ2 and ν̂γ1,γ2 denote the approximate estimates of shape parameters,

scale matrices and dof parameters of GGScM distributions γ1 and γ2, respectively.

Since the state noise wk−1 is independent of the measurement noise vk, the joint noise PDF

p(wk−1,vk) can be formulated as

p(wk−1,vk) = p(wk−1)p(vk) (95)

Employing (95), the KLD in (93) can be reformulated as

KLD {qγ1,γ2(wk−1)qγ1,γ2(vk) ∥ p(wk−1,vk)} =

∫

qγ1,γ2(wk−1) log
qγ1,γ2(wk−1)

p(wk−1)
dwk−1+

∫

qγ1,γ2(vk) log
qγ1,γ2(vk)

p(vk)
dvk = KLD {qγ1,γ2(wk−1) ∥ p(wk−1)}+KLD {qγ1,γ2(vk) ∥ p(vk)}

(96)

Substituting (96) in (93) yields

GGScMopt = argmin
γ1,γ2

(KLD {qγ1,γ2(wk−1) ∥ p(wk−1)}+KLD {qγ1,γ2(vk) ∥ p(vk)}) (97)

In practical applications, it is very difficult to obtain the optimal selection {γ1,o, γ2,o} of

GGScM distributions to model state and measurement noises since the optimization problem in

(97) can not be solved analytically. Fortunately, a reasonable selection of GGScM distributions

can be obtained by selecting two GGScM distributions from exemplary GGScM distributions in

Tables I and II based on off-line analysis, in which the two GGScM distributions have minimum

KLD between the approximate joint PDF and the true joint PDF of the state and measurement

noises as compared with other GGScM distributions.

Remark 1: In practical applications, some useful prior information is required to select a

reasonable GGScM distribution to model a heavy-tailed and/or skew noise. For the proposed

KLD-based selection scheme, explicit PDFs or some sample values of noises are required to

calculate the KLDs between the approximate PDFs of noises and the true PDFs of noises.
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Remark 2: The existing adaptive RTS smoother [31] is a special case of the proposed robust

RTS smoothing framework when the state and measurement noises are modelled by a Gaussian

distribution. The derivations of the robust RTS smoother based on the Gaussian distribution are

given in Appendix G. The existing VB-ST-RTS smoother is also a special case of the proposed

robust RTS smoothers since the latter can degrade to the former when the state and measurement

noises are modelled by a GGM distribution and the posterior PDFs of mixing parameters are

updated using the analytical method.

Remark 3: A robust Kalman filtering framework for a linear state-space model with heavy-

tailed and/or skew noises can be also derived based on the proposed GGScM distribution using

the variational Bayesian approach. Moreover, the idea of the proposed method can be extended

to design a nonlinear filter and a nonlinear smoother for a nonlinear state-space model with

heavy-tailed and/or skew noises, and existing Gaussian weighted integral rules can be employed

to implement the nonlinear filter and smoother.

VI. SIMULATION AND EXPERIMENTAL STUDY

In this section, the superior performance of the proposed robust RTS smoothers as compared

with existing state-of-the-art RTS smoothers is demonstrated by two representative examples:

stochastic volatility model and cooperative localization of an AUV. In the two examples, the

proposed robust RTS smoothers are compared with the existing state-of-the-art smoothers in-

cluding the standard RTS smoother with true mean vectors and covariance matrices of state and

measurement noises [36], the skew t-RTS smoother [14], and the VB-ST-RTS smoother [6]. All

smoothing algorithms are coded with MATLAB and are executed on a computer with Intel Core

i7-6900K CPU @ 3.20 GHz.

A. Stochastic volatility model

The nonlinear discrete-time stochastic volatility model is formulated as [34]






xk = γ0 + γ1xk−1 + wk−1

yk = εk exp(xk/2)
(98)

where xk and yk denote, respectively, the latent log-volatility and obtained asset return at time

sample k, and the initial log-volatility x0, state noise wk and multiplicative measurement noise

εk are Gaussian distributed, i.e., x0 ∼ N(0, Σw

1−γ2
1
), wk ∼ N(0,Σw) and εk ∼ N(0,Σv). In this
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simulation, the leverage effect is not considered, and then wk and εj are mutually uncorrelated

for any time samples k and j. The model parameters are set as γ0 = 0, γ1 = 0.9, Σw = 0.5 and

Σv = 1.

By performing the natural logarithm operation on both sides of measurement equation in

(98), the above nonlinear measurement model can be equivalently transformed into a linear

measurement model as follows

zk = xk + vk, s.t. zk = log(y2k), vk = log(ε2k) (99)

According to (98)-(99) and using γ0 = 0, the stochastic volatility model can be also written

as a linear state-space model in (17), where Fk = γ1 and Hk = 1. Utilizing the transformation

theorem, the PDF of the measurement noise vk is calculated as

p(vk) =
1√
2π

exp (−0.5 exp(vk) + 0.5vk) (100)

The measurement noise vk has a heavy-tailed and negative skew distribution. The true mean

value and variance of the measurement noise vk are, respectively, rt = −1.26 and Rt = 4.82,

where rt and Rt are calculated in the interval [−20 5] using the rectangular integration method

with step width 0.001.

In this paper, outlier corrupted state noise is produced in terms of

wk ∼







N(0,Σw) w.p. 0.95

N(0, 100Σw) w.p. 0.05
(101)

where w.p. denotes “with probability”. The state noise that is generated according to (101) has

a heavy-tailed and symmetric distribution, and its PDF can be formulated as follows

p(wk) = 0.95N(wk; 0,Σw) + 0.05N(wk; 0, 100Σw) (102)

and its true mean value and variance are, respectively, qt = 0 and Qt = 5.95Σw.

To address the heavy-tailed state noise, the GGM, GEM, GBM, GIGM and GIEM distributions

are utilized to model state noise, and to handle the heavy-tailed and skew measurement noise,

the SGGM, SGEM, SGBM, SGIGM and SGIEM distributions are employed to model the

measurement noise. Under the proposed robust RTS smoothing framework, twenty-five different

robust RTS smoothers can be obtained based on the five symmetric GGScM distributions and

the five skew GGScM distributions. As an example, we select five robust RTS smoothers to

April 18, 2019 DRAFT



37

demonstrate the efficiency and superiority of the proposed robust RTS smoothing framework,

including the GGM and SGGM-based RTS (GGM-SGGM-RTS) smoother, the GEM and SGEM-

based RTS (GEM-SGEM-RTS) smoother, the GBM and SGBM-based RTS (GBM-SGBM-RTS)

smoother, the GIGM and SGIGM-based RTS (GIGM-SGIGM-RTS) smoother, and the GIEM and

SGIEM-based RTS (GIEM-SGIEM-RTS) smoother. The initial dof parameters of the proposed

GGM-SGGM-RTS and GIGM-SGIGM-RTS smoothers are set as ω̄ = ν̄ = 5, and the initial

dof parameters of the proposed GEM-SGEM-RTS, GBM-SGBM-RTS and GIEM-SGIEM-RTS

smoothers are set as ω̄ = ν̄ = 1.

In this simulation, the true initial state variable x0 = 0, and the initial error variance P0 =
Σw

1−γ2
1
,

and the initial state estimate x̂0|0 is randomly drawn from N(x0, P0), and the simulation time

is set as 5000s. The parameters of the standard RTS smoother are selected as q = qt, r = rt,

Q = Qt, R = Rt, and the parameters of the skew t-RTS smoother are chosen as q = qt, Q = Qt,

R = 1.2, ∆ = −1.6, ν = 10, and the parameters of the VB-ST-RTS smoother are set as q = 0,

r = 0, a0 = c0 = 5, b0 = d0 = 1, t0 = u0 = 3, T0 = Σw, U0 = Σv, and the parameters

of the proposed robust RTS smoothers are selected as q = 0, Q̄ = Σw, R̄ = Σv, ϵ = 10−8,

M = 1000, Nm = 100. Note that the parameters of the skew t-distribution are selected off-line

by minimizing the KLD between the skew t-PDF and the PDF of the measurement noise.

To compare the estimation accuracy of existing smoothers and the proposed smoothers, the

root mean square error (RMSE) and the averaged RMSE (ARMSE) of the state variable are

selected as performance metrics defined as follows






















RMSE(k) =

√

1
Mc

Mc
∑

s=1

(

xsk − x̂s
k|T

)2

ARMSE = 1
T

T
∑

k=1

√

1
Mc

Mc
∑

s=1

(

xsk − x̂s
k|T

)2
(103)

where RMSE(k) denotes the RMSE at time sample k, and xsk and x̂sk|T are, respectively, the true

and estimated state variable at the s-th Monte Carlo run, and Mc and T , respectively, represent

the total number of Monte Carlo runs and the simulation steps that are set as Mc = 1000 and

T = 5000. To clearly exhibit the RMSEs of existing RTS smoothers and the proposed robust

RTS smoothers in Fig. 5 and Fig. 8, the RMSEs of all RTS smoohters are smoothed using a

moving average method with span of 100s.

The RMSEs, ARMSEs and implementation times of the proposed robust RTS smoothers based
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Fig. 5: RMSEs of the proposed robust RTS smoothers based on different GGScM distributions.

TABLE IX: ARMSEs and implementation times of the proposed robust RTS smoothers based

on different GGScM distributions.

Smoothers GGM-SGGM-RTS-1 GEM-SGEM-RTS-1 GBM-SGBM-RTS-1 GIGM-SGIGM-RTS-1 GIEM-SGIEM-RTS-1

ARMSE 1.10 1.21 1.08 1.27 1.11

Time (s) 15.28 13.25 101.81 18.53 17.56

Smoothers GGM-SGGM-RTS-2 GEM-SGEM-RTS-2 GBM-SGBM-RTS-2 GIGM-SGIGM-RTS-2 GIEM-SGIEM-RTS-2

ARMSE 1.12 1.23 1.11 1.29 1.13

Time (s) 79.94 52.55 141.91 65.73 74.88

on different GGScM distributions are, respectively, shown in Fig. 5 and Table IX, where “1”

and “2” represent that the posterior PDFs of mixing parameters in the proposed robust RTS

smoothers are updated using analytical method and Monte Carlo approach, respectively. It is

seen from Fig. 5 and Table IX that the proposed robust RTS-1 smoothers have slightly better

estimation accuracy than the proposed robust RTS-2 smoothers, which is induced by the fact that

the mixing parameters can be better updated by the analytical method as compared with the Motel

Carlo approach. We can see from Fig. 5 and Table IX that the proposed GGM-SGGM-RTS-1
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Fig. 6: True PDF and different GGScM approximations of the state noise in 1000 Monte Carlo

runs.

Fig. 7: True PDF and different GGScM approximations of the measurement noise in 1000 Monte

Carlo runs.

smoother has better estimation accuracy than other proposed robust RTS smoothers except for

the proposed GBM-SGBM-RTS-1 smoother, and the proposed GGM-SGGM-RTS-1 smoother
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TABLE X: Averaged KLDs between the true PDFs and different GGScM approximations of the

state and measurement noises.

PDFs GGM GEM GBM GIGM GIEM

KLDw 0.21 0.14 0.26 0.44 0.28

PDFs SGGM SGEM SGBM SGIGM SGIEM

KLDv 0.37 0.54 0.29 0.55 0.36

PDFs GGM-SGGM GEM-SGEM GBM-SGBM GIGM-SGIGM GIEM-SGIEM

KLDwv 0.58 0.68 0.55 0.99 0.64
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Skew t−RTS

VB−ST−RTS

Proposed GGM−SGGM−RTS

Fig. 8: RMSEs of existing RTS smoothers and the proposed GBM-SGBM-RTS smoother.

TABLE XI: ARMSEs and implementation times of existing RTS smoothers and the proposed

GGM-SGGM-RTS smoother.

Smoothers Standard RTS Skew t-RTS VB-ST-RTS GGM-SGGM-RTS

ARMSE 1.36 1.34 1.49 1.10

Time (s) 0.28 13.43 5.63 15.28
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Fig. 9: True PDF, Gaussian, Student’s t and GGM approximations of the state noise in 1000

Monte Carlo runs.

Fig. 10: True PDF, Gaussian, Student’s t, skew t and SGGM approximations of the measurement

noise in 1000 Monte Carlo runs.

has slightly worse estimation accuracy but significantly lower computational complexity than the

proposed GBM-SGBM-RTS-1 smoother.
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TABLE XII: Averaged KLDs between the true PDFs and different approximations of the state

and measurement noises.

PDFs Gaussian Gaussian Student’s t GGM

KLDw 0.69 0.69 0.23 0.21

PDFs Gaussian Skew t Student’s t SGGM

KLDv 0.55 0.11 1.29 0.37

PDFs Gaussian-Gaussian Gaussian-skew t Student’s t-Student’s t GGM-SGGM

KLDwv 1.24 0.80 1.52 0.58

Fig. 6 and Fig. 7, respectively, show the true PDFs and different GGScM approximations of

the state and measurement noises in 1000 Monte Carlo runs, where the parameters of the GGScM

distributions are adaptively learned based on the proposed method. The averaged KLDs between

the true PDFs and different GGScM approximations of the state and measurement noises are

listed in Table X, where KLDw denotes the averaged KLD between the true PDF and approximate

PDF of the state noise, and KLDv denotes the averaged KLD between the true PDF and

approximate PDF of the measurement noise, and KLDwv = KLDw+KLDv denotes the averaged

KLD between the true joint PDF and approximate joint PDF of the state and measurement

noises. It is observed from Fig. 6, Fig. 7 and Table X that the GGM-SGGM distribution can

better jointly model the state and measurement noises than the GEM-SGEM, GIGM-SGIGM

and GIEM-SGIEM distributions but slightly worse than the GBM-SGBM distribution. We can

also observe from Tables IX and X that with better joint modelling of the state and measurement

noises, better estimation accuracy can be achieved by the proposed robust RTS smoothers. Based

on the above discussions, the GGM and SGGM distributions will be, respectively, employed to

model the state and measurement noises due to their good modelling accuracy and reasonable

computational complexity, and the proposed GGM-SGGM-RTS-1 smoother will be compared

with existing state-of-the-art RTS smoothers.

The RMSEs, ARMSEs and implementation times of existing RTS smoothers and the proposed

GGM-SGGM-RTS smoother are, respectively, shown in Fig. 8 and Table XI. It is seen from Fig.

8 and Table XI that the proposed GGM-SGGM-RTS smoother has better estimation accuracy
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but higher computational complexity than existing state-of-the-art RTS smoothers. Fig. 9 and

Fig. 10, respectively, show the true PDFs and different approximations of state and measurement

noises in 1000 Monte Carlo runs, and the averaged KLDs between the true PDFs and different

approximations of state and measurement noises are listed in Table XII. It can be seen from Fig.

9, Fig. 10 and Table XII that the GGM-SGGM distribution can better jointly model state and

measurement noises than the Gaussian-Gaussian, Gaussian-skew t, and Student’s t-Student’s t

distributions, which results in improved estimation accuracy as compared with existing state-of-

the-art RTS smoothers.

B. Cooperative localization experiments

A master-slave cooperative localization experiment is used to illustrate the performance of the

proposed robust RTS smoothers, in which the master AUV assists the slave AUV using acoustic

range measurement. In the experiment, two survey vessels were used to serve as surface leaders,

and one survey vessel was employed to act as a surrogate AUV, and the three survey vessels

were all equipped with acoustic modem ATM-885 so that the surface leaders and the AUV can

broadcast information mutually. High-accuracy differential GPSs were installed in the two surface

leaders, and the AUV was equipped with a low-cost dead-reckoning system that is composed

by a Doppler velocity log (DVL) and a self-made compass. In order to provide a benchmark

for cooperative localization, the AUV was also equipped with a high-accuracy differential GPS

which can collect true positions of the AUV. The employed sensors and computer in the test

are illustrated in Fig. 11, and their performance parameters are listed in Table XIII, where

RMS represents root mean square. In the experiment, in order to improve the observability of

the cooperative localization of an AUV, the AUV was always located between the two surface

leaders, and only one surface leader communicated with the AUV at every time, where the

acoustic data packets were sent from the two surface leaders to the AUV every 5s and staggered

in time.

Based on the above experimental descriptions, the discrete-time state-space model of the

cooperative localization of an AUV is formulated as [27]

xk = Fxk−1 + uk +wk−1 (104)

zk =
√

(xk − xrk)
2 + (yk − yrk)

2 + vk (105)
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TABLE XIII: The performance parameters of employed sensors.

Sensors Index Parameters

Acoustic modem
Working range Up to 8000m

Error rate Less than 10−7

GPS
Position accuracy 1.8m (RMS)

Data update rate 10Hz

DVL
Working range −150m/s− 200m/s

Measurement accuracy 0.1%− 0.3%

Compass Heading accuracy 0.3◦

Fig. 11: The employed sensors and computer in the test.

where xk , [xk, yk]
T

denotes the state vector; and zk denotes the range measurement at

time sample k; and F = I2 denotes the state transition matrix; and uk = [∆t(v̂k cos θ̂k +

ω̂k sin θ̂k), ∆t(v̂k sin θ̂k − ω̂k cos θ̂k)]
T denotes the control input; and wk = [wx,k, wy,k]

T denotes

the state noise vector at time sample k; and vk denotes the measurement noise at time sample

k; and (xk, yk) and (xrk, y
r
k) denote, respectively, the east and north positions of the AUV and

leader at time sample k; and ω̂k and v̂k denote, respectively, the starboard and forward velocities
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Fig. 12: Approximate probability density curve of the measurement noise.

TABLE XIV: ALEs and implementation times of the proposed robust RTS smoothers based on

different skew GGScM distributions.

Smoothers SGGM-RTS-1 SGEM-RTS-1 SGBM-RTS-1 SGIGM-RTS-1 SGIEM-RTS-1

ALE(m) 13.7 13.8 10.7 12.5 11.8

Time (s) 24.14 17.69 30.09 14.92 17.09

Smoothers SGGM-RTS-2 SGEM-RTS-2 SGBM-RTS-2 SGIGM-RTS-2 SGIEM-RTS-2

ALE(m) 13.7 13.8 11.1 12.8 12.5

Time (s) 101.84 101.62 102.12 101.84 101.90

measured by the DVL in the body framework at time sample k; and θ̂k denotes the heading

angle provided by the self-made compass at time sample k; and ∆t denotes the sampling time.

In the experiment, the sampling time is set as ∆t = 1s, and the experimental time is T = 1600s.

The sample values of measurement noise is approximately calculated as [27]

v̂k = zk −
√

(x̂k − xrk)
2 + (ŷk − yrk)

2 (106)

where (x̂k, ŷk) represents the true position of the AUV at time sample k that is provided by
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Fig. 13: LEs of the proposed robust RTS smoothers based on different skew GGScM distributions.

TABLE XV: Averaged KLDs between the sample PDF and different skew GGScM approxima-

tions of measurement noise.

PDFs SGGM SGEM SGBM SGIGM SGIEM

KLDw 0.27 0.29 0.08 0.17 0.10

a high-accuracy differential GPS. Employing these sample values, an approximate probability

density curve of measurement noise is obtained off-line, as is shown in Fig. 12. It can be

observed from Fig. 12 that the sample values of measurement noise has a heavy-tailed and skew

distribution. The cooperative localization of an AUV has a heavy-tailed and skew measurement

noise, and can be used to illustrate the performance of the proposed robust RTS smoothers.

In the experiment, the initial state estimate x̂0|0 is provided by a high-accuracy differential

GPS which is installed in the surrogate AUV, and the initial state estimation error covariance

matrix is set as P0|0 = (1.8m)2I2 according to the RMS of the employed GPS. The parameters

of the standard RTS smoother are selected as q = qt, r = rt, Q = Qt, R = Rt, the parameters

of the skew t-RTS smoother are chosen as q = qt, Q = Qt, R = 100m2, ∆ = 5m, ν = 5,

and the parameters of the VB-ST-RTS smoother are set as q = qt, Q = Qt, a0 = 5, b0 = 1,
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Fig. 14: Sample PDF and different skew GGScM approximations of the measurement noise.
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Fig. 15: LEs of existing RTS smoothers and the proposed SGBM-RTS smoother.

u0 = 3, U0 = 100m2, and the parameters of the proposed robust RTS smoothers are selected

as q = qt, Q = Qt, R̄ = 100m2, ϵ = 10−8, M = 1000, Nm = 100, where the true mean

vectors and covariance matrices of state and measurement noises are approximately calculated

as qt ≈ [0m 0m]T, rt ≈ 14.1m, Qt ≈ diag([(2.9m)2 (2.3m)2]), and Rt ≈ (24.8m)2 by using
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TABLE XVI: ALEs (0s-1600s), steady state ALEs (350s-1600s) and implementation times of

existing RTS smoothers and the proposed SGBM-RTS smoother.

Smoothers Standard RTS Skew t-RTS VB-ST-RTS SGBM-RTS

ALE (m) (0s-1600s) 15.5 13.8 13.9 10.7

Steady state ALE (m) (350s-1600s) 12.2 10.6 12.9 7.8

Time (s) 0.33 5.19 13.39 30.09
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Fig. 16: Sample PDF and Gaussian, Student’s t, skew t and SGBM approximations of the

measurement noise.

TABLE XVII: Averaged KLDs between the sample PDF and Gaussian, Student’s t, skew t and

SGBM approximations of the measurement noise.

PDFs Gaussian Student’s t Skew t SGBM

KLDv 0.54 0.55 0.26 0.08

the obtained sample values of state and measurement noises.

To compare the estimation accuracy of the proposed robust RTS smoothers and the existing

state-of-the-art RTS smoothers, the localization error (LE) and averaged LE (ALE) are chosen
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as performance metrics, which are defined as follows [27]










LE(k) =
√

(x̂k − x̂k|k)2 + (ŷk − ŷk|k)2

ALE = 1
T

T
∑

k=1

√

(x̂k − x̂k|k)2 + (ŷk − ŷk|k)2
(107)

where (x̂k, ŷk) represents the reference position of the AUV at time sample k, and (x̂k|k, ŷk|k)

represents the position estimate at time sample k, and T = 1600s denotes the experimental time.

To better exhibit the LEs of all RTS smoothers in Fig. 13 and Fig. 15, the LEs are smoothed

using a moving average method with span of 50s.

The LEs, ALEs and implementation times of the proposed robust RTS smoothers based on

different skew GGScM distributions are, respectively, shown in Fig. 13 and Table XIV. It is

observed from Fig. 13 and Table XIV that the proposed robust RTS-1 smoothers and the proposed

robust RTS-2 smoothers have almost identical estimation accuracy, but the proposed robust RTS-

2 smoothers have higher computational complexities than the proposed robust RTS-1 smoothers.

Thus, the mixing parameters can be accurately updated by the Monte Carlo approach with 1000

random samples. We can also observe from Fig. 13 and Table XIV that the proposed SGBM-

RTS-1 smoother has better estimation accuracy than other proposed robust RTS smoothers, and

the proposed SGBM-RTS-1 smoother has reasonable computational complexity.

The sample PDF and different skew GGScM approximations of measurement noise are illus-

trated in Fig. 14, and the averaged KLDs between the sample PDF and different skew GGScM

approximations of measurement noise are listed in Table XV. It can be observed from Fig. 14

and Table XV that the SGBM distribution can better model measurement noise than the SGGM,

SGEM, SGIGM and SGIEM distributions. Also, we can observe from Table XIV and XV that

with better modelling of measurement noise, better estimation accuracy can be achieved by

the proposed robust RTS smoothers. Based on the above discussions, the SGBM distribution

will be utilized to model measurement noise, and the proposed SGBM-RTS-1 smoother will be

compared with existing state-of-the-art RTS smoothers.

The LEs, ALEs (0s-1600s), steady state ALEs (350s-1600s) and implementation times of

existing RTS smoothers and the proposed SGBM-RTS smoother are, respectively, shown in Fig.

15 and Table XVI. It is seen from Fig. 15 and Table XVI that the proposed SGBM-RTS smoother

has better estimation accuracy but higher computational complexity than existing RTS smoothers.

The sample PDF and Gaussian, Student’s t, skew t and SGBM approximations of measurement
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noise are illustrated in Fig. 16, and averaged KLDs between the sample PDF and Gaussian,

Student’s t, skew t and SGBM approximations of measurement noise are listed in Table XVII.

It can be seen from Fig. 16 and Table XVII that the SGBM distribution can better model heavy-

tailed and skew measurement noise than the Gaussian, Student’s t, skew t-distributions, which

leads to improved estimation accuracy.

VII. CONCLUSIONS

This paper proposed a GGScM distribution which can be formulated as a hierarchical Gaussian

form conditioned on a random mixing parameter that follows a continuous probability distribution

with a positive orthant as support, for which the existing GScM distribution is a special case of the

proposed GGScM distribution. As such, a major contribution of this work is to provide a unified

family of RTS smoothers on the basis of the exemplary GGScM distribution framework for a

linear state-space model with heavy-tailed and/or skew state and measurement noises. The state

trajectory, mixing parameters and unknown distribution parameters were jointly inferred using the

VB approach. Both the existing adaptive RTS smoother [31] and VB-ST-RTS smoother [6] are

special cases of the proposed robust RTS smoothing framework when the state and measurement

noises are, respectively, modelled by a Gaussian distribution and a GGM distribution.

Several particular solutions corresponding to the exemplary GGScM distributions were de-

rived, and the robustness analyses were provided to reveal the advantages of the proposed

method. Moreover, a new KLD-based scheme was proposed to facilitate the selection of GGScM

distributions in practical applications. The proposed robust RTS smoothers and existing state-of-

the-art smoothers were compared by two representative examples: stochastic volatility model and

cooperative localization of an AUV. Simulation and experimental results showed that the proposed

robust RTS smoothers have better estimation accuracy but higher computational complexities than

existing state-of-the-art smoothers.
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VIII. APPENDICES

A. Derivations of (27)-(28)

Exploiting (26), we have

log p(Θ, z1:T ) = log g(x0; x̂0|0,P0|0) + 0.5n
T
∑

k=1

log κ1(ξk)− 0.5T log |Q|−

0.5
T
∑

k=1

κ1(ξk)(xk − Fkxk−1 − β1/s1(ξk))
TQ−1(xk − Fkxk−1 − β1/s1(ξk))+

0.5m
T
∑

k=1

log κ2(λk)− 0.5T log |R| − 0.5
T
∑

k=1

κ2(λk)(zk −Hkxk − β2/s2(λk))
T×

R−1(zk −Hkxk − β2/s2(λk)) +
T
∑

k=1

log π1(ξk;ω) +
T
∑

k=1

log π2(λk; ν) + cΘ (108)

Substituting θ = x0:T in (25) and using (108) gives

log q(i+1)(x0:T ) = log g(x0; x̂0|0,P0|0)− 0.5
T
∑

k=1

E(i)[κ1(ξk)(xk − Fkxk−1 − β1/s1(ξk))
TQ−1×

(xk − Fkxk−1 − β1/s1(ξk))]− 0.5
T
∑

k=1

E(i)[κ2(λk)(zk −Hkxk − β2/s2(λk))
TR−1×

(zk −Hkxk − β2/s2(λk))] + cx0:T
(109)

The expectations in (109) are, respectively, calculated as

E(i)[κ1(ξk)(xk − Fkxk−1 − β1/s1(ξk))
TQ−1(xk − Fkxk−1 − β1/s1(ξk))] = (xk − Fkxk−1)

T×
(

Q̃
(i)
k

)−1

(xk − Fkxk−1)−
(

q̃
(i)
k

)T (

Q̃
(i)
k

)−1

(xk − Fkxk−1)− (xk − Fkxk−1)
T
(

Q̃
(i)
k

)−1

q̃
(i)
k

+ cx0:T
(110)

E(i)[κ2(λk)(zk −Hkxk − β2/s2(λk))
TR−1(zk −Hkxk − β2/s2(λk))] = (zk −Hkxk)

T×
(

R̃
(i)
k

)−1

(zk −Hkxk)−
(

r̃
(i)
k

)T (

R̃
(i)
k

)−1

(zk −Hkxk)− (zk −Hkxk)
T
(

R̃
(i)
k

)−1

r̃
(i)
k +

cx0:T
(111)

where the modified mean vectors q̃
(i)
k and r̃

(i)
k and covariance matrices Q̃

(i)
k and R̃

(i)
k of state

and measurement noises are given in (17).
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Employing (110)-(111) in (109), log q(i+1)(x0:T ) is reformulated as

log q(i+1)(x0:T ) = log g(x0; x̂0|0,P0|0) +
T
∑

k=1

log g(xk;Fkxk−1 + q̃
(i)
k , Q̃

(i)
k )+

T
∑

k=1

log g(zk;Hkxk + r̃
(i)
k , R̃

(i)
k ) + cx0:T

(112)

Exploiting (112), q(i+1)(x0:T ) is calculated as

q(i+1)(x0:T ) = g(x0; x̂0|0,P0|0)
T
∏

k=1

g(xk;Fkxk−1 + q̃
(i)
k , Q̃

(i)
k )g(zk;Hkxk + r̃

(i)
k , R̃

(i)
k ) (113)

It is observed from (113) that the posterior PDF q(i+1)(x0:T ) can be deemed as a smoothing

PDF for the linear state-space model with Gaussian state and measurement noises, i.e., wk ∼
N(q̃

(i)
k , Q̃

(i)
k ) and vk ∼ N(r̃

(i)
k , R̃

(i)
k ). Then, the posterior PDF q(i+1)(x0:T ) can be updated as

Gaussian in (27) by the standard RTS smoother [36].

B. Derivations of (29)-(32)

Substituting θ = β1 and θ = β2 in (25) and using (108) yields






































log q(i+1)(β1) = −0.5
T
∑

k=1

E(i)[κ1(ξk)(xk − Fkxk−1 − β1/s1(ξk))
TQ−1×

(xk − Fkxk−1 − β1/s1(ξk))] + cβ1

log q(i+1)(β2) = −0.5
T
∑

k=1

E(i)[κ2(λk)(zk −Hkxk − β2/s2(λk))
TR−1×

(zk −Hkxk − β2/s2(λk))] + cβ2

(114)

Employing (30)-(32) in (114), log q(i+1)(β1) and log q(i+1)(β2) can be rewritten as






log q(i+1)(β1) = −0.5
(

β1 − β̂
(i+1)
1

)T (

P
(i+1)
β1

)−1 (

β1 − β̂
(i+1)
1

)

+ cβ1

log q(i+1)(β2) = −0.5
(

β2 − β̂
(i+1)
2

)T (

P
(i+1)
β2

)−1 (

β2 − β̂
(i+1)
2

)

+ cβ2

(115)

where β̂
(i+1)
1 , β̂

(i+1)
2 , P

(i+1)
β1

and P
(i+1)
β2

are, respectively, given by (30)-(31). According to (115),

we can achieve (29).

C. Derivations of (48)-(51)

Substituting θ = Q and θ = R in (25), respectively, and using (108) yields






log q(i+1)(Q) = −0.5T log |Q| − 0.5tr {Ei+1Q−1}
log q(i+1)(R) = −0.5T log |R| − 0.5tr {Fi+1R−1}

(116)
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where Ei+1 and Fi+1 are given by






































Ei+1 =
T
∑

k=1

E(i+1)[κ1(ξk)(xk − Fkxk−1 − β1/s1(ξk))(xk − Fkxk−1 − β1/s1(ξk))
T]

s.t. Ei+1 > 0

Fi+1 =
T
∑

k=1

E(i+1)[κ2(λk)(zk −Hkxk − β2/s2(λk))(zk −Hkxk − β2/s2(λk))
T]

s.t. Fi+1 > 0

(117)

According to (116)-(117), we can obtain (48)-(51).

D. Proof of (39) for different prior distributions

As an example, firstly, we prove that (39) holds for the Gamma distribution. If the prior

distributions are selected as a Gamma distribution, i.e., π1(ξk;ω) = G(ξk;
ω
2
, ω
2
) and π2(λk; ν) =

G(λk;
ν
2
, ν
2
), we have







E(i)[log π1(ξk;ω)] =
(

E(i)[ω]
2

− 1
)

log ξk − E(i)[ω]
2

ξk + cξk

E(i)[log π2(λk; ν)] =
(

E(i)[ν]
2

− 1
)

log λk − E(i)[ν]
2

λk + cλk

(118)

Using (118) yields






E(i)[log G(ξk;
ω
2
, ω
2
)] = logG

(

ξk;
E(i)[ω]

2
, E

(i)[ω]
2

)

E(i)[log G(λk;
ν
2
, ν
2
)] = logG

(

λk;
E(i)[ν]

2
, E

(i)[ν]
2

) (119)

It is seen from (119) that (39) holds when the prior distributions are chosen as a Gamma distri-

bution. Similarly, we can prove that (39) also holds when the prior distributions are, respectively,

selected as the exponential, Beta, inverse Gamma, and inverse exponential distributions.

E. Proof of Proposition 1

Proposition 1: If C is a positive semi-definite matrix and D is a positive definite matrix, then

we have

tr(CD) ≥ 0 (120)

where tr(CD) = 0 if and only if C is a zero matrix, i.e., C = 0.

Proof: Since D is a positive definite matrix, D can be factored by the Cholesky Decomposition,

i.e.,

D = LLT (121)
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where L is an invertible lower triangular matrix.

Exploiting (121), we obtain

tr(CD) = tr(CLLT ) = tr(LTCL) (122)

Considering that L is an invertible matrix and C is a positive semi-definite matrix, then LTCL

is also a positive semi-definite matrix, i.e.,

LTCL ≥ 0 (123)

where LTCL = 0 if and only if C = 0.

Utilizing (123) in (122), we can obtain (120).

F. Proof of (84)

Using (49)-(51) yields

Ti+1 > 0, Ui+1 > 0 (124)

Employing (124) in (60), we have

E(i+1)[Q−1] > 0, E(i+1)[R−1] > 0 (125)

Since A
(i+1)
k and B

(i+1)
k are, respectively, the covariance matrices of the residuals of state and

measurement vectors, A
(i+1)
k and B

(i+1)
k are nonzero positive semi-definite matrices, i.e.,







A
(i+1)
k ≥ 0, A

(i+1)
k ̸= 0

B
(i+1)
k ≥ 0, B

(i+1)
k ̸= 0

(126)

Exploiting (126), E(i)[β1β
T
1 ] ≥ 0 and E(i)[β2β

T
2 ] ≥ 0 in (37) and using Proposition 1, we can

obtain (84).

G. Robust RTS smoother based on Gaussian distribution

If state and measurement noises are modelled by a Gaussian distribution, then the PDFs of

state and measurement noises can be formulated as (18) with β1 = 0, β2 = 0, κ1(ξk) = ξk,

κ2(λk) = λk, π(ξk;ω) = δ(ξk − 1) and π(λk; ν) = δ(λk − 1).

Since β1 = 0, β2 = 0, κ1(ξk) = ξk and κ2(λk) = λk, we can obtain (63)-(66), (70) and (79).

Employing (79) in (43), the likelihood PDFs l1(ξk) and l2(λk) are rewritten as






l1(ξk) = c2 exp(0.5n log ξk − 0.5ξk∆
(i+1)
1,k )

l2(λk) = c̄2 exp(0.5m log λk − 0.5λk∆̄
(i+1)
1,k )

(127)
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Substituting (127) in (44) and using π(ξk;ω) = δ(ξk − 1), π(λk; ν) = δ(λk − 1) yields






q(i+1)(ξk) = c1c2 exp(0.5n log ξk − 0.5ξk∆
(i+1)
1,k )δ(ξk − 1)

q(i+1)(λk) = c̄1c̄2 exp(0.5m log λk − 0.5λk∆̄
(i+1)
1,k )δ(λk − 1)

(128)

Since the integrals of q(i+1)(ξk) and q(i+1)(λk) over the entire space are equal to one, we have






∫

c1c2 exp(0.5n log ξk − 0.5ξk∆
(i+1)
1,k )δ(ξk − 1)dξk = 1

∫

c̄1c̄2 exp(0.5m log λk − 0.5λk∆̄
(i+1)
1,k )δ(λk − 1)dλk = 1

(129)

Exploiting (129) gives

c1c2 = exp(0.5∆
(i+1)
1,k ), c̄1c̄2 = exp(0.5∆̄

(i+1)
1,k ) (130)

Utilizing (128) and (130), the expectations of mixing parameters are calculated as






E(i+1)[ξk] = c1c2 exp(−0.5∆
(i+1)
1,k ) = 1

E(i+1)[λk] = c̄1c̄2 exp(−0.5∆̄
(i+1)
1,k ) = 1

(131)

Substituting (131) in (65)-(66) results in






q̃
(i)
k = 0, Q̃

(i)
k =

{

E(i)[Q−1]
}−1

r̃
(i)
k = 0, R̃

(i)
k =

{

E(i)[R−1]
}−1

(132)















E(i+1) =
T
∑

k=1

A
(i+1)
k

F(i+1) =
T
∑

k=1

B
(i+1)
k

(133)

where E(i+1)[Q−1], E(i+1)[R−1], A
(i+1)
k and B

(i+1)
k are, respectively, given by (60) and (62).
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