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Abstract

In this paper, we propose a computationally efficient multipath matching pursuit

(MMP) channel estimation algorithm for underwater acoustic (UWA) transfor-

m domain communication systems (TDCSs). The algorithm, referred to as

the MMP-DCD-CV algorithm, is based on the dichotomous coordinate descent

(DCD) iterations and cross validation (CV). The MMP-DCD-CV sparse chan-

nel estimator in each iteration searches for multiple promising path candidates

most relevant to a residual vector and chooses the best candidate. The DCD

iterations are used to solve the corresponding least squares problem with low

complexity and numerical stability. The CV provides a stopping criterion of

the algorithm without a priori information on the channel sparsity and noise

level and examines whether the algorithm overfits its data, thus improving the

estimation accuracy. The performance of the proposed algorithm is evaluated

under simulated sparse UWA channels. The numerical results show that the

algorithm achieves better performance than the original MMP algorithm, has
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lower complexity, and does not require prior knowledge on the channel sparsity

and noise level. We also propose an UWA TDCS with sparse channel estima-

tion based on the proposed MMP-DCD-CV algorithm. The proposed UWA

communication system is tested by the Waymark simulator, providing the vir-

tual signal transmission in the UWA channel, with a measured Sound Speed

Profile and bathymetry. Numerical results demonstrate that the UWA TDCS

with the proposed sparse channel estimator offers considerable improvement in

system performance compared to other TDCS schemes.

Keywords: Compressive sensing, cross validation, DCD iterations, multipath

matching pursuit, sparse channel, transform domain communication system,

underwater acoustic communication.

1. Introduction

The underwater acoustic (UWA) channel has a long delay spread, significant

Doppler effect, high levels of ambient noise and interference from shipping and

marine biological or sonar sources, which pose a great challenge to building reli-

able and effective underwater communication systems[1, 2, 3, 4]. Two strategies5

for interference mitigation (IM) and interference-avoiding (IA) most often used

in wireless communications are[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]:

modulation format based interference mitigation (MF-IM)[5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15] and cognitive radio (CR) based interference-avoiding (CR-

IA)[16, 17, 18].10

For the MF-IM schemes, the spread spectrum (SS) modulation is an ef-

fective tool to circumvent the interference. Two types of SS techniques have

been successfully used in military and civilian wireless communications. Di-

rect sequence based SS (DS-SS) systems use pseudo-random (PR) spreading

codes[7, 8, 9, 10, 11], while frequency hopping (FH) based SS (FH-SS) system-15

s use PR hopping sequences to avoid interference[9]. In [14], an interference

mitigation receiver is proposed for orthogonal frequency division multiplexing

(OFDM) in UWA communications. A generalized likelihood ratio test was used
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for interference detection, and interference estimation and data decoding were

carried out iteratively given the prior knowledge of the frequency band and20

time duration of the interference. In [15], an iterative receiver for impulsive

noise mitigation in UWA OFDM systems is proposed, with positions and am-

plitude of impulsive noise samples jointly estimated under the least squares (LS)

formulation.

Alternatively, the CR-IA schemes[16, 17] perceive the surrounding environ-25

ment using the CR technology[28] and thus avoid the spectrum interference.

Based on this feature, the transform domain communication systems (TDCSs)

were proposed[18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Compared

to the SS-based systems, TDCSs improve the robustness against interference by

utilizing interference-avoiding waveforms, and information data are modulated30

on the unoccupied spectrum bins sensed via CR. On the other hand, noise-

like basis functions instead of PR spreading codes are used for the information

modulation[18], thus, TDCSs possess the same abilities of low interception rate

and strong interference avoidance as the SS-based systems[23]. To minimize

the computational complexity, the TDCS can be efficiently implemented by the35

fast Fourier transform (FFT) and inverse FFT (IFFT) operations like that in

OFDM systems[27, 28, 29]. The concept of TDCS was first proposed in [18]

and then it was applied in a low interception communication system[19]. TDCS

was studied for the military communication due to its strong anti-interference

ability and a low probability of interception[20, 21, 23, 24, 25, 26]. To the best40

of our knowledge, there is no research work related to the UWA TDCS.

If we want to apply TDCS underwater, there are two basic problems that

should be addressed: 1) interference sensing, and 2) channel state information

(CSI) estimation. The interference sensing can be achieved by nonparametric

or parametric methods such as the periodogram, multiple signal classification45

(MUSIC), Capon method, etc.[34]. In this paper, we focus on the CSI esti-

mation, and assume that the narrow band interference is known to both the

transmitter and receiver of an UWA TDCS. According to the channel charac-

teristics and adopted modulation format, block-wise or symbol wise adaptive
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algorithms can be applied for channel estimation. Since the implementation of50

the TDCS is similar to that of an OFDM system, block-wise channel estimation

algorithms are usually utilized. Typical UWA channels have inherent sparsity,

i.e., most of the received signal energy arrives at a few channel delays. The

traditional LS based channel estimation algorithms are greatly influenced by

additive noise and inter carrier interference (ICI). Moreover, there is the noise55

enhancement problem, so the LS based channel estimation is not appropriate

for sparse channels[40, 41, 42, 43, 44].

In recent years, sparse channel estimation based on the compressive sens-

ing (CS) has received a great interest. The CS theory breaks the limitation

of the Nyquist sampling theorem. When the signal is sparse in a certain60

domain[36, 37, 38], one can use fewer sampling points to accurately reconstruct

the sparse signal. Due to this advantage, the CS is widely used for the sparse

UWA channel estimation[40, 41, 42, 43]. Multiple sparse recovery algorithms

have been recently proposed. A sparse signal can be represented by a linear

combination of atoms selected from a dictionary[45, 39]. The matching pursuit65

(MP), at each iteration, selects from a dictionary one atom best matching to

a residual signal. An improved selection of atoms is implemented in the or-

thogonal MP (OMP)[46, 47, 48, 49]. In the MP and OMP algorithms, only

one atom is selected at a time. The incorrect atom (a path in the multipath

channel estimation) will affect the selection of the next path. The multipath70

MP (MMP) algorithm searches for multiple possible paths at a time[50]. The

candidate set of paths is selected according to the minimum residual energy.

The above mentioned sparse recovery algorithms have two common problems:

1) high computational complexity and numerical instability induced by a large

number of matrix inverse operations in a sequence of greedy iterations; and 2)75

requirement for a priori knowledge of the sparsity and noise level.

In this paper, a novel MMP based sparse channel estimation algorithm with

dichotomous coordinate descent (DCD) iterations[51] and CV[56, 54, 55, 58, 59,

60, 61], henceforth referred to as MMP-DCD-CV, is proposed for UWA TDCSs.

Our contributions are as follows:80
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1) We propose a modification to MMP based on the line search with DCD

iterations (MMP-DCD). The solver for an LS problem in the MMP al-

gorithm is based on DCD iterations without explicit multiplications or

divisions, which makes it attractive for real-time implementation on hard-

ware such as FPGAs or DSPs[51, 52]. The complexity of the LS solver in85

the original MMP algorithm is O(L2) (L is the size of the LS problem)

operations per iteration, whereas the complexity of the DCD based solver

is O(L) in the proposed MMP-DCD algorithm.

2) CV is used for estimation of the UWA channel. It is integrated into the

MMP-DCD algorithm, leading to the MMP-DCD-CV algorithm. For the90

original MMP algorithm, the priori information such as sparsity and/or

noise level are required to stop greedy iterations. CV is used to esti-

mate the model order of the channel based on the received signal. The

reconstruction performance of the proposed MMP-DCD-CV algorithm is

evaluated by simulating the virtual signal transmission in sparse UWA95

channels. Numerical results show that the proposed MMP-DCD-CV algo-

rithm achieves better reconstruction performance than the original MMP

algorithm. It also has lower computational complexity and does not re-

quire the priori knowledge of the channel sparsity or noise level.

3) We propose an UWA TDCS. The system is built on the proposed MMP-100

DCD-CV channel estimator to acquire the CSI. To evaluate the perfor-

mance of proposed UWA TDCS, the receive signal is generated by the

Waymark simulator [62, 63, 64, 65] using measured sound speed pro-

file (SSP) and bathymetry. Numerical results show that the proposed

UWA TDCS with the MMP-DCD-CV algorithm outperforms other TD-105

CS schemes.

The rest of this paper is organized as follows. In Section II, we present the

system model for UWA TDCS. Section III details the proposed sparse channel

estimation algorithm for UWA-TDCS. Simulation results based on the Waymark

simulator are presented in Section IV. Finally, conclusions are drawn in Section110
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Figure 1: Block diagram of the UWA TDCS system.

V.

Notation: Matrices and vectors are denoted by boldface uppercase and low-

ercase letters, respectively. (·)† and (·)T denote the Hermitian transposition

and the transposition, respectively. R and C denote the real field and complex

field, respectively. ⊙, ⊛ and ⊗ denote element-by-element multiplication, the115

linear convolution and cyclic convolution, respectively. ‖x‖0 denotes l0-norm of

a vector x, ℜ denotes the real part of a complex number. R(q) denotes the q-th

column of a matrix R. R(p,q) denotes the element at p-th row and q-th column

of a matrix R. |S| means the cardinality of a set S. 〈a〉q denotes a circular shift

of elements in the vector a by q elements.120

2. System Model for Underwater Acoustic TDCS

2.1. TDCS Technology

The concept of “transform domain” can be traced back to E. German’s

work[18] and refers to a transformed version of the received signal in a specified

domain (e.g., Fourier, wavelet, etc.) rather than in the domain in which the125

signal is received[19, 22, 23]. For example, the spectral notching technique is

a common transform domain filtering technique that removes the narrow band
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interfering signal by a notch filter[22, 23]. However, this interference filtering

technique also removes the desired signal energy at notched spectral locations,

leading to poor performance of communication compared to the case where no130

interference is present[23]. For TDCSs, both the transmitter and receiver jointly

sense contaminated spectrum regions and then avoid using these spectrum re-

gions, i.e., the spectrum locations occupied by the narrow band interference do

not carry any information. Therefore the performance of TDCS is not affected

by jointly avoiding these contaminated spectrum regions at both the transmitter135

and receiver[23, 24, 25].

2.2. Transmitter with CCSK Modulation

We consider a single-input and single-output UWA TDCS with the cyclic

code shift keying (CCSK) modulation. As depicted in Fig. 1, the TDCS mod-

ulation procedure involves environment sensing for spectral mask generation,140

PR phase vector generation, generation of time-domain fundamental modu-

lation waveform (FMW) which is also called the basis function (BF), CCSK

modulation, and adding cyclic prefix (CP). The environment sensing unit sam-

ples the local acoustic environment and then obtains a spectrum mask vector,

a = [a0, · · · , an, · · · , aN−1] with an ∈ {0, 1} by using spectrum estimation to145

sense the unoccupied frequencies. The parameterN is the number of subcarriers

or spectrum bins, and an = 1 means that the n-th spectrum bin is unoccupied,

otherwise it is occupied[28].

A PR phase generator[35] is employed to produce a complex PR phase vector

θ = [θ0, · · · , θi, · · · , θN−1] , i = 0, 1, · · · , N − 1, (1)

where

θi = ej2πmi/Q, (2)

andmi ∈ {0, 1, · · · , Q−1} is aQ-ary integer generated by a PR integer generator

such as a linear feedback shift register[35, 21]. Generally, Q is set to N for the

improved performance of CCSK demodulation based on the correlation method.

The PR phase vector θ is multiplied element-by-element with the spectrum mask
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a in a process called spectrum phase coding[31] to produce the spectral vector

b = [b0, · · · , bn, · · · , bN−1] given by

b = λa ⊙ θ, (3)

where λ =
√

EsN/NT is a magnitude scaling constant to ensure that equal

energy symbols are transmitted with the desired signal energy Es, and NT =
∑N−1

n=0 an is the total number of unoccupied subcarriers. The resultant spectral

vector, b, is transformed by IFFT into the time domain to produce a noise-like

time-domain BF d = [d0, · · · , dn, · · · , dN−1], dn given by [31]

dn =
1√
N

N−1
∑

k=0

bke
j 2πkn

N , (4)

where bk = λake
j
2πmk

Q .

The data and pilot symbols are multiplexed to produce a payload data vector

c = [c0, · · · , cd, · · · , cD−1] with cd ∈ {0, 1}, where D is the total number of

transmission bits in c that consists of data bits and pilots. In SS systems,

each transmitted symbol is represented by an unique spreading waveform[35].

Whereas, in the binary CCSK modulation, the BF d should be generated from

the spectrum mask vector a measured by spectrum sensing before the data

transmission and receiving. The spectrum mask will be changed during different

communication stages, thus we can not use a pre-specified and fixed BF to

modulate and demodulate the transmitted and received signal. Therefore, each

symbol is represented by the BF d or a circular version of BF, 〈d〉τ , where τ is

the number to be shifted. In practice, the performance of CCSK demodulation

depends on the property of autocorrelation of d and 〈d〉τ , and the property of

cross-correlation between d and 〈d〉τ [26]. The CCSK modulation procedure is

seen as a mapping procedure. For example, if cd = 0, the transmitted signal

x = [x0, x1, · · · , xN−1]
T
is given by[21, 20, 31]

x = 〈d〉0 = [d0, · · · , dn, · · · , dN−1]
T
, (5)
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otherwise,150

x = 〈d〉τ=N/2

= [dτ , dτ+1, · · · , d2τ−1, d0, d1, · · · , dτ−1]
T
. (6)

Details on the Q-ary CCSK modulation are referred to [29, 30], and omitted for

brevity.

One TDCS symbol is formed by adding CP before x for preventing the

interference between successive TDCS symbols, producing the transmit signal

s.155

2.3. Receiver with CCSK Demodulation

Here, we assume that both the transmitter and receiver are in the same a-

coustic interference environment, thus the identical spectrum mask vector a and

BF vector b are obtained by environment sensing units at both the transmitter

and receiver locations given the same PR phase vector. The CCSK modulated

signal is transmitted through the UWA channel. After frame synchronization

and removing the CP, the received signal vector y is expressed as

y = Hx+ n, (7)

where y = [y0, y1, · · · , yM−1]
T
, M is the length of observed samples, n is addi-

tive complex white Gaussian noise (AWGN) with zero mean and variance σ2
n,

which is independent of x. The channel convolution matrix H ∈ CM×N is a cir-

cular matrix obtained from the channel vector h = [h0, h1, · · · , hL−1]
T ∈ CL×1

160

by zero padding its L elements to the length M to obtain the first column,

where L is the maximum multipath spread in symbol intervals, and hl denotes

the gain of the l-th tap in the channel vector[37, 38, 39, 40, 41, 42].

To estimate the UWA channel impulse response h, a time-domain pilot block

is inserted before transmission of the TDCS symbols. At the receiver, the re-

ceived signal vector yp relating to the pilot symbols is extracted out of y by

de-multiplexing unit and is given by [37, 38, 39, 40, 41, 42]

yp = p⊛ h+ np, (8)

9



where p = [p0, p1, · · · , pM−1]
T

is the known pilot symbols, np is AWGN with

zero mean and variance σ2
p. Since the cyclic prefix allows converting the linear

convolution between the channel impulse response h and transmit signal p into

a circular convolution, (8) can be expressed in the cyclic convolution format[37,

38, 39, 40, 41, 42]

yp = p⊗ h+ np, (9)

thus (9) can be rewritten as

yp = Ch+ np, (10)

where

C =

















p0 p−1 · · · p−L+1

p1 p0 · · · p−L+2

...
...

. . .
...

pM−1 pM−2 · · · p−L+M

















∈ C
M×L (11)

is a Toeplitz matrix[37, 38, 39, 40, 41, 42].

After channel equalization, the equalized signal is transformed into the time-165

domain by performing the IFFT operation. Given b, d, and θ, the estimate of

transmitted data can be obtained by performing the CCSK demodulation which

is similar to the despreading procedure used in SS systems[35].

3. Proposed MMP-DCD-CV based Sparse Channel Estimation Algo-

rithm170

The channel vector in (10) can be estimated by the classical LS method.

When the channel vector h is sparse, the channel estimation problem can be

transformed into a sparse reconstruction problem. A number of greedy algo-

rithms were used to estimate the sparse UWA channel over the past decade[40,

41, 42]. On the one hand, given prior information such as sparsity and noise175

level, most of them can achieve satisfied performance. In practice, such informa-

tion should be estimated before performing the sparse channel estimation. On

the other hand, a large number of matrix inversion operations involved in the

10



LS solver or the greedy algorithms need to be performed. The computational

complexity and numerical instability induced by the matrix inversion operations180

prevent its applications in practical scenarios.

To address aforementioned problems accounted in sparse reconstruction by

using greedy algorithms such OMP etc., motivated by [50, 52, 54, 55, 56, 61, 58,

59, 60], we propose a new MMP algorithm that combines the DCD iterations

and CV. Compared to the OMP algorithm, the MMP algorithm keeps and ex-185

amines multiple promising candidate support sets rather than retaining only a

single path set. Thus the MMP algorithm can overcome the error propagation

in the OMP algorithm due to incorrect path selection at a greedy iteration.

The DCD iterations can be used to reduce the computational complexity and

avoid the numerical instability brought by the matrix inversion operations. The190

LS solver based on DCD iterations does not require multiplication and division

operations[51], which greatly reduces the computational burden of solving the

LS problem, and is particularly suitable for implementation on real-time hard-

ware platforms such as FPGAs or DSPs. The uncertainty on sparsity and noise

level can be bypassed using the CV. CV is a statistical method that can check195

whether the model is correct or not, and avoids underfitting and overfitting of

data[54, 55, 56, 58, 59, 60, 61]. Cross validation can be used for stopping greedy

iterations without the prior information such as sparsity or noise level.

3.1. Review of the MMP algorithm

For the completeness and understanding of the proposed MMP-DCD-CV200

algorithm, we review the original MMP algorithm[50]. In the OMP algorithm,

at each iteration, only one candidate path that minimizes the residual is added

into the support set of the final solution. If there is an incorrect selection of a

candidate path during greedy iterations, the resultant solution will be wrong[46,

47, 50]. The MMP algorithm maintains multiple support sets and after finishing205

all greedy iterations, the best support set of the final solution is chosen from

these multiple support sets by minimizing the residuals of the solution[50].

Table 1 summarizes the original MMP algorithm for sparse channel estimation[50],
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where K is the sparsity level, k is the iteration index, J is the number of child

paths for each candidate path, Ak =
{

sk1 , · · · , ski , · · · , sku
}

is the set of candi-210

date paths at the k-th iteration, where ski denotes the i-th candidate path at

the k-th iteration, ĥk
u denotes the estimate of h at the k-th iteration for the

u-th candidate path, rku denotes the residual at the k-th iteration for the u-th

candidate, Cs
k
u and CI are the submatrices of C that contain columns indexed

by sku and I, respectively. The vector I with |I| = J denotes the set of all possi-215

ble combinations of all child paths for all candidate paths at the k-th iteration,

Î = {Î1, · · · , ÎJ} is the index set of L columns in C that are maximally corre-

lated with the residual rk−1
i at the (k − 1)-th iteration for the i-th candidate

path. For the detailed analysis of the MMP algorithm refer to [50].

3.2. Proposed MMP-DCD-CV algorithm220

According to the theory behind CV, the received vector yp in (10) is divided

into the reconstruction vector yre
p and CV vector ycv

p . Correspondingly, the

matrix C is also split into two sub-matrices, a reconstruction matrix Cre ∈
Cm×L and a CV matrix Ccv ∈ Cmcv×L with mcv = M − m. Then one has a

reconstruction equation[55, 56, 61, 58, 59, 60]

yre
p = Creh+ nre

p , (12)

and a CV equation

ycv
p = Ccvh+ ncv

p , (13)

where yp = [yre
p

T ,ycv
p

T ]T and np = [nre
p

T ,ncv
p

T ]T . The matrix C is stacked up

by Cre and Ccv. For a sparse UWA channel, h ∈ CL×1 is an unknown K-sparse

channel vector. To exploit the CV in the MMP algorithm, we use ĥk to denote

an estimated channel vector in the k-th iteration, then CV residual of ĥk at this

iteration is given by[55, 56, 61, 58, 59, 60, 61]

εcvk =
∥

∥

∥
ycv
p −Ccvĥk

∥

∥

∥

2

2
. (14)

Without CV, i.e., mcv = 0, we define the residual of ĥk at the k-th iteration as

εk =
∥

∥

∥
yp −Cĥk

∥

∥

∥

2

2
. (15)

12



Table 1: MMP Algorithm for Sparse Channel Estimation

Input: yp, C, J , K

Initialization: r01 = yp, k = 0, A0 = {∅}
1 : while k < K do

2 : k = k + 1, u = 0, Ak = ∅

3 : for i = 1 to
∣

∣Ak−1
∣

∣ do

4 : Î = argmax
|I|=J

∥

∥

∥

(

CI
)T

rk−1
i

∥

∥

∥

2

2

5 : for j = 1 to J do

6 : stmp = sk−1
i

⋃

{

Îj

}

7 : if stmp /∈ Ak

8 : u = u+ 1

9 : sku = stmp

10 : Ak = Ak
⋃
{

sku
}

11 : ĥk
u =

{

Cs
k
u

}†

yp

12 : rku = yp −Cs
k
uĥk

u

13 : end if

14 : end for

15 : end for

16 : end while

17 : û = arg min
1≤û≤u

∥

∥rKû

∥

∥

2

2

18 : ŝ = sKû

Output: ĥ =
{

Cŝ
}†

yp

For notational convenience, we may drop the iteration index k in the following

sections.

Table 2 shows a general framework for sparse channel estimation based on

the MMP or MMP-DCD algorithm with CV. Instead of setting a maximum

number of iterations or threshold for a reconstruction error according to the225

sparsity or noise level, in algorithms driven by CV, only a maximum number

of iterations, Ncv, is required. The value of Ncv often can be set two or three

13



times larger than the sparsity K. In practice, this setting value can be coarsely

estimated by using the synchronization frame. The sparse channel estimate ĥk

is recovered by using the MMP or MMP-DCD algorithm. Given ĥk, at the CV230

equation (14), we can obtain the CV residual of ĥk at the k-th iteration. After

Ncv iterations, the CV residual vector ε is used to determine which estimate

is the best candidate in the recovered set Ω =
{

ĥ1, · · · , ĥk, · · · , ĥNcv

}

. The

index kcv corresponding to the minimum CV residual in ε is then found, thus

indicating the noise- and sparsity-robust channel estimate ĥcv in Ω.

Table 2: MMP with CV for Sparse Channel Estimation

Input: yre
p , ycv

p , Cre, Ccv, Ncv

Initialization: k = 0, εcv0 =
∥

∥ycv
p

∥

∥

2

2
, Ω = {∅}, ε = 0Ncv

1 : while k < Ncv do

2 : k = k + 1

3 : Update ĥk using MMP or MMP−DCD

4 : Compute εcvk =
∥

∥

∥
ycv
p −Ccvĥk

∥

∥

∥

2

2

5 : Update ε(k) = εcvk

6 : Update Ω = Ω
⋃

{

ĥk

}

7 : end while

8 : Compute: kcv = argmin{ε}
Output: ĥ = ĥkcv

235

Table 3 details the proposed MMP algorithm that combines the CV and

DCD iterations. When using DCD iterations, P is an upper limit to the ampli-

tude of elements in h. The elements of h have a fixed-point representation with

Mb bits within the amplitude interval [−P, P ]; δ is a step-size; e is the residual

vector in DCD iterations. C
s
k
u

re and CI

re denote extracting a column indexed by240

sku or I from Cre, respectively. For the choice of parameters related to the MMP

algorithm and DCD iterations refer to [50, 51, 52, 59, 60].
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4. Numerical results

In this section, the recovery performance of the proposed MMP-DCD-CV

algorithm is investigated. The performance of UWA TDCS based on the pro-245

posed MMP-DCD-CV algorithm is then evaluated by the Waymark simulator

providing the virtual signal transmission in the UWA channel with measured

SSP and bathymetry obtained in a real lake experiment as described below.

4.1. Recovery Performance of MMP-DCD-CV algorithm

4.1.1. Exact Reconstruction Probability versus Sparsity Level K250

To investigate the exact reconstruction probability of the proposed MMP-

DCD-CV algorithm, a successful reconstruction condition is defined as follows:

ǫ =
∥

∥

∥
h− ĥ

∥

∥

∥

2

2
< ξp, (16)

where ǫ is the recovery error of h, ξp is a small pre-specified constant. The

reconstruction is successful if ǫ < ξp, otherwise, the reconstruction fails. In this

simulation, we consider an underdetermined sparse system, i.e., the dimension

M of observation y is smaller than the length L of the input vector h. Here, M ,

L, J , σ2
p and ξp are set to 128, 256, 10, 0.1 and 10−6, respectively. The sparsity255

levelK is considered to be known for OMP and MMP-DCD algorithms over this

simulation. The number of bitsMb for representation of the channel taps is set to

32 for both MMP-DCD andMM-DCD-CV algorithms. The exact reconstruction

probability of MMP-DCD and MMP-DCD-CV algorithms is shown in Fig. 2.

It can be seen that for the same sparsity level K for all algorithms, the MMP-260

DCD-CV reaches the highest exact reconstruction probability, while that of

the OMP algorithm is the lowest. Although the MMP algorithm has the prior

information on the sparsity level K, its exact reconstruction probability is still

inferior to that of the MMP-DCD-CV algorithm. When K ≤ 15, all the three

algorithms achieve the perfect reconstruction. The algorithms completely fail265

when K ≥ 70. This simulation demonstrates the high robustness of the MMP-

DCD-CV algorithm to recover sparse signals without the prior knowledge on
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the sparsity.
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Figure 2: Probability of exact reconstruction for OMP with known K, MMP with known K,

and MMP-DCD-CV algorithms.

4.1.2. Exact Reconstruction Probability versus Mb and K

Fig. 3 shows how the performance of the MMP-DCD-CV algorithm is af-270

fected by the number of bits Mb used in the DCD iterations and the sparsity

level K for solving the LS problem. The parameter setup is the same as in the

previous simulation except for Mb and K. We observe that Mb significantly

affects the probability of exact reconstruction. It can be seen that, when Mb is

less than 22, the algorithm cannot reconstruct the sparse signal vector. With275

the increase in Mb, the probability of exact reconstruction also increases and

reaches 100 %. This is explained by the fact that Mb defines the quantization

error in representing the channel taps. When the error is higher than the vari-

able ξp in (16), this inequality cannot be satisfied and the exact reconstruction

fails. However, for higher Mb, the quantization error is smaller than ξp in (16)280

and the reconstruction is successful. For practice, the value ξp = 10−6, used

in this simulation, is too small, and with higher ξp the number of bits Mb can

be reduced. In practice, we need a trade-off between the probability of exact

reconstruction and computational complexity.
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Figure 3: Probability of exact reconstruction as a function of Mb and K.

4.1.3. Average Recovery Error and Residual versus the Maximum Iteration Num-285

ber

CV is a statistical technique to identify the model order, avoiding overfitting

and underfitting of data. In this simulation, in order to investigate the rational-

ity and effectiveness of the MMP-DCD with CV, M , L, K, σ2
p, mcv, and Ncv

are set to 400, 1000, 50, 0.1, 31, and 150, respectively.290

Fig. 4 shows the recovery error ǫ, residual ε, and CV residual εcv as a function

of the iteration number Ncv for the MMP-DCD algorithm. It can be seen that

the residual ε decreases monotonically, thus it is not obvious when to stop

iterations without prior information on the sparsity and noise level. Whereas,

the residual of MMP-DCD with CV εcv has a minimum value corresponding to295

the sparsity level Ncv ≈ K ≈ 50. At the same time, the residual of MMP-DCD

with CV has the same trend as the recovery error. Both the CV residual εcv and

recovery error ǫ have the same minimum value point. This simulation further

verifies the rationality of CV.

4.1.4. Average Error versus mcv300

Now we investigate the effect of the dimension of CV equation mcv on the

average error of the MMP-DCD algorithm with the residual and CV residual.

In this simulation, the parameters are as follows: M , L, K, σ2
p, and Ncv are set
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Figure 4: Residual ε, CV residual εcv, and recovery error ǫ as a function of the maximum

iteration number Ncv for the MMP-DCD algorithm.

to 400, 1000, 50, 0.1, and 150, respectively. The m measurements in the matrix

C are used to reconstruct the sparse signal, and the other mcv measurements305

are used for CV. The iterations of the MMP-DCD algorithm are stopped by

the given sparsity level. As depicted in Fig. 5, even with a small number of CV

measurements (about 60), the MMP-DCD-CV algorithm can achieve a perfor-

mance approaching the performance of the MMP-DCD algorithm with known

sparsity and 400 measurements. It can also be seen that the residual of the310

MMP-DCD algorithm with known sparsity level can not be an indicator to stop

the greedy iterations.

4.2. Performance of UWA TDCS with Sparse Channel Estimation based on the

MMP-DCD-CV algorithm

4.2.1. Simulation Environment315

Fig. 6 depicts the layout of the simulation configuration used in the Waymark

simulator. The depth of lake is about 53 m. The transducer and hydrophone

were deployed at about 38 m below the surface. The communication distance

is 1.5 km. The SSP used in the simulation was measured in the Songhua Lake,

Jilin province, China, on November 2013. The bathymetry of the Songhua Lake320

was obtained by a high resolution multibeam imaging sonar in October 2013.
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Figure 5: Average error (residual, CV residual, and recovery error) as a function of mcv .

The bottom parameters are: sound speed is 1574 m/s, density is 1.268 g/cm3,

and attenuation coefficient is 0.01875 dB/wavelength. The signaling and data

structure is shown in Fig. 7. The carrier frequency is 12 kHz and sampling

frequency is 48 kHz. The input bits are encoded by a half rate recursive con-325

volutional code with generator polynomial [171, 133] in octal format[66]. Hard

decision Viterbi decoder is used[66]. For the CCSK modulation of the UWA

TDCS, the indices of NM = N − NT occupied spectrum bins are generated

randomly.

Transducer Hydrophone

38 m

1.5 km

53 m

Surface

Bottom

38 m

Figure 6: Layout of simulation configuration.
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Figure 7: Frame structure of UWA TDCS signaling in simulation.

4.2.2. Channel Characteristics330

To demonstrate how transmission loss (TL) varies with the communication

distance, the TL is predicted with the ray tracing software Bellhop [67] using a

range-independent waveguide model. Fig. 8 depicts the TL with the measured

SSP. The launch angles of the transducer are within the interval [−30◦, 30◦]. It

is seen that the TL increases significantly for the ranges of 200 m to 1.5 km.335

Fig. 9 shows the channel characteristics at 1.5 km. Fig. 9(a) shows the channel

impulse response between the source and receiver for the configuration depicted

in Fig. 6. Obviously, the channel is sparse. As shown in Fig. 9(b), there are

many nulls with deep fading over 8 kHz-16 kHz. The multipath spread is long

and it is about 90 ms. This type of channel is very difficult to estimate and340

equalize.

Figure 8: Measured SSP and simulated TL.

4.2.3. Performance of UWA TDCS

Now we investigate the performance of UWA TDCS based on the proposed

MMP-DCD-CV algorithm for varying spread spectrum orders N . Fig. 10 shows
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Figure 9: UWA channel characteristics: (a) channel impulse response, (b) channel amplitude-

frequency response.

the MSE performance of sparse channel estimation based on the LS, MMP-DCD345

and MMP-DCD-CV algorithms. The LS and MMP-DCD algorithms operate

assuming the sparsity K to be perfectly known. It can be seen that, with

such an assumption, the MMP-DCD and MMSE-DCD-CV algorithms show

similar MSE performance, which is significantly better than that of the LS

algorithm. With increase in N , the MMP-DCD-CV algorithm shows a growing350

performance gap between the MMP-DCD and MMP-DCD-CV algorithms with

the later outperforming the former. The gap increases at higher SNR.

Fig. 11 shows the BER performance of UWA TDCS based on the LS, MMP-

DCD and MMP-DCD-CV channel estimators for different spread spectrum or-

ders, with or without coding.355

It can be seen that in all cases, the use of the proposed MMP-DCD and

MMP-DCD-CV algorithms allows significant improvement of the detection per-

formance provided by the LS algorithm with perfect knowledge of the channel

sparsity K. The MMP-DCD-CV algorithm, however, shows a better BER per-

formance than the MMP-DCD algorithm, and what is practically very impor-360

tant, it achieves this improvement without a priori knowledge on the channel

sparsity and noise level.

As the spread spectrum order N increases, the benefits of using the proposed

MMP-DCD-CV algorithm becomes more pronounced in both the MSE and BER

21



−9 −8 −7 −6 −5 −4 −3 −2 −1 0
−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

−9

SNR/dB

M
S

E
/d

B

 

 
LS

MMP−DCD

MMP−DCD−CV

(a)

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
−21

−20

−19

−18

−17

−16

−15

SNR/dB

M
S

E
/d

B

 

 
LS

MMP−DCD

MMP−DCD−CV

(b)

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
−20

−19

−18

−17

−16

−15

−14

SNR/dB

M
S

E
/d

B

 

 
LS
MMP−DCD
MMP−DCD−CV

(c)

Figure 10: MSE performance for channel estimation versus spread spectrum order: (a) N =

16, (b) N = 32, and (c) N = 64.

performance.365

5. Conclusion

In this paper, we have proposed a computationally efficient MMP based s-

parse channel estimator for an UWA transform domain communication system

(TDCS) that should operate without the knowledge of the acoustic channel s-

parsity and noise level. The estimator is based on the dichotomous coordinate370

descent (DCD) iterations. The DCD iterations reduce the algorithm complex-

ity and make it numerically stable compared to the LS channel estimator. We

have incorporated the CV into the MMP-DCD algorithm and arrived at anoth-

er algorithm (MMP-DCD-CV), that does not need any prior knowledge on the

channel sparsity and noise level. The performance of the proposed MMP-DCD-375
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Figure 11: BER performance of the TDCS with different channel estimators and versus the

spread spectrum order: (a) N = 16, (b) N = 32, and (c) N = 64.

CV algorithm has been tested using the virtual signal transmission in a sparse

UWA channel with a measured SSP and bathymetry. The numerical results

verify that better performance is achieved by the proposed MMP-DCD-CV al-

gorithm, with a lower complexity and without a priori knowledge of the channel

sparsity and noise level. Numerical results show that the proposed UWA TDCS380

with the proposed sparse channel estimator offers considerable improvement in

system performance compared to other TDCS schemes.
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Table 3: MMP-DCD-CV Algorithm for Sparse Channel Estimation

Input: yre
p , ycv

p , Cre, Ccv, J , Ncv, P , L, Mb

Initialization: r01 = yre
p , k = 0, A0 = {∅}, Ω = {∅}, s01 = {∅},

εcv0 =
∥

∥ycv
p

∥

∥

2

2
, e = C†

rey
re
p , R = C†

reCre, ĥ1 = 0, δ = P , ε = 0Ncv

1 : while k < Ncv do

2 : k = k + 1, u = 0, Ak = ∅

−−−−−−−−−−−−−−−−−−−−−−
Using MMP−DCD to compute ĥk

−−−−−−−−−−−−−−−−−−−−−−
3 : for i = 1 to

∣

∣Ak−1
∣

∣ do

4 : Î = argmax
|I|=J

∥

∥

∥

(

CI

re

)T
rk−1
i

∥

∥

∥

2

2

5 : for j = 1 to J do

6 : stmp = sk−1
i

⋃

{

Îj

}

7 : if stmp /∈ Ak

8 : u = u+ 1, sku = stmp, Ak = Ak
⋃
{

sku
}

−−−−−− −−−−−−−−−−−
9 : Using DCD to solve ĥk

u =
{

C
s
k
u

re

}†

yre
p

−−−−−− −−−−−−−−−−−
9.1 : for n = 1 to Mb do

9.2 : δ = δ/2, α = [δ,−δ, jδ,−jδ]

9.3 : flag = 0

9.4 : for q = 1 to L do

9.5 : for t = 1 to 4 do

9.6 : if ℜ
{

αtc
∗
q

}

> R(q,q)δ
2/2

9.7 : hq = hq + αt

9.8 : e = e− αtR
(q)

9.9 : flag = 1

9.10 : end if

9.11 : end for

9.12 : end for

9.13 : if flag = 1

9.14 : go to step 9.4

9.15 : end if

9.16 : end for

−−−−−− −−−−−−−−−−−
10 : rku = yre

p −C
s
k
u

re ĥ
k
u

11 : end if

12 : end for

13 : end for

−−−−−−−−−−−−−−−−−−−−−−
14 : ε(k) = εcvk =

∥

∥

∥
ycv
p −Ccvĥk

∥

∥

∥

2

2

15 : Ω = Ω
⋃

{

ĥk

}

16 : end while

17 : Compute: kcv = argmin{ε}
Output: ĥ = ĥkcv
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