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A B S T R A C T

Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been

shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are

typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits.

Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further

expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans-

cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it

is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will

focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl−

channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu-

lated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally

implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on

in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these

subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required

into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.

1. Introduction

Ion channels are heteromeric membrane protein complexes which

permit transmembrane ion conduction. Several ion channels, e.g. K+

channels and voltage-gated Na+ channels (VGSCs), are notable for

regulating membrane potential in excitable cells [1], but an expanding

repertoire of other cellular processes, such as proliferation, differ-

entiation [2], cell volume control and migration [3,4], are also known

to be influenced by ion channels. Owing to their extensive impact on

cellular function, it is no surprise that ion channel dysregulation is a

common characteristic in cancer [5]. Ion channels are often multimeric,

with ion-conducting subunits accompanied by non-conducting auxiliary

subunits [6]. Auxiliary subunit-mediated modulation of the conducting

subunit is well established but increasing evidence has unveiled a

multitude of non-conducting roles for these proteins as well [7–14]. An

emerging field has focused on investigating auxiliary subunits in

cancer, which, like the conducting subunits, are often aberrantly ex-

pressed and could represent novel therapeutic targets. In this review,

we dissect the conducting and non-conducting roles of the auxiliary

subunits of Ca2+, K+, Na+ and Cl− channels and the growing evidence

supporting a link to cancer.

2. Ca2+ channels

Ca2+ channels regulate a multitude of cellular processes; accord-

ingly, much research has focused on various Ca2+ channels in cancer,

including voltage-gated Ca2+ channels (VGCCs) [15], STIM and Orai

[16], and TRP channels [17]. In terms of Ca2+ channel auxiliary sub-

units however, only VGCC auxiliary subunits have received notable

attention thus far. VGCCs are transmembrane complexes responsible for

the inward Ca2+ current seen in excitable cells following depolarisa-

tion, however VGCCs are also expressed in other non-excitable cell

types, e.g. osteoblasts and osteoclasts [18,19]. VGCCs are composed of

a Ca2+-conducting α1 subunit (Cav1-3.x) associated with multiple

auxiliary subunits (α2δ1-4, β1-4, γ1-8), with the exception of Cav3.x,

which can form a T-type Ca2+ channel in the absence of an associated
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auxiliary subunit (Fig. 1) [20]. A Cav1/2 subunit is joined at the

membrane by an α2δ-, β-, and potentially a γ-subunit, although γ-sub-

units are not always precipitated with Cavα [21]. Cavα1 subunits have

an oncogenic influence in cancer [15]. Research into Cav auxiliary

subunits in cancer is a growing field, but it appears Cav auxiliary sub-

units have both oncogenic and tumour-suppressive effects.

2.1. CaVβ

The VGCC β-subunits are cytoplasmic proteins that interact with the

α1 DI-DII intracellular linker region [22–24]. β-subunit binding en-

hances membrane expression of α1 subunits [25,26], however the

mechanism by which this occurs has not yet been elucidated. It is

thought that β-subunit binding prevents ER retention and the sub-

sequent degradation of Cav2.2, resulting in a higher proportion of

Cav2.2 at the plasma membrane [25,27]. However, membrane targeting

of the DI-DII linker of Cav2.2 via an inserted palmitoylation motif still

results in ER retention and degradation, leading to the hypothesis that

Cavβ subunits are required for correct folding, and thus membrane in-

sertion, of functional α1 subunits [28]. The impact on electro-

physiological properties of α1 subunits by Cavβs is complex. In general,

Cavβs increase current density and regulate activation/inactivation ki-

netics. For instance, disruption of the Cavβ3-CaV2.2 interaction by a

small molecule inhibitor results in a decrease in current density and a

depolarised shift in the voltage threshold of activation and inactivation

[29]. In comparison, Cavβ2 enhances the current density more than

Cavβ3, potentially through increased membrane expression as Cavβ2a,

unlike Cavβ3, contains a palmitoylation site [30]. Additionally, forced

membrane localisation of Cavβ3 using the N-terminal Lyn sequence

enhanced the current density relative to WT- Cavβ3 [30]. The com-

plexity arises in the differential sensitivity to PIP2-mediated modulation

of different Cavβs [30,31], competition for α1-binding between Cavβ

subunits [32], the spectrum of functionally-distinct Cavβ splice variants

[33,34], and the opposing impacts on α1-function by the different do-

mains within the Cavβ protein [35].

Cavβs are functional independent of direct α1 association. All Cavβs

demonstrate nucleus localisation, Cavβ4 particularly within nucleoli,

and gene expression regulation [36–39]. All Cavβs also contain a Src

homology 3 domain capable of regulating endocytosis via interaction

with dynamin and can interact with small GTPases [40,41]. Cavβs show

subunit-specific function as well, for instance Cavβ1 is expressed in

muscle progenitor cells (MPCs) earlier than Cav1.1, where it regulates

proliferation and directly suppresses myogenin expression. Accord-

ingly, Cavβ1 knockout mice demonstrate impaired muscle development

[36,42]. Similarly, Cavβ2 is required for ventricle cell proliferation and

heart development in zebrafish, although pharmacological VGCC in-

hibition caused a similar phenotype, suggesting Cavβ2 may be func-

tioning in an α1-dependent manner [43]. Cavβ2 is also required for

depolarisation-induced c-Fos and meCP2 activation, which intriguingly

was shown to be independent of Ca2+ influx [37]. Cavβ4 regulates cell

proliferation in vitro [44], downregulates Wnt signalling via seques-

tration of the Wnt pathway effector TCF4 [39], and regulates gene

expression via various interacting partners [45,46]. Interestingly, the

nuclear localisation of Cavβ4 was inhibited when co-expressed with

Cav1.1 and only upon depolarisation and the presence of extracellular

Ca2+ did Cavβ4 interact with its nuclear signalling partner, B56δ [45].

Owing to its role in driving cellular functions such as proliferation

and migration, it is perhaps no surprise that CaVα1 expression is in-

creased in various cancers [47–49]. However, much research has also

been dedicated to evaluating the involvement of Cav auxiliary subunits

in cancer. Cavβ1 expression is upregulated in colon cancer [50], Cavβ2
mutations are seen in bladder cancer [51] and increased Cavβ3 ex-

pression is observed in patients with recurrent non-small cell lung tu-

mours compared to recurrence-free patients [52]. Furthermore, ex-

pression of Cavβ1 and Cavβ3 are included in proposed high-risk gene

signatures that correlate with decreased patient survival in colon and

recurring non-small cell lung cancer [50,52]. However, the aforemen-

tioned studies are largely limited to statistical observations based on

tissue sequencing data that identified altered Cavβ RNA expression as a

high-risk prognostic marker [50–52]. Chen et al. (2016) offered addi-

tional pathophysiological justification for increased Cavβ2 expression in

cancer, by observing an enrichment in mutations of genes, including

CACNB2 which encodes Cavβ2, involved in NCAM-mediated neurite

outgrowth [51].

2.2. α2δ

The CaV α2δ subunit has a unique structure compared to other

auxiliary subunits. The translated polypeptide is proteolytically cleaved

into two separate proteins, α2 and δ, which remain coupled by a dis-

ulphide bond [53]. The α2 segment is extracellular while the δ-subunit

remains associated with the membrane via a GPI-anchor [54]. α2δ and

CaVβ subunits can both induce surface expression of α1, but also

function synergistically to maximise α1 surface expression and Ca2+

current [26,55,56]. Preventing proteolytic cleavage of the α2δ1 pro-

protein reduces both Cav2.2 surface expression and presynaptic Ca2+

influx in hippocampal neurons [57] and site-directed mutagenesis of

either cysteine residue involved in the disulphide interaction, which

results in a dissociation of α2, reduces the whole-cell Ca2+ current [53].

Similarly, digestion of the GPI anchor of α2δ3, by prokaryotic

Fig. 1. Voltage-gated Ca2+ channel auxiliary subunits.

Voltage-gated Ca2+ channels (VGCCs) are composed of a

conducting α1 subunit accompanied and functionally modu-

lated by Cavβ, α2δ and Cavγ subunits [20]. α1 consists of four

domains (domains I-IV), each consisting of six segments (S1-

S6). The voltage-sensing domain is found within S4 of each

domain and the pore consists of the P-loop found between S5-

6 of each domain. Cavβ modulates Ca2+ influx via binding the

DI-DII linker of α1. Cavβs are also involved in regulating gene

expression and endocytosis [22,36–38,40,44]. α2δ subunits

are extracellular proteins that remain associated to the mem-

brane via a GPI-anchor [54]. α2δ subunits are involved in

synaptogenesis [65]. Cavγ subunits are four-pass transmem-

brane proteins also involved in cervical ganglion neurite

outgrowth and synaptogenesis [108,109].
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phosphatidylinositol-phospholipase C, results in a release of the α2δ

from the membrane and a decreased Ca2+ current [54]. Both these

results suggest an intact α2δ subunit is required at the membrane to

induce and sustain the α2δ-mediated regulation of α1 subunits. In ad-

dition to its role in trafficking, α2δ has been proposed to stabilise α1 at

the membrane by reducing internalisation and in targeting α1 to de-

tergent-resistant membranes [54,58]. Phenotypes of α2δ knockout mice

have been very informative, both α2δ1 and α2δ3 have thus been im-

plicated in neuropathic pain, with α2δ1-overexpressing mice demon-

strating hyperalgesia [59] and α2δ3 -knockout mice demonstrating an

enhanced insensitivity to pain [60]. Mice deficient in α2δ2, the isoform

found overwhelmingly in cerebellar Purkinje neurons, present with

seizures and ataxia [61]. Gabapentin, used in the treatment of epilepsy

and neuropathic pain, preferentially binds to α2δ1/2 and lowers α2δ

surface expression, demonstrating that the α2δ auxiliary subunit is a

druggable target [62–64]. All α2δ subunits are involved in synapto-

genesis, but potentially through different mechanisms [65]. α2δ1 pro-

motes cortical synaptogenesis, independently of Ca2+ influx, through

binding to secreted astrocytic thrombospondin in the postsynaptic

membrane and promoting actin remodelling via Rac-1 [66], whereas

loss of α2δ4 causes impaired retinal synaptogenesis, which correlates

with a decrease in presynaptic Cav1.4 [67,68].

More is known about the involvement of α2δ subunits in cancer

compared to the other Cav auxiliary subunits. Increased α2δ1 expression

occurs in both ovarian and hepatocellular tumour-initiating cells and

correlates with decreased overall survival and a shorter progression-

free survival in clinical ovarian samples [69–71]. Zhao et al. developed

a monoclonal antibody against α2δ1, 1B50-1 [71]. Sorting of a 1B50-1-

positive subpopulation of Hep-11 cells, a hepatocellular carcinoma

(HCC) cell line, resulted in a subset of cells that initiated tumour for-

mation in all implanted mice, whereas the 1B50-1-negative sub-

population failed to form any tumours. Furthermore, 62/86 of HCC

samples were 1B50-1-positive compared to 0/6 normal tissue samples.

in vivo experimentation demonstrated that administering 1B50-1 re-

duced tumour volume following implantation of two HCC cell lines and

increased survival, especially when co-administered with doxorubicin,

compared to doxorubicin or 1B50-1 alone. Lastly, in vitro work in the

same study demonstrated α2δ1 to be involved in maintaining cell via-

bility and spheroid formation, via increasing Ca2+ influx through L-

type and N-type Ca2+ channels and MAPK signalling [71]. In non-small

cell lung cancer cells, α2δ1 expression confers radioresistance in vitro,

by enhancing the DNA repair response, and chemoresistance in vivo,

potentially through MAPK signalling [72,73]. In addition, various

miRNAs that are downregulated in cancer target α2δ1 expression, in-

cluding hsa-miR-208a-3p and hsa-miR-1207-5p in medulloblastoma

[74], and miR-107 in chronic myeloid leukaemia (CML) [75]. Over-

expressing miR-107 promotes differentiation in CML cell lines, which is

reversed when expression of α2δ1 is restored [75].

The involvement of α2δ2 in cancer is complex, as α2δ2 can be both

oncogenic and tumour suppressive [76,77]. α2δ2 was initially identified

as a potential tumour suppressor gene as it is encoded by CACNA2D2,

which is absent in the 3p21.3 chromosomal deletion commonly ob-

served in lung and breast cancer [78]. Similarly, CACNA2D2 is deleted

in cervical carcinoma [79], is commonly methylated in head and neck

squamous cell carcinoma [80], is downregulated in lung squamous cell

carcinoma via miR-205 [81], and its expression correlates with im-

proved survival in patients with lung adenocarcinoma [82]. Function-

ally, in vitro experiments using various non-small cell lung cancer cell

lines have demonstrated that overexpression of α2δ2 induces apoptosis

via mitochondrial cytochrome-c release and subsequent caspase acti-

vation [77]. In contrast, α2δ2 overexpression occurs in prostate tumours

[76] and in insulin-secreting pancreatic adenomas, where elevated in-

tracellular Ca2+ is known to stimulate β-cell proliferation [83]. Fur-

thermore, α2δ2 overexpression in prostate cancer cells induces tu-

mourigenesis and angiogenesis in mice, which is treatable by

administering the α2δ2 inhibitor, gabapentin [76].

Conversely, α2δ3 is considered a tumour suppressor gene, as

downregulation or deletion is seen in nasopharyngeal cancer [84],

breast cancer [85], oesophageal squamous cell carcinoma [86,87],

gastric cancer [88,89], lung cancer [90] and cholangiocarcinoma [91].

Mice implanted with cancer cells overexpressing α2δ3 show a decreased

tumour volume, compared to implanted control cells, in nasophar-

yngeal cancer [84], oesophageal cancer [87] and glioma [92] models.

The consensus mechanism points towards an inhibition of motility and

invasion by α2δ3, and induction of apoptosis through an increase in

intracellular Ca2+, leading to mitochondria-induced apoptosis

[84,87,92].

2.3. CaVγ

The interaction between CaVγ-subunits and α1 subunits is less well

understood. Cavγ-subunits were originally identified following im-

munoprecipitation of the skeletal muscle 1,4-dihydropyridine (DHP)

receptor (later known as L-type VGCCs), which yielded γ1 as a binding

partner [93,94]. Following the discovery of CaVγ1, seven more Cavγ-

subunits were identified by homology studies [95–98]. Cavγ2 and Cavγ3
have been shown to associate with Cav2.1 [99], Cavγ2-4 to Cav2.2 [99]

and Cavγ6 to Cav3.1 [100]. Using cryo-electron microscopy, the γ-sub-

unit was predicted to interact with the Cav1.1 voltage-sensing domain

(S4) of domain IV [24]. However, the α1-γ coupling remains con-

tentious as more recent efforts failed to precipitate a Cavγ-subunit with

Cav2. Further, Cavγ2 can regulate Cav2.2 indirectly, suggesting a direct

coupling may not be necessary for Cavγ-induced channel modulation

[21,101]. Cavγ-subunit mRNA is expressed in skeletal muscle (γ1,6,7)

and brain (γ2-8) as well as other tissues such as kidney, liver, colon,

testis and lung [98]. Functionally, Cavγ-subunits negatively regulate

VGCC-mediated Ca2+ influx by decreasing channel expression and

current amplitude [102], hyperpolarising the voltage threshold of in-

activation, accelerating channel inactivation [103], and increasing the

time taken for recovery from inactivation [96]. Cavγ-induced regulation

of Ca2+ influx observed at the cellular level is supported by the Star-

gazer mouse mutant, which lacks Cavγ2 and presents with ataxia and

absence seizures [104]. Interestingly, a subclass of Cavγ-subunits, γ2/3/

4/5/8 (known as transmembrane AMPA receptor regulatory proteins

[TARPs]), which localise to the brain [105], interact with ionotropic

AMPA receptors and induce membrane localisation [106,107]. Other

functions of γ-subunits include Cavγ7-induced neurite outgrowth in

superior cervical ganglion neurons [108] and Cavγ2-induced synapto-

genesis [109].

Aberrant Cavγ expression is seen in various cancers, including in-

creased Cavγ1 in early progressing human epidermal growth factor-

positive (HER2+) metastatic breast cancer [110], increased Cavγ4 in

bladder squamous cell carcinoma [111] and increased Cavγ7 in leio-

myoma via downregulation of miR-197 [112]. Furthermore, a predic-

tion algorithm using a dataset of 1.7 million cancer mutations identified

Cavγ3 as a putative oncogene [113]. Similar to Cavβ, the functional role

of Cavγ in cancer is not yet clear. However, a Cavγ4 mutation appears in

a cluster of mutations involved in MAPK signalling [111], suggesting a

possible role in regulation of mitogenesis.

In summary, although Cavα1 subunits have an oncogenic role [15],

it is not yet clear whether Cav auxiliary subunits function through Cavα1

or have secondary functions in cancer, or both. Given that Cavβ and

Cavγ are both oncogenic but have antagonistic effects on α1 function,

and Cavα2δ can be oncogenic or tumour suppressive, it would seem that

the involvement of auxiliary subunit-mediated Ca2+ influx in cancer is

tumour type/stage-specific, dependent on the expression profile of

other subunits, or subordinate to a secondary function of the auxiliary

subunit. Cav auxiliary subunits have functions, potentially α1-in-

dependent, that could contribute to oncogenesis and tumour progres-

sion. All Cavβs regulate gene expression and interact with small

GTPases [36–38,40,41,44]. Cavβ1 and Cavβ2 are also essential for

maintaining proliferation and cellular plasticity during development
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[36,43]. The TARP family of Cavγs induce AMPA receptor membrane

trafficking [107], a receptor with an emerging involvement in cancer

[114,115], and Cavγ4 and Cavγ7 induce transcellular adhesion and

neurite outgrowth respectively [108,109]. α2δ1 is also involved in

transcellular adhesion [66]. Furthermore, increased Ca2+ conductance

potentially underpins both the oncogenic function of α2δ1 and α2δ2
[71,83] and the tumour suppressive function of α2δ2 and α2δ3 [77,92].

3. K+ channels

K+ channels represent an extensive superfamily of channels, many

of which have been implicated in regulating key elements of tumour

progression [116–118]. Here, we focus on the function and involve-

ment in cancer of the auxiliary subunits of the voltage-gated K+

channel (VGKC), BK channel and Kir channel complexes (Fig. 2A-C).

VGKC α-subunits represent a diverse family of forty K+-conducting

proteins, Kv1-12.x, which conduct an outward K+ current in response

to depolarisation of the membrane potential. Three classes of VGKC

auxiliary subunits have been identified: Kvβ1-3, KChIP1-4, and KCNE1-5

which canonically interact with Kv1, KV4, and Kv7.1 respectively

[119–122], although Kvβs and KCNEs interact with other VGKC α-

subunits and KVβs also interact with TRPV1 and K2P2.1 [123–126]. The

activity of Kv1 [116,127], Kv4 [128], and Kv7.1 [129] is upregulated in

various cancers. However, the expression pattern of VGKC auxiliary

subunits in cancer is more complex.

3.1. Kvβ

Kvβ subunits are cytoplasmic proteins, which form homo- or het-

erotetramers [130] that are involved in trafficking of Kv1 and Kv4.3 to

the cell surface [131–133]. Additionally, Kvβ2 is involved in targeted

axonal trafficking of Kv1.2 and Kvβ1 differentially regulates the Kv

composition in ventricular myocytes [134,135]. Kvβ1 and Kvβ3 mod-

ulate VGKC α-subunits via an N-terminal ball domain, which permits

rapid inactivation of delayed-rectifying Kv1 α-subunits [136,137]. Kvβ1
also slows deactivation, accelerates slow inactivation and hyperpo-

larises activation of Kv1.2 [138]. Kvβ2 lacks the ability to inactivate

delayed-rectifying Kv1 channels, but does hyperpolarise channel acti-

vation [139]. Kvβ1 and Kvβ2 are both expressed in developing rat heart

and skeletal muscle and during induced myogenesis of L6E9 cells [140].

Furthermore, deletion of Kvβ1 results in aberrant cardiac electrical ac-

tivity and cardiac hypertrophy in female mice [141]. Kvβ2 deletion

leads to reduced Kv1.5 surface expression in coronary arterial myocytes

and a reduction in total skeletal muscle volume, potentially mediated

through downregulation of Pax7 and upregulation of NEDD4

[133,142]. Interestingly, Kvβs are part of the aldo-keto reductase (AKR)

superfamily owing to their C-terminal AKR domain. The AKR domain

allows for binding and functional modulation by pyridine nucleotides

(NAD and NADP). NADP+ inhibits KVβ1- and KVβ3-mediated inactiva-

tion of Kv1.5 as well as inhibiting Kvβ2-mediated hyperpolarisation of

Kv1.5 activation [143,144].

Evidence suggests that Kvβs are downregulated in cancer. Kvβ1 is

downregulated in malignant thyroid carcinomas relative to benign

thyroid adenomas [145,146]. The gene encoding Kvβ2 is the most sig-

nificant site of methylation in non-functional (non-hormone secreting)

pituitary adenoma compared to functional (hormone-secreting) ade-

nomas and is one of the genes ablated in the common 1p36.3 chro-

mosome deletion seen in neuroblastoma [147,148]. Methylation of the

promoter of the gene encoding Kvβ3 is seen in oral squamous cell

cancers relative to adjacent normal tissue [149]. Together, these data

suggest Kvβs are tumour suppressor genes, but in depth in vitro and in

vivo characterisation of Kvβ in cancer is still currently lacking.

3.2. KCNE

KCNEs are single-pass transmembrane proteins that interact

Fig. 2. K+ channel auxiliary subunits. (A) Voltage-gated K+ channels (VGKCs).

The conducting subunit, Kvα forms tetramers within the membrane that are

accompanied and functionally modulated by four Kvβs (for Kv1), four KChIPs

(for Kv4) or two KCNEs (Kv7.1) [119–122]. The function of Kvβ is modulated by

pyridine nucleotides [143]. KChIPs are involved in regulating gene expression

[173]. (B) Large conductance Ca2+-activated K+ (BK) channels. BK channels

consist of a K+-conducting, seven-pass (S0-S6) membrane protein subunit

(BKα/Slo) accompanied and modulated by dual-pass BKβ and BKγ [182,187].

S0 of BKα is required for interaction with BKβ, S4 is involved in voltage-sen-

sing, the pore region is formed by the linker of S5-6 and an enlarged C-terminus

containing two RCK (regulator of conductance of K+) domains sense in-

tracellular Ca2+ [330]. (C) Inwardly rectifying K+ (Kir) channels. Tetrameric

Kir6 subunits, containing the K+-conducting pore, are functionally regulated at

the membrane by 17-pass SUR subunits (1:1 stoichiometry), which confer ATP-

sensitivity onto Kir6 via NBDs (nucleotide binding domains) [196]. Kir1-4 can

be bound and modulated by various C-terminal binding proteins [331].
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primarily with Kv7; two KCNEs interact with tetrameric Kv7 [150]. In

vitro studies document a range of effects of KCNEs on Kv7.1. For ex-

ample, KCNE1 and KCNE3 both increase surface expression and current

density, while KCNE4 and KCNE5 have no effect on current density

[151]. KCNE2 and KCNE3 interaction with Kv7.1 produces voltage-in-

sensitive channels and all KCNEs depolarise the activation voltage of

Kv7, with KCNE4 and KCNE5 depolarising activation to a non-physio-

logical membrane potential [151]. KV7.1 has a well-established role in

cardiac rhythm and in regulating osmotic and salt transport across

gastrointestinal, cochlear and renal epithelia; this is reflected in Kcne1

knockout mice demonstrating atypical QT intervals, hair cell degen-

eration, impaired renal fluid, glucose and electrolyte uptake, and faecal

Na+ and K+ wasting [152–155]. Furthermore, mutations in KCNE1

underlie Long QT Syndrome 5 and Jervis and Lange-Nielsen syndrome,

a disorder characterised by deafness and cardiac arrhythmia [156,157].

With regard to cancer, KCNE1-3 are expressed in uterine cancer cell

lines, in which they influence proliferation [158] and a 5-fold and 3-

fold upregulation of KCNE3 and KCNE4 respectively has been reported

in gliobastoma datasets [159]. Paradoxical to the upregulation of

KCNE1 in uterine cancer cell lines, KCNE1 overexpression in an astro-

glioma cell line (U87-MG) induces apoptosis and KCNE1 is one of the

four genes deleted in the 21q22.12 microdeletion which causes a pre-

disposition to acute myelogenous leukaemia [160,161]. The apoptotic

influence of KCNE1 in U87-MG cells is proposed to occur through ca-

nonical K+ efflux through Kv7.1, inducing decreased cytoplasmic K+, a

known apoptotic trigger [160,162], whereas KCNE1 induces uterine

cancer cell proliferation via modulation of HERG channels [158,163].

HERG channels induce proliferation in a range of cell lines and HERG

channel inhibition decreases MAPK phosphorylation and c-fos expres-

sion in MDA-MB-435S cells [164]. Out of all the Kv auxiliary subunits

however, KCNE2 has the most established link to cancer. KCNE2

downregulation is observed in gastric cancer tissue and gastric cancer

cell lines, correlates with gastritis cystica profunda development (pre-

neoplastic condition characterised by large gastric cysts) and is a risk

factor in gastric cancer stratification [165–167]. Furthermore, Kcne2

knockout mice display a 6-fold increase in stomach size, an upregula-

tion of Ki67 and Cyclin D1 in gastric mucosa, an increase in the me-

taplastic marker TFF2, pyloric adenomas and neoplastic invasion

compared to wild-type mice [168]. Overexpression of KCNE2 in the

SGC7901 gastric cancer cell line reduces proliferation and significantly

reduces xenograft tumour volume compared to parental SGC7901 cells

[167].

KCNE2-Kv7.1 complexes, in the apical membrane of non-excitable

gastric parietal cells, are essential for maintaining acidification of the

stomach, as KCNE2 transforms Kv7.1 to a constitutively open channel

that is potentiated by extracellular H+ [169]. Luminal K+ released by

KCNE2-Kv7.1 is then recycled back into the parietal cell, in exchange

for H+, via the H+/K+ ATPase, resulting in gastric acidification

[169,170]. Kcne1 knockout mice demonstrate reduced H+ secretion,

reduced gastric acidification, gastric hyperplasia and atypical Kv7.1

localisation [170]. However, it is not yet known whether KCNE2

downregulation contributes to gastric cancer progression through a

failure to acidify the lumen of the stomach or via its role in regulating

tumour cell proliferation.

3.3. KChIP

Ca2+-sensing Kv channel interacting proteins (KChIPs) are involved

in KV4 channel modulation. KChIPs increase surface channel density,

hyperpolarise the voltage of activation, slow inactivation and accelerate

the recovery from inactivation [119,171]. KChIPs were identified by a

yeast 2-hybrid screen searching for interaction partners with Kv4.2/3 N-

termini [119]. Interestingly, KChIP3 was already known as calsenilin/

downstream regulatory element antagonistic modulator (DREAM).

KChIP3/DREAM plays a key role in differentiation and apoptosis in-

dependently of K+ channels [172]. DREAM binds upstream genetic

elements (DRE sites) as a tetramer and represses transcription of the

downstream gene until upon Ca2+ stimulation, DREAM tetramers dis-

sociate from DNA allowing gene transcription [173]. Despite KChIP3

being the first Ca2+-sensing transcriptional repressor identified, the

other KChIPs are also capable of DRE-site binding [174]. DREAM ex-

pression is required for maintenance of human embryonic stem cell

pluripotency; DREAM knockdown by siRNA results in an increase in

apoptosis and spontaneous differentiation [172]. Potentially in-

dependent of its nuclear role, DREAM expression induces Ca2+-medi-

ated apoptosis possibly through sequestration of hexokinase I from

mitochondria [175,176]. Additionally, DREAM expression induces

process outgrowth in pheochromocytoma PC12 cells by RhoA in-

activation and induces thrombus formation in anucleate platelets via

PI3K stimulation [177,178]. There is currently limited evidence of a

role for KChIPs in cancer. However, one study identified KChIP4 gene

disruption in a renal cancer cell chromosomal break [179]. In addition,

KChIP1 upregulation and KChIP3 downregulation have been shown in

glioblastoma multiforme, with KChIP2 upregulation correlating with

decreased survival for glioblastoma patients [180]. The involvement of

KChIP3/DREAM in regulating differentiation, apoptosis, transcellular

adhesion and process outgrowth suggests cancer-expressed or down-

regulated KChIPs could be a worthwhile subject of further study.

3.4. BK channels

Large conductance Ca2+-activated K+ (BK) channels are seven

membrane-pass K+ channels that conduct a particularly large outward

K+ current synergistically in response to membrane depolarisation and

a rise in intracellular Ca2+ ([Ca2+]i) [181]. BK channels can be sti-

mulated by depolarisation or increased [Ca2+]i alone, however the

required membrane potential (V1/2=168mV at [Ca2+]i = 0) or

[Ca2+]i (EC50 ≥10 μM at resting membrane potential) are out of phy-

siological range [182]. BK channels are expressed in most tissues and

are involved in a range of functions, such as learning and memory

[183], pain modulation [184] and blood pressure regulation [185]. BK

channels are upregulated in glioblastoma primary cells and promote

proliferation and invasion [117,186]. BK channel function is modulated

by two groups of auxiliary subunits- BKβ1-4 and BKγ1-4, both double-

pass membrane proteins. BKβ1 and BKβ2 increase Ca2+ sensitivity

[187], BKβ2 hyperpolarises and accelerates channel activation [188],

BKβ3 depolarises channel activation [188] and BKβ4 hyperpolarises

channel activation whilst simultaneously inhibiting channel opening at

low [Ca2+]i but enhancing activation at high [Ca2+]i [189]. BKγ sub-

units hyperpolarise BK channel activation [190]. BKγ1 hyperpolarises

channel activation to such an extent (−140mV in LNCaP prostate

cancer cells) that BK channels open without the need for increased

[Ca2+]i at resting membrane potentials [182].

Despite the extensive involvement of BK channels in a range of

physiological processes, the link between BK channel auxiliary subunits

and cancer is still very tentative, with thus far only BKγ1 implicated.

There are conflicting reports on the involvement of BKγ1 (also known as

LRRC26 and CAPC) in cancer. BKγ1 is upregulated in the MDA-MB-456

breast cancer cell line and in metastatic secondary breast cancer tu-

mours compared to the primary tumour of a single patient [191]. BKγ1
is also upregulated in many breast and prostate cancer cell lines and

breast, prostate, colon and pancreatic samples [192,193]. However,

BKγ1 is frequently methylated in triple-negative breast cancer speci-

mens and cell lines and siRNA knockdown of BKγ1 in the triple-negative

HCC70 breast cancer cell line enhances anchorage-independent growth,

invasion, migration, and NF-κB activity [194]. Similarly, knockdown of

BKγ1 expression enhances anchorage-independent growth in LNCaP

cells and overexpression of BKγ1 in the triple-negative MDA-MB-231

breast cancer cell line downregulates NF-κB activity and inhibits tu-

mourigenesis and metastasis in nude mice [195]. Furthermore, BKγ1
expression is lowest in poorly differentiated and highly invasive pros-

tate and breast cancer lines [195]. Thus, BKγ1 appears to have
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oncogenic and tumour-suppressive function depending on the cancer

type. At this stage, the mechanism by which BKγ1 performs these

functions in cancer cells is unclear. BK channels may thus perform

multiple functions in cancer cells, dependent on, or independent of,

BKγ1.

3.5. Kir channels

Inwardly-rectifying K+ (Kir) channels are double pass membrane

proteins which form tetramers in the membrane [196]. Kir channels

lack a voltage sensor domain. IKir is instead dictated by the electro-

chemical gradient and an increasing intracellular blocking of the pore

when the membrane potential (Em)> EK, resulting in an inward IK
when Em<EK and an outward IK when Em>Ek, which is progressively

blocked as Em rises [197]. Kir channels are therefore important for

maintenance of the hyperpolarised resting membrane potential and

regulating activity in excitable cells, such as vascular smooth muscle

[198], central neurons [199] and cardiomyocytes [200]. Subfamilies of

Kir channels exist that are ATP-sensitive (KATP channels; Kir6.x) and G-

protein gated (G-protein inwardly rectifying K+ channels- GIRKs;

Kir3.x) [201,202]. KATP channels are inhibited by ATP/stimulated by

ADP. They function as metabolic sensors, for instance in smooth muscle

where KATP channels regulate vascular tone [203]. GIRKs facilitate G-

protein-mediated inhibitory neurotransmitter signalling, such as GABA

signalling [204,205].

Certain Kir channels are regulated by auxiliary subunits. Kir6 binds

sufonylurea receptors (SUR) 1 or 2 in an octameric conformation (tet-

rameric Kir6 plus tetrameric SUR) to form a KATP channel [196].

Channel assembly is required before KATP is released from the en-

doplasmic reticulum [206]. SUR subunits impart differential sensitivity

to ADP/ATP and are the binding target of sulfonylureas, a common

form of treatment for type 2 diabetes mellitus [207,208]. SUR1 is

overexpressed in cerebral metastases where it decreases vascular per-

meability [209]. Resveratrol binds to and inhibits SUR1, inducing

apoptosis in HEK293 cells, suggesting a potential pro-survival function

of SUR1 [210]. SUR2B expression is present in leiomyoma and meta-

static breast cancer cells and glibenclamide, a sulfonylurea targeting

SUR proteins, inhibits proliferation in these cells [211,212]. SUR2 ex-

pression, along with Kir6.2, is upregulated in cervical cancer biopsies

[213]. In addition, the effectiveness of glibenclamide at inhibiting

proliferation correlates with the Kir6.2 expression of the cell line tested,

suggesting proliferation is dependent on SUR and Kir6.2 activity [213].

Glibenclamide also inhibits proliferation in MDA-MB-231 breast cancer

cells, inducing G0/G1 cell cycle arrest through an upregulation of P27

and reduction of cyclin E [212]. Treatment of MDA-MD-231 cells with

the KATP channel opener, minoxidil, conversely induces proliferation,

suggesting K+ influx underlies KATP-regulated proliferation [212].

Glibenclamide treatment also prevents tumour growth in vivo in

Sprague-Dawley rats treated with N-nitroso-N-methylurea [214]. Fur-

thermore, in insulinoma, a pancreatic β-cell cancer characterised by

insulin release, which is regulated by KATP channels, SUR1 expression is

increased [215]. In summary, SUR subunits appear to play an onco-

genic role in a Kir-dependent manner.

4. Na+ channels

There is a growing body of evidence supporting a role for Na+

channels in regulating various aspects of cancer progression [216,217].

With regard to auxiliary subunits, however, only those of the VGSC

have been characterised to date and will therefore be the focus of this

section (Fig. 3).

4.1. Voltage-gated Na+ channels

VGSCs conduct an inward Na+ current in response to membrane

depolarisation [218]. VGSCs are composed of a pore-forming α-subunit

(Nav1.1–1.9) and auxiliary β-subunits (Navβ1-Navβ4). Navβs are single

pass transmembrane glycoproteins that bind Navα covalently, in the

case of Navβ2 and Navβ4 [219,220], or non-covalently, in the case of

Navβ1 and Navβ3 [221–223]. INa is responsible for propagation of action

potentials and mutations in Navβs underlie certain types of epilepsy

[224] and cardiac arrhythmia [225]. Navβ1-3 traffic Navα to the cell

surface [226–228] and all Navβs increase INa [229–231]. Navβs induce

other changes in Navα gating kinetics, including accelerated recovery

from inactivation [232,233] and accelerated inactivation [230,234].

Navβs can both positively and negatively shift the voltage of activation

[235,236] and inactivation [222,226], possibly dependent on en-

dogenous expression of Nav subunits and other Nav-interacting proteins

in the experimental system used. Navβs are also cell adhesion mole-

cules, owing to the presence of an extracellular immunoglobulin loop

[237–240], which permits NaVβ-mediated neurite outgrowth

[241–244]. NaVβ1 plays an important role in regulating neuronal mi-

gration in CNS development, particularly in the cerebellum [14,245],

and NaVβ2 promotes dendritic expansion during hippocampal devel-

opment via a Navα-independent mechanism [243]. NaVβ subunits are

also substrates for proteolytic processing by secretases [246,247] and

evidence suggests that the cleaved intracellular domain of NaVβ2
shuttles to the nucleus to regulate expression of α-subunit genes [248].

Emerging evidence suggests that Navβs play diverse functional roles

in cancer. Navβ1 is upregulated in breast cancer samples and is more

highly expressed in strongly metastatic, compared to weakly metastatic,

prostate cancer cell lines [249,250]. Overexpression of Navβ1 in the

MDA-MB-231 breast cancer cell line promotes primary tumour growth

and metastasis to multiple organs when grafted into mice, compared to

parental MDA-MB-231 cells [249]. The Navβ1-induced increase in pri-

mary and secondary tumour growth was accompanied by a decrease in

apoptotic cleaved caspase-3 staining, no change in proliferative Ki67

staining, and an increase in endothelial CD31 staining, suggesting in-

creased apoptotic resistance and vascularisation underlie the oncogenic

influence of Navβ1 [249]. In vitro, MDA-MB-231-Navβ1 cells demon-

strate increased cell-cell adhesion, VGSC-mediated Na+ current and

neurite-like process outgrowth, which is reversible by inhibiting INa
[249,251]. Interestingly, MDA-MB-231-Navβ1 cells show decreased in

vitro motility and proliferation compared to MDA-MB-231 cells and

knockdown of endogenous Navβ1 in the MCF-7 breast cancer cell line

increases cell migration [251]. Similarly, Navβ1 is also expressed in

cervical cancer cells where it inhibits motility [252]. Furthermore,

treatment of mouse melanoma B16F10 cells with the anti-cancer

polymethoxyflavone, casticin, inhibits cell migration and invasion and

causes a concomitant genomic upregulation of SCN1B (encoding for

Navβ1) [253]. Navβ1 therefore appears to have a negative influence on

cell behaviour in vitro and potentially induces tumour growth and

metastasis through an increase in apoptotic resistance and transcellular

adhesion.

Navβ2 also appears to be oncogenic. Navβ2 expression is increased in

strongly metastatic prostate cancer cell lines relative to weakly meta-

static cell lines [254]. Perineural invasion is common in invasive

prostate cancer, and LNCaP prostate cancer cells overexpressing Navβ2
demonstrate an increased association with ex vivo murine spinal cord

axons and an increase in migration, invasion and growth [254,255].

Despite the invasion-promoting behaviour of Navβ2 in vitro, over-

expression of Navβ2 in LNCaP cells inhibits tumour growth, compared

to LNCaP cells, when implanted into mice, suggesting the functional

contribution of Navβ2 might be site or stage-specific during cancer

progression [255].

Unlike Navβ1 and Navβ2, Navβ3 and Navβ4 are considered tumour-

suppressive. SCN3B (encoding for Navβ3) expression is strongly upre-

gulated by p53 following DNA damage and Navβ3 expression induces

apoptosis and suppresses colony formation in osteosarcoma and glio-

blastoma cell lines [256]. Navβ4 expression is downregulated in thyroid

and high-grade breast cancer and is associated with favourable survival

[231,257]. Downregulation of Navβ4 in MDA-MB-231 breast cancer
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cells with shRNA increases primary tumour growth and metastasis in

xenograft mice models, relative to MDA-MB-231 cells overexpressing

Navβ4 [231]. Furthermore, loss of Navβ4 increases Navα-independent

RhoA-mediated cancer cell migration and invasion [231]. Navβ4 also

suppresses invasion in cervical cancer cells [252]. Navβs are structu-

rally very similar and generally have a broadly comparable effect in-

creasing INa, so it is intriguing that Navβ1 and Navβ2 are oncogenic,

whereas Navβ3 and Navβ4 are tumour-suppressive. Additionally, both

Navβ1 and Navβ4 were investigated using the same breast cancer cell,

MDA-MB-231, so the endogenous VGSC subunit expression accom-

panying the Navβ-subunit is comparable [231,249]. Both Navβ1 and

Navβ4 inhibit cell migration in vitro and induce neurite outgrowth in

developing neurons, thus it is unclear where the functional discrepancy

between the two proteins lies [231,241,251,258].

5. Cl− channels

Cl− channels are a family of relatively poorly understood proteins

that facilitate transmembrane Cl− transport. Cl− concentration is

highest intracellularly and ECl ˜-30 to−60mV, so channels conduct an

outward Cl− current at resting membrane potentials that can reverse on

depolarisation, although inwardly and outwardly rectifying Cl− chan-

nels have been identified [13]. Cl− channels are involved in regulating

a range of bodily functions, including renal salt retention [259], sy-

naptic inhibition [260], skeletal muscle contraction [261], smooth

muscle tone [262] and sperm motility [263]. Various subfamilies of Cl−

exist, but only the voltage-gated Cl− channel (CLC) and Ca2+-sensitive

Cl− channel (CaCC) subfamilies possess auxiliary subunits with a robust

link to cancer (Fig. 4A, B).

5.1. Voltage-gated Cl− channels

CLCs represent a range of cell surface Cl− channels (ClC-1,2,K) and

intracellular Cl− exchangers (ClC-3-7). Some CLCs are regulated by

auxiliary subunits; ClC-2 by GlialCAM [264,265], ClC-7 by Ostm1

[266], and ClC-K by Barttin [267]. GlialCAM targets ClC-2 to cell-cell

junctions, increases Cl− current (ICl), accelerates ICl activation, and

abolishes ClC-2 inward rectification and pH sensitivity [264]. GlialCAM

also functions as a cell adhesion molecule via an extracellular im-

munoglobulin domain [268,269]. ClC-7 is an intracellular, electrogenic

H+/Cl− exchanger involved in lysosomal acidification [270]. Inter-

estingly, ClC-7 regulates the trafficking and expression of its auxiliary

subunit, Ostm1 [266,271]. Nevertheless, Ostm1 is required to activate

ClC-7 function [270]. Barttin traffics ClC-K to the cell surface, resulting

in increased ICl, and abolishes the voltage-dependence of ClC-K

[272–274]. Mutations in the gene encoding Barttin are the cause of

Bartter syndrome type IV, characterised by hypokalaemia, blood alka-

losis and hypotension [275,276]. Knockin mice with the disease-

causing Barttin mutation R8L present with reduced plasma membrane

Barttin-ClC-K complexes and transepithelial Cl− transport is impaired

in the loop of Henle [277].

GlialCAM (also called HepaCAM) was identified as a putative tu-

mour suppressor gene that is silenced in hepatocellular carcinoma

[278]. GlialCAM downregulation is observed in liver, bladder, prostate,

kidney, breast, uterus, colon, stomach, and rectal cancer biopsies

[269,278–282]. Functionally, when GlialCAM is expressed in the liver

carcinoma cell line HepG2, cell motility and adhesion are increased,

colony formation is reduced, and proliferation is reduced [278]. Simi-

larly, when expressed in MCF-7 breast cancer cells, GlialCAM increases

cell motility and adhesion, decreases proliferation, and induces p53-

mediated cellular senescence [279,283]. GlialCAM inhibits prolifera-

tion and β-catenin signalling in bladder carcinoma cells [284,285].

Furthermore, in renal carcinoma cells, GlialCAM decreases prolifera-

tion, induces cell cycle arrest, and stimulates c-Myc degradation [286].

GlialCAM expression is also sufficient for reducing Notch-mediated

invasion and migration in prostate cancer cells [282]. Lastly, GlialCAM

stabilises connexin-43 at cell-cell gap junctions [287], connexin-43

being a potential tumour suppressor itself [288,289]. In summary,

GlialCAM has a strong anti-proliferative influence when expressed in

cancer cells, which could underpin its role as a tumour suppressor.

5.2. Ca2+-sensitive Cl− channels

Four single membrane-pass auxiliary subunits of CaCCs have been

identified (known as Ca2+-activated Cl− channel regulator or Cl−

channel accessory [CLCA]1-4) [290,291]. Interestingly, the molecular

identities of the conducting subunits were only discovered later and

termed Best1-4 and TMEM16 [292–295]. CaCCs demonstrate voltage-

dependence at steady-state, which is abolished following an increase in

[Ca2+]i [296]. Increased [Ca2+]i also increases ICl and accelerates

current onset [296]. CaCCs are expressed in epithelia and excitable

tissues, where they regulate excitability [297], smooth muscle con-

traction [298] and fluid secretion [299]. Expression of CLCA1 and

CLCA2 in HEK293 cells induces an enlarged and outwardly-rectifying

ICaCC [290,300]. More recent work has demonstrated that the secreted

N-terminus of CLCA1, produced following autoproteolysis, is sufficient

to stabilise TMEM16 A at the membrane, increasing ICaCC [301–303].

CLCA1 contains an intrinsic metalloprotease domain in the N-terminus

Fig. 3. Voltage-gated Na+ channel auxiliary subunits.

Voltage-gated Na+ channels (VGSCs) contain a conducting

Navα subunit and auxiliary Navβ subunits. Navα consists of

four domains (domains I-IV), each containing six segments

(S1-S6). The voltage-sensing domain is found within S4 of

each domain and the pore consists of the P-loop found

between S5-6 of each domain. Navβs function as cell ad-

hesion molecules via an extracellular immunoglobulin

domain [238,239,332]. Navβs also induce neurite out-

growth and migration [245] and the intracellular domain

of Navβ2 has putative transcription regulation function

[248].
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that is thought to be responsible for autoproteolysis and regulating

mucus turnover in the colon [304]. Despite CLCA2 enlarging ICaCC,

CLCA2 does not interact directly with TMEM16 or Best1 [305]. Instead,

CLCA2 interacts directly with store-operated Ca2+ channels, Orai1 and

STIM-1, stimulating ER Ca2+ replenishment following cytosolic deple-

tion [305].

CLCAs have a well-documented tumour-suppressive role [306–308].

CLCA1 is downregulated in colorectal and pancreatic cancer specimens

[306,309–311]. CLCA1 knockdown induces proliferation and inhibits

differentiation of caco-2 colorectal cancer cells [311]. Furthermore,

CLCA1 overexpression inhibits Wnt signalling and colorectal tumour

growth and metastasis in vivo [306]. CLCA2 expression is also decreased

in high-grade nasopharyngeal, colorectal, lymphoid and breast cancer

specimens compared to low grade samples [307,312–314]. Expression

of CLCA2 decreases nasopharyngeal and breast tumourigenesis in vivo

[307,312,315]. Similarly, CLCA2 depletion increases the number of

circulating prostate tumour cells in mice [316]. At a cellular level,

CLCA2 inhibits Wnt signalling [317], decreases invasion [315], inhibits

proliferation [312], induces transcellular adhesion [316], inhibits epi-

thelial-to-mesenchymal transition [312,316], induces differentiation

[316,318], inhibits focal adhesion kinase [312,319] and induces p53-

mediated cellular senescence [320]. The ability of CLCA2 to inhibit

cancer cell migration appears to be ICl independent, as inhibiting ICl has

a further anti-migratory effect in cells expressing CLCA2 as well as

having an anti-migratory effect in cells not expressing CLCA2 [312].

Ramena et al. observed CLCA2 at cell-cell junctions, interacting with

EVA1/ZO-1 or β-catenin [317]. Sequestration of β-catenin at the

plasma membrane was therefore suggested as a mechanism for CLCA2-

induced inhibition of epithelial-to-mesenchymal transition. CLCA4 ex-

pression is decreased in bladder, hepatocellular and breast cancer

specimens compared to adjacent normal tissue [308,321,322]. CLCA4

expression also decreases tumourigenicity in mice [321]. Furthermore,

CLCA4 depletion induces epithelial-to-mesenchymal transition via

PI3K/Akt signalling [308,322]. Despite the abundance of evidence

implicating CLCAs as tumour suppressor genes, CLCAs have also been

implicated in induction of lung colonization in vivo via adhesive inter-

actions between endothelial CLCA and β4 integrin expressed on circu-

lating cancer cells [323,324]. Similarly, increased CLCA2 expression is

seen in circulating lung adenocarcinoma cells and ovarian cancer cell

aggregates [325,326], suggesting CLCAs may potentially be tumour

suppressors on the one hand, and metastasis-promoting on the other.

6. Conclusion

Many ion channel auxiliary subunits are upregulated, e.g. Cavβs, or

downregulated, e.g. Kvβs, in tumours and thus may represent novel

cancer biomarkers. in vitro and in vivo experimentation has further

implicated various auxiliary subunits in tumour formation and pro-

gression, such as Navβ1 and α2δ1 (Fig. 5). However, others, e.g. CLCAs,

NaVβ3/4, may function as tumour suppressors. Clearly, it is important

from a treatment perspective to understand the mechanistic function of

ion channel auxiliary subunits, including the extent that they contribute

to cancer progression through potentiating ion conductance or via non-

conducting signalling. For example, α2δ1- and α2δ2-induced Ca2+

Fig. 4. Cl− channel auxiliary subunits. (A) CLCs are a

subfamily of voltage-sensitive Cl− channels and trans-

porters found at the plasma membrane and internal

membranes [13]. Barttin modulates ClC-K, GlialCAM

modulates ClC-2 and Ostm1 modulates the intracellular

ClC-7 transporter [264,266,267]. CLCs are composed of

eighteen helical domains and two C-terminal cystathio-

nine-β-synthase (CBS) domains which facilitate dimeriza-

tion [333]. Depicted is the plasma membrane ClC-2 which

interacts with single-pass GlialCAM, the only ClC auxiliary

subunit implicated in cancer [264]. GlialCAM can also

function as a cell adhesion molecule [268]. (B) Two se-

parate CaCC conducting subunits exist- TMEM16 and Be-

strophin. Depicted is eight-pass TMEM16 A which is

modulated directly by secreted CLCA1 and indirectly by

single-pass CLCA2 [303,305]. CLCA2 stimulates Ca2+

store replenishment by interacting with Orai1 and STIM1

[305].
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influx may promote hepatocellular carcinoma cell sphere formation and

pancreatic adenoma proliferation respectively [71,83]. Other examples

include NaVα-dependent, NaVβ1-mediated process outgrowth and the

extent of glibenaclamide-induced inhibition of SUR2-mediated cancer

cell proliferation correlating with the mRNA expression of Kir6.2

[213,249]. Validating the contribution of ion conductance to the on-

cogenic function of these auxiliary subunits would provide a potential

therapeutic target, as many ion channel inhibitors are already in clin-

ical use and could be repurposed [327–329]. On the other hand, nu-

merous auxiliary subunits many regulate cancer progression via non-

conducting roles, e.g. regulation of transcription, proliferation and

differentiation by Cavβ1 and KChIP3 [36,172]. Various auxiliary sub-

units also function as adhesion molecules in cancer cells, e.g. GlialCAM,

CLCAs and Navβs [254,278,316]. Further work is required to fully de-

lineate the diverse functional contributions of these subunits to carci-

nogenesis, tumour progression and metastasis, and understand their

potential as novel therapeutic targets.

Conflicts of interest statement

The authors declare that they have no conflicts of interest.

Acknowledgement

This work was supported by BBSRC Doctoral Training Partnership

in “Mechanistic Biology and its Strategic Application” Grant BB/

M011151/1.

References

[1] B. Hille, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates Inc.,

Sunderland (Massachusetts), 1992.

[2] D.J. Blackiston, K.A. McLaughlin, M. Levin, Bioelectric controls of cell prolifera-

tion: ion channels, membrane voltage and the cell cycle, Cell Cycle 8 (2009)

3527–3536.

[3] L. Abdul Kadir, M. Stacey, R. Barrett-Jolley, Emerging roles of the membrane

potential: action beyond the action potential, Front. Physiol. 9 (2018) 1661.

[4] A. Schwab, A. Fabian, P.J. Hanley, C. Stock, Role of ion channels and transporters

in cell migration, Physiol. Rev. 92 (2012) 1865–1913.

Fig. 5. Involvement of ion channel auxiliary subunits in different stages of tumour progression. A number of different ion channel auxiliary subunits are up- or down-

regulated in cancer cells promoting proliferation, reducing apoptosis and differentiation. Other auxiliary subunits have been shown to regulate angiogenesis,

invasion, and metastasis, thus promoting tumour progression. Finally, ion channel auxiliary subunits may also play a role in chemo/radioresistance, underscoring the

potential importance of these proteins in relation to therapeutic intervention.

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

133



[5] N. Prevarskaya, R. Skryma, Y. Shuba, Ion channels in cancer: are cancer hallmarks

oncochannelopathies? Physiol. Rev. 98 (2018) 559–621.

[6] L.K. Kaczmarek, Non-conducting functions of voltage-gated ion channels, Nat.

Rev. Neurosci. 7 (2006) 761–771.

[7] O. Pongs, J.R. Schwarz, Ancillary subunits associated with voltage-dependent K+

channels, Physiol. Rev. 90 (2010) 755–796.

[8] Q. Li, J. Yan, Modulation of BK channel function by auxiliary Beta and gamma

subunits, Int. Rev. Neurobiol. 128 (2016) 51–90.

[9] H. Hibino, A. Inanobe, K. Furutani, S. Murakami, I. Findlay, Y. Kurachi, Inwardly

rectifying potassium channels: their structure, function, and physiological roles,

Physiol. Rev. 90 (2010) 291–366.

[10] A.A. Bouza, L.L. Isom, Voltage-gated sodium channel beta subunits and their re-

lated diseases, Handbook of Experimental Pharmacology, (2017).

[11] A.C. Dolphin, Voltage-gated calcium channels and their auxiliary subunits: phy-

siology and pathophysiology and pharmacology, J. Physiol. 594 (2016)

5369–5390.

[12] J.L. Black 3rd, The voltage-gated calcium channel gamma subunits: a review of the

literature, J. Bioenerg. Biomembr. 35 (2003) 649–660.

[13] C. Duran, C.H. Thompson, Q. Xiao, H.C. Hartzell, Chloride channels: often enig-

matic, rarely predictable, Annu. Rev. Physiol. 72 (2010) 95–121.

[14] F. Patel, W.J. Brackenbury, Dual roles of voltage-gated sodium channels in de-

velopment and cancer, Int. J. Dev. Biol. (2015).

[15] P.J. Buchanan, K.D. McCloskey, CaV channels and cancer: canonical functions

indicate benefits of repurposed drugs as cancer therapeutics, Eur. Biophys. J. 45

(2016) 621–633.

[16] P. Mo, S. Yang, The store-operated calcium channels in cancer metastasis: from

cell migration, invasion to metastatic colonization, Front. Biosci. (Landmark edi-

tion) 23 (2018) 1241–1256.

[17] G. Shapovalov, A. Ritaine, R. Skryma, N. Prevarskaya, Role of TRP ion channels in

cancer and tumorigenesis, Semin. Immunopathol. 38 (2016) 357–369.

[18] L. Liu, H. Li, Y. Cui, R. Li, F. Meng, Z. Ye, X. Zhang, Calcium channel opening

rather than the release of ATP causes the apoptosis of osteoblasts induced by

overloaded mechanical stimulation, Cell. Physiol. Biochem. 42 (2017) 441–454.

[19] E.M. Grossinger, M. Kang, L. Bouchareychas, R. Sarin, D.R. Haudenschild,

L.N. Borodinsky, I.E. Adamopoulos, Ca(2+)-Dependent regulation of NFATc1 via

KCa3.1 in inflammatory osteoclastogenesis, J. Immunol. 200 (2018) 749–757.

[20] W.A. Catterall, E. Perez-Reyes, T.P. Snutch, J. Striessnig, International Union of

Pharmacology. XLVIII. Nomenclature and structure-function relationships of vol-

tage-gated calcium channels, Pharmacol. Rev. 57 (2005) 411–425.

[21] C.S. Muller, A. Haupt, W. Bildl, J. Schindler, H.G. Knaus, M. Meissner,

B. Rammner, J. Striessnig, V. Flockerzi, B. Fakler, U. Schulte, Quantitative pro-

teomics of the Cav2 channel nano-environments in the mammalian brain, Proc.

Natl. Acad. Sci. U. S. A. 107 (2010) 14950–14957.

[22] M. Pragnell, M. De Waard, Y. Mori, T. Tanabe, T.P. Snutch, K.P. Campbell,

Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic

linker of the alpha 1-subunit, Nature 368 (1994) 67–70.

[23] F. Van Petegem, K.A. Clark, F.C. Chatelain, D.L. Minor Jr, Structure of a complex

between a voltage-gated calcium channel beta-subunit and an alpha-subunit do-

main, Nature 429 (2004) 671–675.

[24] J. Wu, Z. Yan, Z. Li, C. Yan, S. Lu, M. Dong, N. Yan, Structure of the voltage-gated

calcium channel Cav1.1 complex, Science 350 (2015) aad2395.

[25] C. Altier, A. Garcia-Caballero, B. Simms, H. You, L. Chen, J. Walcher,

H.W. Tedford, T. Hermosilla, G.W. Zamponi, The Cavbeta subunit prevents RFP2-

mediated ubiquitination and proteasomal degradation of L-type channels, Nat.

Neurosci. 14 (2011) 173–180.

[26] J.S. Cassidy, L. Ferron, I. Kadurin, W.S. Pratt, A.C. Dolphin, Functional exofacially

tagged N-type calcium channels elucidate the interaction with auxiliary alpha2-

delta-1 subunits, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8979–8984.

[27] D. Waithe, L. Ferron, K.M. Page, K. Chaggar, A.C. Dolphin, Beta-subunits promote

the expression of Ca(V)2.2 channels by reducing their proteasomal degradation, J.

Biol. Chem. 286 (2011) 9598–9611.

[28] K.M. Page, S.W. Rothwell, A.C. Dolphin, The CaVbeta subunit protects the I-II loop

of the voltage-gated calcium channel CaV2.2 from proteasomal degradation but

not oligoubiquitination, J. Biol. Chem. 291 (2016) 20402–20416.

[29] X. Chen, D. Liu, D. Zhou, Y. Si, D. Xu, C.W. Stamatkin, M.K. Ghozayel, M.S. Ripsch,

A.G. Obukhov, F.A. White, S.O. Meroueh, Small-molecule CaValpha1CaVbeta

antagonist suppresses neuronal voltage-gated calcium-channel trafficking, Proc.

Natl. Acad. Sci. U. S. A. 115 (2018) E10566–e10575.

[30] B.C. Suh, D.I. Kim, B.H. Falkenburger, B. Hille, Membrane-localized beta-subunits

alter the PIP2 regulation of high-voltage activated Ca2+ channels, Proc. Natl.

Acad. Sci. U. S. A. 109 (2012) 3161–3166.

[31] C.G. Park, Y. Park, B.C. Suh, The HOOK region of voltage-gated Ca2+ channel

beta subunits senses and transmits PIP2 signals to the gate, J. Gen. Physiol. 149

(2017) 261–276.

[32] J.H. Yeon, C.G. Park, B. Hille, B.C. Suh, Translocatable voltage-gated Ca(2+)

channel beta subunits in alpha1-beta complexes reveal competitive replacement

yet no spontaneous dissociation, Proc. Natl. Acad. Sci. U. S. A. 115 (2018)

E9934–e9943.

[33] S.X. Takahashi, S. Mittman, H.M. Colecraft, Distinctive modulatory effects of five

human auxiliary beta2 subunit splice variants on L-type calcium channel gating,

Biophys. J. 84 (2003) 3007–3021.

[34] S. Etemad, G.J. Obermair, D. Bindreither, A. Benedetti, R. Stanika, V. Di Biase,

V. Burtscher, A. Koschak, R. Kofler, S. Geley, A. Wille, A. Lusser, V. Flockerzi,

B.E. Flucher, Differential neuronal targeting of a new and two known calcium

channel beta4 subunit splice variants correlates with their regulation of gene ex-

pression, J. Neurosci. 34 (2014) 1446–1461.

[35] C.G. Park, B.C. Suh, The HOOK region of beta subunits controls gating of voltage-

gated Ca(2+) channels by electrostatically interacting with plasma membrane,

Channels Austin (Austin) 11 (2017) 467–475.

[36] J. Taylor, A. Pereyra, T. Zhang, M.L. Messi, Z.M. Wang, C. Herenu, P.F. Kuan,

O. Delbono, The Cavbeta1a subunit regulates gene expression and suppresses

myogenin in muscle progenitor cells, J. Cell Biol. 205 (2014) 829–846.

[37] E. Servili, M. Trus, D. Maayan, Atlas, beta-Subunit of the voltage-gated Ca(2+)

channel Cav1.2 drives signaling to the nucleus via H-Ras, Proc. Natl. Acad. Sci. U.

S. A. 115 (2018) E8624–e8633.

[38] Y. Zhang, Y. Yamada, M. Fan, S.D. Bangaru, B. Lin, J. Yang, The beta subunit of

voltage-gated Ca2+ channels interacts with and regulates the activity of a novel

isoform of Pax6, J. Biol. Chem. 285 (2010) 2527–2536.

[39] M. Rima, M. Daghsni, A. Lopez, Z. Fajloun, L. Lefrancois, M. Dunach, Y. Mori,

P. Merle, J.L. Bruses, M. De Waard, M. Ronjat, Down-regulation of the Wnt/beta-

catenin signaling pathway by Cacnb4, Mol. Biol. Cell 28 (2017) 3699–3708.

[40] P. Beguin, K. Nagashima, T. Gonoi, T. Shibasaki, K. Takahashi, Y. Kashima,

N. Ozaki, K. Geering, T. Iwanaga, S. Seino, Regulation of Ca2+ channel expression

at the cell surface by the small G-protein kir/Gem, Nature 411 (2001) 701–706.

[41] G. Gonzalez-Gutierrez, E. Miranda-Laferte, A. Neely, P. Hidalgo, The Src homology

3 domain of the beta-subunit of voltage-gated calcium channels promotes en-

docytosis via dynamin interaction, J. Biol. Chem. 282 (2007) 2156–2162.

[42] K. Schuster-Gossler, R. Cordes, A. Gossler, Premature myogenic differentiation and

depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants,

Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 537–542.

[43] Y. Chernyavskaya, A.M. Ebert, E. Milligan, D.M. Garrity, Voltage-gated calcium

channel CACNB2 (beta2.1) protein is required in the heart for control of cell

proliferation and heart tube integrity, Dev. Dyn. 241 (2012) 648–662.

[44] M. Rima, M. Daghsni, S. De Waard, N. Gaborit, Z. Fajloun, M. Ronjat, Y. Mori,

J.L. Bruses, M. De Waard, The beta4 subunit of the voltage-gated calcium channel

(Cacnb4) regulates the rate of cell proliferation in Chinese Hamster ovary cells,

Int. J. Biochem. Cell Biol. 89 (2017) 57–70.

[45] A. Tadmouri, S. Kiyonaka, M. Barbado, M. Rousset, K. Fablet, S. Sawamura,

E. Bahembera, K. Pernet-Gallay, C. Arnoult, T. Miki, K. Sadoul, S. Gory-Faure,

C. Lambrecht, F. Lesage, S. Akiyama, S. Khochbin, S. Baulande, V. Janssens,

A. Andrieux, R. Dolmetsch, M. Ronjat, Y. Mori, M. De Waard, Cacnb4 directly

couples electrical activity to gene expression, a process defective in juvenile epi-

lepsy, EMBO J. 31 (2012) 3730–3744.

[46] M. Ronjat, S. Kiyonaka, M. Barbado, M. De Waard, Y. Mori, Nuclear life of the

voltage-gated Cacnb4 subunit and its role in gene transcription regulation,

Channels (Austin, Tex.) 7 (2013) 119–125.

[47] C.Y. Wang, M.D. Lai, N.N. Phan, Z. Sun, Y.C. Lin, Meta-analysis of public micro-

array datasets reveals voltage-gated calcium gene signatures in clinical Cancer

patients, PLoS One 10 (2015) e0125766.

[48] X. Zhou, W. Wang, S. Zhang, X. Wang, Z. Tang, J. Gu, J. Li, J. Huang, CACNA1B

(Cav2.2) overexpression and its association with clinicopathologic characteristics

and unfavorable prognosis in non-small cell lung Cancer, Dis. Mark. 2017 (2017)

6136401.

[49] A. Suo, A. Childers, A. D’Silva, L.F. Petersen, S. Otsuka, M. Dean, H. Li,

E.K. Enwere, B. Pohorelic, A. Klimowicz, I.A. Souza, J. Hamid, G.W. Zamponi,

D. Bebb, Cav3.1 overexpression is associated with negative characteristics and

prognosis in non-small cell lung cancer, Oncotarget 9 (2018) 8573–8583.

[50] P. Gao, M. He, C. Zhang, C. Geng, Integrated analysis of gene expression signatures

associated with colon cancer from three datasets, Gene 654 (2018) 95–102.

[51] M. Chen, N. Rothman, Y. Ye, J. Gu, P.A. Scheet, M. Huang, D.W. Chang,

C.P. Dinney, D.T. Silverman, J.D. Figueroa, S.J. Chanock, X. Wu, Pathway analysis

of bladder cancer genome-wide association study identifies novel pathways in-

volved in bladder cancer development, Genes Cancer 7 (2016) 229–239.

[52] R. Mitra, J. Lee, J. Jo, M. Milani, J.N. McClintick, H.J. Edenberg, K.A. Kesler,

K.M. Rieger, S. Badve, O.W. Cummings, A. Mohiuddin, D.G. Thomas, X. Luo,

B.E. Juliar, L. Li, C. Mesaros, I.A. Blair, A. Srirangam, R.A. Kratzke, C.J. McDonald,

J. Kim, D.A. Potter, Prediction of postoperative recurrence-free survival in non-

small cell lung cancer by using an internationally validated gene expression

model, Clin. Cancer Res. 17 (2011) 2934–2946.

[53] A. Calderon-Rivera, A. Andrade, O. Hernandez-Hernandez, R. Gonzalez-Ramirez,

A. Sandoval, M. Rivera, J.C. Gomora, R. Felix, Identification of a disulfide bridge

essential for structure and function of the voltage-gated Ca(2+) channel alpha(2)

delta-1 auxiliary subunit, Cell Calcium 51 (2012) 22–30.

[54] A. Davies, I. Kadurin, A. Alvarez-Laviada, L. Douglas, M. Nieto-Rostro, C.S. Bauer,

W.S. Pratt, A.C. Dolphin, The alpha2delta subunits of voltage-gated calcium

channels form GPI-anchored proteins, a posttranslational modification essential

for function, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 1654–1659.

[55] E. Shistik, T. Ivanina, T. Puri, M. Hosey, N. Dascal, Ca2+ current enhancement by

alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in

channel gating and alpha 1 protein level, J. Physiol. 489 (Pt 1) (1995) 55–62.

[56] M. Nieto-Rostro, K. Ramgoolam, W.S. Pratt, A. Kulik, A.C. Dolphin, Ablation of

alpha2delta-1 inhibits cell-surface trafficking of endogenous N-type calcium

channels in the pain pathway in vivo, Proc. Natl. Acad. Sci. U. S. A. 115 (2018)

E12043–e12052.

[57] I. Kadurin, L. Ferron, S.W. Rothwell, J.O. Meyer, L.R. Douglas, C.S. Bauer, B. Lana,

W. Margas, O. Alexopoulos, M. Nieto-Rostro, W.S. Pratt, A.C. Dolphin, Proteolytic

maturation of alpha2delta represents a checkpoint for activation and neuronal

trafficking of latent calcium channels, eLife 5 (2016).

[58] G.M. Bernstein, O.T. Jones, Kinetics of internalization and degradation of N-type

voltage-gated calcium channels: role of the alpha2/delta subunit, Cell Calcium 41

(2007) 27–40.

[59] C.Y. Li, X.L. Zhang, E.A. Matthews, K.W. Li, A. Kurwa, A. Boroujerdi, J. Gross,

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

134



M.S. Gold, A.H. Dickenson, G. Feng, Z.D. Luo, Calcium channel alpha2delta1

subunit mediates spinal hyperexcitability in pain modulation, Pain 125 (2006)

20–34.

[60] G.G. Neely, A. Hess, M. Costigan, A.C. Keene, S. Goulas, M. Langeslag, R.S. Griffin,

I. Belfer, F. Dai, S.B. Smith, L. Diatchenko, V. Gupta, C.P. Xia, S. Amann, S. Kreitz,

C. Heindl-Erdmann, S. Wolz, C.V. Ly, S. Arora, R. Sarangi, D. Dan,

M. Novatchkova, M. Rosenzweig, D.G. Gibson, D. Truong, D. Schramek,

T. Zoranovic, S.J. Cronin, B. Angjeli, K. Brune, G. Dietzl, W. Maixner, A. Meixner,

W. Thomas, J.A. Pospisilik, M. Alenius, M. Kress, S. Subramaniam, P.A. Garrity,

H.J. Bellen, C.J. Woolf, J.M. Penninger, A genome-wide Drosophila screen for heat

nociception identifies alpha2delta3 as an evolutionarily conserved pain gene, Cell

143 (2010) 628–638.

[61] J. Barclay, N. Balaguero, M. Mione, S.L. Ackerman, V.A. Letts, J. Brodbeck,

C. Canti, A. Meir, K.M. Page, K. Kusumi, E. Perez-Reyes, E.S. Lander, W.N. Frankel,

R.M. Gardiner, A.C. Dolphin, M. Rees, Ducky mouse phenotype of epilepsy and

ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium

channel current in cerebellar Purkinje cells, J. Neurosci. 21 (2001) 6095–6104.

[62] M.J. Field, P.J. Cox, E. Stott, H. Melrose, J. Offord, T.Z. Su, S. Bramwell,

L. Corradini, S. England, J. Winks, R.A. Kinloch, J. Hendrich, A.C. Dolphin,

T. Webb, D. Williams, Identification of the alpha2-delta-1 subunit of voltage-de-

pendent calcium channels as a molecular target for pain mediating the analgesic

actions of pregabalin, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 17537–17542.

[63] A. Tran-Van-Minh, A.C. Dolphin, The alpha2delta ligand gabapentin inhibits the

Rab11-dependent recycling of the calcium channel subunit alpha2delta-2, J.

Neurosci. 30 (2010) 12856–12867.

[64] S. Lotarski, H. Hain, J. Peterson, S. Galvin, B. Strenkowski, S. Donevan, J. Offord,

Anticonvulsant activity of pregabalin in the maximal electroshock-induced seizure

assay in alpha2delta1 (R217A) and alpha2delta2 (R279A) mouse mutants,

Epilepsy Res. 108 (2014) 833–842.

[65] C. Eroglu, N.J. Allen, M.W. Susman, N.A. O’Rourke, C.Y. Park, E. Ozkan,

C. Chakraborty, S.B. Mulinyawe, D.S. Annis, A.D. Huberman, E.M. Green,

J. Lawler, R. Dolmetsch, K.C. Garcia, S.J. Smith, Z.D. Luo, A. Rosenthal,

D.F. Mosher, B.A. Barres, Gabapentin receptor alpha2delta-1 is a neuronal

thrombospondin receptor responsible for excitatory CNS synaptogenesis, Cell 139

(2009) 380–392.

[66] W.C. Risher, N. Kim, S. Koh, J.E. Choi, P. Mitev, E.F. Spence, L.J. Pilaz, D. Wang,

G. Feng, D.L. Silver, S.H. Soderling, H.H. Yin, C. Eroglu, Thrombospondin receptor

alpha2delta-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1, J.

Cell Biol. 217 (2018) 3747–3765.

[67] V. Kerov, J.G. Laird, M.L. Joiner, S. Knecht, D. Soh, J. Hagen, S.H. Gardner,

W. Gutierrez, T. Yoshimatsu, S. Bhattarai, T. Puthussery, N.O. Artemyev,

A.V. Drack, R.O. Wong, S.A. Baker, A. Lee, alpha2delta-4 is required for the mo-

lecular and structural organization of rod and cone photoreceptor synapses, J.

Neurosci. 38 (2018) 6145–6160.

[68] Y. Wang, K.E. Fehlhaber, I. Sarria, Y. Cao, N.T. Ingram, D. Guerrero-Given,

B. Throesch, K. Baldwin, N. Kamasawa, T. Ohtsuka, A.P. Sampath,

K.A. Martemyanov, The auxiliary calcium channel subunit alpha2delta4 is re-

quired for axonal elaboration, synaptic transmission, and wiring of rod photo-

receptors, Neuron 93 (2017) 1359–1374 e1356.

[69] S. Amhimmid Badr, M. Waheeb Fahmi, M. Mahmoud Nomir, M. Mohammad El-

Shishtawy, Calcium channel alpha2delta1 subunit as a novel biomarker for diag-

nosis of hepatocellular carcinoma, Cancer Biol. Med. 15 (2018) 52–60.

[70] D. Yu, R. Holm, M.A. Goscinski, C.G. Trope, J.M. Nesland, Z. Suo, Prognostic and

clinicopathological significance of Cacna2d1 expression in epithelial ovarian

cancers: a retrospective study, Am. J. Cancer Res. 6 (2016) 2088–2097.

[71] W. Zhao, L. Wang, H. Han, K. Jin, N. Lin, T. Guo, Y. Chen, H. Cheng, F. Lu,

W. Fang, Y. Wang, B. Xing, Z. Zhang, 1B50-1, a mAb raised against recurrent

tumor cells, targets liver tumor-initiating cells by binding to the calcium channel

alpha2delta1 subunit, Cancer Cell 23 (2013) 541–556.

[72] X. Sui, J.H. Geng, Y.H. Li, G.Y. Zhu, W.H. Wang, Calcium channel alpha2delta1

subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-

small cell lung cancer cell lines, Cancer Manag. Res. 10 (2018) 5009–5018.

[73] J. Yu, S. Wang, W. Zhao, J. Duan, Z. Wang, H. Chen, Y. Tian, D. Wang, J. Zhao,

T. An, H. Bai, M. Wu, J. Wang, Mechanistic exploration of cancer stem cell marker

voltage-dependent calcium channel alpha2delta1 subunit-mediated chemotherapy

resistance in small-cell lung cancer, Clin. Cancer Res. 24 (2018) 2148–2158.

[74] Y. Zhang, L. Li, P. Liang, X. Zhai, Y. Li, Y. Zhou, Differential expression of

microRNAs in medulloblastoma and the potential functional consequences, Turk.

Neurosurg. 28 (2018) 179–185.

[75] J. Ruan, X. Liu, X. Xiong, C. Zhang, J. Li, H. Zheng, C. Huang, Q. Shi, Y. Weng,

miR107 promotes the erythroid differentiation of leukemia cells via the down-

regulation of Cacna2d1, Mol. Med. Rep. 11 (2015) 1334–1339.

[76] M. Warnier, M. Roudbaraki, S. Derouiche, P. Delcourt, A. Bokhobza,

N. Prevarskaya, P. Mariot, CACNA2D2 promotes tumorigenesis by stimulating cell

proliferation and angiogenesis, Oncogene 34 (2015) 5383–5394.

[77] G.L. Carboni, B. Gao, M. Nishizaki, K. Xu, J.D. Minna, J.A. Roth, L. Ji, CACNA2D2-

mediated apoptosis in NSCLC cells is associated with alterations of the in-

tracellular calcium signaling and disruption of mitochondria membrane integrity,

Oncogene 22 (2003) 615–626.

[78] M.I. Lerman, J.D. Minna, The 630-kb lung cancer homozygous deletion region on

human chromosome 3p21.3: identification and evaluation of the resident candi-

date tumor suppressor genes. The International Lung Cancer chromosome 3p21.3

Tumor Suppressor Gene Consortium, Cancer Res. 60 (2000) 6116–6133.

[79] S. Mitra, D. Mazumder Indra, P.S. Basu, R.K. Mondal, A. Roy, S. Roychoudhury,

C.K. Panda, Alterations of RASSF1A in premalignant cervical lesions: clinical and

prognostic significance, Mol. Carcinog. 51 (2012) 723–733.

[80] S. Ghosh, A. Ghosh, G.P. Maiti, N. Alam, A. Roy, B. Roy, S. Roychoudhury,

C.K. Panda, Alterations of 3p21.31 tumor suppressor genes in head and neck

squamous cell carcinoma: correlation with progression and prognosis, Int. J.

Cancer 123 (2008) 2594–2604.

[81] W. Huang, Y. Jin, Y. Yuan, C. Bai, Y. Wu, H. Zhu, S. Lu, Validation and target gene

screening of hsa-miR-205 in lung squamous cell carcinoma, Chin. Med. J. 127

(2014) 272–278.

[82] C. Lindskog, L. Fagerberg, B. Hallstrom, K. Edlund, B. Hellwig, J. Rahnenfuhrer,

C. Kampf, M. Uhlen, F. Ponten, P. Micke, The lung-specific proteome defined by

integration of transcriptomics and antibody-based profiling, FASEB J. 28 (2014)

5184–5196.

[83] M.K. Cromer, M. Choi, C. Nelson-Williams, A.L. Fonseca, J.W. Kunstman,

R.M. Korah, J.D. Overton, S. Mane, B. Kenney, C.D. Malchoff, P. Stalberg,

G. Akerstrom, G. Westin, P. Hellman, T. Carling, P. Bjorklund, R.P. Lifton,

Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-pro-

ducing adenomas, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 4062–4067.

[84] A.M. Wong, K.L. Kong, L. Chen, M. Liu, A.M. Wong, C. Zhu, J.W. Tsang, X.Y. Guan,

Characterization of CACNA2D3 as a putative tumor suppressor gene in the de-

velopment and progression of nasopharyngeal carcinoma, Int. J. Cancer 133

(2013) 2284–2295.

[85] C. Palmieri, B. Rudraraju, M. Monteverde, L. Lattanzio, O. Gojis, R. Brizio,

O. Garrone, M. Merlano, N. Syed, C. Lo Nigro, T. Crook, Methylation of the cal-

cium channel regulatory subunit alpha2delta-3 (CACNA2D3) predicts site-specific

relapse in oestrogen receptor-positive primary breast carcinomas, Br. J. Cancer

107 (2012) 375–381.

[86] Y.R. Qin, L. Fu, P.C. Sham, D.L. Kwong, C.L. Zhu, K.K. Chu, Y. Li, X.Y. Guan,

Single-nucleotide polymorphism-mass array reveals commonly deleted regions at

3p22 and 3p14.2 associate with poor clinical outcome in esophageal squamous

cell carcinoma, Int. J. Cancer 123 (2008) 826–830.

[87] Y. Li, C.L. Zhu, C.J. Nie, J.C. Li, T.T. Zeng, J. Zhou, J. Chen, K. Chen, L. Fu, H. Liu,

Y. Qin, X.Y. Guan, Investigation of tumor suppressing function of CACNA2D3 in

esophageal squamous cell carcinoma, PLoS One 8 (2013) e60027.

[88] A. Wanajo, A. Sasaki, H. Nagasaki, S. Shimada, T. Otsubo, S. Owaki, Y. Shimizu,

Y. Eishi, K. Kojima, Y. Nakajima, T. Kawano, Y. Yuasa, Y. Akiyama, Methylation of

the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic

factor in gastric cancer, Gastroenterology 135 (2008) 580–590.

[89] Y. Yuasa, H. Nagasaki, Y. Akiyama, Y. Hashimoto, T. Takizawa, K. Kojima,

T. Kawano, K. Sugihara, K. Imai, K. Nakachi, DNA methylation status is inversely

correlated with green tea intake and physical activity in gastric cancer patients,

Int. J. Cancer 124 (2009) 2677–2682.

[90] A.L. Tai, W. Mak, P.K. Ng, D.T. Chua, M.Y. Ng, L. Fu, K.K. Chu, Y. Fang, Y. Qiang

Song, M. Chen, M. Zhang, P.C. Sham, X.Y. Guan, High-throughput loss-of-het-

erozygosity study of chromosome 3p in lung cancer using single-nucleotide

polymorphism markers, Cancer Res. 66 (2006) 4133–4138.

[91] H.L. You, W.T. Huang, T.T. Liu, S.W. Weng, H.L. Eng, Mutations of candidate

tumor suppressor genes at chromosome 3p in intrahepatic cholangiocarcinoma,

Exp. Mol. Pathol. 103 (2017) 249–254.

[92] Y. Jin, D. Cui, J. Ren, K. Wang, T. Zeng, L. Gao, CACNA2D3 is downregulated in

gliomas and functions as a tumor suppressor, Mol. Carcinog. 56 (2017) 945–959.

[93] H. Glossmann, J. Striessnig, L. Hymel, H. Schindler, Purified L-type calcium

channels: only one single polypeptide (alpha 1-subunit) carries the drug receptor

domains and is regulated by protein kinases, Biomed. Biochim. Acta 46 (1987)

S351–356.

[94] K.P. Campbell, A.H. Sharp, A.T. Leung, 32,000-Dalton subunit of the 1,4-dihy-

dropyridine receptor, Ann. N. Y. Acad. Sci. 560 (1989) 251–257.

[95] V.A. Letts, R. Felix, G.H. Biddlecome, J. Arikkath, C.L. Mahaffey, A. Valenzuela,

F.S. Bartlett 2nd, Y. Mori, K.P. Campbell, W.N. Frankel, The mouse stargazer gene

encodes a neuronal Ca2+-channel gamma subunit, Nat. Genet. 19 (1998)

340–347.

[96] N. Klugbauer, S. Dai, V. Specht, L. Lacinova, E. Marais, G. Bohn, F. Hofmann, A

family of gamma-like calcium channel subunits, FEBS Lett. 470 (2000) 189–197.

[97] P.J. Chu, H.M. Robertson, P.M. Best, Calcium channel gamma subunits provide

insights into the evolution of this gene family, Gene 280 (2001) 37–48.

[98] D.L. Burgess, L.A. Gefrides, P.J. Foreman, J.L. Noebels, A cluster of three novel

Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and

expression profile of the gamma subunit gene family, Genomics 71 (2001)

339–350.

[99] A.H. Sharp, J.L. Black 3rd, S.J. Dubel, S. Sundarraj, J.P. Shen, A.M. Yunker,

T.D. Copeland, M.W. McEnery, Biochemical and anatomical evidence for specia-

lized voltage-dependent calcium channel gamma isoform expression in the epi-

leptic and ataxic mouse, stargazer, Neuroscience 105 (2001) 599–617.

[100] Z. Lin, K. Witschas, T. Garcia, R.S. Chen, J.P. Hansen, Z.M. Sellers, E. Kuzmenkina,

S. Herzig, P.M. Best, A critical GxxxA motif in the gamma6 calcium channel

subunit mediates its inhibitory effect on Cav3.1 calcium current, J. Physiol. 586

(2008) 5349–5366.

[101] I. Tselnicker, V.A. Tsemakhovich, C.W. Dessauer, N. Dascal, Stargazin modulates

neuronal voltage-dependent Ca(2+) channel Ca(v)2.2 by a Gbetagamma-depen-

dent mechanism, J. Biol. Chem. 285 (2010) 20462–20471.

[102] L. Ferron, A. Davies, K.M. Page, D.J. Cox, J. Leroy, D. Waithe, A.J. Butcher,

P. Sellaturay, S. Bolsover, W.S. Pratt, F.J. Moss, A.C. Dolphin, The stargazin-re-

lated protein gamma 7 interacts with the mRNA-binding protein heterogeneous

nuclear ribonucleoprotein A2 and regulates the stability of specific mRNAs, in-

cluding CaV2.2, J. Neurosci. 28 (2008) 10604–10617.

[103] R. Eberst, S. Dai, N. Klugbauer, F. Hofmann, Identification and functional char-

acterization of a calcium channel gamma subunit, Pflugers Arch. 433 (1997)

633–637.

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

135



[104] B. Leitch, O. Shevtsova, D. Guevremont, J. Williams, Loss of calcium channels in

the cerebellum of the ataxic and epileptic stargazer mutant mouse, Brain Res.

1279 (2009) 156–167.

[105] F.J. Moss, A.C. Dolphin, J.J. Clare, Human neuronal stargazin-like proteins,

gamma2, gamma3 and gamma4; an investigation of their specific localization in

human brain and their influence on CaV2.1 voltage-dependent calcium channels

expressed in Xenopus oocytes, BMC Neurosci. 4 (2003) 23.

[106] C.Y. Zheng, K. Chang, Y.H. Suh, K.W. Roche, TARP gamma-8 glycosylation reg-

ulates the surface expression of AMPA receptors, Biochem. J. 465 (2015) 471–477.

[107] I. Riva, C. Eibl, R. Volkmer, A.L. Carbone, A.J. Plested, Control of AMPA receptor

activity by the extracellular loops of auxiliary proteins, eLife 6 (2017).

[108] D. Waithe, L. Ferron, A.C. Dolphin, Stargazin-related protein gamma(7) is asso-

ciated with signalling endosomes in superior cervical ganglion neurons and

modulates neurite outgrowth, J. Cell. Sci. 124 (2011) 2049–2057.

[109] S.R. Louros, G.L. Caldeira, A.L. Carvalho, Stargazin dephosphorylation mediates

homeostatic synaptic downscaling of excitatory synapses, Front. Mol. Neurosci. 11

(2018) 328.

[110] C. Omarini, S. Bettelli, C. Caprera, S. Manfredini, F. Caggia, G. Guaitoli,

L. Moscetti, A. Toss, L. Cortesi, S. Kaleci, A. Maiorana, S. Cascinu, P.F. Conte,

F. Piacentini, Clinical and molecular predictors of long-term response in HER2

positive metastatic breast cancer patients, Cancer Biol. Ther. 19 (2018) 879–886.

[111] X. Zhang, M. Zhang, Y. Hou, L. Xu, W. Li, Z. Zou, C. Liu, A. Xu, S. Wu, Single-cell

analyses of transcriptional heterogeneity in squamous cell carcinoma of urinary

bladder, Oncotarget 7 (2016) 66069–66076.

[112] J. Ling, X. Wu, Z. Fu, J. Tan, Q. Xu, Systematic analysis of gene expression pattern

in has-miR-197 over-expressed human uterine leiomyoma cells, Biomed.

Pharmacother. 75 (2015) 226–233.

[113] R.D. Kumar, A.C. Searleman, S.J. Swamidass, O.L. Griffith, R. Bose, Statistically

identifying tumor suppressors and oncogenes from pan-cancer genome-sequencing

data, Bioinformatics 31 (2015) 3561–3568.

[114] H. Kitaura, M. Sonoda, S. Teramoto, H. Shirozu, H. Shimizu, T. Kimura,

H. Masuda, Y. Ito, H. Takahashi, S. Kwak, S. Kameyama, A. Kakita, Ca(2+)

-permeable AMPA receptors associated with epileptogenesis of hypothalamic ha-

martoma, Epilepsia 58 (2017) e59–e63.

[115] D.S. Ruiz, H. Luksch, M. Sifringer, A. Temme, C. Staufner, W. Rzeski, J. Marzahn,

A. Grabarska, C. Ikonomidou, A. Stepulak, AMPA receptor antagonist CFM-2 de-

creases survivin expression in Cancer cells, Anticancer Agents Med. Chem. 18

(2018) 591–596.

[116] D. Aissaoui, S. Mlayah-Bellalouna, J. Jebali, Z. Abdelkafi-Koubaa, S. Souid,

W. Moslah, H. Othman, J. Luis, M. ElAyeb, N. Marrakchi, K. Essafi-Benkhadir,

N. Srairi-Abid, Functional role of Kv1.1 and Kv1.3 channels in the neoplastic

progression steps of three cancer cell lines, elucidated by scorpion peptides, Int. J.

Biol. Macromol. 111 (2018) 1146–1155.

[117] P. Rosa, L. Sforna, S. Carlomagno, G. Mangino, M. Miscusi, M. Pessia,

F. Franciolini, A. Calogero, L. Catacuzzeno, Overexpression of large-conductance

calcium-activated potassium channels in human glioblastoma stem-like cells and

their role in cell migration, J. Cell. Physiol. 232 (2017) 2478–2488.

[118] D. Thuringer, G. Chanteloup, J. Boucher, N. Pernet, C. Boudesco, G. Jego,

A. Chatelier, P. Bois, J. Gobbo, L. Cronier, E. Solary, C. Garrido, Modulation of the

inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in

glioblastoma cells, Oncotarget 8 (2017) 37681–37693.

[119] W.F. An, M.R. Bowlby, M. Betty, J. Cao, H.P. Ling, G. Mendoza, J.W. Hinson,

K.I. Mattsson, B.W. Strassle, J.S. Trimmer, K.J. Rhodes, Modulation of A-type

potassium channels by a family of calcium sensors, Nature 403 (2000) 553–556.

[120] H. Chen, L.A. Kim, S. Rajan, S. Xu, S.A. Goldstein, Charybdotoxin binding in the I

(Ks) pore demonstrates two MinK subunits in each channel complex, Neuron 40

(2003) 15–23.

[121] K.J. Rhodes, B.W. Strassle, M.M. Monaghan, Z. Bekele-Arcuri, M.F. Matos,

J.S. Trimmer, Association and colocalization of the Kvbeta1 and Kvbeta2 beta-

subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes, J.

Neurosci. 17 (1997) 8246–8258.

[122] R. Bahring, V. Vardanyan, O. Pongs, Differential modulation of Kv1 channel-

mediated currents by co-expression of Kvbeta3 subunit in a mammalian cell-line,

Mol. Membr. Biol. 21 (2004) 19–25.

[123] C. Bavassano, L. Marvaldi, M. Langeslag, B. Sarg, H. Lindner, L. Klimaschewski,

M. Kress, A. Ferrer-Montiel, H.G. Knaus, Identification of voltage-gated K(+)

channel beta 2 (Kvbeta2) subunit as a novel interaction partner of the pain

transducer Transient Receptor Potential Vanilloid 1 channel (TRPV1), Biochim.

Biophys. Acta 1833 (2013) 3166–3175.

[124] J. Kisselbach, P.A. Schweizer, R. Gerstberger, R. Becker, H.A. Katus, D. Thomas,

Enhancement of K2P2.1 (TREK1) background currents expressed in Xenopus oo-

cytes by voltage-gated K+ channel beta subunits, Life Sci. 91 (2012) 377–383.

[125] L. Wang, K. Takimoto, E.S. Levitan, Differential association of the auxiliary sub-

unit Kvbeta2 with Kv1.4 and Kv4.3 K+ channels, FEBS Lett. 547 (2003) 162–164.

[126] A. Lewis, Z.A. McCrossan, G.W. Abbott, MinK, MiRP1, and MiRP2 diversify Kv3.1

and Kv3.2 potassium channel gating, J. Biol. Chem. 279 (2004) 7884–7892.

[127] J. Wu, Z. Chen, Q. Liu, W. Zeng, X. Wu, B. Lin, Silencing of Kv1.5 gene inhibits

proliferation and induces apoptosis of osteosarcoma cells, Int. J. Mol. Sci. 16

(2015) 26914–26926.

[128] H.J. Kim, S.H. Jang, Y.A. Jeong, P.D. Ryu, D.Y. Kim, S.Y. Lee, Involvement of

Kv4.1 K(+) channels in gastric cancer cell proliferation, Biol. Pharm. Bull. 33

(2010) 1754–1757.

[129] T. Shimizu, T. Fujii, Y. Takahashi, Y. Takahashi, T. Suzuki, M. Ukai, K. Tauchi,

N. Horikawa, K. Tsukada, H. Sakai, Up-regulation of Kv7.1 channels in throm-

boxane A2-induced colonic cancer cell proliferation, Pflugers Arch. 466 (2014)

541–548.

[130] J.M. Gulbis, M. Zhou, S. Mann, R. MacKinnon, Structure of the cytoplasmic beta

subunit-T1 assembly of voltage-dependent K+ channels, Science 289 (2000)

123–127.

[131] E.K. Yang, M.R. Alvira, E.S. Levitan, K. Takimoto, Kvbeta subunits increase ex-

pression of Kv4.3 channels by interacting with their C termini, J. Biol. Chem. 276

(2001) 4839–4844.

[132] G. Shi, K. Nakahira, S. Hammond, K.J. Rhodes, L.E. Schechter, J.S. Trimmer, Beta

subunits promote K+ channel surface expression through effects early in bio-

synthesis, Neuron 16 (1996) 843–852.

[133] M.A. Nystoriak, D. Zhang, G. Jagatheesan, A. Bhatnagar, Heteromeric complexes

of aldo-keto reductase auxiliary KVbeta subunits (AKR6A) regulate sarcolemmal

localization of KV1.5 in coronary arterial myocytes, Chem. Biol. Interact. 276

(2017) 210–217.

[134] C. Gu, W. Zhou, M.A. Puthenveedu, M. Xu, Y.N. Jan, L.Y. Jan, The microtubule

plus-end tracking protein EB1 is required for Kv1 voltage-gated K+ channel ax-

onal targeting, Neuron 52 (2006) 803–816.

[135] F. Aimond, S.P. Kwak, K.J. Rhodes, J.M. Nerbonne, Accessory Kvbeta1 subunits

differentially modulate the functional expression of voltage-gated K+ channels in

mouse ventricular myocytes, Circ. Res. 96 (2005) 451–458.

[136] J. Rettig, S.H. Heinemann, F. Wunder, C. Lorra, D.N. Parcej, J.O. Dolly, O. Pongs,

Inactivation properties of voltage-gated K+ channels altered by presence of beta-

subunit, Nature 369 (1994) 289–294.

[137] T. Leicher, R. Bahring, D. Isbrandt, O. Pongs, Coexpression of the KCNA3B gene

product with Kv1.5 leads to a novel A-type potassium channel, J. Biol. Chem. 273

(1998) 35095–35101.

[138] C.J. Peters, M. Vaid, A.J. Horne, D. Fedida, E.A. Accili, The molecular basis for the

actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier

channel, Channels (Austin, Tex.) 3 (2009) 314–322.

[139] S.H. Heinemann, J. Rettig, H.R. Graack, O. Pongs, Functional characterization of

Kv channel beta-subunits from rat brain, J. Physiol. 493 (Pt 3) (1996) 625–633.

[140] M. Grande, E. Suarez, R. Vicente, C. Canto, M. Coma, M.M. Tamkun, A. Zorzano,

A. Guma, A. Felipe, Voltage-dependent K+ channel beta subunits in muscle: dif-

ferential regulation during postnatal development and myogenesis, J. Cell.

Physiol. 195 (2003) 187–193.

[141] J. Tur, K.C. Chapalamadugu, T. Padawer, S.L. Badole, P.J. Kilfoil 2nd,

A. Bhatnagar, S.M. Tipparaju, Deletion of Kvbeta1.1 subunit leads to electrical and

haemodynamic changes causing cardiac hypertrophy in female murine hearts,

Exp. Physiol. 101 (2016) 494–508.

[142] K.C. Chapalamadugu, J. Tur, S.L. Badole, R.C. Kukreja, M. Brotto, S.M. Tipparaju,

Physiological role of Kvbeta2 (AKR6) in murine skeletal muscle growth and reg-

ulation, Acta Physiol. Oxf. (Oxf) 224 (2018) e13083.

[143] S.M. Tipparaju, N. Saxena, S.Q. Liu, R. Kumar, A. Bhatnagar, Differential regula-

tion of voltage-gated K+ channels by oxidized and reduced pyridine nucleotide

coenzymes, American journal of physiology, Cell Physiol. 288 (2005) C366–376.

[144] S.M. Tipparaju, X.P. Li, P.J. Kilfoil, B. Xue, V.N. Uversky, A. Bhatnagar,

O.A. Barski, Interactions between the C-terminus of Kv1.5 and Kvbeta regulate

pyridine nucleotide-dependent changes in channel gating, Pflugers Arch. 463

(2012) 799–818.

[145] R. Borup, M. Rossing, R. Henao, Y. Yamamoto, A. Krogdahl, C. Godballe,

O. Winther, K. Kiss, L. Christensen, E. Hogdall, F. Bennedbaek, F.C. Nielsen,

Molecular signatures of thyroid follicular neoplasia, Endocr. Relat. Cancer 17

(2010) 691–708.

[146] A. Pfeifer, B. Wojtas, M. Oczko-Wojciechowska, A. Kukulska, A. Czarniecka,

M. Eszlinger, T. Musholt, T. Stokowy, M. Swierniak, E. Stobiecka, D. Rusinek,

T. Tyszkiewicz, M. Kowal, M. Jarzab, S. Hauptmann, D. Lange, R. Paschke,

B. Jarzab, Molecular differential diagnosis of follicular thyroid carcinoma and

adenoma based on gene expression profiling by using formalin-fixed paraffin-

embedded tissues, BMC Med. Genomics 6 (2013) 38.

[147] C. Ling, M. Pease, L. Shi, V. Punj, M.S. Shiroishi, D. Commins, D.J. Weisenberger,

K. Wang, G. Zada, A pilot genome-scale profiling of DNA methylation in sporadic

pituitary macroadenomas: association with tumor invasion and histopathological

subtype, PLoS One 9 (2014) e96178.

[148] P.S. White, P.M. Thompson, T. Gotoh, E.R. Okawa, J. Igarashi, M. Kok, C. Winter,

S.G. Gregory, M.D. Hogarty, J.M. Maris, G.M. Brodeur, Definition and character-

ization of a region of 1p36.3 consistently deleted in neuroblastoma, Oncogene 24

(2005) 2684–2694.

[149] R. Towle, D. Truong, K. Hogg, W.P. Robinson, C.F. Poh, C. Garnis, Global analysis

of DNA methylation changes during progression of oral cancer, Oral Oncol. 49

(2013) 1033–1042.

[150] T.J. Morin, W.R. Kobertz, Counting membrane-embedded KCNE beta-subunits in

functioning K+ channel complexes, Proc. Natl. Acad. Sci. U. S. A. 105 (2008)

1478–1482.

[151] S. Bendahhou, C. Marionneau, K. Haurogne, M.M. Larroque, R. Derand, V. Szuts,

D. Escande, S. Demolombe, J. Barhanin, In vitro molecular interactions and dis-

tribution of KCNE family with KCNQ1 in the human heart, Cardiovasc. Res. 67

(2005) 529–538.

[152] M.D. Drici, I. Arrighi, C. Chouabe, J.R. Mann, M. Lazdunski, G. Romey,

J. Barhanin, Involvement of IsK-associated K+ channel in heart rate control of

repolarization in a murine engineered model of Jervell and Lange-Nielsen syn-

drome, Circ. Res. 83 (1998) 95–102.

[153] D.E. Vetter, J.R. Mann, P. Wangemann, J. Liu, K.J. McLaughlin, F. Lesage,

D.C. Marcus, M. Lazdunski, S.F. Heinemann, J. Barhanin, Inner ear defects induced

by null mutation of the isk gene, Neuron 17 (1996) 1251–1264.

[154] V. Vallon, F. Grahammer, K. Richter, M. Bleich, F. Lang, J. Barhanin, H. Volkl,

R. Warth, Role of KCNE1-dependent K+ fluxes in mouse proximal tubule, J. Am.

Soc. Nephrol. 12 (2001) 2003–2011.

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

136



[155] I. Arrighi, M. Bloch-Faure, F. Grahammer, M. Bleich, R. Warth, R. Mengual,

M.D. Drici, J. Barhanin, P. Meneton, Altered potassium balance and aldosterone

secretion in a mouse model of human congenital long QT syndrome, Proc. Natl.

Acad. Sci. U. S. A. 98 (2001) 8792–8797.

[156] L. Bianchi, Z. Shen, A.T. Dennis, S.G. Priori, C. Napolitano, E. Ronchetti,

R. Bryskin, P.J. Schwartz, A.M. Brown, Cellular dysfunction of LQT5-minK mu-

tants: abnormalities of IKs, IKr and trafficking in long QT syndrome, Hum. Mol.

Genet. 8 (1999) 1499–1507.

[157] J. Tyson, L. Tranebjaerg, S. Bellman, C. Wren, J.F. Taylor, J. Bathen, B. Aslaksen,

S.J. Sorland, O. Lund, S. Malcolm, M. Pembrey, S. Bhattacharya, M. Bitner-

Glindzicz, IsK and KvLQT1: mutation in either of the two subunits of the slow

component of the delayed rectifier potassium channel can cause Jervell and Lange-

Nielsen syndrome, Hum. Mol. Genet. 6 (1997) 2179–2185.

[158] T. Suzuki, K. Takimoto, Selective expression of HERG and Kv2 channels influences

proliferation of uterine cancer cells, Int. J. Oncol. 25 (2004) 153–159.

[159] A. Biasiotta, D. D’Arcangelo, F. Passarelli, E.M. Nicodemi, A. Facchiano, Ion

channels expression and function are strongly modified in solid tumors and vas-

cular malformations, J. Transl. Med. 14 (2016) 285.

[160] A. Stathopoulos, C. Melas, B. Attali, D. Blum, M. Levivier, J. Brotchi, T. Velu,

L. Tenenbaum, Overexpression of mouse IsK protein fused to green fluorescent

protein induces apoptosis of human astroglioma cells, Neurol. Res. 29 (2007)

628–631.

[161] M. Shinawi, A. Erez, D.L. Shardy, B. Lee, R. Naeem, G. Weissenberger,

A.C. Chinault, S.W. Cheung, S.E. Plon, Syndromic thrombocytopenia and predis-

position to acute myelogenous leukemia caused by constitutional microdeletions

on chromosome 21q, Blood 112 (2008) 1042–1047.

[162] E. Maeno, Y. Ishizaki, T. Kanaseki, A. Hazama, Y. Okada, Normotonic cell

shrinkage because of disordered volume regulation is an early prerequisite to

apoptosis, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 9487–9492.

[163] C. Du, A. El Harchi, H. Zhang, J.C. Hancox, Modification by KCNE1 variants of the

hERG potassium channel response to premature stimulation and to pharmacolo-

gical inhibition, Physiol. Rep. 1 (2013) e00175.

[164] E. Afrasiabi, M. Hietamaki, T. Viitanen, P. Sukumaran, N. Bergelin, K. Tornquist,

Expression and significance of HERG (KCNH2) potassium channels in the reg-

ulation of MDA-MB-435S melanoma cell proliferation and migration, Cell. Signal.

22 (2010) 57–64.

[165] X. Li, H. Cai, W. Zheng, M. Tong, H. Li, L. Ao, J. Li, G. Hong, M. Li, Q. Guan,

S. Yang, D. Yang, X. Lin, Z. Guo, An individualized prognostic signature for gastric

cancer patients treated with 5-Fluorouracil-based chemotherapy and distinct

multi-omics characteristics of prognostic groups, Oncotarget 7 (2016) 8743–8755.

[166] N. Kuwahara, R. Kitazawa, K. Fujiishi, Y. Nagai, R. Haraguchi, S. Kitazawa, Gastric

adenocarcinoma arising in gastritis cystica profunda presenting with selective loss

of KCNE2 expression, World J. Gastroenterol. 19 (2013) 1314–1317.

[167] P. Yanglin, Z. Lina, L. Zhiguo, L. Na, J. Haifeng, Z. Guoyun, L. Jie, W. Jun, L. Tao,

S. Li, Q. Taidong, W. Jianhong, F. Daiming, KCNE2, a down-regulated gene

identified by in silico analysis, suppressed proliferation of gastric cancer cells,

Cancer Lett. 246 (2007) 129–138.

[168] T.K. Roepke, K. Purtell, E.C. King, K.M. La Perle, D.J. Lerner, G.W. Abbott,

Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia,

PLoS One 5 (2010) e11451.

[169] D. Heitzmann, F. Grahammer, T. von Hahn, A. Schmitt-Graff, E. Romeo,

R. Nitschke, U. Gerlach, H.J. Lang, F. Verrey, J. Barhanin, R. Warth, Heteromeric

KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal

cells, J. Physiol. 561 (2004) 547–557.

[170] T.K. Roepke, A. Anantharam, P. Kirchhoff, S.M. Busque, J.B. Young, J.P. Geibel,

D.J. Lerner, G.W. Abbott, The KCNE2 potassium channel ancillary subunit is es-

sential for gastric acid secretion, J. Biol. Chem. 281 (2006) 23740–23747.

[171] M.H. Holmqvist, J. Cao, R. Hernandez-Pineda, M.D. Jacobson, K.I. Carroll,

M.A. Sung, M. Betty, P. Ge, K.J. Gilbride, M.E. Brown, M.E. Jurman, D. Lawson,

I. Silos-Santiago, Y. Xie, M. Covarrubias, K.J. Rhodes, P.S. Distefano, W.F. An,

Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary

subunit domain, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 1035–1040.

[172] A. Fontan-Lozano, V. Capilla-Gonzalez, Y. Aguilera, N. Mellado, A.M. Carrion,

B. Soria, A. Hmadcha, Impact of transient down-regulation of DREAM in human

embryonic stem cell pluripotency: the role of DREAM in the maintenance of

hESCs, Stem Cell Res. 16 (2016) 568–578.

[173] A.M. Carrion, W.A. Link, F. Ledo, B. Mellstrom, J.R. Naranjo, DREAM is a Ca2+-

regulated transcriptional repressor, Nature 398 (1999) 80–84.

[174] W.A. Link, F. Ledo, B. Torres, M. Palczewska, T.M. Madsen, M. Savignac,

J.P. Albar, B. Mellstrom, J.R. Naranjo, Day-night changes in downstream reg-

ulatory element antagonist modulator/potassium channel interacting protein ac-

tivity contribute to circadian gene expression in pineal gland, J. Neurosci. 24

(2004) 5346–5355.

[175] T.A. Craig, P.L. Ramachandran, H.R. Bergen 3rd, J.L. Podratz, A.J. Windebank,

R. Kumar, The regulation of apoptosis by the downstream regulatory element

antagonist modulator/potassium channel interacting protein 3 (DREAM/KChIP3)

through interactions with hexokinase I, Biochem. Biophys. Res. Commun. 433

(2013) 508–512.

[176] D.G. Jo, M.J. Kim, Y.H. Choi, I.K. Kim, Y.H. Song, H.N. Woo, C.W. Chung,

Y.K. Jung, Pro-apoptotic function of calsenilin/DREAM/KChIP3, FASEB J. 15

(2001) 589–591.

[177] H.J. Kim, W.H. Lee, M.J. Kim, S. Shin, B. Jang, J.B. Park, W. Wasco, J.D. Buxbaum,

Y.S. Kim, E.K. Choi, Calsenilin, a presenilin interactor, regulates RhoA signaling

and neurite outgrowth, Int. J. Mol. Sci. 19 (2018).

[178] K. Kim, A. Tseng, A. Barazia, J.E. Italiano, J. Cho, DREAM plays an important role

in platelet activation and thrombogenesis, Blood 129 (2017) 209–225.

[179] A. Bonne, L. Vreede, R.P. Kuiper, D. Bodmer, C. Jansen, M. Eleveld, F. van Erp,

G. Arkesteijn, N. Hoogerbrugge, C. van Ravenswaaij, E.F. Schoenmakers, A. Geurts

van Kessel, Mapping of constitutional translocation breakpoints in renal cell

cancer patients: identification of KCNIP4 as a candidate gene, Cancer Genet.

Cytogenet. 179 (2007) 11–18.

[180] I. Neant, J. Haiech, M.C. Kilhoffer, F.J. Aulestia, M. Moreau, C. Leclerc, Ca(2+)-

Dependent transcriptional repressors KCNIP and regulation of prognosis genes in

glioblastoma, Front. Mol. Neurosci. 11 (2018) 472.

[181] K.L. Magleby, Gating mechanism of BK (Slo1) channels: so near, yet so far, J. Gen.

Physiol. 121 (2003) 81–96.

[182] J. Yan, R.W. Aldrich, LRRC26 auxiliary protein allows BK channel activation at

resting voltage without calcium, Nature 466 (2010) 513–516.

[183] M. Typlt, M. Mirkowski, E. Azzopardi, L. Ruettiger, P. Ruth, S. Schmid, Mice with

deficient BK channel function show impaired prepulse inhibition and spatial

learning, but normal working and spatial reference memory, PLoS One 8 (2013)

e81270.

[184] X.H. Cao, S.R. Chen, L. Li, H.L. Pan, Nerve injury increases brain-derived neuro-

trophic factor levels to suppress BK channel activity in primary sensory neurons, J.

Neurochem. 121 (2012) 944–953.

[185] R. Brenner, G.J. Perez, A.D. Bonev, D.M. Eckman, J.C. Kosek, S.W. Wiler,

A.J. Patterson, M.T. Nelson, R.W. Aldrich, Vasoregulation by the beta1 subunit of

the calcium-activated potassium channel, Nature 407 (2000) 870–876.

[186] A.A. Goda, A.B. Siddique, M. Mohyeldin, N.M. Ayoub, K.A. El Sayed, The Maxi-K

(BK) channel antagonist penitrem a as a novel breast cancer-targeted therapeutic,

Mar. Drugs 16 (2018).

[187] P. Orio, R. Latorre, Differential effects of beta 1 and beta 2 subunits on BK channel

activity, J. Gen. Physiol. 125 (2005) 395–411.

[188] V.N. Uebele, A. Lagrutta, T. Wade, D.J. Figueroa, Y. Liu, E. McKenna, C.P. Austin,

P.B. Bennett, R. Swanson, Cloning and functional expression of two families of

beta-subunits of the large conductance calcium-activated K+ channel, J. Biol.

Chem. 275 (2000) 23211–23218.

[189] B. Wang, B.S. Rothberg, R. Brenner, Mechanism of beta4 subunit modulation of BK

channels, J. Gen. Physiol. 127 (2006) 449–465.

[190] J. Yan, R.W. Aldrich, BK potassium channel modulation by leucine-rich repeat-

containing proteins, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 7917–7922.

[191] A. Khatun, M. Shimozawa, H. Kito, M. Kawaguchi, M. Fujimoto, M. Ri, J. Kajikuri,

S. Niwa, M. Fujii, S. Ohya, Transcriptional repression and protein degradation of

the Ca(2+)-Activated K(+) channel KCa1.1 by androgen receptor inhibition in

human breast Cancer cells, Front. Physiol. 9 (2018) 312.

[192] K.A. Egland, X.F. Liu, S. Squires, S. Nagata, Y.G. Man, T.K. Bera, M. Onda,

J.J. Vincent, R.L. Strausberg, B. Lee, I. Pastan, High expression of a cytokeratin-

associated protein in many cancers, Proc. Natl. Acad. Sci. U. S. A. 103 (2006)

5929–5934.

[193] S. Anaganti, J.K. Hansen, D. Ha, Y. Hahn, O. Chertov, I. Pastan, T.K. Bera, Non-

AUG translational initiation of a short CAPC transcript generating protein isoform,

Biochem. Biophys. Res. Commun. 380 (2009) 508–513.

[194] Y. Miyagawa, Y. Matsushita, H. Suzuki, M. Komatsu, T. Yoshimaru, R. Kimura,

A. Yanai, J. Honda, A. Tangoku, M. Sasa, Y. Miyoshi, T. Katagiri, Frequent

downregulation of LRRC26 by epigenetic alterations is involved in the malignant

progression of triple-negative breast cancer, Int. J. Oncol. (2018).

[195] X.F. Liu, L. Xiang, Y. Zhang, K.G. Becker, T.K. Bera, I. Pastan, CAPC negatively

regulates NF-kappaB activation and suppresses tumor growth and metastasis,

Oncogene 31 (2012) 1673–1682.

[196] H. Dorschner, E. Brekardin, I. Uhde, C. Schwanstecher, M. Schwanstecher,

Stoichiometry of sulfonylurea-induced ATP-sensitive potassium channel closure,

Mol. Pharmacol. 55 (1999) 1060–1066.

[197] S. Hagiwara, S. Miyazaki, N.P. Rosenthal, Potassium current and the effect of

cesium on this current during anomalous rectification of the egg cell membrane of

a starfish, J. Gen. Physiol. 67 (1976) 621–638.

[198] M. Sancho, Y. Gao, B.O. Hald, H. Yin, M. Boulton, D. Steven, K. MacDougall,

A. Parrent, J.G. Pickering, D.G. Welsh, An assessment of KIR channel function in

human cerebral arteries, Am. J. Physiol. Heart Circ. Physiol. (2019).

[199] Y. Amarillo, A.I. Tissone, G. Mato, M.S. Nadal, Inward rectifier potassium current

IKir promotes intrinsic pacemaker activity of thalamocortical neurons, J.

Neurophysiol. 119 (2018) 2358–2372.

[200] Y. Ji, H. Takanari, M. Qile, L. Nalos, M.J.C. Houtman, F.L. Romunde, R. Heukers,

P.M.P. van Bergen En Henegouwen, M.A. Vos, M.A.G. van der Heyden, Class III

antiarrhythmic drugs amiodarone and dronedarone impair KIR 2.1 backward

trafficking, J. Cell. Mol. Med. 21 (2017) 2514–2523.

[201] C.G. Li, W.Y. Cui, H. Wang, Sensitivity of KATP channels to cellular metabolic

disorders and the underlying structural basis, Acta Pharmacol. Sin. 37 (2016)

134–142.

[202] G. Tabak, T. Keren-Raifman, U. Kahanovitch, N. Dascal, Mutual action by Ggamma

and Gbeta for optimal activation of GIRK channels in a channel subunit-specific

manner, Sci. Rep. 9 (2019) 508.

[203] X. Liu, P. Duan, X. Hu, R. Li, Q. Zhu, Altered KATP channel subunits expression

and vascular reactivity in spontaneously hypertensive rats with age, J. Cardiovasc.

Pharmacol. 68 (2016) 143–149.

[204] O.I. Ostrovskaya, C. Orlandi, A. Fajardo-Serrano, S.M. Young Jr., R. Lujan,

K.A. Martemyanov, Inhibitory signaling to ion channels in hippocampal neurons is

differentially regulated by alternative macromolecular complexes of RGS7, J.

Neurosci. 38 (2018) 10002–10015.

[205] W. Wang, K.K. Touhara, K. Weir, B.P. Bean, R. MacKinnon, Cooperative regulation

by G proteins and Na(+) of neuronal GIRK2 K(+) channels, eLife 5 (2016).

[206] N. Zerangue, B. Schwappach, Y.N. Jan, L.Y. Jan, A new ER trafficking signal

regulates the subunit stoichiometry of plasma membrane K(ATP) channels,

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

137



Neuron 22 (1999) 537–548.

[207] R. Masia, D. Enkvetchakul, C.G. Nichols, Differential nucleotide regulation of

KATP channels by SUR1 and SUR2A, J. Mol. Cell. Cardiol. 39 (2005) 491–501.

[208] M.A. Burke, R.K. Mutharasan, H. Ardehali, The sulfonylurea receptor, an atypical

ATP-binding cassette protein, and its regulation of the KATP channel, Circ. Res.

102 (2008) 164–176.

[209] E.M. Thompson, G.L. Pishko, L.L. Muldoon, E.A. Neuwelt, Inhibition of SUR1

decreases the vascular permeability of cerebral metastases, Neoplasia 15 (2013)

535–543.

[210] A. Hambrock, C.B. de Oliveira Franz, S. Hiller, A. Grenz, S. Ackermann,

D.U. Schulze, G. Drews, H. Osswald, Resveratrol binds to the sulfonylurea receptor

(SUR) and induces apoptosis in a SUR subtype-specific manner, J. Biol. Chem. 282

(2007) 3347–3356.

[211] S.H. Park, S. Ramachandran, S.H. Kwon, S.D. Cha, E.W. Seo, I. Bae, C. Cho,

D.K. Song, Upregulation of ATP-sensitive potassium channels for estrogen-medi-

ated cell proliferation in human uterine leiomyoma cells, Gynecol. Endocrinol. 24

(2008) 250–256.

[212] M. Nunez, V. Medina, G. Cricco, M. Croci, C. Cocca, E. Rivera, R. Bergoc,

G. Martin, Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the

human breast cancer cell line MDA-MB-231, BMC Pharmacol. Toxicol. 14

(2013) 6.

[213] A.Y. Vazquez-Sanchez, L.M. Hinojosa, S. Parraguirre-Martinez, A. Gonzalez,

F. Morales, G. Montalvo, E. Vera, E. Hernandez-Gallegos, J. Camacho, Expression

of KATP channels in human cervical cancer: potential tools for diagnosis and

therapy, Oncol. Lett. 15 (2018) 6302–6308.

[214] C. Cocca, G. Martin, M. Nunez, A. Gutierrez, G. Cricco, N. Mohamad, V. Medina,

M. Croci, E. Crescenti, E. Rivera, R. Bergoc, Effect of glibenclamide on N-nitroso-

N-methylurea-induced mammary tumors in diabetic and nondiabetic rats, Oncol.

Res. 15 (2005) 301–311.

[215] C.J. Li, H.L. Zhou, J. Li, H.T. Yao, R. Su, W.P. Li, Roles of sulfonylurea receptor 1

and multidrug resistance protein 1 in modulating insulin secretion in human in-

sulinoma, HBPD INT 10 (2011) 88–94.

[216] S. Xu, C. Liu, Y. Ma, H.L. Ji, X. Li, Potential roles of amiloride-sensitive sodium

channels in Cancer development, Biomed Res. Int. 2016 (2016) 2190216.

[217] M. Nelson, M. Yang, R. Millican-Slater, W.J. Brackenbury, Nav1.5 regulates breast

tumor growth and metastatic dissemination in vivo, Oncotarget 6 (2015)

32914–32929.

[218] A.L. Hodgkin, A.F. Huxley, Currents carried by sodium and potassium ions

through the membrane of the giant axon of Loligo, J. Physiol. 116 (1952)

449–472.

[219] S. Das, J. Gilchrist, F. Bosmans, F. Van Petegem, Binary architecture of the Nav1.2-

beta2 signaling complex, Elife 5 (2016).

[220] F.H. Yu, R.E. Westenbroek, I. Silos-Santiago, K.A. McCormick, D. Lawson, P. Ge,

H. Ferriera, J. Lilly, P.S. DiStefano, W.A. Catterall, T. Scheuer, R. Curtis, Sodium

channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2, J.

Neurosci. 23 (2003) 7577–7585.

[221] Q. Liu, Y. Jin, K. Wang, X.X. Meng, Y. Yang, Z. Yang, Y.S. Zhao, M.Y. Zhao,

J.H. Zhang, Study of the residues involved in the binding of beta1 to beta3 sub-

units in the sodium channel, C. R. Biol. 337 (2014) 73–77.

[222] W. Zhu, T.L. Voelker, Z. Varga, A.R. Schubert, J.M. Nerbonne, J.R. Silva,

Mechanisms of noncovalent beta subunit regulation of NaV channel gating, J. Gen.

Physiol. (2017).

[223] R.P. Hartshorne, D.J. Messner, J.C. Coppersmith, W.A. Catterall, The saxitoxin

receptor of the sodium channel from rat brain. Evidence for two nonidentical beta

subunits, J. Biol. Chem. 257 (1982) 13888–13891.

[224] M.H. Meisler, J.E. O’Brien, L.M. Sharkey, Sodium channel gene family: epilepsy

mutations, gene interactions and modifier effects, J. Physiol. 588 (2010)

1841–1848.

[225] X. Lin, H. O’Malley, C. Chen, D. Auerbach, M. Foster, A. Shekhar, M. Zhang,

W. Coetzee, J. Jalife, G.I. Fishman, L. Isom, M. Delmar, Scn1b deletion leads to

increased tetrodotoxin-sensitive sodium current, altered intracellular calcium

homeostasis and arrhythmias in murine hearts, J. Physiol. 593 (2015) 1389–1407.

[226] L. Meadows, J.D. Malhotra, A. Stetzer, L.L. Isom, D.S. Ragsdale, The intracellular

segment of the sodium channel beta 1 subunit is required for its efficient asso-

ciation with the channel alpha subunit, J. Neurochem. 76 (2001) 1871–1878.

[227] G. Dulsat, S. Palomeras, E. Cortada, H. Riuro, R. Brugada, M. Verges, Trafficking

and localisation to the plasma membrane of Nav 1.5 promoted by the beta2

subunit is defective due to a beta2 mutation associated with Brugada syndrome,

Biol. Cell 109 (2017) 273–291.

[228] T. Ishikawa, N. Takahashi, S. Ohno, H. Sakurada, K. Nakamura, Y.K. On, J.E. Park,

T. Makiyama, M. Horie, T. Arimura, N. Makita, A. Kimura, Novel SCN3B mutation

associated with brugada syndrome affects intracellular trafficking and function of

Nav1.5, Circ. J. 77 (2013) 959–967.

[229] A.I. Fahmi, M. Patel, E.B. Stevens, A.L. Fowden, J.E. John 3rd, K. Lee, R. Pinnock,

K. Morgan, A.P. Jackson, J.I. Vandenberg, The sodium channel beta-subunit

SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep

heart, J. Physiol. 537 (2001) 693–700.

[230] L.L. Isom, D.S. Ragsdale, K.S. De Jongh, R.E. Westenbroek, B.F. Reber, T. Scheuer,

W.A. Catterall, Structure and function of the beta 2 subunit of brain sodium

channels, a transmembrane glycoprotein with a CAM motif, Cell 83 (1995)

433–442.

[231] E. Bon, V. Driffort, F. Gradek, C. Martinez-Caceres, M. Anchelin, P. Pelegrin,

M.L. Cayuela, S. Marionneau-Lambot, T. Oullier, R. Guibon, G. Fromont,

J.L. Gutierrez-Pajares, I. Domingo, E. Piver, A. Moreau, J. Burlaud-Gaillard,

P.G. Frank, S. Chevalier, P. Besson, S. Roger, SCN4B acts as a metastasis-sup-

pressor gene preventing hyperactivation of cell migration in breast cancer, Nat.

Commun. 7 (2016) 13648.

[232] C.J. Laedermann, N. Syam, M. Pertin, I. Decosterd, H. Abriel, beta1- and beta3-

voltage-gated sodium channel subunits modulate cell surface expression and gly-

cosylation of Nav1.7 in HEK293 cells, Front. Cell. Neurosci. 7 (2013) 137.

[233] E.C. Merrick, C.L. Kalmar, S.L. Snyder, F.S. Cusdin, E.J. Yu, J.J. Sando,

B.E. Isakson, A.P. Jackson, M.K. Patel, The importance of serine 161 in the sodium

channel beta3 subunit for modulation of Na(V)1.2 gating, Pflugers Arch. 460

(2010) 743–753.

[234] L.L. Isom, K.S. De Jongh, D.E. Patton, B.F. Reber, J. Offord, H. Charbonneau,

K. Walsh, A.L. Goldin, W.A. Catterall, Primary structure and functional expression

of the beta 1 subunit of the rat brain sodium channel, Science 256 (1992)

839–842.

[235] J. Zhao, M.E. O’Leary, M. Chahine, Regulation of Nav1.6 and Nav1.8 peripheral

nerve Na+ channels by auxiliary beta-subunits, J. Neurophysiol. 106 (2011)

608–619.

[236] F.S. Cusdin, D. Nietlispach, J. Maman, T.J. Dale, A.J. Powell, J.J. Clare,

A.P. Jackson, The sodium channel {beta}3-subunit induces multiphasic gating in

NaV1.3 and affects fast inactivation via distinct intracellular regions, J. Biol.

Chem. 285 (2010) 33404–33412.

[237] D.P. McEwen, L.L. Isom, Heterophilic interactions of sodium channel beta1 sub-

units with axonal and glial cell adhesion molecules, J. Biol. Chem. 279 (2004)

52744–52752.

[238] J.D. Malhotra, K. Kazen-Gillespie, M. Hortsch, L.L. Isom, Sodium channel beta

subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell-cell

contact, J. Biol. Chem. 275 (2000) 11383–11388.

[239] J. Srinivasan, M. Schachner, W.A. Catterall, Interaction of voltage-gated sodium

channels with the extracellular matrix molecules tenascin-C and tenascin-R, Proc.

Natl. Acad. Sci. U. S. A. 95 (1998) 15753–15757.

[240] C.F. Ratcliffe, R.E. Westenbroek, R. Curtis, W.A. Catterall, Sodium channel beta1

and beta3 subunits associate with neurofascin through their extracellular im-

munoglobulin-like domain, J. Cell Biol. 154 (2001) 427–434.

[241] W.J. Brackenbury, T.H. Davis, C. Chen, E.A. Slat, M.J. Detrow, T.L. Dickendesher,

B. Ranscht, L.L. Isom, Voltage-gated Na+ channel beta1 subunit-mediated neurite

outgrowth requires Fyn kinase and contributes to postnatal CNS development in

vivo, J. Neurosci. 28 (2008) 3246–3256.

[242] T.H. Davis, C. Chen, L.L. Isom, Sodium channel beta1 subunits promote neurite

outgrowth in cerebellar granule neurons, J. Biol. Chem. 279 (2004) 51424–51432.

[243] M. Maschietto, S. Girardi, M. Dal Maschio, M. Scorzeto, S. Vassanelli, Sodium

channel beta2 subunit promotes filopodia-like processes and expansion of the

dendritic tree in developing rat hippocampal neurons, Front. Cell. Neurosci. 7

(2013) 2.

[244] T.T. Zhou, Z.W. Zhang, J. Liu, J.P. Zhang, B.H. Jiao, Glycosylation of the sodium

channel beta4 subunit is developmentally regulated and involves in neuritic de-

generation, Int. J. Biol. Sci. 8 (2012) 630–639.

[245] W.J. Brackenbury, J.D. Calhoun, C. Chen, H. Miyazaki, N. Nukina, F. Oyama,

B. Ranscht, L.L. Isom, Functional reciprocity between Na+ channel Nav1.6 and

beta1 subunits in the coordinated regulation of excitability and neurite outgrowth,

Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 2283–2288.

[246] D.Y. Kim, L.A. Mackenzie Ingano, B.W. Carey, W.P. Pettingell, D.M. Kovacs,

Presenilin/gamma -secretase-mediated cleavage of the voltage-gated sodium

channel beta 2 subunit regulates cell adhesion and migration, J. Biol. Chem. 280

(2005) 23251–23261.

[247] H.K. Wong, T. Sakurai, F. Oyama, K. Kaneko, K. Wada, H. Miyazaki, M. Kurosawa,

B. De Strooper, P. Saftig, N. Nukina, Beta subunits of voltage-gated sodium

channels are novel substrates of BACE1 and gamma -secretase, J. Biol. Chem. 280

(2005) 23009–23017.

[248] D.Y. Kim, B.W. Carey, H. Wang, L.A. Ingano, A.M. Binshtok, M.H. Wertz,

W.H. Pettingell, P. He, V.M. Lee, C.J. Woolf, D.M. Kovacs, BACE1 regulates vol-

tage-gated sodium channels and neuronal activity, Nat. Cell Biol. 9 (2007)

755–764.

[249] M. Nelson, R. Millican-Slater, L.C. Forrest, W.J. Brackenbury, The sodium channel

β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and

promotes tumour growth and metastasis, Int. J. Cancer 135 (2014) 2338–2351.

[250] J.K.J. Diss, S.P. Fraser, M.M. Walker, A. Patel, D.S. Latchman, M.B.A. Djamgoz,

Beta-subunits of voltage-gated sodium channels in human prostate cancer: quan-

titative in vitro and in vivo analyses of mRNA expression, Prostate Cancer

Prostatic Dis. 11 (2008) 325–333.

[251] A.M. Chioni, W.J. Brackenbury, J.D. Calhoun, L.L. Isom, M.B. Djamgoz, A novel

adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1

subunit, Int. J. Biochem. Cell Biol. 41 (2009) 1216–1227.

[252] A.L. Sanchez-Sandoval, J.C. Gomora, Contribution of voltage-gated sodium

channel beta-subunits to cervical cancer cells metastatic behavior, Cancer Cell Int.

19 (2019) 35.

[253] Y.L. Shih, H.M. Chou, H.C. Chou, H.F. Lu, Y.L. Chu, H.S. Shang, J.G. Chung,

Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via

PI3K/AKT and NF-kappaB signaling pathways, Environ. Toxicol. (2017).

[254] K.H. Jansson, D.G. Castillo, J.W. Morris, M.E. Boggs, K.J. Czymmek, E.L. Adams,

L.P. Schramm, R.A. Sikes, Identification of beta-2 as a key cell adhesion molecule

in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach, PLoS

One 9 (2014) e98408.

[255] K. Jansson, J. Lynch, N. Lepori-Bui, K. Czymmek, R. Duncan, R. Sikes,

Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis

associated behavior, Prostate 72 (2012) 1080–1092.

[256] K. Adachi, M. Toyota, Y. Sasaki, T. Yamashita, S. Ishida, M. Ohe-Toyota,

R. Maruyama, Y. Hinoda, T. Saito, K. Imai, R. Kudo, T. Tokino, Identification of

SCN3B as a novel p53-inducible proapoptotic gene, Oncogene 23 (2004)

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

138



7791–7798.

[257] Y. Gong, J. Yang, W. Wu, F. Liu, A. Su, Z. Li, J. Zhu, T. Wei, Preserved SCN4B

expression is an independent indicator of favorable recurrence-free survival in

classical papillary thyroid cancer, PLoS One 13 (2018) e0197007.

[258] H. Miyazaki, F. Oyama, H.K. Wong, K. Kaneko, T. Sakurai, A. Tamaoka, N. Nukina,

BACE1 modulates filopodia-like protrusions induced by sodium channel beta4

subunit, Biochem. Biophys. Res. Commun. 361 (2007) 43–48.

[259] D.B. Simon, R.S. Bindra, T.A. Mansfield, C. Nelson-Williams, E. Mendonca,

R. Stone, S. Schurman, A. Nayir, H. Alpay, A. Bakkaloglu, J. Rodriguez-Soriano,

J.M. Morales, S.A. Sanjad, C.M. Taylor, D. Pilz, A. Brem, H. Trachtman,

W. Griswold, G.A. Richard, E. John, R.P. Lifton, Mutations in the chloride channel

gene, CLCNKB, cause Bartter’s syndrome type III, Nat. Genet. 17 (1997) 171–178.

[260] M. Kaneda, M. Wakamori, N. Akaike, GABA-induced chloride current in rat iso-

lated Purkinje cells, Am. J. Physiol. 256 (1989) C1153–1159.

[261] A. Mankodi, M.P. Takahashi, H. Jiang, C.L. Beck, W.J. Bowers, R.T. Moxley,

S.C. Cannon, C.A. Thornton, Expanded CUG repeats trigger aberrant splicing of

ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in

myotonic dystrophy, Mol. Cell 10 (2002) 35–44.

[262] J. Danielsson, J. Perez-Zoghbi, K. Bernstein, M.B. Barajas, Y. Zhang, S. Kumar,

P.K. Sharma, G. Gallos, C.W. Emala, Antagonists of the TMEM16A calcium-acti-

vated chloride channel modulate airway smooth muscle tone and intracellular

calcium, Anesthesiology 123 (2015) 569–581.

[263] S.W. Liu, Y. Li, L.L. Zou, Y.T. Guan, S. Peng, L.X. Zheng, S.M. Deng, L.Y. Zhu,

L.W. Wang, L.X. Chen, Chloride channels are involved in sperm motility and are

downregulated in spermatozoa from patients with asthenozoospermia, Asian J.

Androl. 19 (2017) 418–424.

[264] E. Jeworutzki, T. Lopez-Hernandez, X. Capdevila-Nortes, S. Sirisi, L. Bengtsson,

M. Montolio, G. Zifarelli, T. Arnedo, C.S. Muller, U. Schulte, V. Nunes, A. Martinez,

T.J. Jentsch, X. Gasull, M. Pusch, R. Estevez, GlialCAM, a protein defective in a

leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit, Neuron 73

(2012) 951–961.

[265] S. Sirisi, X. Elorza-Vidal, T. Arnedo, M. Armand-Ugon, G. Callejo, X. Capdevila-

Nortes, T. Lopez-Hernandez, U. Schulte, A. Barrallo-Gimeno, V. Nunes, X. Gasull,

R. Estevez, Depolarization causes the formation of a ternary complex between

GlialCAM, MLC1 and ClC-2 in astrocytes: implications in megalencephalic leu-

koencephalopathy, Hum. Mol. Genet. 26 (2017) 2436–2450.

[266] P.F. Lange, L. Wartosch, T.J. Jentsch, J.C. Fuhrmann, ClC-7 requires Ostm1 as a

beta-subunit to support bone resorption and lysosomal function, Nature 440

(2006) 220–223.

[267] R. Estevez, T. Boettger, V. Stein, R. Birkenhager, E. Otto, F. Hildebrandt,

T.J. Jentsch, Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption

and inner ear K+ secretion, Nature 414 (2001) 558–561.

[268] L. Favre-Kontula, A. Rolland, L. Bernasconi, M. Karmirantzou, C. Power,

B. Antonsson, U. Boschert, GlialCAM, an immunoglobulin-like cell adhesion mo-

lecule is expressed in glial cells of the central nervous system, Glia 56 (2008)

633–645.

[269] Y. He, X. Wu, C. Luo, L. Wang, J. Lin, Functional significance of the hepaCAM gene

in bladder cancer, BMC Cancer 10 (2010) 83.

[270] L. Leisle, C.F. Ludwig, F.A. Wagner, T.J. Jentsch, T. Stauber, ClC-7 is a slowly

voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity,

EMBO J. 30 (2011) 2140–2152.

[271] T. Stauber, T.J. Jentsch, Sorting motifs of the endosomal/lysosomal CLC chloride

transporters, J. Biol. Chem. 285 (2010) 34537–34548.

[272] U. Scholl, S. Hebeisen, A.G. Janssen, G. Muller-Newen, A. Alekov, C. Fahlke,

Barttin modulates trafficking and function of ClC-K channels, Proc. Natl. Acad. Sci.

U. S. A. 103 (2006) 11411–11416.

[273] S. L’Hoste, A. Diakov, O. Andrini, M. Genete, L. Pinelli, T. Grand, M. Keck,

M. Paulais, L. Beck, C. Korbmacher, J. Teulon, S. Lourdel, Characterization of the

mouse ClC-K1/Barttin chloride channel, Biochim. Biophys. Acta 1828 (2013)

2399–2409.

[274] M. Fischer, A.G. Janssen, C. Fahlke, Barttin activates ClC-K channel function by

modulating gating, J. Am. Soc. Nephrol. 21 (2010) 1281–1289.

[275] S.C. Hebert, Bartter syndrome, Curr. Opin. Nephrol. Hypertens. 12 (2003)

527–532.

[276] M. Naesens, P. Steels, R. Verberckmoes, Y. Vanrenterghem, D. Kuypers, Bartter’s

and Gitelman’s syndromes: from gene to clinic, Nephron Physiol. 96 (2004) 65–78.

[277] N. Nomura, M. Tajima, N. Sugawara, T. Morimoto, Y. Kondo, M. Ohno, K. Uchida,

K. Mutig, S. Bachmann, M. Soleimani, E. Ohta, A. Ohta, E. Sohara, T. Okado,

T. Rai, T.J. Jentsch, S. Sasaki, S. Uchida, Generation and analyses of R8L barttin

knockin mouse, American journal of physiology, Ren. Physiol. 301 (2011)

F297–307.

[278] M. Chung Moh, L. Hoon Lee, S. Shen, Cloning and characterization of hepaCAM, a

novel Ig-like cell adhesion molecule suppressed in human hepatocellular carci-

noma, J. Hepatol. 42 (2005) 833–841.

[279] M.C. Moh, T. Zhang, L.H. Lee, S. Shen, Expression of hepaCAM is downregulated

in cancers and induces senescence-like growth arrest via a p53/p21-dependent

pathway in human breast cancer cells, Carcinogenesis 29 (2008) 2298–2305.

[280] Z. Huang, Q. Yang, Z. Huang, Identification of critical genes and five prognostic

biomarkers associated with colorectal Cancer, Med. Sci. Monit. 24 (2018)

4625–4633.

[281] J. Tao, Q. Liu, X. Wu, X. Xu, Y. Zhang, Q. Wang, C. Luo, Identification of hy-

permethylation in hepatocyte cell adhesion molecule gene promoter region in

bladder carcinoma, Int. J. Med. Sci. 10 (2013) 1860–1867.

[282] Z. Du, L. Li, W. Sun, X. Wang, Y. Zhang, Z. Chen, M. Yuan, Z. Quan, N. Liu, Y. Hao,

T. Li, J. Wang, C. Luo, X. Wu, HepaCAM inhibits the malignant behavior of cas-

tration-resistant prostate cancer cells by downregulating Notch signaling and PF-

3084014 (a gamma-secretase inhibitor) partly reverses the resistance of refractory

prostate cancer to docetaxel and enzalutamide in vitro, Int. J. Oncol. 53 (2018)

99–112.

[283] M.C. Moh, C. Zhang, C. Luo, L.H. Lee, S. Shen, Structural and functional analyses

of a novel ig-like cell adhesion molecule, hepaCAM, in the human breast carci-

noma MCF7 cells, J. Biol. Chem. 280 (2005) 27366–27374.

[284] H.F. Du, L.P. Ou, C.K. Lv, X. Yang, X.D. Song, Y.R. Fan, X.H. Wu, C.L. Luo,

Expression of hepaCAM inhibits bladder cancer cell proliferation via a Wnt/beta-

catenin-dependent pathway in vitro and in vivo, Cancer Biol. Ther. 16 (2015)

1502–1513.

[285] Q. Wang, C. Luo, X. Wu, H. Du, X. Song, Y. Fan, hepaCAM and p-mTOR closely

correlate in bladder transitional cell carcinoma and hepaCAM expression inhibits

proliferation via an AMPK/mTOR dependent pathway in human bladder cancer

cells, J. Urol. 190 (2013) 1912–1918.

[286] Q.L. Zhang, C.L. Luo, X.H. Wu, C.Y. Wang, X. Xu, Y.Y. Zhang, Q. Liu, S.L. Shen,

HepaCAM induces G1 phase arrest and promotes c-Myc degradation in human

renal cell carcinoma, J. Cell. Biochem. 112 (2011) 2910–2919.

[287] M. Wu, M.C. Moh, H. Schwarz, HepaCAM associates with connexin 43 and en-

hances its localization in cellular junctions, Sci. Rep. 6 (2016) 36218.

[288] N. Xu, H.J. Chen, S.H. Chen, X.Y. Xue, H. Chen, Q.S. Zheng, Y. Wei, X.D. Li,

J.B. Huang, H. Cai, X.L. Sun, Reduced Connexin 43 expression is associated with

tumor malignant behaviors and biochemical recurrence-free survival of prostate

cancer, Oncotarget 7 (2016) 67476–67484.

[289] M. Busby, M.T. Hallett, I. Plante, The complex subtype-dependent role of connexin

43 (GJA1) in breast Cancer, Int. J. Mol. Sci. 19 (2018).

[290] A.D. Gruber, R.C. Elble, H.L. Ji, K.D. Schreur, C.M. Fuller, B.U. Pauli, Genomic

cloning, molecular characterization, and functional analysis of human CLCA1, the

first human member of the family of Ca2+-activated Cl- channel proteins,

Genomics 54 (1998) 200–214.

[291] R.C. Elble, V. Walia, H.C. Cheng, C.J. Connon, L. Mundhenk, A.D. Gruber,

B.U. Pauli, The putative chloride channel hCLCA2 has a single C-terminal trans-

membrane segment, J. Biol. Chem. 281 (2006) 29448–29454.

[292] H. Sun, T. Tsunenari, K.W. Yau, J. Nathans, The vitelliform macular dystrophy

protein defines a new family of chloride channels, Proc. Natl. Acad. Sci. U. S. A. 99

(2002) 4008–4013.

[293] A.N. Miller, G. Vaisey, S.B. Long, Molecular mechanisms of gating in the calcium-

activated chloride channel bestrophin, eLife 8 (2019).

[294] A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer,

R. Ravazzolo, O. Zegarra-Moran, L.J. Galietta, TMEM16A, a membrane protein

associated with calcium-dependent chloride channel activity, Science (New York,

N.Y.) 322 (2008) 590–594.

[295] N. Reichhart, S. Schoberl, S. Keckeis, A.S. Alfaar, C. Roubeix, M. Cordes, S. Crespo-

Garcia, A. Haeckel, N. Kociok, R. Fockler, G. Fels, A. Mataruga, R. Rauh,

V.M. Milenkovic, K. Zuhlke, E. Klussmann, E. Schellenberger, O. Strauss,

Anoctamin-4 is a bona fide Ca(2+)-dependent non-selective cation channel, Sci.

Rep. 9 (2019) 2257.

[296] S.H. Boese, O. Aziz, N.L. Simmons, M.A. Gray, Kinetics and regulation of a Ca2+-

activated Cl- conductance in mouse renal inner medullary collecting duct cells,

American journal of physiology, Ren. Physiol. 286 (2004) F682–692.

[297] I. Salzer, E. Gantumur, A. Yousuf, S. Boehm, Control of sensory neuron excitability

by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels,

Neuropharmacology 110 (2016) 277–286.

[298] K.I. Hannigan, C.S. Griffin, R.J. Large, G.P. Sergeant, M.A. Hollywood,

N.G. McHale, K.D. Thornbury, The role of Ca(2+)-activated Cl(-) current in tone

generation in the rabbit corpus cavernosum, American journal of physiology, Cell

physiology 313 (2017) C475–c486.

[299] M.A. Catalan, Y. Kondo, G. Pena-Munzenmayer, Y. Jaramillo, F. Liu, S. Choi,

E. Crandall, Z. Borok, P. Flodby, G.E. Shull, J.E. Melvin, A fluid secretion pathway

unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary

gland, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 2263–2268.

[300] A.D. Gruber, K.D. Schreur, H.L. Ji, C.M. Fuller, B.U. Pauli, Molecular cloning and

transmembrane structure of hCLCA2 from human lung, trachea, and mammary

gland, Am. J. Physiol. 276 (1999) C1261–1270.

[301] M. Sala-Rabanal, Z. Yurtsever, K.N. Berry, C.G. Nichols, T.J. Brett, Modulation of

TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of

the calcium-activated chloride channel regulator 1 (CLCA1), J. Biol. Chem. 292

(2017) 9164–9174.

[302] M. Sala-Rabanal, Z. Yurtsever, C.G. Nichols, T.J. Brett, Secreted CLCA1 modulates

TMEM16A to activate Ca(2+)-dependent chloride currents in human cells, eLife 4

(2015).

[303] Z. Yurtsever, M. Sala-Rabanal, D.T. Randolph, S.M. Scheaffer, W.T. Roswit,

Y.G. Alevy, A.C. Patel, R.F. Heier, A.G. Romero, C.G. Nichols, M.J. Holtzman,

T.J. Brett, Self-cleavage of human CLCA1 protein by a novel internal metallo-

protease domain controls calcium-activated chloride channel activation, J. Biol.

Chem. 287 (2012) 42138–42149.

[304] E.E.L. Nystrom, G.M.H. Birchenough, S. van der Post, L. Arike, A.D. Gruber,

G.C. Hansson, M.E.V. Johansson, Calcium-activated chloride channel regulator 1

(CLCA1) controls mucus expansion in Colon by proteolytic activity, EBioMedicine

33 (2018) 134–143.

[305] A. Sharma, G. Ramena, Y. Yin, L. Premkumar, R.C. Elble, CLCA2 is a positive

regulator of store-operated calcium entry and TMEM16A, PLoS One 13 (2018)

e0196512.

[306] X. Li, W. Hu, J. Zhou, Y. Huang, J. Peng, Y. Yuan, J. Yu, S. Zheng, CLCA1 sup-

presses colorectal cancer aggressiveness via inhibition of the Wnt/beta-catenin

signaling pathway, Cell Commun. Signal 15 (2017) 38.

[307] X. Li, J.K. Cowell, K. Sossey-Alaoui, CLCA2 tumour suppressor gene in 1p31 is

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

139



epigenetically regulated in breast cancer, Oncogene 23 (2004) 1474–1480.

[308] Y. Yu, V. Walia, R.C. Elble, Loss of CLCA4 promotes epithelial-to-mesenchymal

transition in breast cancer cells, PLoS One 8 (2013) e83943.

[309] B. Yang, L. Cao, J. Liu, Y. Xu, G. Milne, W. Chan, S.D. Heys, C.D. McCaig, J. Pu,

Low expression of chloride channel accessory 1 predicts a poor prognosis in col-

orectal cancer, Cancer 121 (2015) 1570–1580.

[310] D. Hu, D. Ansari, Q. Zhou, A. Sasor, K.S. Hilmersson, M. Bauden, Y. Jiang,

R. Andersson, Calcium-activated chloride channel regulator 1 as a prognostic

biomarker in pancreatic ductal adenocarcinoma, BMC Cancer 18 (2018) 1096.

[311] B. Yang, L. Cao, B. Liu, C.D. McCaig, J. Pu, The transition from proliferation to

differentiation in colorectal cancer is regulated by the calcium activated chloride

channel A1, PLoS One 8 (2013) e60861.

[312] Y.Y. Qiang, C.Z. Li, R. Sun, L.S. Zheng, L.X. Peng, J.P. Yang, D.F. Meng, Y.H. Lang,

Y. Mei, P. Xie, L. Xu, Y. Cao, W.W. Wei, L. Cao, H. Hu, Q. Yang, D.H. Luo,

Y.Y. Liang, B.J. Huang, C.N. Qian, Along with its favorable prognostic role, CLCA2

inhibits growth and metastasis of nasopharyngeal carcinoma cells via inhibition of

FAK/ERK signaling, J. Exp. Clin. Cancer Res. 37 (2018) 34.

[313] S.A. Bustin, S.R. Li, S. Dorudi, Expression of the Ca2+-activated chloride channel

genes CLCA1 and CLCA2 is downregulated in human colorectal cancer, DNA Cell

Biol. 20 (2001) 331–338.

[314] A. Balakrishnan, N. von Neuhoff, C. Rudolph, K. Kamphues, M. Schraders,

P. Groenen, J.H. van Krieken, E. Callet-Bauchu, B. Schlegelberger, D. Steinemann,

Quantitative microsatellite analysis to delineate the commonly deleted region

1p22.3 in mantle cell lymphomas, Genes Chromosomes Cancer 45 (2006)

883–892.

[315] A.D. Gruber, B.U. Pauli, Tumorigenicity of human breast cancer is associated with

loss of the Ca2+-activated chloride channel CLCA2, Cancer Res. 59 (1999)

5488–5491.

[316] J. Porretti, G.N. Dalton, C. Massillo, G.D. Scalise, P.L. Farre, R. Elble, E.N. Gerez,

P. Accialini, A.M. Cabanillas, K. Gardner, P. De Luca, A. De Siervi, CLCA2 epige-

netic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts

prostate cancer cell adhesion and EMT in metabolic syndrome disease, Int. J.

Cancer 143 (2018) 897–906.

[317] G. Ramena, Y. Yin, Y. Yu, V. Walia, R.C. Elble, CLCA2 interactor EVA1 is required

for mammary epithelial cell differentiation, PLoS One 11 (2016) e0147489.

[318] A.I. Riker, S.A. Enkemann, O. Fodstad, S. Liu, S. Ren, C. Morris, Y. Xi, P. Howell,

B. Metge, R.S. Samant, L.A. Shevde, W. Li, S. Eschrich, A. Daud, J. Ju, J. Matta,

The gene expression profiles of primary and metastatic melanoma yields a tran-

sition point of tumor progression and metastasis, BMC Med. Genomics 1

(2008) 13.

[319] Y. Sasaki, R. Koyama, R. Maruyama, T. Hirano, M. Tamura, J. Sugisaka, H. Suzuki,

M. Idogawa, Y. Shinomura, T. Tokino, CLCA2, a target of the p53 family, nega-

tively regulates cancer cell migration and invasion, Cancer Biol. Ther. 13 (2012)

1512–1521.

[320] C. Tanikawa, H. Nakagawa, Y. Furukawa, Y. Nakamura, K. Matsuda, CLCA2 as a

p53-inducible senescence mediator, Neoplasia 14 (2012) 141–149.

[321] T. Hou, L. Zhou, L. Wang, G. Kazobinka, X. Zhang, Z. Chen, CLCA4 inhibits bladder

cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT

pathway, Oncotarget 8 (2017) 93001–93013.

[322] Z. Liu, M. Chen, L.K. Xie, T. Liu, Z.W. Zou, Y. Li, P. Chen, X. Peng, C. Ma,

W.J. Zhang, P.D. Li, CLCA4 inhibits cell proliferation and invasion of hepatocel-

lular carcinoma by suppressing epithelial-mesenchymal transition via PI3K/AKT

signaling, Aging 10 (2018) 2570–2584.

[323] M. Abdel-Ghany, H.C. Cheng, R.C. Elble, B.U. Pauli, The breast cancer beta 4 in-

tegrin and endothelial human CLCA2 mediate lung metastasis, J. Biol. Chem. 276

(2001) 25438–25446.

[324] M. Abdel-Ghany, H.C. Cheng, R.C. Elble, H. Lin, J. DiBiasio, B.U. Pauli, The in-

teracting binding domains of the beta(4) integrin and calcium-activated chloride

channels (CLCAs) in metastasis, J. Biol. Chem. 278 (2003) 49406–49416.

[325] N. Musrap, A. Tuccitto, G.S. Karagiannis, P. Saraon, I. Batruch, E.P. Diamandis,

Comparative proteomics of ovarian Cancer aggregate formation reveals an in-

creased expression of calcium-activated chloride channel regulator 1 (CLCA1), J.

Biol. Chem. 290 (2015) 17218–17227.

[326] Y. Man, J. Cao, S. Jin, G. Xu, B. Pan, L. Shang, D. Che, Q. Yu, Y. Yu, Newly

identified biomarkers for detecting circulating tumor cells in lung adenocarci-

noma, Tohoku J. Exp. Med. 234 (2014) 29–40.

[327] C. Fairhurst, F. Martin, I. Watt, T. Doran, M. Bland, W.J. Brackenbury, Sodium

channel-inhibiting drugs and cancer survival: protocol for a cohort study using the

CPRD primary care database, BMJ Open 6 (2016) e011661.

[328] C. Fairhurst, I. Watt, F. Martin, M. Bland, W.J. Brackenbury, Exposure to sodium

channel-inhibiting drugs and cancer survival: protocol for a cohort study using the

QResearch primary care database, BMJ Open 4 (2014) e006604.

[329] C. Fairhurst, I. Watt, F. Martin, M. Bland, W.J. Brackenbury, Sodium channel-

inhibiting drugs and survival of breast, colon and prostate cancer: a population-

based study, Sci. Rep. 5 (2015) 16758.

[330] A.M. Dopico, A.N. Bukiya, A.K. Singh, Large conductance, calcium- and voltage-

gated potassium (BK) channels: regulation by cholesterol, Pharmacol. Ther. 135

(2012) 133–150.

[331] D. Leonoudakis, L.R. Conti, S. Anderson, C.M. Radeke, L.M. McGuire, M.E. Adams,

S.C. Froehner, J.R. Yates 3rd, C.A. Vandenberg, Protein trafficking and anchoring

complexes revealed by proteomic analysis of inward rectifier potassium channel

(Kir2.x)-associated proteins, J. Biol. Chem. 279 (2004) 22331–22346.

[332] D.P. McEwen, L.S. Meadows, C. Chen, V. Thyagarajan, L.L. Isom, Sodium channel

beta1 subunit-mediated modulation of Nav1.2 currents and cell surface density is

dependent on interactions with contactin and ankyrin, J. Biol. Chem. 279 (2004)

16044–16049.

[333] S. Markovic, R. Dutzler, The structure of the cytoplasmic domain of the chloride

channel ClC-Ka reveals a conserved interaction interface, Structure 15 (2007)

715–725.

A.S. Haworth and W.J. Brackenbury Cell Calcium 80 (2019) 125–140

140


	Emerging roles for multifunctional ion channel auxiliary subunits in cancer
	Introduction
	Ca2+ channels
	CaVβ
	α2δ
	CaVγ

	K+ channels
	Kvβ
	KCNE
	KChIP
	BK channels
	Kir channels

	Na+ channels
	Voltage-gated Na+ channels

	Cl− channels
	Voltage-gated Cl− channels
	Ca2+-sensitive Cl− channels

	Conclusion
	Conflicts of interest statement
	Acknowledgement
	References


