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Abstract: It is well-known that incoherent sampling is detrimental for frequesstimation of a real
sinusoid, and the estimation errors get worse when the signal lengtheyashort. In this paper, a speatr
matching based frequency estimator is proposed as well as evaluated abam&iuw two-step methods
developed to suppress the effect of incoherent samglhmgy spectral interference introduced by incoherent
samplingis eliminated via a spectrum matching process including modulation anttaspstalysis A
further error correction based on Fourier transform is conducted tyagerthe fine frequency estimate
Simulation results are carried out to show that the proposed methatbsaly approach the Cramér-Rao
lower bound without any error floor, aridcan outperform the other four methods particularly for short
signal lengths.

Keywords: Frequency Estimatigiincoherent Sampling, Real Sinusqgi8pectrum Matching

. INTRODUCTION

Frequency estimation of sinusoids has b&suabject of investigation in many fields for decades, such as
radar, power systems, measurement and instrumentdliemerous estimation approaches have been
developed so far. Given a straightforward operation of maximizing thedpgram [1], frequency domain
approaches based on the discrete Fourier transform (DFT) and implemenkedféast Fourier transform
(FFT) show high computational efficiency. A typical two-step sahésrwidely concerned which usually
includes a coarse estimation via DFT to locate the spectral maximum, folloveefidayional interpolatio

with two or more spectral points [2-4]. However, a majority esthtwo-step methods are only adapted to
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complex signalsand for real sinusoids, the inherent picket fence effect and spectral ledkhgdFT may
introduce significant errors if the signal is not coherently sample].[B addition, the DFT based methods
sufferfrom resolution loss when the signal lengths are very short.

In time domain, the two-step procedure is also introduced toqteothe estimation performance. The
two-stage autocorrelation (TSA) approach [7] employs the linearepno (LP) to reform the signal and
makes use of different lags of autocorrelations to produce frequestiyates. To avoid multiple
autocorrelations which are computationally burdensome, the Taylor expamslaihe least squares (LS)
principle are involved to generate an error function in the extended autocorréiadipmethod [8] By
minimizing the error functiorthe performance of the EA method can approach the Cramér-Raoliowed
(CRLB) when the signal lengths are sufficigriarge. However, coping with incohernsampled datén
short lengththe EA method performs biased significantly because the signal autoconrélatian error
term which is not negligible. Accordingly, the recently proposeasphmatch based (PM) method [9] and
phase correction autocorrelation (PCA) methfi®] show different ways of reconstructing the
autocorrelation function to avoid the error term, and besttiesCauchy inequality is also considered to
derive the error functionn [9]. Gererally, the PM and PCA methods are effective to deal with the
incoherently sampled signdlut ther performance still shows slight degradation when the signal lengths are
very short.

In this paperanew two-step frequency estimator based on spectrum matching isedopdhich shows
improvements in accuracy among the aforementioned two-steodseThe estimation bias caused by
incoherent sampling is effectively reduced by modulation, which has plbegh validated in oprevious
work [11]. Then, spectral analysis is carried out to divide the originabkigpectrum into two separated
complex versionsyhat we calledspectum matching. Finally, the fine estimate results from an error
correction via a classical approach based on Fourier transform [12]. Tt tlestpaper is organized as
follows: In Section Il, the underlying principle to deal with the specttarfierencecausedby incoherent
sampling is interpretedThe whole algorithm is carried out in Section. IRerformance comparison is

conducted in Section INand the final conclusion is presented in Section V.
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[I. UNDERLYING PRINCIPLE
Consider a general, real sinusoid in noise as follows:

x(n) = Acos@,n+6 +wn),n=12,3,..N- (1)
where A and @ represent the signal amplitude and the initial phase respectvgl@ < @, <7 ) is the
angular frequencyn radians; andmv(n) is the zero-mean additive white Gaussian noise (AWGN) aith
varianceof ¢°.

From [9, 10], we knowthat if the signal is incoherently sampled, the signal autocorrelation hasoan er
term which is only negligible for sufficielgtlarge N In frequency domain, the spectrum of the incoherently
sampled signal suffers from interference from the negative freguwamponents, antigets worse for small

value of N.In addition although the number of samples is increasing, the chosen valygaoain hardly

matches a frequency bin of the DFT, and so, it is inevitable to deahwitiffect of incoherent sampling for
accurate frequency estimation. Nowith a priori knowledgef the signal frequency, which is providey

the coarse estimation, the signal frequency can be directly modulateddaadppoherent sampling.
Modulate the signadsx,(n) = x(n)€“", and then
x_(n) = (Al 2)e! @9 (Af2)e (- 0) () dan )
where w, (0< @, < w,) is the modulation frequency.
Calculate the DFT ofx_(n), denoted asX (k) , as
Xn(K) =S, (K + S, (R+W(K (3)
whereW, (k) is the DFT of the modulated nojs§,, (K} and S, (k) are the DFT of the positive and

negative frequency exponentials in (2) respectively, which can bemaitte

S (K :éeif’ ej‘NT’l(wOm,@) sin( (@, +w,— & )N /2)

: 2 sin( @, + o, -, )12 @
S (K- A i éjNT'l(%fmcmk) sin( (0, — o, + & )N /2)

; 2 sin( @, — o, + &, )12

where @, =27k / N represents the k-th DFT frequency bin, dnd0,1,2,.N- 1

Note that in (4), we can force most values S, (K or S, (kK to be zero only by setting
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w,+w, =27rm/ Nor o,—w, =2zm/ N (m is an arbitrary integer). For example, in the absence of nbise, i
we setw, =@, , the modulus ofS (K and S, (k) are shown in Fig. 1 4, =0.0876r , N =32 and

0 =r17). Serious interference of the negative frequency componentssandtig. 1(a), and the frequency
estimation which ignores the negative frequency contribution will exhibgfréfisiant bias. But in Fig. 1(b),

the negative frequency component Igs(K) =0 for all values of k excluding=0, which means the
interference only exists &t 0. Thus, if we can figure o8, (0), it is possible to matcK,, (k) , which is the
spectrum of a real signal, to the spectrum of a complex sinus8id @$ . The spectral interference of the

negative frequency components can be eliminated in this case.

(a) Before Modulation

20

—9O positive-frequency components
—# negative-frequency components

modulus

10 I l
0 $9?9900oooooo....oo.oooaﬁ$$
0 5 10 15 20 25 30
DFT index
(b) After Modulation (w,=w,)

—®o positive-frequency components
—= negative-frequency components

modulus

0 5 10 15 20 25 30
DFT index

Fig. 1. Interaction of positive and negative freqcy components (zero noise).

I1l. METHOD DEVELOPMENT

A Coarse Estimation
In practice,w, is unknown, ando, can only be set according to a coarse frequency estié¥jatAssume

o, = @y = wy+Awg, where Aw; is the estimation error. Then, from) @r k=0,1,2,...N— ., we get
éjNT’l(@—Amg) sin(NAw /2)

. = : ®)
sin((Aawy — @, )1 2)

S (9= () D

Obviously, S, (K is proportional tosin(NAw; /2), and S, (K =0 when k=0 . Thus, we need
| NAw; | to be sufficiently small (empiricalhNAw; k 0.1) so that the interference occurredkat O can

be ignored. To that end, we give an enhanced version of the mdelfied13], which calculates the coarse
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estimated, as

é)g = C0§1 [M] (6)

4c
where d =" r(k-2)[r(K+r(k-4)],c=> " r(k-1)[r(K +r(k-2)] The difference to [13] is that

we setr(k) = z::f:+lx(n)[><(n+ KB+Xn-K], k=1,2,3,...K, and K =round(N /3), where round(x)

means to roundk up or down to the nearest integer. This is to enhance the SNRiagdorthe LP, and the
value of Kis determined through simulations. Unlike the widely &$€ld the adopted coarse estimator does

not suffer from resolution loss for short signal lengths.

B. Spectrum Matching
Since most of the values &, (K) are forced to approximate zero after modulation, then the keleprob

is to deal with the interference fde=0. From (4), we know that

Sm+ (0) _ é ég ej%(mowuc) SII’]( (600 + [0 )N /2) ' (7)
2 sin( @, +®,) /2
According to (3) and (4), for arbitrary value of integerOx(q < N—1), we can write
A o iNYapra-ay SIN( (@ + @, — @&, )N /2
Sn (D= X (DG, (9- W(a="¥& &> " _( - : ) (8)
2 S|n<(a)O + o, —a)q)/2)
Then, substitute (8) fofA/ 2)e!’ in (7) and we obtain
= (apd T Sl e @)1 g g ©
=(-1'e - - .
S sin( (@, +@,)/2) % - w9
Thus, substitutings, for @, and @, in (9), we can define an estimator 8f, (0) as
R N5, Sin(a; —@, 12
§,0=capd 2 %2 (10)
sin(@3)
Assuming tha Awy | is sufficienty small, it is easy to make the approximation
sin(@; — & /2)~ sin(@, + w, — @, )/2). (11)

sin@’)  sin((@,+a,)/2)

Then we can rewrite (9) as



118 $..(0)=S, (0)+2(d+v(9 (12)
119 whereg(g) ando(q) can be regarded as the terms of #istimation error causeby S, (g and the

120 modulated noise:

jN-1 sin((co0 + o, —a3q)/2)

121 () = (1€ 2" 13
(@)= sin((@y+ )12 S (9 (13)
N1, sin( (@, + 0, - @,) 1 2)
122 = (-1t 2 " ¢ 9 . 14
v(a) =(-1) sn((@+2)/2) W, (9 (14)
123 Substitute(5) and w, = @; = @, +Awginto (13), andas | Aw; | is assumed to be sufficiépismall, so
. . N1
124 &(q) ~ %"N/Z)e’“’e’ 2 ' (cot(e, ) cot@, /2) . (15)
125 Note thatq can be an arbitrary integer from 1 to N-1, and we cawgé? — @, to makeeg(q) — 0. So

126 g can be approximated Isgtting g =round(Na; /= ). Furthermore, as we assumed thag; N is small in
127  (5), the value ofg(q) can be sufficiently smatb be ignored.

128 For v(q) , it is easy to prove th&[v(q)] =0, where E[-] is the expectation operatdrhen from (12), we

129 can write
130 E[S,. (0)]= S, (0)+£(9+E[v(a]l~ §,(0) (16)
131  which means thafASm+ (0) can be recognized as an unbiased estimat&, of0) .

132 Now, we can divide the spectrum of the modulated real signa{ g&) into two spectrums of complex

133 exponentials, asS,, (K) and S, (k) , writtenas

134

{ém(k) = X008, OB K | o -

S, (K =(X,(0)-S, (0))5 (K
135 where §(k) is the discrete Dirac Delta function wi#(0)=1 and 5(k)=0 for k=0. X (0) can be

136 calculated by summing the elementsxQfn) . After this spectrum matching process, the signal amplitude
137  and initial phase can be directly estimated frém(k) as A= 2‘§m7 (0)(/N and 0 = —angld $F(O)), but

138 here we focus on frequency estimation, which can be further dérbmdé,m(k) .



139 C. Error Correction
140 After modulation, tle actual frequency of the positive frequency exponential in (2) has dfefted to

141 w, +w,. Accordingly, we can us@@; to approximately locate the spectral maximum3f (k) , which is
142 only Aw; radiangdistantfrom the actual valud.hen we could estimaté@; to correct the estimation bias
143  of @, . According to the classical methodology of interpolation in frequennyath [12, 14], we can used
144 spectral pointsis S, (205 — 7 / N) andS,, (2¢; + 7z / N) to realize accurate error correction.

145 From (4), we can calculat§,, (2&; -7/ N), S, (2a; +x/ N), and after some simple algebra, we

146 obtain

147 (sm(—)cos@ ) cos% )surﬁ— }sm (@0—— ) T =52 oz co'«ﬁ{ATwg (18)
148 (sm(—)cos@ W cosg )sn’ﬁ— )Sm @ + + 2 NT% ézég éjNTflAwS cog%g (29)

N

149 By subtracting the both sides of (18) and (19), makexg(j N — L)z /N )~ —1 and tan(x)= x for

150 sufficiently small xafter some simplification, we obtain
T VA T VA
151 Awg —— 20 ——)=| Awg+— 205 +— 20
(8052 )5, 205 -804 7 )5, @05+ ) (20

152 Substitut£m+(2 c—rlN), Sn (2ag +7 I N) for S, (2a5 —7 / N) andS,, (2&;5 +7 / N), and take the

153  real part to avoid complex valudle can estimateAw; as

154 N = e{s,m(z +;;/N)+sm(2a>°—ﬂ/|\|)} 21)
N | S @o-7IN)-§, aS+7/N)

155  where S, (24¢ + 7/ N) can be calculated from the inverse DFTS)f (K) in (17)as

N N-1 n e
156 §. o527 I N)= Y| X,(N~( X,(0)- §, (0))/ N]e @, 22
n=0
157 Finally, the fine frequency estimaté{ ) of our method can be calculated By = @ —A®S. The overall

158 signal processing algorithm for the proposed method is shown la Tab

159
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TABLE |
SIGNAL PROCESSINGALGORITHM

Calculate the coarse frequency estimate @; via (6).

—_

Modulate X(n) with @, =d; to obtain x,(n) asin (2).
Calculate q=roundN; /z) and X, (@)= x, (e’ .
Calculate éW(O) according to (10).

Calculate S, (2&¢ +7/ N)and §,, (24 — = / N)via (22)

Generate the frequency correction factor A@; via (21).

N N L AW

Obtain the fine frequency estimate by @, = &f — AQ; .

IV. SIMULATION RESULTS

To evaluate the performance of the aforementioned two-step methegse the TSA [, EA [8], PM [9],
and PCA [10] methods as a comparison against our proposkddnetithout loss of generality, we assume
A=1, and @ is uniformly distributed betweenr and . Each simulation result is carried out with an
average 2000 independent Monte Carlo runs.

Bounds: As with the approximation made in [15], the CRLB of frequerstymaation for a real sinusoid is
given as

CRLB= Val’[c?)of ]: WZ(NZ_]_) (26)

where the SNR is defined &%/ (25°).

Variable Frequency: Because of the periodicity of the spectrum of a real sinusoidnlyesgaluate the
performance forO<m,<0.5r . The root-mean-square error (RMSE) versus signal frequepcfor
N =32 for four different SNR values is presented in FigTBe signal frequency varies fro0lr to
0.497 with a step size 00.01r . The enlarged scale df.57 < @, < 3.5r canshow the advantages of the
proposed method more clearli’hen the signal frequency is very low, the PCA and EA methomsde
more reliable accura@t SNR=10dB in Fig.2 (awhile the PM method performs better for high SNRs in Fig.
2 (c) and (d). However, generally speakitite proposed method shows higher accuracy than the other

evaluated methods in a very large range of signal frequency, asdptority becomes more obvious with

increasing SNRs.
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Fig. 2 RMSE versusw, for N=32. (a) SNR=10dB; (b) SNRB8dB; (c) SNR=50dB; (d) SNR=70dB.

Variable SNR: The RMSE versus SNR fay, =0.097 and N =32 is shown in Fig. 3The SNR varies

from -10dB to119B with a step size of 3dB. The effect of RMSE saturation can bel flaurthe EA and
PCA methods, which has proved their biasness in this case. By congds$AhPM and proposed methods
can follow the trend of the CRLB without error floors, but otilg proposed method can asymptotically

approach the CRLB for sufficiently large SNRs

102 T T T T T T
-------- CRLB
— & —TSA
0% — & —EA
10 — & —PM
— ¥ -PCA
—e— Proposed
102 fo8 S0808e0e 0800 808 508 00 S0 Bo0a o]
A, 08
L
(%]
=
o LS
104 S 2 vawvwvwwvwv
S B
5
10%
1078 . . L . . .
0 20 40 60 80 100 120
SNR

Fig. 3. RMSE versus SNR fory, =0.097 and N =32.

Variable Signal Length: The RMSE versus signal length fay, = 0.09z for two SNR values is presented
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in Fig. 4 The reformed signal length lglg continuously increases from 5 to 12 (32 to 4096 for Br two
SNR values of 30dB and 70dB, evident advantages of the proposeaidneati be found for short signal
lengths (eg. N&28). With increasing the signal length, aletRhSA, PM, PCA and the proposed methods can
closely follow the CRLB. However, from the enlarged subgraphcavesee the proposed method is even

slightly better than the other evaluated methods.

s CRLB
- = -TSA
- = -EA
PM
- v -PCA
—e— Proposed

IogzN

Fig. 4 RMSE versus logN for @, =0.097 .

(a) SNR=30dB; (b) SNR=70dB.

Computational Complexity: The result of the comparison of computational complexity is showalble
II. All the complex-valued (CV) operations are converted to real-valued (RW)aadand multiplications
following the principle listedn the right-hand part of Tablé. We neglect all the computations with O(1)
complexity. To make the comparison more cleatg amount of required additions and multiplications for
the evaluated methods is shown in Fig. 5. The signal length N variasl to 500 with a step size of 10.
Obviously, we can see the computational complexity of the propos#iubd is only higher than the PM
method, while the TSA, EA and PCA methods require more additionsratiiplications witlin the

simulated scale of signal lengths.
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212 TABLE II
213 Comparison of Computational Complexity.
. o Converting Principle
Method Addition Multiplication ) . .
Operation  Addition  Multiplication
TSA[7] 2NMZ+Mj—-8vJ/3- 3N NMZ+MZ-aM3/3-281 ,/3- 18l  CVxCV 2 4
EA [8] 5N? /18- 5N /2 5N? /18- N /2 CVxRV 0 2
PM [9] 2Np-4p° + 8p Np—2p*+9p CV+CV 2 0
PCA [10] M2 2 3 M2M+2 L M2 AN /3 CV+RV 1 0
Proposed 2N2/9+ 5NN /3 N2/9+56N /3
Note: My=[(N-1)/2|, p=0.46N,M = [log, 2N'|, where | X | or [ x| means to round x down or up to the nearest integer.
214
; x10* ‘ (a)Adgitions ‘ ‘ ‘ ‘
ol ,' lvaVv-v-vvvwvv: : :'IE'iA ;}
4 ! PM
Sr ! ' - v -PCA 4
I 1 - @ —Proposed
L4t " 1 N 4
E . ' '.rf
<3r ,' VIV P VVY Ty Y 8 q
of 4 e
I vevvey 2
bR g 1
NI o0 Lo O e
0 50 100 150 200 250 300 350 400 450 500
215 N
5 x10* (b) Multiplications
: lvvvavwvvvvﬂvv'_ j_':r‘?sl"“’"
[] 1 ®- = -EA
4 ! | ' PM 1
| I I - v -PCA
f ! o - e —Propose
23 7‘ " nr’l{ o’ e
E ! wth‘ " il 0(0»"
2,0 ,;‘ 'vv-vvvv-'vWV - .,ef"‘b. 4
1h ril vvv-ﬂvvi’ ‘.-"{.@, L2 =
. ’Fg»:,cro‘
RIS 97T Teopett! ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 500
216 N
217 Fig. 5 Amounts of additions and multiplications versus N
218 (a) Additions (b) Multiplications.
219 V. CONCLUSION
220 In this paper, a spectrum matching based method is proposed to readjuenty estimation of an
221  incoherently sampled real sinusof@ompared with othefour methods designed to solve this problem, the
222  proposed method shows better performance when the signal lengtsisort. As long as the SNR reaches a
223  certain level, the proposed method can clpapproach the CRLB without any error floor, which means, the
224  proposed method can be very useful in some high SNR applications asuagheasurement and

225 instrumentation. The computational complexity is acceptable. Furthermopepfiesed spectrum matching
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process can be also used for the estimation of signal amplitude and inisel pha
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