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Abstract: It is well-known that incoherent sampling is detrimental for frequency estimation of a real 11 

sinusoid, and the estimation errors get worse when the signal lengths are very short. In this paper, a spectrum 12 

matching based frequency estimator is proposed as well as evaluated against other four two-step methods 13 

developed to suppress the effect of incoherent sampling. The spectral interference introduced by incoherent 14 

sampling is eliminated via a spectrum matching process including modulation and spectral analysis. A 15 

further error correction based on Fourier transform is conducted to generate the fine frequency estimate. 16 

Simulation results are carried out to show that the proposed method can closely approach the Cramér-Rao 17 

lower bound without any error floor, and it can outperform the other four methods particularly for short 18 

signal lengths.  19 

Keywords: Frequency Estimation, Incoherent Sampling, Real Sinusoids, Spectrum Matching 20 

 21 

I. INTRODUCTION 22 

Frequency estimation of sinusoids has been a subject of investigation in many fields for decades, such as 23 

radar, power systems, measurement and instrumentation. Numerous estimation approaches have been 24 

developed so far. Given a straightforward operation of maximizing the periodogram [1], frequency domain 25 

approaches based on the discrete Fourier transform (DFT) and implemented by the fast Fourier transform 26 

(FFT) show high computational efficiency. A typical two-step scheme is widely concerned which usually 27 

includes a coarse estimation via DFT to locate the spectral maximum, followed by a fractional interpolation 28 

with two or more spectral points [2-4]. However, a majority of these two-step methods are only adapted to 29 
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complex signals, and for real sinusoids, the inherent picket fence effect and spectral leakage of the DFT may 30 

introduce significant errors if the signal is not coherently sampled [5, 6]. In addition, the DFT based methods 31 

suffer from resolution loss when the signal lengths are very short. 32 

In time domain, the two-step procedure is also introduced to promote the estimation performance. The 33 

two-stage autocorrelation (TSA) approach [7] employs the linear property (LP) to reform the signal and 34 

makes use of different lags of autocorrelations to produce frequency estimates. To avoid multiple 35 

autocorrelations which are computationally burdensome, the Taylor expansion and the least squares (LS) 36 

principle are involved to generate an error function in the extended autocorrelation (EA) method [8]. By 37 

minimizing the error function, the performance of the EA method can approach the Cramér-Rao lower bound 38 

(CRLB) when the signal lengths are sufficiently large. However, coping with incoherently sampled data in 39 

short length, the EA method performs biased significantly because the signal autocorrelation has an error 40 

term which is not negligible. Accordingly, the recently proposed phase match based (PM) method [9] and 41 

phase correction autocorrelation (PCA) method [10] show different ways of reconstructing the 42 

autocorrelation function to avoid the error term, and besides, the Cauchy inequality is also considered to 43 

derive the error function in [9]. Generally, the PM and PCA methods are effective to deal with the 44 

incoherently sampled signal, but their performance still shows slight degradation when the signal lengths are 45 

very short.  46 

In this paper, a new two-step frequency estimator based on spectrum matching is proposed, which shows 47 

improvements in accuracy among the aforementioned two-step methods. The estimation bias caused by 48 

incoherent sampling is effectively reduced by modulation, which has already been validated in our previous 49 

work [11]. Then, spectral analysis is carried out to divide the original signal spectrum into two separated 50 

complex versions, what we called spectrum matching. Finally, the fine estimate results from an error 51 

correction via a classical approach based on Fourier transform [12]. The rest of the paper is organized as 52 

follows: In Section II, the underlying principle to deal with the spectral interference caused by incoherent 53 

sampling is interpreted. The whole algorithm is carried out in Section III. Performance comparison is 54 

conducted in Section IV, and the final conclusion is presented in Section V. 55 
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II. UNDERLYING PRINCIPLE 56 

Consider a general, real sinusoid in noise as follows: 57 

0( ) cos( ) ( ), 1,2,3,..., 1x n A n w n n N                                               (1) 58 

where A  and   represent the signal amplitude and the initial phase respectively; 0 ( 00    ) is the 59 

angular frequency in radians; and ( )w n  is the zero-mean additive white Gaussian noise (AWGN) with a 60 

variance of 2 . 61 

From [9, 10], we know that if the signal is incoherently sampled, the signal autocorrelation has an error 62 

term which is only negligible for sufficiently large N. In frequency domain, the spectrum of the incoherently 63 

sampled signal suffers from interference from the negative frequency components, and it gets worse for small 64 

value of N. In addition, although the number of samples is increasing, the chosen value of 0  can hardly 65 

matches a frequency bin of the DFT, and so, it is inevitable to deal with the effect of incoherent sampling for 66 

accurate frequency estimation. Now, with a priori knowledge of the signal frequency, which is provided by 67 

the coarse estimation, the signal frequency can be directly modulated to approach coherent sampling. 68 

Modulate the signal as ( ) ( ) cj n
mx n x n e , and then 69 

   0 0( ) ( )( ) ( / 2) ( / 2) ( )c c cj n j n j n
mx n A e A e w n e                                           (2) 70 

where c  ( 00 c   ) is the modulation frequency. 71 

Calculate the DFT of  ( )mx n , denoted as ( )mX k , as 72 

( ) ( ) ( ) ( )m m m mX k S k S k W k                                                             (3) 73 

where ( )mW k  is the DFT of the modulated noise; ( )mS k  and ( )mS k  are the DFT of the positive and 74 

negative frequency exponentials in (2) respectively, which can be written as 75 
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                                      (4) 76 

where 2 /k k N  represents the k-th DFT frequency bin, and 0,1,2,..., 1.k N   77 

Note that in (4), we can force most values of ( )mS k  or ( )mS k to be zero only by setting 78 
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0 2 /c m N    or 0 2 /c m N    (m is an arbitrary integer). For example, in the absence of noise, if 79 

we set 0c  , the modulus of ( )mS k  and ( )mS k  are shown in Fig. 1 (0 0.0876  , 32N   and 80 

/ 7  ). Serious interference of the negative frequency components occurs in Fig. 1(a), and the frequency 81 

estimation which ignores the negative frequency contribution will exhibit a significant bias. But in Fig. 1(b), 82 

the negative frequency component has ( ) 0mS k   for all values of k excluding k=0, which means the 83 

interference only exists at k=0. Thus, if we can figure out (0),mS   it is possible to match ( )mX k , which is the 84 

spectrum of a real signal, to the spectrum of a complex sinusoid as( )mS k . The spectral interference of the 85 

negative frequency components can be eliminated in this case. 86 

 87 

Fig. 1.  Interaction of positive and negative frequency components (zero noise). 88 

 89 

III.  METHOD DEVELOPMENT 90 

A. Coarse Estimation 91 

In practice, 0  is unknown, and c  can only be set according to a coarse frequency estimate 0ˆ
c . Assume 92 

0 0 0ˆ c c
c      , where 0

c  is the estimation error. Then, from (4) for 0,1,2,..., 1k N  , we get 93 
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Obviously, ( )mS k  is proportional to 0sin( / 2)cN  , and ( ) 0mS k   when 0k  . Thus, we need 95 

0| |cN   to be sufficiently small (empirically 0| | 0.1cN   ) so that the interference occurred at 0k   can 96 

be ignored. To that end, we give an enhanced version of the modified PHD [13], which calculates the coarse 97 
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estimate 0ˆ
c  as 98 
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where  
5
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    , 1,2,3,...,k K , and round( / 3)K N , where round( )x  101 

means to round x  up or down to the nearest integer. This is to enhance the SNR according to the LP, and the 102 

value of K is determined through simulations. Unlike the widely used FFT, the adopted coarse estimator does 103 

not suffer from resolution loss for short signal lengths. 104 

B. Spectrum Matching 105 

Since most of the values of ( )mS k  are forced to approximate zero after modulation, then the key problem 106 

is to deal with the interference for 0k  . From (4), we know that 107 
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According to (3) and (4), for arbitrary value of integer q (0 1q N   ), we can write 109 
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Then, substitute (8) for ( / 2) jA e  in (7) and we obtain 111 
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Thus, substituting 0ˆ
c  for 0  and c  in (9), we can define an estimator of (0)mS   as 113 

1
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Assuming that 0| |c  is sufficiently small, it is easy to make the approximation to 115 
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Then we can rewrite (9) as 117 
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ˆ (0) (0) ( ) ( )m mS S q q                                                           (12) 118 

where ( )q  and ( )q  can be regarded as the terms of the estimation error caused by ( )mS q  and the 119 

modulated noise: 120 
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Substitute (5) and 0 0 0ˆ c c
c      into (13), and as 0| |c  is assumed to be sufficiently small, so 123 
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Note that q  can be an arbitrary integer from 1 to N-1, and we can set 0/ 2q   to make ( ) 0q  . So 125 

q can be approximated by setting 0ˆround( / )cq N  . Furthermore, as we assumed that 0
cN  is small in 126 

(5), the value of ( )q  can be sufficiently small to be ignored. 127 

For ( )q , it is easy to prove thatE[ ( )] 0q  , where E[ ]  is the expectation operator. Then, from (12), we 128 

can write 129 

ˆE[ (0)] (0) ( ) E[ ( )] (0)m m mS S q q S                                               (16) 130 

which means that ̂ (0)mS   can be recognized as an unbiased estimator of (0)mS  .  131 

Now, we can divide the spectrum of the modulated real signal as ( )mX k  into two spectrums of complex 132 

exponentials, as  ̂ ( )mS k  and ˆ ( )mS k , written as 133 
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                       (17) 134 

where ( )k  is the discrete Dirac Delta function with (0) 1   and ( ) 0k   for 0k  . (0)mX  can be 135 

calculated by summing the elements of ( )mx n . After this spectrum matching process, the signal amplitude 136 

and initial phase can be directly estimated from ˆ ( )mS k  as ˆ ˆ2 (0)mA S N  and ˆ ˆ( (0))mangle S   , but 137 

here we focus on frequency estimation, which can be further derived from ˆ ( )mS k . 138 
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C. Error Correction 139 

After modulation, the actual frequency of the positive frequency exponential in (2) has been shifted to 140 

0 c  . Accordingly, we can use 0ˆ2 c  to approximately locate the spectral maximum of ( )mS k , which is 141 

only 0
c  radians distant from the actual value. Then, we could estimate 0

c  to correct the estimation bias 142 

of 0ˆ
c . According to the classical methodology of interpolation in frequency domain [12, 14], we can use two 143 

spectral points as 0ˆ(2 / )c
mS N    and 0ˆ(2 / )c

mS N    to realize accurate error correction. 144 

From (4), we can calculate 0ˆ(2 / )c
mS N   , 0ˆ(2 / )c

mS N   , and after some simple algebra, we 145 

obtain 146 
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By subtracting the both sides of (18) and (19), making exp( ( 1) / ) 1j N N    and tan( )x x  for 149 

sufficiently small x, after some simplification, we obtain 150 
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                                 (20) 151 

Substitute 0
ˆ ˆ(2 / )c
mS N   , 0

ˆ ˆ(2 / )c
mS N    for 0ˆ(2 / )c

mS N    and 0ˆ(2 / )c
mS N   , and take the 152 

real part to avoid complex value. We can estimate 0
c  as 153 
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where 0
ˆ ˆ(2 / )c
mS N    can be calculated from the inverse DFT of ˆ ( )mS k in (17) as 155 

  0
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                              (22)  156 

Finally, the fine frequency estimate (0ˆ
f ) of our method can be calculated by 0 0 0ˆ ˆ ˆf c c    . The overall 157 

signal processing algorithm for the proposed method is shown in Table I. 158 

 159 
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TABLE I 160 
SIGNAL PROCESSING ALGORITHM 161 

1 Calculate the coarse frequency estimate 0ˆ
c  via (6). 

2 Modulate ( )x n  with 0ˆ
c

c   to obtain ( )mx n  as in (2). 

3 Calculate 0
ˆround( / )cq N   and 

1

0
( ) ( ) q

N j n
m mn

X q x n e  


 . 

4 Calculate ˆ (0)mS   according to (10). 

5 Calculate 0
ˆ ˆ(2 / )c
mS N   and 0

ˆ ˆ(2 / )c
mS N   via (22) 

6 Generate the frequency correction factor 0ˆ
c  via (21). 

7 Obtain the fine frequency estimate by 0 0 0
ˆ ˆ ˆf c c    . 

 162 

IV.  SIMULATION RESULTS 163 

To evaluate the performance of the aforementioned two-step methods, we use the TSA [7], EA [8], PM [9], 164 

and PCA [10] methods as a comparison against our proposed method. Without loss of generality, we assume 165 

1A , and   is uniformly distributed between   and  . Each simulation result is carried out with an 166 

average of 2000 independent Monte Carlo runs. 167 

Bounds˖As with the approximation made in [15], the CRLB of frequency estimation for a real sinusoid is 168 

given as 169 

0 2

12ˆCRLB var[ ]
SNR ( 1)

f

N N
 

 
                                                  (26) 170 

where the SNR is defined as2 2/ (2 )A  . 171 

Variable Frequency: Because of the periodicity of the spectrum of a real sinusoid, we only evaluate the 172 

performance for 00 0.5   . The root-mean-square error (RMSE) versus signal frequency 0  for 173 

32N   for four different SNR values is presented in Fig. 2. The signal frequency varies from 0.01  to 174 

0.49 with a step size of 0.01 .  The enlarged scale of 01.5 3.5     can show the advantages of the 175 

proposed method more clearly. When the signal frequency is very low, the PCA and EA methods provide 176 

more reliable accuracy at SNR=10dB in Fig.2 (a), while the PM method performs better for high SNRs in Fig. 177 

2 (c) and (d). However, generally speaking, the proposed method shows higher accuracy than the other 178 

evaluated methods in a very large range of signal frequency, and the superiority becomes more obvious with 179 

increasing SNRs.  180 
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 181 

 182 

Fig. 2.  RMSE versus 0  for N=32. (a) SNR=10dB; (b) SNR=30dB; (c) SNR=50dB; (d) SNR=70dB. 183 

 184 

Variable SNR: The RMSE versus SNR for0 0.09  and 32N   is shown in Fig. 3. The SNR varies 185 

from -10dB to 119dB with a step size of 3dB. The effect of RMSE saturation can be found for the EA and 186 

PCA methods, which has proved their biasness in this case. By contrast, the TSA, PM and proposed methods 187 

can follow the trend of the CRLB without error floors, but only the proposed method can asymptotically 188 

approach the CRLB for sufficiently large SNRs.  189 

 190 

Fig. 3.  RMSE versus SNR for 0 0.09  and 32N  . 191 

 192 

Variable Signal Length: The RMSE versus signal length for 0 0.09  for two SNR values is presented 193 
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in Fig. 4. The reformed signal length log2N continuously increases from 5 to 12 (32 to 4096 for N).  For two 194 

SNR values of 30dB and 70dB, evident advantages of the proposed method can be found for short signal 195 

lengths (eg. N<128). With increasing the signal length, all the TSA, PM, PCA and the proposed methods can 196 

closely follow the CRLB. However, from the enlarged subgraph, we can see the proposed method is even 197 

slightly better than the other evaluated methods.  198 

 199 

 200 

Fig. 4.  RMSE versus log2N for 0 0.09  .  201 

(a) SNR=30dB; (b) SNR=70dB. 202 

 203 

Computational Complexity: The result of the comparison of computational complexity is shown in Table 204 

II . All the complex-valued (CV) operations are converted to real-valued (RV) additions and multiplications, 205 

following the principle listed on the right-hand part of Table II . We neglect all the computations with O(1) 206 

complexity. To make the comparison more clearly, the amount of required additions and multiplications for 207 

the evaluated methods is shown in Fig. 5. The signal length N varies from 10 to 500 with a step size of 10. 208 

Obviously, we can see the computational complexity of the proposed method is only higher than the PM 209 

method, while the TSA, EA and PCA methods require more additions and multiplications within the 210 

simulated scale of signal lengths. 211 
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TABLE II 212 
Comparison of Computational Complexity. 213 

Method Addition Multiplication 
Converting Principle 

Operation Addition Multiplication 

TSA [7] 
2 2 3
0 0 02 8 / 3 32NM M M N    2 2 3

0 0 0 04 / 3 26 / 3 16NM M M M N     CV CV  2 4 

EA [8] 
25 /18 5 / 2N N  25 /18 3 / 2N N  CV RV  0 2 

PM [9] 
22 4 8Np p p   22 9Np p p   CV+CV  2 0 

PCA [10] 
1 13 2 2 3M MM N    2 22 2 41 / 3M MM N    CV+RV  1 0 

Proposed 
22 / 9 51 / 3N N  2 / 9 56 / 3N N     

Note: 0 ( 1) / 2M N    , 0.46p N , 2log 2M N    , where x    or x   means to round x down or up to the nearest integer.  

 214 

 215 

 216 

Fig. 5.  Amounts of additions and multiplications versus N.  217 

(a) Additions; (b) Multiplications. 218 

V. CONCLUSION 219 

In this paper, a spectrum matching based method is proposed to realize frequency estimation of an 220 

incoherently sampled real sinusoid. Compared with other four methods designed to solve this problem, the 221 

proposed method shows better performance when the signal lengths are short. As long as the SNR reaches a 222 

certain level, the proposed method can closely approach the CRLB without any error floor, which means, the 223 

proposed method can be very useful in some high SNR applications such as measurement and 224 

instrumentation. The computational complexity is acceptable. Furthermore, the proposed spectrum matching 225 
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process can be also used for the estimation of signal amplitude and initial phase. 226 
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