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Motor neuron disease can be viewed as an umbrella term describing a heterogeneous

group of conditions, all of which are relentlessly progressive and ultimately fatal.

The average life expectancy is 2 years, but with a broad range of months to

decades. Biomarker research deepens disease understanding through exploration of

pathophysiological mechanisms which, in turn, highlights targets for novel therapies.

It also allows differentiation of the disease population into sub-groups, which serves

two general purposes: (a) provides clinicians with information to better guide their

patients in terms of disease progression, and (b) guides clinical trial design so that

an intervention may be shown to be effective if population variation is controlled for.

Biomarkers also have the potential to provide monitoring during clinical trials to ensure

target engagement. This review highlights biomarkers that have emerged from the fields

of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine

analysis); imaging and electrophysiology, and gives examples of how a combinatorial

approach may yield the best results. We emphasize the importance of systematic

sample collection and analysis, and the need to correlate biomarker findings with detailed

phenotype and genotype data.

Keywords: biomarker, motor neuron disease (MND), ALS (Amyotrophic lateral sclerosis), neuroimaging,

cerebrospinal fluid (CSF), electrophysiology, biofluid

INTRODUCTION

Motor neuron disease (MND), or amyotrophic lateral sclerosis (ALS), is a neurodegenerative and
ultimately fatal disease that causes progressive muscle weakness through loss of upper and lower
motor neurons (UMN and LMN). Non-motor pathways are also affected and up to 50% of patients
have detectable cognitive and behavioral changes (1). ALS can be classified as sporadic (sALS) or
familial (fALS). Biomarkers in ALS have been the subject of intense research and discussion over the
past 20 years. Sensitive and specific biomarkers have the potential to help clinicians and researchers
better understand the disease, improve the design of clinical trials, develop novel therapeutics,
and improve patient outcomes. A large body of research exists, although this has led to the
provision of only a few validated biomarkers. In part, this reflects a wide variation in methodology,
non-standardized analytical techniques, small sample sizes and paucity of longitudinal studies. To
validate a biomarker there needs to be recognition of the limitations of the analytical technique
by which it is being measured, the analysis must use a standardized operating procedure (SOP),
and there must be test-retest reliability, ideally across different centers, to ensure replicability. This
review aims to summarize progress in biomarker development in the domains of systemicmeasures
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including respiratory function, biochemical analysis of biofluids,
electrophysiology and imaging. Table 1 summarizes the
biomarkers discussed in the article.

Diagnostic Biomarkers
ALS patients may initially present with subtle signs and
symptoms and it has been shown that, on average, there is
a 12-month period between symptom onset and neurological
diagnosis (2). Current thinking is that there is pathological
propagation of the disease through mechanisms such as axonal
transmission of misfolded protein e.g., pTDP-43 [associated with
diffusion tensor imaging (DTI)], abnormal RNA processing,
“prion-like” spread, and cell-cell spread of dipeptide repeat
proteins (3–8). It is hoped that by hastening the diagnosis future
treatments will limit or halt progression, before patients are
established on this progressive pathological course and before
they suffer notable weakness and attrition of motor neuron
numbers. A valid diagnostic biomarker will help guide the clinical
diagnostic process at an early stage when signs are localized
and subtle. This would allow for timely treatment and trial
enrolment (Figure 1). Diagnosis for enrolment in trials is often
based on the El-Escorial criteria which allows for a label of ALS-
probable, lab-supported. Currently, this is based on evidence of
active and chronic denervation on the electromyogram (EMG),
together with the absence of other investigation findings that may
suggest another pathological process. Further biomarkers may
add to this laboratory support for more accurate enrolment and
stratification. Ultimately this stratification may form the basis for
a new classification system.

Prognostic and Predictive Biomarkers
ALS is a heterogeneous condition with variability in site of
onset, extra-motor involvement and rate of progression. Typical
survival is 2–5 years, but life expectancy can range from
several months to over 10 years. This heterogeneity is also
seen when patients are investigated at a genetic level, and at
post-mortem. It makes sense therefore to design clinical trials
with this in mind: a subgroup of patients may be shown
to benefit from a novel treatment when statistical analysis is
not confounded by population heterogeneity. Additionally, if
variability is decreased then sample-size can also be reduced,
lowering the time and cost of clinical trials. A good prognostic
biomarker will be useful in stratifying patients for better
trial design by broadly distinguishing between disease sub-
groups. Predictive biomarkers are similar one-off measurements.
However, they represent the chance of predicting a response to a
particular treatment rather than the prognostic natural course of
the disease.

Pharmacodynamic and Disease
Progression Biomarkers
Clinical trial endpoints typically involve measures such as
survival and the revised ALS functional rating scale (ALSFRS-R),
given that improvement in motor function and survival in a
progressive disease are the ultimate outcomes being sought. Such
outcomes may need to be monitored for several years before
a conclusion can be drawn, which is an expensive process.
Pharmacodynamic biomarkers reliably change in response to

treatment, and such markers would ensure that an experimental
drug is having the desired effect on the pre-clinically identified
therapeutic pathway. This could curtail ineffective therapeutic
interventions at an early stage. Similarly, disease progression
markers represent serial measures that change as the disease
worsens, in the absence of treatment. This can provide another
objective measure and time-saving approach to randomized
control trial design.

SYSTEMIC PROGNOSTIC BIOMARKERS

Body Weight
An important facet of ALS management entails keeping weight
records, prompt insertion of gastrostomy and prescription of
nutritional supplements. Malnutrition (defined by a reduction in
BMI or a >5% loss in premorbid weight) has a multifactorial
adverse effect on life expectancy in ALS, in part due to
neurotoxicity (9), and has been shown to give a 7.7-fold increased
risk of death across a group of ALS patients at various time-points
in the disease course (10). At time of diagnosis, 5% weight loss or
more has been shown to be an independent adverse prognostic
biomarker for survival (11). Therefore, patient stratification for
trial entry, at any point in the disease course, should take into
consideration the percentage of weight loss at baseline.

Respiratory Function
Clinicians rely on patient-reported symptoms of respiratory
insufficiency, such as orthopnea, early morning headache,
interrupted sleep, daytime somnolence, reduced appetite, and
results of respiratory function tests to assess the need for non-
invasive ventilation (NIV), which has been shown to improve
survival and quality of life in ALS patients (12). Several
tests exist and they can be classified according to the time
they take, how invasive they are, and whether they require
patient volition. Tests such as vital capacity (VC), sniff nasal
inspiratory pressure (SNIP), peak cough flow (PCF), maximal
static inspiratory and expiratory mouth pressures (MIP and
MEP) take a snapshot of respiratory function, but can be
confounded by poor technique secondary to non-respiratory
muscle weakness and cognitive dysfunction. Overnight sleep
studies and transcutaneous carbon dioxide monitoring are
passive tests. Tests involving phrenic nerve stimulation—
phrenic nerve conduction studies (PNCS) and twitch trans-
diaphragmatic pressure (Tw Pdi) are more invasive and complex
as they require electrophysiology practitioners, but are objective
and non-volitional.

Measures of VC, forced and slow, are widely used due to
clinical availability and published validation (13, 14). In a recent
study comparing tests as predictive for mortality or NIV usage,
Polkey et al. concluded that, despite good sensitivity, decline
in vital capacity only occurs 12 months before these endpoints.
Furthermore, for prognostic time intervals beyond 3 months, the
cut-off value for poor prognosis was >80% predicted, which is
the clinically defined normal range, thereforemaking it an invalid
biomarker for trial stratification. A better measure, they argue,
would be Tw Pdi or SNIP (15). As Tw Pdi is considered more
invasive and complex, SNIP therefore has better potential as a
biomarker in clinical practice. This is supported by another study

Frontiers in Neurology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 291

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Verber et al. Biomarkers in Motor Neuron Disease

TABLE 1 | Summary of biomarkers across modalities.

Biomarker Modality Key findings Salient characteristics and potential applications

BIOMETRICS

Body weight 5–10% weight loss from baseline Indicator of poor prognosis

Respiratory function Sniff nasal inspiratory

pressure (SNIP)

Reduction with disease progression or at

presentation in respiratory onset disease

Non-invasive, effort-dependent

Used clinically as a marker of respiratory function

Forced/slow vital capacity

(FVC/SVC)

Non-invasive, effort-dependent, limited in bulbar

weakness

Used clinically as a marker of respiratory function and as

criteria for trial entry

Phrenic nerve conduction

study

More invasive and requires operator expertise but

passive and objective

BIOFLUID BIOMARKERS

Genetic mutation-linked proteins CSF C9orf72 poly(GP) present pre-clinically; stable

over time

SOD1 protein levels stable over time

Pharmacodynamic potential for clinical trials

Blood Level of SOD1 proteins in familial and sporadic

disease

poly(GP) repeats present in C9ORF72 disease

TDP-43 mislocalized but longitudinal

readouts variable

SOD1 used in current clinical trial

Planned clinical trial specific to C9ORF72 mutations

Potential as markers for gene-specific disease

DNA methylation Blood Conflicting evidence in different cell types

Global methylation shows promise

Potential, needs further investigation

Neurodegeneration CSF Neurofilament, increased levels of both NfL and

pNfH, stable over time

Validated as diagnostic markers. Potential for prognostic

and pharmacodynamic monitoring

Blood Steady increased NfL over time

pNfH levels variable

Potential use of NfL as a diagnostic and prognostic

marker

Urine p75ECD increased and increases over time Potential, needs further investigation

Inflammation CSF Range of cytokines, chemokines, and

immunological proteins up- and downregulated

Potential for diagnostic, prognostic, and disease

progression; conflicting evidence currently

Blood T regulatory (Treg) cells altered

Conflicting results across studies for cytokines,

CRP, chitotriosidase

Tregs potential use as prognostic marker, targeted in

current phase II trial

Other targets need further investigation

Muscle denervation Blood Serum creatinine reduction

Longitudinal changes in creatine kinase

Serum creatinine potential as prognostic marker

Creatine kinase predicts slow vs. fast disease

progression in panel in PRO-ACT database

miRNA CSF Differences in panels of miRNAs in patients

Paucity of overlap across studies

Early potential for diagnostic, prognostic and

pharmacodynamic; needs further investigation

Blood As per CSF

Metabolism CSF Distinctive lipid profile identified through

1H-NMR and mass spectrometry

Inconsistencies across studies

Potential for diagnostic and prognostic use

Longitudinal studies needed

Blood Carbohydrate and lipid metabolism markers

contradictory, but larger study promising

Glutamate results contradictory in response to

treatment

Serum albumin reduction

Carbohydrate and lipid metabolism markers associated

with disease risk in large 20-year study

Glutamine and glutamate need further investigation

Serum albumin predicts slow vs. fast disease

progression in panel in PRO-ACT database

Urine Limited studies on F2-isoprostane

(8-iso-PGF2α), Collagen type 4, and

lucosylgalactosyl hydroxylysine (glu-gal Hyl)

Potential, needs further investigation

Oxidative stress CSF Raised levels of 4HNE, 3-nitrotyrosine

NRF-2 pathway markers e.g., glutathione

Needs further investigation

Blood 1Uric acid results contradictory, but larger

study promising

Ferritin, glutathione, 3-nitrotyrosine,

4HNE increase

Uric acid shows promise as prognostic in PRO-ACT

database

Other candidates need further investigation

Urine 8-hydroxy-2
′

-deoxyguanosine (8-OhdG)

increased and increases over time

Potential, needs further investigation

(Continued)
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TABLE 1 | Continued

Biomarker Modality Key findings Salient characteristics and potential applications

BIOMETRICS

Proteomic approach CSF Differential expression profiles identified e.g.,

cystatin C, chitinases, MCP-1,

Subsequent failure of validation of

individual markers

Potential as an unbiased investigation of novel markers

but inconsistency across studies and validation of

findings needed

IMAGING BIOMARKERS

Central nervous system

Magnetic Resonance Imaging

(MRI) and Magnetic Resonance

Spectroscopy

Structural MRI Focal atrophy

Subcortical hyperintensities on T2 weighted,

Proton Density weighted, and Fluid-Attenuated

Inversion Recovery images

Cortical hypointensities on T2-weighted,

T2*-weighted, and Susceptibility

Weighted Images

Employed in clinical practice to exclude mimics

Cervical cord atrophy might have potential as a

predictive and progression biomarker

The potential use of cortical hypointensities as a

biomarker is currently being explored

Diffusion tensor imaging Fractional Anisotropy reduction

Mean Diffusivity elevation

Potential use as a biomarker of is under investigation

Magnetization transfer

imaging

Possible reduction in Magnetization Transfer

Imaging ratios

Conflicting evidence

Functional magnetic

resonance imaging

Cortical reorganization Useful primarily to explore pathogenesis; might provide

evidence of target engagement in clinical trials

Proton magnetic resonance

spectroscopy

N-acetylaspartate reduction N-acetylaspartate has been suggested as a diagnostic

and disease progression biomarker and has been

employed in a clinical trial

Peripheral nerve MRI Diffusion tensor imaging Fractional Anisotropy reduction Potential use as a biomarker of disease progression

Muscle MRI and MRS Anatomical imaging Muscle volume reduction

T2 hyperintensities

Potential use as a biomarker of disease progression

Phosphorus magnetic

resonance spectroscopy

Conflicting evidence Technique’s potential as a marker of energy

dysmetabolism has not yet been fully explored

Positron emission tomography Alterations in Fluoro-2-deoxy-2-D-glucose

uptake

Enhanced microglial activation

Inhibitory inter-neuronopathy

Alterations of serotoninegic neurotransmission

Increased oxidative stress

Potential diagnostic biomarker and use in clinical trials to

provide evidence of target engagement

ELECTROPHYSIOLOGY BIOMARKERS

Motor unit number estimation MUNE Sensitive to disease progression

Identifies pre-clinical LMN loss (MPS method)

Principally limited by operator-dependent variation in

recording

Newer methods (e.g., MScanFIT) expedite recording and

overcome some technical limitations, but require

dedicated software and evaluator training

Potential for use diagnosis and follow-up

Yet to be widely employed clinically

MUNIX Multicenter and multi-operator reliability and

sensitivity demonstrated

Positive influence of evaluator training

Superior sensitivity to early disease change vs.

conventional methods

Identifies pre-clinical LMN loss

Relatively time-efficient and tolerable for patients

Dependent upon patient cooperation as derived from

muscle contraction

Worldwide evaluation in clinical trials

Commercially available

Neurophysiological index Increased distal motor latency and F-wave

frequency

Decreased CMAP amplitude

Sensitive to disease change in 4 weeks, greater

rate of decline vs. ALSFRS-R, CMAP

amplitude, and FVC

Utilizes standard neurophysiological measures

Previously employed in clinical trials

Potential to reduce required trial duration

Further investigation required

Axonal excitability Upregulation of persistent Na+ conductances

Reduction of slow and fast K+ channel

conductances

Change with disease progression

Predictor for poor prognosis

Specialist equipment

Further investigation required

(Continued)
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TABLE 1 | Continued

Biomarker Modality Key findings Salient characteristics and potential applications

Electrical impedance myography Multicentre demonstration of sensitivity to

disease progression

Applicable to bulbar musculature

Simple technique requiring limited patient cooperation or

operator training

Potential to reduce required sample size

Further investigation into diagnostic utility and technique

optimization required

Transcranial magnetic stimulation Reduced short-interval intracortical inhibition,

cortical silent-period duration, and resting

motor threshold

Increased intracortical facilitation and motor

evoked potential

Discriminates ALS from mimics

Specialist equipment/software

Further multicenter investigation confirming diagnostic

utility and evaluating longitudinal potential required

that investigated the ability of respiratory tests to predict the need
for NIV over the following 3 month period and found significant
reduction in SNIP values in patients going on to require NIV
(16). Although 3 months is not long enough for a stratification
tool, it strengthens SNIP as a predictive tool. Lending further
support to SNIP as a prognostic biomarker, an Italian research
team concluded that SNIPmeasurements at baseline represent an
excellent predictor for mortality or tracheostomy within 1 year of
follow-up (17).

Sniff nasal testing confers an additional benefit in that it
does not rely on the patient being able to form a tight mouth
seal around a device, therefore making it better in patients
with bulbar weakness (18). It does not completely alleviate
the problem however, as upper airway collapse and inability
to completely close the mouth also affects SNIP readings to
a degree (19). Jenkins et al. also raise concern about using
volitional measures for this reason. They concluded from a
large prospective study that PNCS to measure diaphragmatic
compound muscle action potential (CMAP) has merit as a
biomarker as it correlates well with ALSFRS-R, SNIP and FVC,
and, after a period of practitioner familiarity, it is as reliable
as normal nerve conduction studies and no more difficult to
execute (20).

In addition to LMN weakness affecting the respiratory
muscles, hypotonic, andweak upper airwaymuscles contribute to
an obstructive picture, and there are central factors contributing
to respiratory insufficiency with bulbar, motor, and extra-motor
pathways involved. Dysfunctional breathing due to abnormalities
in these pathways leads to overnight hypoxia and hypercapnia
(21). Clinically, sleep studies are typically reserved for patients
who are symptomatic or have fallen below a threshold on
screening tests such as VC. They are more cumbersome
for patients, and time and resource intensive, which reduces
their utility as a biomarker. However, one longitudinal study
demonstrated the prognostic value of assessing for obstructive
sleep apnea, with mean survival being shorter in patients with a
higher apnea/hypopnea index. Interestingly SNIP correlated with
this measure (22).

Screening tests for respiratory insufficiency are sensitive tools
and each modality has its advantages and disadvantages. As a
balance in relation to ease of technique, serial measurements,

FIGURE 1 | Summary of biomarker categorization.

time, and expertise needed, and predictive power, SNIP stands
out as a biomarker that could help in defining prognosis
as well as the potential for sensitivity to change from
therapeutic interventions. The exception is patients with severe
bulbar or cognitive dysfunction and in those patients an
electrophysiological modality could be of benefit.

CEREBROSPINAL FLUID
(CSF) BIOMARKERS

CSF is a useful biofluid for analysis due to the direct proximity
with the brain and spinal cord. It is an ultrafiltrate of plasma
[although there are CSF homeostatic mechanisms which, for
example, maintain ion concentrations that are different to
plasma concentrations (23)]. Thus, protein levels in the CSF are
considerably less compared to plasma, making analysis likely to
be representative of central nervous system (CNS) activity.

Neurofilament Proteins
The most promising CSF biomarkers identified to date
are neurofilament proteins, a cytoskeletal component of
neurons that have been shown to accumulate following
axonal damage and degeneration and can be measured in
CSF (24, 25). Consisting of three subunits, the two of interest
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are phosphorylated neurofilament heavy chain (pNfH) and
neurofilament light chain (NfL). A substantial body of evidence
supports neurofilament levels as a diagnostic element (26–30).
Both subunits have been validated in one multi-center study
as diagnostic biomarkers (29) and pNfH alone in another (31).
These studies address the standardization needed by using
carefully designed standard operating procedures (SOPs) for
sample collection and processing, and checking consistency of
neurofilament levels within patient samples and between centers.

Additional marker utility is still to be validated, although
many studies provide supporting evidence. A longitudinal study
comparing ALS patients with disease and healthy controls
found higher NfL levels in ALS patients and higher levels were
associated with worse prognosis (32). Similar results were found
in a large cohort study but, when analyzing their longitudinal
data, they found that only 67% of ALS patients had higher levels
at subsequent time points, with some patients having decreasing
values over time. This latter group had a higher baseline value
suggesting that a plateau of CSF neurofilament levels is reached
once the rate of neuronal death has peaked (33). Another study
found that NfL (particularly blood-derived) was fairly stable
over time, providing a potential pharmacodynamic monitoring
tool, and provided further support for CSF NfL as a prognostic
marker for patient stratification (34). The authors also found high
correlation between serum and CSF NfL, useful as serial blood
tests are easier to obtain than serial CSF samples. Furthermore,
there is evidence that CSFNfL correlates to disease subtypes, with
those with increased UMN burden (32) or more rapid rates of
disease progression, independent of age, showing higher baseline
levels (35).

Finally, a meta-analysis correlating pNfH with the ALSFRS-R
and disease duration demonstrated a significant negative
association (36). Validation efforts would therefore be useful for
prognostic, disease progression and pharmacodynamic purposes.

Tau
The tau protein stabilizes neuronal microtubules.
Phosphorylated tangles, with tau as the major constituent,
are seen in Alzheimer’s disease, and ALS when associated with
TDP-FTD. Raised total-tau has been reported in the CSF of ALS
patients (37, 38), but no difference was found in another study
(39) and there was failure to replicate this quantification in a
multi-center, standardized collection analysis (31). Additionally,
with no studies of tau showing correlation with disease severity
or progression, neurofilament is currently the better marker of
neuroaxonal degeneration.

TAR DNA-Binding protein (TDP-43)
Neuronal and glial inclusions of TDP-43 have been implicated
in the pathogenesis of sALS and the linked fronto-temporal
dementia (FTD) (40) but not SOD1-ALS (superoxide dismutase-
1 mutation) (41). Subsequent studies have found elevated
TDP-43 levels in the CSF of ALS patients as compared to
healthy and neurological controls with neurodegenerative or
neuroinflammatory disease (42–44), and higher in levels in
ALS than in FTD (45). However, diagnostic accuracy was not
demonstrated and a study by Feneberg et al. suggested that as

serum concentrations are 200 times higher than CSF levels, as
a biomarker, serum TDP-43 may be more appropriate and with
pharmacodynamic utility (46). There is little available evidence
for use as a marker of disease progression or prognosis and
longitudinal studies are needed.

Proteomics
Another approach to identifying biomarkers is using liquid
or gas chromatography (LC/GC) and mass spectrometry (MS)
for proteomic analysis. An advantage is that it is an unbiased
approach, yielding peaks for biochemical elements that may
not have been previously recognized, and which may indicate
a targetable, pathogenic pathway. Any protein identified must
then be validated and the pathological pathway identified (47).
A recent review outlined the problem with such approaches if
they are not standardized: individual studies may find hundreds
of proteins that differ between patients and controls, but there is
only partial overlap between studies and attempts at replication
have tended to fail (48). However, many proteins have been
identified using these techniques and are currently undergoing
further study.

Using LC-MS, Collins et al. demonstrated that the CSF
proteome can be used to identify biomarkers and is relatively
stable over time (49). In ALS, raised neurofilament, complement
C3 and secretogranin I, and reduced cystatin C were amongst
the top differentially expressed proteins identified. Additionally,
using a machine learning approach they identified and used four
classifier proteins—WD repeat-containing protein 63, amyloid-
like protein 1, SPARC-like protein 1, and cell adhesion molecule
3—to differentiate between ALS, healthy controls and other
neurological disease (83% sensitivity and 100% specificity).

Low levels of cystatin C in the CSF of ALS patients is
well-recognized (50–52), although one study failed to find this
difference (53). In a multi-center validation study, no difference
between ALS patients and controls was seen (31) and there are
conflicting data regarding the correlation with rate of disease
progression (50, 51). The level of cystatin C has however been
shown to correlate with survival time in limb-onset ALS (51)
which lends further weight to the argument for careful clinical
phenotyping and the need for longitudinal studies.

Other biomarkers analyzed in this six-center analysis (31)
were monocyte chemoattractant protein-1, progranulin, amyloid
precursor protein and S100B. Of these, none demonstrated
consistent change and some yielded conflicting results across
the centers.

Chitotriosidase (CHIT1) was identified using a proteomic
approach and levels were found to be significantly higher in
ALS patients compared to controls (54, 55). A subsequent study
using ELISA confirmed this and also found high expression
in comparison to other neurodegenerative conditions, and
that levels were correlated with progression rate and inversely
correlated with disease duration (56). Immunohistochemistry
(IHC) was then performed on post-mortem CNS tissue from
ALS patients demonstrating CHIT-positive activated microglia
and macrophages in the corticospinal tracts. The authors
therefore tentatively concluded that CHIT may have a role as
a diagnostic and prognostic marker. This is supported by a
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recent LC-MS longitudinal study which demonstrated CHIT1
and other chitinases, CHI3L1 and CHI3L2, correlate with disease
progression and indeed pNfH levels (57).

Levels of glutamate receptor 4 (GRIA4) expression in the
CSF were found to be increased in ALS patients and to
negatively correlate with disease severity, suggesting an early
over-expression. This fits with glutamate excitotoxicity as a
factor in neuronal damage and suggests that anti-glutamate
therapy, like riluzole, may be more effective earlier in the disease
course (55).

Metabolomics
Like proteomics, an unbiased search can be done by performing
LC/MS or proton-nuclear magnetic resonance (1H-NMR) on
biofluids to identify metabolites that differ in quantity in ALS.
One such 1H-NMR study demonstrated lower CSF levels of
acetate and increased levels of pyruvate and ascorbate (an
antioxidant and linked with glutamate-mediated excitotoxicity)
when comparing the ALS group with non-neurodegenerative
disease controls. Subsequent modeling using the 17 identified
metabolites achieved a discrimination rate between ALS and
controls of 81.6% (58). A subsequent study from the same
group increased the validity of CSF metabolomic 1H-NMR
spectroscopy as a means to discriminate, by testing their
metabolite model on a validation cohort, achieving a sensitivity
of 78.9% and specificity of 76.5% (59).

Another mass spectrometry approach investigated the CSF
lipid profile of ALS patients (60). As discussed in the blood
biomarker section, high lipid levels seem to confer survival
benefit and, as the authors of this study explain, the brain
composition is rich in lipids with many neuronal and systemic
biological processes dependent on lipid homeostasis. They found
that there was a distinct ALS lipidomic profile and, based on the
baseline CSF analysis, they could provide a predictive model with
71% accuracy for disease progression thus providing a potential
diagnostic and prognostic biomarker.

The review by Blasco et al. describes in more detail
the large number of metabolites discovered and also the
inconsistencies across the body of reported research (61).
Longitudinal metabolomic studies with analysis of clinical data
are scarcer, although one plasma analysis found that some
metabolites did correlate with disease progression (62), and
another demonstrated a distinctive plasma profile for patients
with LMNdisease, albeit only with a small sample size (63). There
is promise and further work with pre-analytical and analytical
SOPs is indicated.

Oxidative Stress Biomarkers
Oxidative stress is associated with ALS pathogenesis (64–66), and
has potential for novel therapies, as supported by the Japanese
and American FDA approval of the free radical scavenger
edaravone in recent years. In health, superoxide dismutase 1 has
an antioxidant role in converting superoxide free radicals into
oxygen and hydrogen peroxide. SOD1-mutations are implicated
in a proportion of sporadic and fALS cases through toxic gain of
function (67).Misfolded SOD1 can bemeasured in the CSF; it has
been demonstrated that there is no significant difference between

SOD1 ALS patients and non-SOD1 patients and between all
ALS patients and neurological controls (68, 69). The utility of
measuring SOD1 protein levels in CSF is as a pharmacodynamic
biomarker, as levels are stable in individual patients over time (69,
70) and antisense oligonucleotide (ASO) SOD1-lowering therapy
is effective in rats (69). A phase I/II clinical trial is underway
to determine whether ASO-therapy gives the same results in
humans (NCT02623699). Furthermore, SOD1 ALS can be sub-
classified based upon the specific mutation. This provides useful
prognostic information for trial design: for example SOD1 A4V
missense, the most common SOD1 disease-causing mutation in
the United States, has a significantly worse prognosis compared
to other mutations (71).

Other oxidative biomarkers that have been identified as
raised in ALS patients are 8-oxodeoxyguanosine and 15-
F(2t)-isoprostane in urine (72), 8-hydroxy-2

′

-deoxyguanosine
(8OH2

′

dG) and 3-nitrotyrosine in CSF (73, 74), and 4-hydroxy-
2,3-nonenal in serum and CSF (75). However, none are as yet
validated for use in clinical trials.

The nuclear erythroid 2-related factor 2-antioxidant response
element (Nrf2-ARE) is an important signaling pathway,
shown to reduce oxidative stress and inflammation (76).
By measuring markers of oxidative stress, it can be shown
that novel therapeutics are having the desired preclinical
and clinical effect on this pathway. For example, compound
screening identified S[+]-apomorphine as an in-vivo inducer
of Nrf2 in an ALS mouse model by measuring Nrf2 target
genes, and as an attenuator of oxidative stress in patient
fibroblasts (77). This therefore supports further exploration
of Nrf2 activators, like S[+]-apomorphine, with measurable
pharmacodynamic biomarkers.

Upregulated by Nrf2 activation, glutathione is another useful
marker of oxidative stress, as it acts as a buffer for reactive
oxygen species. Reduced serum levels have been shown when
comparing ALS patients and controls (78). Measurable by in-vivo
1H-MRS, this and other metabolites are discussed further in the
imaging section.

As a more general measure of the oxidative system, one
study showed that ALS patients had reduced antioxidant capacity
with increased advanced oxidation protein products, although
interestingly bulbar-onset patients had a protein composition
similar to controls (79). Another study demonstrated a higher
CSF oxidation-reduction potential (ORP) in ALS patients,
and a negative correlation with ALSFRS-R in spinal-onset
patients, leading the authors to conclude that it may be a
marker of disease progression (80). However, their case-control
groups were ALS and non-neurodegenerative neurological
controls and a more varied control group encompassing
all neurological disease may lend further weight to their
preliminary findings.

Biomarkers of Neuroinflammation
As well as measurable changes in antioxidants, immune
and inflammatory mediators have a complex role in the
pathophysiology of ALS. Whilst initial activation of microglia
and astrocytes may be neuroprotective, a state of chronic
activation tips the balance toward neurotoxicity, with up- and
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down-regulation of a wide variety of humoral and cellular factors
(81). Mitchell et al. performed a multiplex ELISA to identify
potential biomarker candidates in the CSF of ALS patients. They
reported that the 5 cytokines with the greatest difference between
ALS and controls were IL-10, IL-6, GM-CSF, IL-2, and IL-15
and when combined, gave a differentiation accuracy of 89%
(82). Other differentiating factors that have been identified are
CHIT-1 and C3, as discussed earlier, IL-17, bFGF, VEGF, MIP-
1b, MIP-1α, MCP-1β, and IFN-γ (83), and follistatin, IL-1α, and
kallikrein-5 (84).

Prediction of disease duration has also been proposed through
multiplex analysis and immunoassays, with IL-9, IL-5, and IL-
12 proving negative predictors and MIP-1β and G-CSF positive
predictors (85). IFN-y has been shown to correlate with disease
progression (83, 86), and bFGF, VEGF, and MIP-1α have been
shown to correlate with longer disease duration (83) further
demonstrating the homeostatic attempt of the immune system.
This immune profiling provides promise for sub-typing ALS
patients and combining identification of pathophysiological
factors with discovery of potential therapeutic targets.

C9ORF72
The hexanucleotide repeat expansion associated with C9ORF72
disease causes accumulation of RNA foci and undergoes non-
ATG (RAN) translation, forming C9RAN dipeptides (DPR).
Toxicity is thought to be in part due to sequestration of RNA
binding proteins (87). Like misfolded SOD1 protein, these DPRs
are measurable in CSF (88). A cross-sectional study showed
one of these, poly(GP), is detectable in the CSF of C9ORF72
ALS and FTD patients but not controls, and that levels are
increased in patients pre-clinically (89). This concept was further
explored longitudinally to show that DPR levels are stable over
time, supporting their use as a pharmacodynamic biomarker
(90). This latter study also demonstrated that poly(GP) levels
are reduced with the use of ASOs in C9orf72 cell and mouse
models. This provides promising proof-of-concept that a targeted
approach to these RNA repeats can mitigate an important
pathological process in this disease subtype; especially important
for asymptomatic carriers. Indeed, a clinical trial is planned
using anti-sense oligonucleotides to lower DPRs in human ALS
patients with C9ORF72 mutations.

MicroRNAs (miRNAs)
Short, non-coding RNAs regulate gene expression by binding
to mRNA, thereby reducing translation and promoting mRNA
degradation. Specific miRNAs have been associated with
neuronal cell identity, synaptic function and glial regulation, and
neuroinflammation in ALS (91). Interestingly, miRNA biogenesis
is linked to TDP-43 which, as described above, is a pathological
hallmark of ALS. TDP-43 binding miRNAs are dysregulated
in the CSF and serum of sALS patients (92). Several studies
have demonstrated other specific miRNA changes in ALS CSF.
For example, upregulation of miR-338-3p (93), and miR181a-
5p and downregulation of miR21-5p and miR15b-5p (94). This
latter study demonstrated a sensitivity of 90% and specificity
of 87% when miRNA ratios were used to differentiate between
ALS and healthy controls. Early potential for prognostic or

pharmacodynamic biomarker properties can be seen in a murine
model which identified CSF miR-218 as correlating with motor-
neuron loss and also responsiveness to therapy.

Due to discrepancy betweenmethods and the specificmiRNAs
identified, further validation efforts are required; a recent
study attempted to do this through optimizing RNA extraction
and small RNA sequencing (91). Similarly, studying larger,
longitudinal cohorts, will hopefully allow correlation of potential
miRNA biomarkers with clinical phenotype.

As mentioned above, identification of SOD1 and C9ORF72
mutations is used for ASO trial enrolment, and the respective
protein levels as pharmacodynamic biomarkers. In terms of
prognosis, certain mutations have been found to infer a different
disease course. As examples, C9ORF72 carriers have a higher
incidence of fronto-temporal dementia, the specific A4V SOD1
mutation carries a poor prognosis (95), and certain UNC13A
single nucleotide variants have been associated with shorter
survival and others with longer survival (96). However, data are
conflicting and the clinical significance of most mutations is
unclear, lending support to larger phenotype-genotype studies.
These should be systematic, including patients with seemingly
sporadic disease, to accurately reflect the burden of genetic
mutation in the population. Interested readers are directed to
the Project Mine Project (www.projectmine.com) and the recent
review of Al Chalabi et al. on the topic (97).

BLOOD BIOMARKERS

Blood based biomarkers are a useful medium between central
and peripheral damage in ALS. While some markers show a
correlation with CSF markers, as transfer occurs between CSF
and blood, other candidate markers arise from peripheral effects
of ALS such as muscle denervation.

C9ORF72, SOD1, and TDP-43
As introduced above, downstream protein readouts linked to
genetic mutations have been explored recently in response to
current and planned clinical trials specific to SOD1 and C9ORF72
mutations. Although most studies have primary outcomes in
CSF (89, 90, 98), SOD1 was reduced in leukocytes (99) but not
erythrocytes (98, 99) in response to pyrimethamine treatment in
SOD1 positive disease, and poly(GP) repeats were detected in
peripheral blood mononuclear cell lysates in C9ORF72 positive
disease, although levels were not compared to those in CSF (90).

In addition to mutation-specific disease, proteins linked to
genetic mutations have been studied more broadly in sALS.
For example, overall SOD1 levels are reported to be increased
in leukocytes (100). The story for TDP-43 remains unclear; it
is mislocalized to cytoplasmic fractions of circulating PBMCs
in ALS cases (101), and although total TDP-43 level did not
discriminate from controls in these cells (101, 102), increasing
levels correlated with disease burden longitudinally (102). In
plasma, total TDP-43 is increased in ALS, but longitudinal
changes were variable between subjects (103) and in serum, TDP-
43 levels were unchanged between disease states, with authors
suggesting CSF TDP-43 is blood derived and not useful for ALS
diagnosis (46).
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DNA Methylation
DNA methylation, as a readout of epigenetic influence, has
gained interest in the last decade. Issues surround DNA
methylation levels being influenced by variability between cell
types and by immune factors, thus confounding methylation as a
specific marker for disease phenotype (104). However, increased
methylation of different components has been reported widely
in ALS. Increased global DNA methylation been detected in ALS
blood in some studies (105, 106), but not in a smaller study of
two SOD1 and two TARDBP carriers (107). In C9ORF72 linked
disease, C9ORF72 itself (108, 109) or its promoter (110, 111)
are hypermethylated, with C9ORF72 hypermethylation showing
correlation with G4C2 repeat size (109, 111) and promoter
hypermethylation linked to reduced RNA foci and dipeptide
repeat protein aggregates in the brain (112). Additionally, an
increase in DNA methylation age was associated with disease
duration in C9ORF72 linked disease, with every 5-year increase
in DNA methylation age correlating to age of onset 3.2 years
earlier, and shorter disease length of 1.5 years. This finding fits
with sporadic disease, where increased DNAmethylation age was
detected in four of five ALS-diagnosedmonozygotic twins. In this
study, although methylation patterns were most similar between
twins, the changes in common across all with ALS implicated
glutamate metabolism and the Golgi apparatus (113). Similarly
in SOD1-linked disease, those with not-fully penetrant SOD1
mutations showed increased DNA methylation in comparison to
asymptomatic/pauci-symptomatic individuals, and levels showed
a positive correlation with disease duration (106).

Neurofilament Proteins
NfL levels in serum and CSF have been shown to be highly
correlated (34). Blood NfL levels were shown to be significantly
higher in ALS patients than healthy controls, and a high
initial NfL level was a strong independent predictor of survival.
However, levels remain steady over time (34) with high levels in
early and later stage disease showing no correlation to El Escorial
diagnostic categories (114). Hence, NfL appears to have utility
as a diagnostic and prognostic marker, rather than a marker of
disease progression.

pNfH has also been studied in blood, and correlates with
CSF levels (115, 116). In a meta-analysis of two papers, the
blood concentration of pNfHwas non-significantly higher in ALS
(36). One study showed an association between higher plasma
pNfH concentrations and a faster disease progression, but this
was only significant at 4 months of follow-up (117). Similarly,
higher plasma and serum pNfH was associated with increased
mortality over the 12 month follow-up period. The reliability
of these results is limited by the small sample size and short
follow-up period. A longitudinal study did not show a predictable
trajectory of plasma NFH over time: levels increased, decreased,
or remained steady as disease progressed (34). While a subgroup
with fast progressing disease tended to start with higher pNfH
levels which decreased over time, the rate of change could not
be used to predict disease progression. Another study showed
a tendency for pNfH levels to rise and then fall, but there was
substantial variability between subjects (118).

Inflammatory Markers
Various blood markers of immune activity have been studied.
One study measured levels of multiple different immune cells
and surface markers in order to generate immune phenotypes
for familial and sporadic ALS patients (119). They found that
ALS patients had increased immune activity, and could be
grouped into two distinct immune profiles. Profile 1 patients were
reasonably similar to healthy volunteers, but Profile 2 patients
had elevated levels of total leukocytes and mononuclear cells, as
well as CD3+, CD4+, CD8+, CD4+CD28+, CD3+CD56+ T-
cells, and CD8+CD45RA+ naïve T cells. Profile 2 was associated
with younger age, familial ALS and significantly increased
survival (a median of 344 weeks, vs. 184 weeks for Profile 1).
Within profiles, different leukocyte phenotypes were found to
influence survival; for example, Profile 1 patients with higher
levels of PD-1+ CD4T cells survived longer, whereas Profile
2 patients with more CD3+CD56+ T cells survived longer,
but neither association held true in the other group. It is
unclear whether the altered immune profile in ALS is related
to the pathophysiology of the disease or a response to disease
activity. There was no longitudinal sampling in this study,
so it is unclear how the profiles may change over time, but
this study shows they are likely useful for prognosis. Another
study found that levels of leukocytes, monocytes and NK cells
were increased in ALS patients, and that they increased over
time. An increase in total leukocytes and neutrophils, and a
decrease in CD4T cells, were correlated with a decrease in
ALSFRS-R (120).

T-regulatory cells (Treg) represent a promising biomarker
candidate and a possible therapeutic target. These cells suppress
various components of the immune response, including cytokine
production and T lymphocyte proliferation. One study found
that levels of CD4+CD25High Tregs were reduced in patients
with ALS, and that the number of Tregs was inversely correlated
with rate of disease progression (121). Another study found
that the Tregs from ALS patients had reduced ability to
suppress activity of T responder lymphocytes, and that Treg
dysfunction was correlated with the rate of disease progression
(122). These results support the use of Tregs as a prognostic
biomarker. In the latter study, disease burden as measured by
the Appel ALS score (AALS) at the time of venepuncture was
correlated with Treg dysfunction, which implies a decrease in
function over time. However, a longitudinal study is needed to
confirm this.

Blood levels of cytokines have been studied widely, including
tumor necrosis factor-α (TNF-α) (123–125) interleukin-1β (IL-
1β), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, and IL-13 which
were reported to be increased, while interferon–γ (IFN-γ) was
decreased in ALS patients in cross-sectional studies. However,
cytokine levels did not change over the course of disease (123).
In serum, IL-1β (78), IL-6 (78, 83, 126) IL-8 (60, 78), and IFN-
γ (83, 86, 127) are also reported to be increased, whereas serum
IL-5 levels are decreased. Serum IL-2 and IL-10 results have been
less conclusive (78, 83). A recent meta-analysis (128) combining
serum and plasma measurements from 25 studies found TNF-α,
TNF-receptor 1, IL-6, IL-1β, IL-8, and VEGF were significantly
elevated in ALS, but of note is that results for IL-1β, IL-6,
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and VEGF may have been skewed by one study. Products of
complement activation are also increased in ALS patient blood
samples; specifically C3b-alpha-chain in serum (129), and C5a
(130, 131) and C5b-9 (131) in plasma, along with a wide range
of complement factors in another plasma study (130).

Other inflammatory markers have shown varying results, such
as C reactive protein (CRP), which showed no differences in
plasma (132) or whole blood (60) at baseline. In serum, CRP
was increased in ALS and did not associate with ALS risk or
survival in one study (133), but correlated with ALSFRS-R and
survival in another (134). Similarly, chitotriosidase, expressed by
active tissue macrophages, was increased in dried blood spots of
ALS patients compared to healthy individuals, and was higher in
those with rapidly progressing disease (135). However, Steinacker
et al. (56) found no change in chitotriosidase serum levels in
ALS compared to controls in the same study in which CSF levels
correlated with disease progression and severity.

MUSCLE DENERVATION BIOMARKERS

Lower serum creatinine in ALS has been reported, and although
some studies have found levels differing by onset site (136) or
gender (137) the majority link levels to prognosis (136–140). A
recent analysis of trial data from over 1,200 people with ALS
found strong longitudinal correlations between serum creatinine
and ALSFRS-R score, muscle strength, and overall mortality,
indicating that using serum creatinine in trials over 18 months
in length would allow a reduction in sample size by 21.5% (141).
Lending further support to this pathway as a useful biomarker of
muscle denervation, serum creatine kinase (CK) is increased in
plasma (132), and serum (140, 142) and correlates with survival
in some studies (140, 142). This discrepancy may be attributed to
differing rates of disease progression. Modeling of the PRO-ACT
database showed those with slow disease progression had stable
or slowly declining creatine kinase, whereas people with rapidly
declining disease had quickly declining levels. Indeed, along
with decreases in weight, alkaline phosphatase, and albumin,
creatine kinase decline was able to predict slow vs. fast disease
progression (143).

microRNA (miRNA)
Whole blood (93, 144), serum (145–149), and plasma (150, 151)
sourced microRNAs have been studied as possible biomarkers,
due to their role in regulating gene expression. In whole blood,
six downregulated miRNAs and one upregulated miRNA were
identified (144) and a later study confirmed upregulation of miR-
338-3p in leukocytes and serum (as well as in CSF and spinal
cord) (93). A plasma based study (151) found increased levels of
hsa-miR-4649-5p and decreased levels of hsa-miR-4299 in ALS
patients vs. controls, but found no significant trend over time.
Similarly, a second plasma study identified steady upregulation
of two different miRNAs longitudinally (150), one of which,
miR-206, is also increased in serum (147).

Serum miR-206 was also increased in a study which reported
an increase in miR-143-3p and decrease in miR-374b-5p
compared to controls (148). Additionally, this longitudinal study

reported that miR-206 levels remained steady, while miR-143-
3p levels increased and miR-374b-5p levels decreased over time,
and that riluzole had no effect on miRNA levels. Further studies
identified different panels of miRNAs differentially expressed
in ALS serum compared to controls (146, 149) and also to
neurological disease controls (149), noting longitudinal changes
in separate sets of miRNAs (149) and higher variability across
sporadic disease (146) compared to familial cases. Interestingly,
one study identified 30 downregulated miRNAs in ALS, 22
of which were also downregulated in presymptomatic ALS
mutation carriers, with some showing a greater degree of
downregulation after disease onset (145). MicroRNAs seem to
have promise as biomarkers, but there is a lack of overlap in
microRNAs identified across different study groups, and to date,
little longitudinal evidence reported.

METABOLIC BIOMARKERS

Markers of carbohydrate and lipid metabolism have been
studied extensively, with contradictory results [reviewed in (152)]
although dysregulation of these processes is clear. A large 20-
year study in Sweden showed lower levels of serum glucose
and higher levels of low-density lipoprotein cholesterol (LDL-
C), apolipoprotein B (apoB), and apoB/apoA-I ratio during the
20 years before diagnosis, and increasing levels of LDL-C, high-
density lipoprotein cholesterol (HDL-C), apoB and apoA-I in
the 10 years before diagnosis, in 623 ALS patients. As such
an increased risk of ALS was observed with increasing serum
LDL-C, apoB, and apoB/apoA-I ratio, and high LDL-C/HDL-C
and high apoB/apoA-I ratios, whereas high serum glucose was
associated with lower ALS incidence (152).

A decrease in glutamine (153), and an increase in
its metabolite glutamate (154), the principal excitatory
neurotransmitter in the CNS have been identified in ALS
plasma, with increased glutamate levels seen in males, those
with spinal onset, and correlated with longer disease duration
(155). Interestingly, Riluzole treatment had no effect on plasma
glutamate (156) but decreased serum glutamate in another
study (157) suggesting usefulness of this measure in response to
therapies in serum.

A large 2014 study of 638 ALS patients showed the utility of
serum albumin at diagnosis as a biomarker of survival, with levels
decreased in ALS, better survival seen with increasing levels, and
that albumin levels correlated withmarkers of inflammatory state
(137). A more recent study of 42 ALS patients and 18 healthy
controls also showed a decrease in plasma derived serum albumin
in ALS regardless of cognitive impairment, but could not detect
disease severity or survival time using albumin at one time-point
alone (130). Most convincingly, longitudinal modeling of ALS
from the PRO-ACT database (143) showed that albumin decline,
was one of four factors able to predict disease progression rate.

Proteomics
While many groups have performed mass spectrometry analyses
in blood (102, 154, 158–161), there is not often an overlap
in the specific proteins identified and those identified require
validation. However, pathways known to be dysregulated in
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ALS are implicated. For example, the largest study of 172
ALS patients and 50 healthy controls (154) identified a panel
of 32 differentially expressed proteins, showing dysregulation
of carbohydrate and lipid metabolism, mitochondrial function,
and creatinine. A recent study in 42 ALS patients and 18
healthy controls showed downregulation of lipid/cholesterol, and
coagulation pathways, inhibition of NO and ROS production
in macrophages, and increases in acute phase response and the
complement system (130).

Oxidative Stress Biomarkers
An increase in ferritin, suggesting iron misregulation which
promotes oxidative stress, is present in plasma (132) and serum
of ALS patients (85, 136, 162), with higher levels associated with
poorer survival in some studies (123, 136, 162), but not all (85).

While excess uric acid is harmful, it is also a powerful
antioxidant and so could be useful to combat the oxidative
stress seen in ALS. In cross sectional studies, serum levels are
decreased in comparison to healthy controls (163–166). Higher
serum uric acid levels correlated with a moderately decreased risk
of the future development of ALS (167), but its link to increased
survival is less clear, showing positive results in one study (164),
only for men (168), or not at all (165). However, a recent study
of the PRO-ACT database including 1,736 ALS cases showed
an 11% reduction in risk of death for every 1 mg/dl increase in
serum uric acid (169). Uric acid levels have also shown promise
in plasma, identifying ALS from neurological disease mimics
with high sensitivity as part of a 32 metabolic panel biomarker
set although levels were no different between groups alone (154).

URINE BIOMARKERS

The search for urinary biomarkers in ALS include small
cross-sectional studies, often with contradictory results, such
as the usefulness of urinary trace elements (170–172). Those
showing promise include the oxidative stress marker 8-
hydroxy deoxyguanosine (8-OHdG) a product of nuclear and
mitochondrial DNA oxidation which was increased in ALS in
cross-sectional studies (72, 74) and increased longitudinally over
9 months in ALS patients (2.9 ng/mg creatinine/year) but not
in disease controls (74). F2-isoprostane (8-iso-PGF2α) is also
increased in ALS patient urine (72), but the existence of an
inflammation-induced pathway for F2-isoprostane generation in
addition to lipid peroxidation (173) needs to be considered when
interpreting results.

Collagen type 4 (174) and collagen metabolite
glucosylgalactosyl hydroxylysine (glu-gal Hyl) (175) levels
were decreased in people with ALS as compared to neurological
disease controls and healthy individuals, levels were lower in
people with longer duration of ALS symptoms in cross-sectional
analysis, and correlated with decreased levels in skin (collagen
type 4), but did not correlate withmuscle power rating (174, 175).

More recently, an increase in the extracellular domain of
neurotrophin receptor p75 (p75ECD) was reported in ALS
patient urine (176–178), which increases longitudinally as disease
progresses (2.3 ng/mg creatinine/year), and provides prognostic
potential advantages over clinical parameters of disease onset

and change in ALSFRS-R alone (178). These findings suggest
that urinary p75ECD has potential for use as a prognostic and
pharmacodynamic biomarker.

IMAGING BIOMARKERS

Magnetic Resonance Imaging (MRI)
Magnetic resonance imaging (MRI) is an attractive candidate
as a biomarker tool as it is non-invasive, relatively inexpensive,
and does not involve ionizing radiation. The multi-modal nature
of MR lends itself to the study of various anatomical and
pathological changes and processes in vivo (179). There is a large
body of published work in the context of ALS, predominantly
focused on the brain, with fewer studies relating to the spinal
cord, muscle, and peripheral nerve.

CENTRAL NERVOUS SYSTEM

Conventional Anatomical Magnetic
Resonance Imaging (MRI)
Focal cortical atrophy has been demonstrated in the precentral
gyrus (180–182) (Figure 2), as well as in other motor and non-
motor areas, including frontal (181), parietal (184), temporal
(185), limbic (186, 187), thalamic (188), bulbar (189), and spinal
regions (190). Precentral atrophy predominates in regions of
the motor homunculus that correspond to areas most affected
by disease (191), whilst frontal cortical atrophy is especially
pronounced in patients with associated cognitive dysfunction
(192) or fronto-temporal dementia (193). White matter atrophy
has been demonstrated in the corticospinal tract (194), front-
temporal (192), cerebellar, callosal, and occipital regions (195),
but, overall, global atrophy tends to be mild (185).

Atrophy is thought to be a surrogate of neuroaxonal loss
(196, 197) and MRI studies have supported the concept that
neurodegeneration in ALS is not confined to motor regions.
However, volumetric analysis in isolation is not sufficiently
sensitive at individual level and, at present, the role of
conventional structural MRI in clinical practice is mainly for
the exclusion of ALS mimics as part of routine diagnostic
workup (198).

Longitudinal studies assessing primary motor cortex (191,
199), subcortical regions (186), and cervical spinal cord (189,
190) have demonstrated worsening atrophy over time, and that
the rate of volume loss is greater in rapidly progressive patients,
compared to slow progressors (199). Reduction of cervical spinal
cord surface area has been shown to correlate with clinical
measures of disability, for example ALSFRS-R scores (189),
and cervical spinal cord volume decrease over 3 months was
predictive of respiratory dysfunction in the subsequent year in
one study (190). Cervical atrophy therefore may have potential as
a predictive and progression biomarker.

Signal Changes
High signal may be seen in motor areas on T2-weighted, proton
density, or fluid-attenuated inversion recovery (FLAIR) images
(199–201), especially in the subcortical precentral white matter
and in the posterior limb of the internal capsule. T2 signal change
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FIGURE 2 | Motor cortical atrophy in a patient with ALS, more pronounced on left side (which correlated with the pattern of weakness clinically). Sequence: 3T, T1w IR,

TR 8.4ms, TE 3.9ms, TI 1000, FOV 240mm, Acq voxel 1 × 1 × 1mm Recon matrix 0.94 × 0.94 × 1mm. Segmentation algorithm according to Chuang et al. (183).

can reflect a number of different underlying mechanisms, for
example, oedema, inflammation, demyelination, or, in ALS, most
likely neuroaxonal loss or gliosis, either alone or in combination
(202, 203), and is neither sensitive nor specific in ALS. T2 signal
change in the corticospinal tracts does not appear to correlate
well with clinical measures (200, 203).

Cortical hypointensities assessed both qualitatively and
quantitatively, on T2-weighted (204), T2∗-weighted (205),
and susceptibility-weighted images (206) are thought to
reflect reactive ferritin-laden microglia accumulating in
the deep layers of the precentral gyrus (206, 207). Ferritin
contains iron which is paramagnetic and alters T2∗ relaxation,
leading to hypointensities on T2-weighted, T2∗-weighted, and
susceptibility-weighted images, a feature that increases with
static magnetic field strength. Although these findings were not
replicated by another study (208), and such changes appear
rather non-specific since they have also been shown in healthy
individuals, T2-weighted hypointensities do correlate with UMN
signs in ALS patients (207, 209, 210) and can appear early in the
disease process (190).

Diffusion Tensor Imaging (DTI)
Diffusion tensor imaging (DTI) exploits differences in local
directionality of water diffusion to assess tissue architecture and
is especially suited to the study of white matter tracts. Fractional
anisotropy (FA) is a derived measure which can represent
tract integrity. In ALS, FA reduction in the corticospinal tracts
and corpus callosum is a consistent finding (211–214) which
correlates with clinical measures of disease progression (190,
211, 215–217). Associated elevations in mean diffusivity (MD),
a scalar measure representing total diffusion within a voxel, have
been reported in a number of these studies (211, 218). Low FA has
also been demonstrated in the cervical spinal cord (219, 220) and
in extra-motor regions (217, 221, 222). Longitudinal reductions

in FA over time have been shown in both motor and extra-motor
areas (223, 224).

DTI has demonstrated widespread white matter tract damage
supporting the concept of ALS as a multi-system disorder.
Diagnostic sensitivity and specificity of 68 and 73%, respectively,
has been reported (225). Recent work has applied DTI to
create in vivo disease staging models, to probe hypotheses of
pathophysiological spread in ALS (5, 226).

Combination of Structural MRI and DTI
Machine learning algorithms combining both volumetric gray
matter and DTI measures have been reported to discriminate
ALS patients from healthy controls with 86% sensitivity, 67%
specificity, and 78% accuracy (227), and ALS patients from
ALS-mimics with 92% sensitivity, 75% specificity, and 87%
accuracy (228).

Magnetization Transfer Imaging (MTI)
Magnetization can undergo transfer between bound water,
macromolecular groups and free MR-observable water. This
interaction can be used to provide the tissue contrast exploited
in Magnetization Transfer Imaging (MTI), often interpreted as
a measure of myelin integrity or neuroaxonal damage. Reduced
MTI ratios have been reported in the corticospinal tracts and
extra-motor gray matter of patients with ALS compared to
controls (229–231) although these findings were not replicated
in one report (199).

Functional Magnetic Resonance
Imaging (fMRI)
Blood oxygen level-dependent (BOLD) functional MRI (fMRI)
can detect regions of neuronal and synaptic activation in
response to experimental stimuli. A localized vascular response
to energy use and demand causes “active” regions to receive
an increased oxygenated blood supply, and the MR signal
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is differentially attenuated according to blood oxygenation
level. Aspects of brain physiology can therefore be assessed,
based on an assumption of neurovascular coupling. Cortical
reorganization has been demonstrated in patients with ALS,
with increased activation of contralateral and ipsilateral motor
areas including sensorimotor cortex, supplementary motor areas,
basal ganglia and cerebellum during motor tasks (232–235).
Contralateral over-activation correlates with disease progression
(236). Reduced activation has been observed in dorsolateral
prefrontal cortex (235) and in other studies which investigated
tongue movements in patients with bulbar dysfunction (237,
238). Longitudinal studies have demonstrated that increased
sensorimotor cortical activation (perhaps attributable to loss
of intracortical inhibition) is followed by decreased activation
later (probably as motor neurons degenerate) (238). Contrasting
results were obtained following motor imagery experiments.
Increased activity was seen in patients compared with controls
in one study (239), but reduced activity in another (240). In
addition to an external stimuli-driven BOLD response, resting
state abnormalities have been demonstrated (241). Patients have
been shown to demonstrate abnormalities in cerebral regions
associated with executive functions (242), and emotional (243,
244), sensory (245), and language (246) processing.

Magnetic Resonance Spectroscopy
Magnetic resonance spectroscopy (MRS) is a promising advanced
MR technique which provides insights into tissue neurobiology
through direct measurement of metabolites (Figure 3). Proton
spectroscopy of the brain (1H-MRS) enables detection of the
neuronal molecule N-acetylaspartate (NAA), the glial marker
myoinositol (mI), choline-containing compounds (Cho), amino
acids and neurotransmitters such as glutamate, glutamine, and
gamma-aminobutyric acid (Glu, Gln, and GABA), and creatine,
phosphocreatine, and glutathione (Cr, PCr, and GSH) which
are compounds related to cellular bioenergetic and oxidative
status. Brain 1H-MRS studies have demonstrated a widespread
reduction in NAA correlating with UMN burden (247–249) in
regions spanned by the pyramidal tract (247, 248, 250–265) and
in other cortical and subcortical areas (266). NAA has been
proposed as an objective indicator of UMN dysfunction and as
a potential diagnostic biomarker: sensitivity and specificity of the
NAA/Cho ratio have been reported to be 100% and 85% (267),
and to be superior to anatomical MRI (268, 269), DTI (267),
and transcranial magnetic stimulation (270). The combination
of 1H-MRS and DTI to diagnose ALS yields a high positive
likelihood ratio (6.20) and low negative likelihood ratio (0.08),
with potentially useful sensitivity and specificity of 90 and 85%,
respectively (271). Although publications assessing longitudinal
NAA changes have reached inconsistent conclusions (272–274),
NAA concentration has also been used as a marker of treatment
response in a number of clinical trials (275–281).

Total creatine (Cr and PCr) appears unchanged (248, 259,
282), but studies measuring Glu, mI, Cho, GABA, and GSH
have produced conflicting results and, at present, it is unclear
whether the concentration of these molecules is altered in ALS
(255, 258, 259, 263, 264, 282).

As highlighted above, published findings from studies that
utilize 1H-MRS have reported conflicting results at times.
In addition to differences between study groups, MR system
manufacturer, and spectroscopic analysis methodology, the
basic acquisition technique can vary (e.g., echo-generation
type, localization method, TR, TE), which may partially
explain the lack of consensus. As with standard MRI, the
relative contributions from different spectral resonances can
be weighted by intrinsic factors such as proton density, T1-,
and T2-relaxation rates for each of the metabolites. For 1H-
MRS, to further our understanding and provide indications
of pathophysiology, disease stage and potential therapeutic
response, well-characterized and appropriately standardized 1H-
MRS acquisition methodology is warranted.

PERIPHERAL NERVE IMAGING

In ALS, secondary effects on peripheral nerve are the least
studied anatomical location with MRI, but the technique shows
potential and has been investigated (283, 284). In a recent
longitudinal study, the FA of tibial and peroneal nerve was
shown to decrease with disease progression and to correlate
with ALSFRS-R, showing potential as a biomarker of disease
progression (285).

MUSCLE IMAGING AND SPECTROSCOPY

Anterior horn cell denervation in ALS leads to secondary
signal change and atrophy in muscles and nerves which can
be assessed with MRI and potentially employed as a marker
of disease progression. An early study showed reductions in
the volume of the tongue in up to two-thirds of ALS patients
(284). Tibialis anterior volume reduction and increased T2-
relaxation times were observed in a longitudinal study of 11
patients (286) and correlated with clinical (maximal voluntary
isometric contraction, MVIC) and electrophysiological (CMAP)
measures. Limb muscle signal changes have been demonstrated
in cross-sectional studies using qualitative observer assessment
scales (283, 287). A more recent longitudinal whole-body muscle
MRI assessment demonstrated semi-quantitative T2 changes in
multiple body regions in ALS patients compared with controls,
as well as associations with clinical power and MUNIX, and
longitudinal increases signal changes in the tibialis anterior
muscle over 4 months (288) (Figure 4).

Metabolites related to cellular bioenergetics, such as adenosine
triphosphate (ATP), PCr, and inorganic phosphate (Pi), as
well as intracellular pH, have been measured in muscle using
phosphorus-31 spectroscopy (31P-MRS); some studies have also
employed dynamic protocols to assess PCr and pH variations
during muscle contraction. PCr recovery (a parameter that
correlates with mitochondrial oxidative capacity) was found to
be prolonged in patients in one study (289) but was reported
unchanged in another (290). Additionally, there appears to be
a decreased drop in PCr upon muscular contraction in ALS
patients, likely due to lack of available motor units to recruit
(291), although other hypotheses, such as impaired central
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FIGURE 3 | GSH spectrum (B) from medial parietal cortex (A) (MEGA-PRESS sequence, HERMES spectral editing). (B) Green line showing spectral edited GSH peak.

activation or even existence of ALS related primary muscular
changes, have also been proposed (292, 293). The potential of
31P-MRS being a putative marker of energy dysmetabolism and
disease progression has not yet been fully explored.

POSITRON EMISSION TOMOGRAPHY

Positron emission tomography (PET) is another imaging
modality that has been employed primarily to investigate ALS
pathophysiology, but has shown some potential as a diagnostic
biomarker. Relatively fewer PET studies have been conducted
in ALS, possibly because this modality, albeit non-invasive,
involves exposure to ionizing radiation, and because radiotracer
development is a complex process that requires a cyclotron and a
specialized multidisciplinary team.

[18F]Fluoro-2-deoxy-2-D-glucose (FDG) PET measures
cellular glucose uptake and can assess metabolic activity of
brain regions. In ALS, decreased FDG uptake, a probable
corollary of neurodegeneration, has been reported in the motor,
premotor, and prefrontal cortices as well as in the basal ganglia
(294, 295). Notably, the severity of hypometabolism in the
front-temporal cortex was associated with cognitive decline
and was predictive of shorter survival (296, 297). Interestingly,
increased FDG uptake has also been reported in midbrain,
pons, hippocampus, superior temporal gyrus, and cerebellum
(295, 298). This could perhaps reflect neuronal hyperexcitability,
adaptive cellular changes within metabolically active pathways,
and/or astrocytic proliferation (295). These findings further
corroborate the hypothesis that ALS-related dysmetabolism does
not pertain exclusively to motor areas. In addition, midbrain
hypermetabolism appears to be relatively specific to ALS and
could potentially be valuable in the diagnostic workup of ALS
patients (295, 297). Data on altered glucose uptake in the
amygdala, parietal, and occipital cortices is more equivocal: lack
of consensus could be due to differences either in study protocols
or control groups (299).

Neuroinflammation is considered a potentially important
contributor to the pathophysiological cascade in ALS and
there have been ongoing efforts to develop immune-modifying
therapeutics. In this context, assessment of in vivo microglial
activation by PET could potentially be employed in clinical trials
to provide evidence of target engagement and, possibly, to be
used as a biomarker of disease response. Microglial activation
can be investigated using radiotracers targeting the 18 kDa
translocator protein (TSPO), also known as the peripheral-type
benzodiazepine receptor, such as [11C]-(R)-PK11195 (a first
generation tracer which is relatively non-specific and has a low
signal to background ratio), [18F]-DPA-714, and [11C]-PBR28
(second generation, more specific tracers). TSPO is thought to
be expressed specifically by activated microglia and astrocytes.
These studies have shown enhanced microglial activation in
primary and premotor cortices, prefrontal and temporal cortices,
thalamus, and brainstem (300–303). Findings correlated with
UMN burden and ALSFRS-R score and were associated with
concomitant alterations of the glial marker mI and with DTI and
spectroscopic measures of tissue damage (300, 302, 303).

Other work has provided further insights into ALS
pathogenesis by showing evidence of inhibitory inter-
neuronopathy (employing the GABA-A ligand, [11C]flumazenil)
(304, 305), alteration of serotoninergic neurotransmission
[using the radiotracer [11C]-WAY100635] (306), and increased
oxidative stress [by [62Cu]-ATSM] (307).

In summary, whilst MR and PET studies havemade important
contributions toward elucidating disease mechanisms in vivo
in patients with ALS, a fully validated biomarker sensitive and
specific to disease change at individual level remains elusive. This
represents an important area of need in the field (308).

ELECTROPHYSIOLOGY BIOMARKERS

Motor Unit Number Estimation (MUNE)
First developed in the 1970s, motor unit number estimation
(MUNE) aims to provide a reproducible, quantitative measure
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FIGURE 4 | T2-weighted whole body image acquired in a patient: 3T, single

shot TSE, TR 1107ms, TE 80ms, FOV 37 × 55 cm, voxel size 1.25 × 1.5 ×

5mm recon 0.78 × 0.78 × 5—used with permission from Jenkins et al. (288).

of the number of functional motor units (309). Numerous
MUNE methods have emerged predominantly based on the
same underlying principle. First, a summated value for the total
motor unit population within a nerve, the maximum compound
muscle action potential (CMAP) amplitude, is obtained. This is
then divided by a value representing the average single motor
unit in that nerve, thus providing an estimate of motor unit
number (309, 310).

MUNE calculations differ in the approach taken to measuring
a typical single motor unit (311). For example, the original
incremental method utilized the concept of different axons
having differing excitation thresholds, with step-wise increases
in stimulus intensity used to recruit additional discrete motor
units (309). However, subsequent work determined that repeated
presentation of the same stimulus may activate different motor
axons with similar stimulation thresholds, thus resulting in

CMAP changes not representative of single motor unit size,
a phenomenon termed alternation (310). The multiple point
stimulation (MPS) method (and later adaptations) attempted
to circumvent this through stimulation at distinct points
along the nerve in an attempt to sample different motor
axons (312). Further developments included a multipoint
incremental MUNE, combining incremental and MPS methods.
This technique had a number of practical advantages over other
methods in that it is simple, relatively rapid to perform (∼5min
per muscle), well-tolerated (as multiple supramaximal stimuli
are not performed), and does not require specialized equipment
(313). Statistical approaches to the post-hoc analysis of data have
also been proposed (314, 315).

Incremental, MPS and multipoint incremental MUNE
methods have been reported as reliable and sensitive tools,
correlating with and outperforming other functional clinical
measures in demonstrating disease progression (249, 316). MPS
has additionally been observed to identify preclinical LMN
loss (249). Despite promising findings in familial (317) and
sporadic cohorts (318), Poisson statistical methods were unable
to account for the increased motor unit variability found in
patients with ALS (318). Similarly, despite promising initial
results (315), dissemination and validation of Bayesian statistical
methods, which allow for sources of variability and uncertainty,
has been limited by the technically intensive nature of the
process (310, 319).

High-density MUNE utilizes a large number of electrode
channels to resolve alternation, whilst also enabling the
measurement of proximal and distal muscles, a feature not
offered by most MUNE techniques (320). The requirement for
specific equipment and software has precluded its widespread use
thus far (319).

Recently, a novel MUNE method, MScanFIT MUNE
(MScan), has been proposed, using detailed stimulus-response
curves, or “CMAP scans,” which provide information on
all motor units contributing to the CMAP, unlike other
MUNE methods (321). Preliminary findings appear promising,
demonstrating superior reproducibility, detection of motor
unit loss, and disease progression compared to other MUNE
methods (322).

Motor unit number index (MUNIX) applies a mathematical
model based on the CMAP and surface EMG interference pattern
at different voluntary activation levels (Figures 5B,C) (323). It
overcomes a number of MUNE limitations by enabling fast (<5
min/muscle), easy to perform measurements of any proximal
or distal muscle from which a supramaximal CMAP can be
elicited (324).

The sensitivity and reliability ofMUNIX as amarker of disease
progression in ALS was highlighted in a 15-month longitudinal
multicenter study (325), with further work demonstrating a
significant correlation between MUNIX and various MUNE
techniques (27, 311, 326, 327). The importance of optimizing
maximum CMAP amplitude during MUNIX recording has
been emphasized (324). MUNIX measurement reliability has
been shown to improve when employing a qualification process
including face-to-face teaching and training, with ongoing
support for evaluators (328).
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FIGURE 5 | (A) EIM: alternating current is applied to the muscle and the

ensuing voltage measured. The phase angle is a metric of tissue impedance

and describes, in degrees, the angle of asynchrony between the two

sinusoidal waveforms. (B) Multiple compound muscle action potentials

recorded during the incremental motor unit number estimation technique.

Each change in amplitude is thought to represent the addition of a new motor

unit. (C) Surface interference patterns obtained during the motor unit number

index technique. After recording a maximal compound muscle action potential

the subject performs isometric contraction of the muscle of interest with

increasing force. Parameters from these recordings are then used together

with data from the CMAP to compute the index.

Despite these promising results, some authors have suggested
that values depend too heavily on CMAP amplitude to provide
useful estimates of motor unit numbers (326). However, MUNIX
has been shown to exhibit superior sensitivity to early change
when compared to ALSFRS-R, manual muscle testing, and
CMAP amplitude (329). Furthermore, a capacity to detect pre-
symptomatic LMN loss has also been reported (330).

Multi-muscle global MUNIX scores have been investigated as
a measure of multi-segment involvement (331), allowing more
broad evaluation of motor unit loss and insight into the pattern
of disease spread (330, 331). Such instruments have shown
increased sensitivity to progression when compared to single-
muscle MUNIX (331) and ALSFRS-R (325), reducing the time
required to detect therapeutic change (325). This approach may,
however, over-represent individual segments (331) and negative

results have also been reported (332). Nonetheless, MUNIX offers
interesting insights into disease progression and is undergoing
worldwide evaluation in clinical trials.

Neurophysiological Index
The neurophysiological index (NI) has been proposed as a
quantitative measure of peripheral disease burden in ALS
patients. It collectively expresses changes observed during
disease progression using standard neurophysiological measures:
increases in distal motor latency and F-wave frequency, and a
decrease in CMAP amplitude (333, 334). Previous studies report
NI to be a reliable measure (335), differentiating fALS and sALS
cohorts from healthy controls (336, 337). As a surrogate measure
of disease progression, NI has displayed decline at a greater rate
(41.9% at 6 months) than ALSFRS-R (18.4%), FVC (15.4%), and
CMAP amplitude (25.5%) (316), with sensitivity to change in as
little as 4 weeks (329). While further work is needed, the NI has
been implemented in clinical trials and has been proposed as a
method to expedite completion of future phase II trials (334).

Axonal Excitability
Axonal excitability measurement techniques allow non-invasive,
in vivo assessment of the biophysical properties of peripheral
axons (338). Employing threshold tracking methods allows
sensitivity to changes in the membrane potential caused by
activation of ion channels and electrogenic ion pumps (339).
Indices used in threshold-tracking axonal excitability testing have
provided information of pathological significance in ALS (338).
Upregulation of persistent Na+ conductances and reduction of
slow and fast K+ channel conductances have been demonstrated,
with the net result being motor axonal hyperexcitability (340).

Axonal ion channel dysfunction has been observed in sALS
and fALS cohorts, and supported by mouse models (341–343).
Such membrane hyperexcitability is postulated to promote the
generation of fasciculations and muscle cramps (341), with
intra-axonal Ca2+ accumulation due to persistent Na+ influx
implicated in the neurodegenerative process (338, 344). In
keeping with this, changes in axonal excitability have been
reported to correlate with more standard measures of motor
axon degeneration, such as CMAP amplitude (345). A persistent
Na+ conductance has been observed to be a predictor for
shorter survival time and rapid inter-regional spread (346, 347).
Changes in the pattern of abnormal membrane properties with
disease progression have also been reported (341). Availability
of the specialist hardware/software may limit uptake; however
further study of longitudinal utility and test-retest reproducibility
is warranted.

Electrical Impedance Myography (EIM)
Electrical impedance myography (EIM) provides a non-invasive,
painless and quantitative method for the evaluation of muscle
(Figure 5A). Low-intensity, high-frequency alternating electrical
current is applied via surface electrodes to a muscle (or muscle
group) of interest and the resulting surface voltages measured.
The fundamental basis of EIM is that these recorded surface
voltages reflect the conductive and capacitive properties of
the underlying tissue, with disease-related changes in muscle
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morphology, such as muscle fiber atrophy, resulting in altered
impedance values (348).

EIM is easy to perform, allows study of proximal and distal
muscles, and requires limited subject cooperation and evaluator
training (349, 350). It has been shown to be a highly reproducible
tool, correlating with established electrophysiologic and
functional measures of disease severity (351, 352). Multicenter
data have reported sensitivity of EIM to disease progression,
demonstrating its potential to expedite phase II clinical trials by
reducing the sample size required to detect a treatment effect by
more than 50% compared to the ALSFRS-R (353). Evidence for
the utility of EIM in the diagnosis of ALS is preliminary, with
further study required into its ability to distinguish ALS from
other neuromuscular diseases (354).

More recently, EIM has been applied to the evaluation of
bulbar dysfunction in ALS, an area of particular importance given
the prognostic implications and lack of objective, quantifiable
bedside measures of bulbar status (355, 356). Initial investigation
has indicated tongue EIM to be a reliable technique, significantly
correlating with tongue endurance and the ALSFRS-R bulbar
subscore, and distinguishing healthy and diseased muscle (357,
358). Despite the encouraging results emerging principally from
a single laboratory, EIM remains in need of development and
optimization (355). Further interdisciplinary investigation would
allow greater appreciation of the utility of EIM as an objective
clinical measure.

Transcranial Magnetic Stimulation (TMS)
The diagnosis of ALS relies on identification of a
combination of UMN and LMN features (359). Conventional
electrophysiological techniques objectively assess LMN function.
Evaluation of UMN involvement, however, remains solely
based on clinical examination (360). Pioneered by Barker and
colleagues (361), transcranial magnetic stimulation (TMS) is a
non-invasive neurophysiological technique that assesses UMN
functional integrity (360, 362). Differences in a number of TMS
parameters, signifying a change in cortical excitability, have
been identified as an early and specific feature in patients with
both sporadic (337) and familial ALS (336). Such abnormalities,
including reductions in short-interval intracortical inhibition
and cortical silent period duration, and increases in intracortical
facilitation and motor evoked potential amplitude (362), precede
evidence of LMN dysfunction (363, 364), correlate with measures
of peripheral disease burden (337), and relate to the pattern of
disease spread (365). These findings provide pathological insight
and lend support to the dying-forward hypothesis of ALS as a
primary disease of the cortical motor neuron (360).

Recently developed, threshold tracking TMS (TTTMS)
(337) has produced important results, including facilitating
reliable differentiation of ALS from mimic disorders (366), an
improvement in diagnostic sensitivity when compared to the
Awaji-Shima criteria, and a reduced time to diagnosis (364). To
date, this technique has been largely pioneered by a single group;
if reproduced in other centers, the case for incorporation of
TTTMS as an objective tool for assessing in future ALS diagnostic
criteria would be strong. Evidence supporting the use of TMS
as a biomarker assessing longitudinal change is, however, more

preliminary and has employed traditional TMS techniques, with
conflicting conclusions reached in the ability to monitor disease
progression (367, 368), in addition to limited application in ALS
therapeutic trials (369). This area remains an exciting field for the
ALS community to develop over the coming years.

CONCLUSIONS

The breadth of the research outlined above is an indication
of the efforts being undertaken to better understand the
pathophysiology of ALS and to discover and validate biomarkers.
Common themes occur in each described modality.

Biomarker exploration is dependent on replication. Using
biofluid samples as an example, by using agreed SOPs for
sample collection and for analysis, more robust conclusions can
be drawn. In this way results from multiple centers can be
pooled, providing sufficient statistical power to label a biomarker
as useful or not. Once a potential biomarker is identified, it
can be validated using round-robin or “reverse” round-robin
methodology (31). If not successful then a consensus approach
should be established to shift focus onto other promising
markers. A similar approach in imaging has been established:
The Neuroimaging Society in ALS (NiSALS) is a collaboration
of neuroimaging scientists to discuss imaging methodologies in
the disease as well as providing a solution to the challenge of
analyzing MRI data from different sites and protocols (308).
Successful validation from meticulous research methodology
unfortunately then has the additional hurdle of becoming valid in
clinical practice, wherein there is new heterogeneity, with reliance
on healthcare professionals and hospital laboratories to collect
and process samples in a comparable way.

Despite excellent attempts in each field, single useful
biomarkers of ALS are as of yet out of reach. Combining
biomarkers within a modality is a useful way to improve their
utility, although this increases the risk of false positives, and the
more biomarkers that are used the higher the sample number
needed to confirm significance (370). Additionally, combining
markers across modalities is a logical approach to maximize
the strengths and sensitivities of each method. With the vast
amount of data that this yields, particularly with the use of “-
omic” approaches, machine learning techniques may yield the
best combinations to maximize sensitivity and specificity. To this
end, collaboration with bioinformaticians is essential.

Collaborative efforts like the Pooled Resource, Open access
ALS clinical trials (PRO-ACT) database, provide researchers with
a large body of well-categorized, longitudinal, patient data sets.
This is especially useful in a relatively rare disease like ALS. It can
be used to increase the statistical power during analysis of single
biomarkers and for machine learning models. Prize4Life, a non-
profit organization, asked for models that best predicted survival
based on the PRO-ACT data. Algorithms and machine learning
approaches were submitted and shown to improve prediction
as compared to clinician assessments, and that these methods
could reduce the cost of trials through a reduction in sample
size. Additionally, this approach identified features previously
unrecognized in their contribution to prediction such as creatine
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kinase, pulse and blood pressure (371). Other research groups
continue to use the PRO-ACT data and have developed models
of disease progression (372) and survival (373), and have clarified,
for example, the predictive utility of urate as a biomarker (169).
Whilst this exercise is undoubtedly useful, the importance of
standardized collection and analysis methods remains.

The majority of studies explore diagnostic biomarkers, and
many exist contrasting patients with healthy controls. However,
if a patient with typical ALS is seen by a neurologist, particularly
a neuromuscular specialist, then there is rarely a diagnostic
dilemma. Ideally, comparisons should be made between ALS
and those patients with disease mimics e.g., multifocal motor
neuropathy with conduction block or monomelic amyotrophy.
Moreover, as explained above, the survival and disability
heterogeneity in ALS is large and to this end longitudinal studies
assessing how the disease changes over time, measured through
surrogate biomarkers, will provide improved information to
better sub-classify patients and their prognosis and ensure
trial success.

Future biomarker studies should aim to encapsulate all
phenotype data as well as genetic and biological information
to help stratification. The above point is well-explained by
Benatar et al. (374) and furthermore they outline general points
for researchers to be aware of in ALS longitudinal studies.
During longitudinal follow-up, studies may enrich with slow-
progressors, implying that conclusions that are drawn are
not necessarily applicable for the whole population. Secondly,
attempting to define disease onset is difficult, given that disease

is likely to be active before presentation to healthcare; “baseline”

comparisons are therefore not valid. However, most ALS
progresses linearly and as such there is value in measuring fixed
interval time points from the “recruitment baseline.”
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