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Abstract 

In order to better understand the mechanisms of two-phase flow and the prevailing flow regimes in 
horizontal pipelines, the evaluation of interphase forces is paramount. This study develops a method to 
quantitatively estimate the interphase force in two-phase gas-water flow in horizontal pipeline. The 
electrical resistance tomography technology is used to measure the void fraction, while the differential 
pressure perpendicular to the horizontal pipe is measured in different flow patterns via a Differential 
Pressure sensor. The inner pipe diameter is 50 mm, the water flow range from 3.26 m3/h to 7.36 m3/h, the 
gas flow rate range from 1 to 60 l/min, which covered a range of flow patterns, the absolute pressure 
range from 0.07 MPa to 0.12 MPa. The relationship between the differential pressure drop and interphase 
force is established, and the effects of these forces on the flow are analyzed. Experimental results indicate 
that the dual-modality measurement system was successfully provided a quantitative evaluation of 
interphase forces in two-phase horizontal gas-water flow.  

Keyword: Interphase forces; Gas-liquid two-phase flow; Horizontal flow; Void fraction; Differential 
pressure 

1. Introduction 
The substances in nature are divided into three types: gas phase, liquid phase and solid phase. 

Single-phase flow is the flow of single-phase material, multiphase flow is a complex phenomenon 
involving simultaneous flow of two or more physically immiscible fluids (such as: oil and water) in 
pipelines. The study of highly viscous multiphase flow systems is fundamental to the oil industry. In 
heavy oil production fields, the transport of production fluids, i.e., oil, water and gas, commonly occurs as 
a “foamed emulsion” flow (i.e., a water-in-oil emulsion with dispersed gas flowing as a foam) [1-2]. 
Oil-water and gas-water  two-phase flows are often encountered in petroleum, chemical and 
petrochemical industries [3-5]. Due to the complex interface, a series of interface problems have not been 
solved so far, they are still the key to gas-liquid flow research, including phase distribution mode, 
inter-phase mechanism and microscopic turbulence structure. A complete description of the phase 
interaction mechanism should take into account the interphase forces. The interphase forces play a crucial 
role in the gas-liquid two-phase flow model as they constitute a mechanical balance between the phases 
and determine the phase distribution pattern across the flow channels. Many of important design and 
engineering parameters such as pressure drop, mass transfer, heat transfer etc, are closely related to the 
interphase force [6]. It is divided into three parts: drag, the lateral force (lift) and additional mass force 
[7-8]. In order to describe the flow and the interaction between the constituent phases, experimental 
analysis of the flow has to be carried out first, then it can be followed by establishing a theoretical 
explanation [9]. The magnitude of interphase forces can be reflected by pressure or differential pressure 
signals. The traditional method to measure the pressure drop along the flow direction cannot provide a 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/multiphase-flow
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/immiscible-fluid
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/two-phase-flow
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/petroleum-industry
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/petroleum-industry
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/petroleum-industry


  

direct measurement of the interphase force, as it is associated with the frictional pressure drop and the 
acceleration pressure drop, as a result it is difficult to distinguish. The researchers therefore always ignore 
the quantitatification of interphase force or just carry out a simple analysis. 

The aspects of interphase force in multiphase flow and other fields have been touched upon by several 
researchers. Wang et al. [10] analyzed different correlations for the interphase forces including the drag, 
lift, wall lubrication, and turbulent dispersion force, and systematically investigated their predictive 
features. Gadiraju et al. [11] reported exact solutions for fully developed, steady, laminar flow of a 
particle fluid suspension in a vertical circular pipe, The solutions were based on a typical finite volume 
fraction two phase flow model of the continuum type. It is pointed out that the lift force contribution to 
interphase force can’t be expressed in closed form. Tabib et al. [12] studied the interphase force through 
CFD simulation, in which they have presented 3D transient CFD simulation of bubble column for a wide 
range of superficial gas velocity on a relevant industrial cylindrical column. Li et al. [13] investigated the 
relative importance of interphase forces and their effect on particle transverse motion in a particle-laden 
channel turbulence. In other fields, Rybaczek et al. [14] demonstrate the existence of constitutive 
(interphase and mitotic) Chk1 kinase phosphorylation, the translocation of its phosphorylated form from 
the nucleus to cytoplasm in prometaphase as well as strong labeling of apoptotic nuclei with 
alpha-Chk1(S317) antibodies. Riaño et al. [15] studied the influence of interphase region on composites 
based a FEA homogenization technique. However, these studies in two-phase flows have not provided an 
experimental verification regarding interphase force in horizontal two-phase gas-water flows. 

There are two main types of intelligence that are artificial intelligence [16] and machine intelligence 
[17]. In electronic systems, mainly machine intelligence is used. Machine vision is a non-destructive 
grading technology and cost-effective method with high accuracy that has a variety of branches, and it is 
very useful for measuring the interphase forces. One of these branches is radar-based machine vision 
systems. Radar signal recognition is of great importance in the field of electronic intelligence 
reconnaissance. It has extensive research in various fields. To deal with the problem of parameter 
complexity and agility of multi-function radars in radar signal recognition. SAR imaging systems are 
known as the most popular remote sensing technique greatly used in the past decades because of its good 
performance in extreme weather scene imaging [18]. It provides an effective way to image all day and all 
weather, which is incomparable by other sensors. In order to recognize and identify selected objects, SAR 
can provide high-resolution images to distinguish terrain features. Various tasks of SAR images have 
been found, such as segmentation [19], classification [18], target recognition [20], change detection [21], 
or a combination of them [22]. Alzeyadi et al. [23] applied the synthetic aperture radar (SAR) imaging and 
the K-R-I (curvature-area-amplitude) transform to measure moisture in a concrete panel specimen 
(water-to-cement ratioௗ=ௗ0.45). Akbarizadeh et al. [24] have worked hard to integrate spectral clustering 
and Gabor feature clustering, leading to improved segmentation results of SAR images. Karimi et al. [25] 
evaluated on two pairs of real radar and optical sentinels and advanced land observation satellite (ALOS) 
images, and evaluated the impact of RS-LDASR(a new algorithm based on the combination of random 
subspace (RS), linear discriminant analysis and sparse regularization (LDASR)) on classification results 
in dimension reduction and supervisory feature selection and learning. 

The differential pressure fluctuation signal contains information many parameter information in the 
two-phase flow system. The measurement of two-phase flow by differential pressure has always been a 
research topic in the fields of power, chemical engineering and nuclear power engineering. Differential 
pressure sensors are widely used in many high-precision measurement applications such as micro-flow 
measurement, leak test, clean room monitoring, environmental sealing test, gas flow measurement, and 

http://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&SID=7BTE7knz5IfXx5tVUDP&field=AU&value=Rybaczek,%20D&ut=2586111&pos=1&excludeEventConfig=ExcludeIfFromFullRecPage


  

liquid level measurement. The disadvantage is that when used in two-phase flow, the instability of the 
differential pressure signal is increased due to the certain disturbance generated by the fluid itself. 
Venugopal et al. [26] studied the sensitivity of the dynamic differential pressure sensor, which provided a 
basis for the application of vortex flowmeter. Wang et al. [27] proposed a novel flow measurement 
method for gas-liquid two-phase slug flow by using the blind source separation technique. The flow 
measurement model is established based on the fluctuation characteristics of differential pressure (DP) 
signals measured from a Venturi meter. Zhang et al. [28] analyzed the influence of mass flowrate, 
pressure, voidage and density on DP signals, and provided the relationship between voidage of gas-liquid 
two-phase flow and root-mean-square deviation of the DP fluctuating signals measured from a Venturi 
meter. Some multiphase flow meters are based on differential pressure measurement across obstructions, 
including orifice plates [29] and Venturi tubes [30].  

The void fraction detection technology and method mainly include Quick Closing Valve, ray 
absorption method, electrical method and optical method [31]. The Quick Closing Valve is reliable and 
effective, but it cannot implement online real-time measurement [32]. Ray absorption method is costly 
and has a great safety risk. The electrical method can no longer meet the needs of online measurement 
[33]. The optical method has a simple structure and has a good effect on the measurement of the 
two-phase flow rate. However, there is a certain requirement on the cleanliness of the measured medium 
[34]. Electrical resistance tomography technology (ERT) is formed and developed in 1980s, which 
belongs to a kind of Process Tomography (PT technology, it’s the product of the combination of 
computer application technology and modern detection technology, and it’s the two-phase flow/ 
multiphase flow measurement technology developed in recent years). ERT is provides useful information 
of flow characteristics, including gas/solid, gas/liquid and liquid/liquid, as an on-line measuring technique 
possessing the advantages of visualisation, low-cost, non-invasion and robustness, it has become an 
accepted measuring technique in process applications. The disadvantage is that the measurement range is 
limited. Yunus et al. [35] developed a three-dimensional (3D) and two-dimensional (2D) ultrasonic 
transmission/ electrical resistance tomography (UT/ERT) model using the finite element method (FEM) 
with COMSOL software for imaging two-phase gas/liquid. Annamalai et al. [36] studied the two-phase 
flow homogeneity downstream of a slotted orifice by an ERT system. Adetunji et al. [37] used ERT 
coupled to Dynamic Gas Disengagement for the estimation of bubble rise velocities and bubble 
population sizes in a column. 

Pressure fluctuations are sensitive and can be easily influenced by many factors. Many previous 
studies only mentioned the interphase force in the study of pressure drop, and usually ignored the phase 
interaction or only qualitative analysis. The innovation of this study is to study the physical model and 
mathematical model of the interphase force, and make the use of differential pressure signal, based on the 
gravity differential pressure fluctuation signal perpendicular to the horizontal pipe, it is perpendicular to 
the flow direction, thus it is not affected by the resistance along the way. It is worth mentioning that this 
method avoids the measurement error caused by the joining pipe in the traditional differential pressure 
measurement, and avoids the shortcomings of coupling of the interphase forces with the frictional 
pressure drop and the acceleration pressure drop. At same time proposed a method for obtaining phase 
holdup and can reflect the interaction between the constituent phases (gas-liquid). The gas-liquid 
two-phase flow detection device was designed to realize the quantitative detection estimate the interphase 
force, and finally achieved the effect of improving of the qualitative analysis of the interphase force in the 
previous research. In order to achieve the above objective, three main tasks have to be carried out: First, 
establishing the relationship between the gravity pressure drop and interphase force; Second, designing an 

https://www.sciencedirect.com/science/article/pii/S0032591014001119#!


  

experimental system to test the gravity pressure; Third, obtaining the interphase forces of different flow 
modes and velocities. 

2. Theoretical analysis 
Some studies have provided suitable distribution models for the target in various fields. For example in 

the SAR field [38-39], in the task [40-41] was attempted to segment SAR images in two phases by 
applying the curvelet coefficient energy and an unsupervised spectral regression method and proposed a 
new parameter estimation technique (KCE) to describe SAR image segmentation, it with fewer 
coefficients than KWE. This proposed algorithm performed better than the other algorithms. G. 
Akbarizadeh et al [38] proposed a curvelet and watershed-based method for segmentation of SAR images 
and recognition of various textures in them, and curvelet is an effective method for noise reduction and 
extracting useful features. And Farbod et al. [42] proposed an optimized fuzzy cellular automata 
algorithm for SAR image edge detection. Fang et al. [43] detected flow noise of gas-liquid two-phase 
flow in horizontal pipeline by using the acoustic emission technique, and processed signals by wavelet 
transform and chaotic analysis. Eishita et al. [44] employed two noise models: a unimodal zero mean 
Gaussian noise model-a canonical model in sensor systems, and a multimodal noise process generated 
from a sequential noise model. The final outcomes provided guidance for the AR game development 
community and other researchers in this arena. The model of this paper is established as follows: 

Based on previous studies, the interphase forces of gas-liquid two phase flow can be divided two types: 
the first type is the force which is perpendicular to the flow direction, the second is the force which is 
parallel to the flow direction. Previous studies have used modern spectral analysis, neural networks and 
intelligent computing, nonlinear system dynamics, and so on. The emphasis is placed on the analysis of 
the laws between the experimental phenomena and the measured signals, however, an in-depth insight of 
the interaction between gas-liquid two-phase forces contained in the fluctuation signals has not been 
reported [45]. 

The Darcy friction factor is a dimensionless expression, making it easier to use and draw comparisons 
between different flows [46]. 
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Where hf is resistance loss, f is adimensionless cofficient called thedarcy friction factor, Ȝ is the friction 
coefficient, d is the pipe diameter, l is the pipe length, ȡ is density and u is average flow velocity. 

Flow resistance in the horizontal pipeline can be divided into two types: resistance along the pipeline 
and local resistance in the tube [47]. Using the above Eqs. (Eq. (1) and Eq. (2)), the resistance along the 
pipe way for the steady flow in the pipe can be obtained by the Eq. (3):               
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If we assume that l=0, then the resulting ᇞPf =0, which is an indication of non-viscous flow (i.e. the 
shear stress acting on the fluid within the pipe is zero and there no friction in the same section of the 
pipeline). Therefore, the gravity pressure drop is the pressure difference measured in the vertical position 
of horizontal direction, which is unaffected by friction resistance. As shown in Fig. 1, the differential 
pressure of AC is the pressure drop resistance along the pipe way, the differential pressure of AB is the 
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differential pressure across the pipe cross-sectional area, and it is not affected by the resistance along the 
pipe, and it is the gravity pressure drop. 

 

Fig. 1. Pressure difference in horizontal pipeline. 

Consider single-phase irrotational flow conditions, Navier - stokes equations can be shown in the Eq. 
(4): 
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The mass force refers to the external forces acting on fluid particles, it is usually the force of the fluid 
mass. Where, fx, fy, fz is the mass force of the three coordinate directions, Ȟx, Ȟy, Ȟz is the velocity of the 
three coordinate directions, Ȟ is the kinematic viscosity, P is the pressure. 

Assuming that the flow cross-section of the pipeline is constant and coincident with the flowing 
section, because there is no velocity component in the flowing section, let the axial direction of the pipe(x 
direction) vertical to the flowing section, the Navier-stokes equations of 
the X-axis and Y-axis direction can be shown in Eq. (5): 
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This shows that the fluid pressure in the cross-section should be consistent with the pressure 
distribution law of fluid statics: 

                                   =
P
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Where Z is the fluid position potential energy, C is the integral constant. 
As shown in Fig. 2, setting the bottom of the pipe as the equipotential surface, z1=0, then: 
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Eq. (8) shows that the differential pressure in the vertical direction of non rotating single phase flow in 
horizontal pipe is the gravity pressure drop. 



  

There are many kinds of flow patterns of gas-liquid two-phase in horizontal pipe, it is worth 
mentioning that the stratified flow is the most simple and intuitive flow pattern in the analysis of the 
two-phase flow under the horizontal adiabatic flow. Here stratified flow pattern is used for analysis in this 
paper. Assuming that the two phase is completely separated, the sum of flow section of gas-liquid two 
phase flow equals the total cross section of the flow channel, as shown in Fig. 3. 

             
Fig. 2. Single phase of horizontal pipe flow diagram.              Fig. 3. Gas liquid two phase flow diagram. 

Regardless of the interaction between the two phases, the flow characteristics of each phase in the 
two-phase flow can be analyzed separately by the basic equation of the single phase flow. Using the 
above Eqs. (Eq. (3) to Eq. (8)), the gravity pressure of gas liquid two phase can be obtained by Eq. (9):           
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Where ȡg and ȡl are the density of gas and liquid phase, respectively. 
Setting the height of gas layer is hg, the radius of the pipe is R, then the gravity pressure can be 

obtained as:                                 
ǻP = P1-P2 = (z2-z3) ȡgg + (z3-z1)ȡlg = (hgȡg + (2R-hg)ȡl)g                  (10) 

Eq. (10) shows that the pressure in the vertical direction is the gravity pressure drop of gas-liquid 
two-phase flow when the interphase force is not considered. The gravity pressure drop is related to the 
height of the gas layer, liquid layer and the density of the two phase. The height of gas liquid two-phase 
in the pipe actually reflects the section area of the two phase, so the gravity pressure is directly related to 
the void fraction.  

The equation of gravity pressure drop can be obtained from the momentum equation of the stratified 
flow model: 

r 0 w w g g

0 0

= sin d = + sin d
h h

GP g z g z                                 (11) 

Where
0 sing   is the pressure drop gradient; ȡw, ȡg is the density of water and gas; Įw, Įg is the 

section phase holdups of water and gas; h is the diameter of pipe, g is gravitational acceleration. 
For the adiabatic horizontal pipeline, ș=90o, the real gravity pressure drop can be calculated by Eq. 

(12): 

r w w g g=( + )GP gh                                      (12)        

The gravity pressure drop perpendicular to the horizontal flow is different from the friction pressure 
drop, accelerate pressure drop and the gravity pressure drop alongside with a horizontal pipe. It just 
includes gravity and interphase force, and this can be demonstrated by Eq. (13): 



  

v r b= -GP P P                                          (13) 

Where ǻPV is the measured pressure drop perpendicular to the horizontal flow, ǻPGr is the real gravity 
pressure drop, ǻPb is the interphase force. The schematic diagram of pressure drop measurement scheme 
is shown in Fig. 4. 

 

Fig. 4. Schematic diagram of pressure drop measurement scheme. 

The interphase force we are studying is per unit area, it can be expressed by pressure. Therefore, the 
unit of the interphase force is expressed in Pa. And the interphase force can be calculated by Eq. (14)  

b r v= -GP P P                                      (14) 

The block diagram of measurement analaysis is shown in Fig. 5. The interphase forces can be acquired 
by the following steps̟  

      

Fig. 5. Block diagram of measurement analaysis. 

1) The phase holdups Įw, Įg can be obtained by used the ERT system, then the real gravity pressure 
drop PGr can be calculated by Eq. (12); 

2) The pressure drop ǻPv perpendicular to the horizontal flow can be obtained by DP sensor; 
3) The interphase forces can be acquired by the dual-modality measurement system Eq. (14). 



  

                                  

3.  Experiment system 

 
Fig. 6. Air/water horizontal test section including DP measurement points. 
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Fig. 7. Air/water horizontal test section including the ERT sensor. 
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Fig. 8. Air/water horizontal test section with BSP threaded mounted. 
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Fig. 9. Air/water horizontal test section and its mechanical components. 



  
  

  

Fig. 10. Experimental system structure of (a) NI data acquisition, (b) Differential pressure sensor, (c) Dual-plane ERT sensor, (d) Test 

system.  

 

Fig. 11. Flow chart for solving interphase forces. 
The interphase forces is the driving force of the evolution of the flow pattern. It is one of the key 

parameters to reveal the gas-liquid two-phase flow mechanism. The main content of the research is to 
design a device for quantitative detection of interphase forces of gas-liquid two-phase flow. After 
theoretical analysis, the theoretical model of the interphase forces was established. The phase holdup is 
one of the basic parameters of the two-phase flow, and the differential pressure signal perpendicular to the 
horizontal flow direction can reflect the interaction between the gas-liquid two phases. In this study, the 
experimental characteristics of the device, including the differential pressure characteristics of the device, 
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the phase holdup and the interphase force, were comprehensively studied. The experiment was carried out 
in the horizontal pipe gas-liquid two-phase flow loop at University of Leeds. In horizontal experiment, a 
test system was designed. Fig. 6-9 show the schematic diagram and photos of the experimental facility. 
Fig. 10 and Fig. 11 show the experimental system and the flow chart for calculating the interphase forces. 

ERT has proven its efficiency to image and monitor spatial phenomena [48]. Professor Williams R.A. 
and Professor M. Wang of the University of Leeds developed the ERT system and the corresponding 
patent. In 2001, the new principle of ERT hardware system was developed, which was based on bipolar 
pulse current source. This technology can overcome the electric polarization effect caused by the 
conventional direct current excitation source, and the operating speed of the system is faster, which 
provides a new way to solve the real-time performance [49]. In 2003, the University of Leeds developed a 
high performance electrical impedance tomography (EIT) system, and used the digital signal processor 
(DSP, it is a microprocessor suitable for compute dense data operation and real-time signal processing) as 
the processor, for which data sampling rate reached 1000 samples per second. The repeatability and 
stability of this system are less than 0.5% and 0.6% respectively. This study employs the ERT system, 
which was mounted on the gas-water flow facility at the University of Leeds, for measurement of void 
fraction. The void fraction obtained through electrical conductivity.  

The average resistivity across the measurement plane is calculated by averaging the voltage 
measurements and dividing by the injection current. An ERT system produces a cross-sectional image 
showing the distribution of electrical conductivity, the system injects a current between a pair of 
electrodes and measures the resultant voltage difference between remaining electrode pairs according to a 
pre-defined measurement protocol. The Data acquisition system for ERT is responsible for obtaining the 
quantitative data describing the state of the conductivity distribution inside the pipeline. The data must be 
collected quickly and accurately in order to track small changes of conductivity in real-time thus allowing 
the image reconstruction algorithm to provide an accurate measurement of the true conductivity 
distribution. The system has an injection current range of 0 to 75 mA which is divided into 3 broad bands 
(0-1.5, 1.5-15, 15-75) with 256 step changes possible. Also, to accommodate a wide range of material 
conductivities and to improve the accuracy for slowly changing processes, a range of injected current 
frequencies is provided. The system can operate within the frequency range 75 to 153.6 kHz (in 12 steps), 
its maximum electrode is 128, measuring range - 10 V to +10 V. All online measurements are saved and 
outputted in an Excel readable CSV file format with the extra time stamp, real and imaginary part by its 
gain information respectively appended to each set of measurement line. Prior to collecting data it is 
necessary to take a reference measurement since the system works on the principle of taking 
measurements and comparing these to a known reference measurement. This reference conductivity can 
be measured with a conductivity probe prior to taking the reference measurement or can be taken from 
literature. All subsequent measurements are based on changes in voltage measurements in relation to the 
reference measurement. Following the collection of a reference measurement, data collection can be 
initiated before any changes are made to the contents of the sensor. The injection current can be altered to 
minimize the relative change (noise) between the reference data and subsequent measurement data. In 
order to overcome the problem associated with various process vessel sizes and differing conductivities of 
materials it is useful to have the facility to increase or decrease the amplitude of the injected current in 
order to optimise the signal-to-noise ratio (SNR) of the measured voltage outputs for specific applications. 
In all cases, the voltage measurements pass through a multiplexer into a differential input amplifier which 
amplifies the potential difference between the two input voltage signals. The amplifier has the ability to 
reject common-mode signals such as electrical noise. The sine-wave output of the differential amplifier is 



  

then fed into a programmable gain amplifier (PGA) to accommodate the wide dynamic range of voltage 
signals obtained from the many pairs of electrodes. A phase-sensitive demodulator (PSD) is employed 
after the PGA to demodulate the voltage signals prior to low-pass filtering. Fig. 12 shows the tomography 
results at water flow rate 3.26 m3/h and the range of gas flow rate 0-3.6 m3/h. The blue color represents 
the gas phase at the top of the pipe, while the green color represents the water phase at the bottom of the 
pipe in the horizontal test section.  

 

  a                                   b                                 c 

     

d                                     e 

Fig. 12. The tomography results at different gas flow rate in the horizontal pipe section. (a) Gas flow rate 0 m3/h, (b) Gas flow rate 0.06 

m3/h, (c) Gas flow rate 0.3 m3/h, (d) Gas flow rate 1.2 m3/h, and (e) Gas flow rate 3.6 m3/h.  

4.  Data analysis  

Table 1   

Part of data of water flow rate and gas flow rate along with the measured differential pressure at each condition. 

Water Flow Rate 

(rpm) 

EMF reading 

(m3/h) 

Gas Flow Rate 

(l/min) 

Gas Flow Rate 

(m3/h) 

Differential 

Pressure (Pa) 

Max 

(Pa) 

Min  

(Pa) 

60 3.2577 0 0 2080 2752 1419 

60 3.2577 1 0.06 2020 2283 1716 

63 3.4059 5 0.3 1997 2943 1173 

60 3.2577 20 1.2 1963 4305 -250 

65 3.5047 60 3.6 1886 3265 42 

102 5.3325 0 0 2054 2741 1412 

100 5.2337 1 0.06 2020 2708 1272 

100 5.2337 5 0.3 2022 3759 405 

100 5.2337 20 1.2 2005 3137 855 

100 5.2337 60 3.6 1935 3742 625 

143 7.3579 0 0 2091 2672 1529 

143 7.3579 1 0.06 2028 2624 1390 

143 7.3579 5 0.3 2028 2782 1423 

143 7.3579 20 1.2 2022 2855 1287 

135 6.9627 60 3.6 1950 3364 760 



  

Three group of water flow rate are selected for the test, and nine group of gas flow rate are 
implemented in each water flow rate condition. Sampling frequency of experiment is 1 kHz, the test 
period is 10 second, and 10000 frames were collected for each test condition. A part of data test by the 
dual-modality measurement system are listed in the Table 1, which shows the input water flow rate and 
gas flow rate along with the measured differential pressure at each condition. 

Fig.13 shows the differential pressure and absolute pressure signals obtained at gas flow rate of 0 m3/h, 
and a range of water flow rate 3.26-7.36 m3/h. There is no interphase force in this case, and the 
fluctuation of the pressure difference signal is very small. 

Fig. 14-16 show the differential pressure and absolute pressure signals obtained at constant water flow 
rate and different gas flow rate. By observing these figures, it can be seen that differential pressure signals 
further fluctuates as the gas flow rate increased, the fluctuation range become wider and the absolute 
pressure signals increases with increase of gas flow rate. It can also be seen that the phenomena of slug 
flow is represented by periodic high picks along the measured signals, as the slugs pass through the DP 
sensor.  
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Fig. 13. Differential pressure and absolute pressure signals at gas flow rate of 0 m3/h and different water flow rate of (a)Water flow rate 3.26 

m3/h, (b)Water flow rate 5.23 m3/h, (c) Water flow rate 7.36 m3/h. 
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Fig. 14. Differential and absolute pressure signals at water flow rate of 3.26 m3/h and different gas flow rate of (a) Gas flow rate 0.06 m3/h, 

(b) Gas flow rate 0.3 m3/h, (c) Gas flow rate 1.2 m3/h, (d) Gas flow rate 3.6 m3/h. 
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Fig. 15. Differential and absolute pressure signals at water flow rate of 5.23 m3/h and different gas flow rate of (a) Gas flow rate 0.06 

m3/h, (b) Gas flow rate 0.3 m3/h, (c) Gas flow rate 1.2 m3/h, (d) Gas flow rate 3.6 m3/h. 
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Fig. 16. Differential and absolute pressure signals at water flow rate of 7.36 m3/h and different gas flow rate of (a) Gas flow rate 0.06 

m3/h, (b) Gas flow rate 0.3 m3/h, (c) Gas flow rate 1.2 m3/h, (d) Gas flow rate 3.6 m3/h. 
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Fig. 17. Differential Pressure drop at water flow rate of 3.26 m3/h. 
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Fig. 18. Differential Pressure drop at water flow rate of 5.23 m3/h. 
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Fig. 19. Differential Pressure at water flow rate of 7.36 m3/h. 

Fig. 17-19 show the average, maximum and minimum differential pressure across the cross-sectional 
area of the horizontal pipe. It can be seen that the average pressure drop decreases with the increase of gas 
flow rate. Based on this trend, a correlation can be established. 

Fig. 20 shows that the mean differential pressure at water flow rates 3.26 m3/h, 5.23 m3/h and 7.36 
m3/h, respectively. At constant gas flow rate, the faster the water flow rate, and the greater the differential 
pressure can be observed. By increasing of gas flow rate, the entrainment force of gas phase on the liquid 
phase is increased, and the gravity of the liquid phase decreases. As previously mentioned, the pressure 
difference perpendicular to the flow direction is mainly caused by the pressure drop of the gravity 
pressure drawdown, so the differential pressure signal perpendicular to the horizontal flow direction 
continuously decreases, and the same phenomena is observed at different water flow rates. 
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Fig. 20. Mean Differential Pressure at different water flow rate.        Fig. 21. The relationship of mean differential pressure ratio and 

flow rate ratio. 

Taking the ratio of gas phase flow to liquid phase flow as the x-axis, and the ratio of the mean 
differential pressure to mean differential pressure of the total water as the y-axis to plot the Fig. 21, it can 
be seen that there is a certain law between them, the model is shown in Eq. (15). 

                      3 2250.0488 40.9801 -2.7847 +0.9841y x x x                     (15)                 



  

The relation between the interphase force and void fraction is shown in Fig. 22. The relation between 
the interface force and different water flow rates, 3.26 m3/h, 5.23 m3/h, 7.36 m3/h, is shown in Fig. 23. 
The interphase force is gradually increases as the void fraction increases. This is due to the fact that with 
increasing void fraction, the entrainment force of gas phase increases and the gravity of the liquid phase 
decreases. From the aforementioned figures, it is quite apparent that the interface force demonstrate 
similar trend at different water flow rate. The analysis results show that accurately obtaining the 
differential pressure perpendicular to the horizontal flow direction is the key to obtain the interface force.  
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        Fig. 22. Relation of interphase force and void fraction.             Fig. 23. Relation of interphase force and void fraction. 
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Where Frl, Frg are the Froude Number of liquid phase gas phase; Jg, Jl are the superficial velocity of 
the gas phase and liquid phase, m/s; g is the acceleration of gravity; mg, ml are the gas and liquid mass 
flow rate, kg/s; D is the pipe diameter, m; ȡg, ȡl are the gas phase density and liquid phase density, kg/m3.  

Frl and Frg contain both flow information and void fraction information. Taking Frg as the x-axis, Frl 
as the y-axis, and the interface force as the z-axis, the relationship diagram is plotted in Fig. 24. As shown 
in Fig. 24, the interface force is closely related to the Frg, when Fr1 is the same, the interphase force 
increases as the Frg increases.The model was established with the water flow rates of 3.26 m3/h and 5.23 
m3/h and by introduced the Frg, ȡg and ȡl. The relationship between the interphase force and void fraction 
can be summarized by the following Eq. (18). 

0.0881 0.6006 0.48366 0.46958b
rg rg

g g0

=1.3797 +0.0091L LP
F F

P

 


 

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

˄ ˅ ˄ ˅ ˄ ˅ ˄ ˅               (18) 

Where ǻPb is interphase force, Pa; 0P is interphase force of the total water, Pa. 
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Fig. 24. The relationship of interphase force and Frg, Frl.             Fig. 25. Relative error of interphase force. 

The model was tested with the effect of the water flow at 7.36 m3/h. The ratio of the interface force to 
the interface force of the total water is obtained, the relative error was obtained by compared with the 
actual ratio value. As shown in Fig. 25, the relaltive error of the interface force is within ±6 %. 

5. Conclusion  
In this work, a dual-modality measurement system is developed for evaluation of interphase forces of 

gas-liquid two phase flow perpendicular to the horizontal flow direction.  
Based on the basic equations of gas-liquid two phase flow and the definition of flow parameters, a 

theoretical model for the interphase force of gas-liquid two-phase flow perpendicular to horizontal 
direction was developed. It is expected that the developed model to provide a theoretical basis for 
quantitative calculation of interphase force in horizontal two-phase gas-liquid flow. The obtained results 
demonstrated that the pressure difference in the vertical direction perpendicular to the horizontal flow 
direction can be related to the magnitude of the interphase force. An electrical resistance tomography 
system was used to obtain the void fraction, from which the gravity pressure drop can be obtained. The 
pressure drop perpendicular to the horizontal flow also can be obtained by DP sensor.  

The relationship between the differential pressure drop and inter-phase force was established, the 
experimental results demonstrated that the interphase force quantitative measurement device was 
successfully able to provide a quantitative evaluation of interphase forces in two-phase horizontal 
gas-water flow. 

It is worth mentioning that with the development of multiphase flow detection technology, the 
detection of interphase force will become the key in the study of pressure drop. In order to fully and 
accurately understand the interphase force, several related issues will be the subject of future 
investigations,  

1) To further improvement of mechanical aspect and design of the device; 
2) Due to the limitation of the measurement points and the accuracy of the differential pressure sensor 

in the experiment, the selection of a higher precision differential pressure sensor can improve the 
measurement accuracy.  

3) When measuring the void fraction of the section, the design or measurement method of the ERT 
system can further improved, so the measurement accuracy is higher. 

4) In the future, the measurement model of the interphase force can be considered for further 
derivation and improvement. 



  

Acknowledgements 
The authors are grateful for the support by the National Natural Science Foundation of China 

(61475041), Natural Science Foundation of Hebei Province (E2017201142), the Subtask National Key 
Research Task Plan (2016YFF0203103-3,2017YFC0805703), and Funds Supported by the Hebei Giants 
Plan (201501). 
References 
[1] A. Brito, N. Guzmán, L. Rojas-Solórzano, T. Zambrano, Rheological study of two- and three-phase 

highly viscous fluid flow in pipelines, J. Pet. Sci. Eng. 170 (2018) 772-784. 
[2] H. Shahverdi, M. Sohrabi, A mechanistic model for prediction of three-phase flow in petroleum 

reservoirs, J. Pet. Sci. Eng. 157 (2017) 507-518. 
[3] A.K. Thandlam, T.K. Mandal, S.K. Majumder, Flow pattern transition, frictional pressure drop, and 

holdup of gas non-Newtonian fluid flow in helical tube, ASIAPacific J. Chem. Eng. 10 (2015) 422- 
437. 

[4] F.Raeiszadeh, E. Hajidavalloo, M. Behbahaninejad, P. Hanafizadeh, Modeling and simulation of 
downward vertical two-phase flow with pipe rotation, Chem. Eng. Res. Des. 137 (2018) 10-19. 

[5] N. Falcone, A. Bersano, C. Bertani, M. De Salve, B. Panella, Characterization of water-air dispersed 
two phase flow, Energy Proced. 126 (2017) 66-73. 

[6] S. Ghorai, K.D.P. Nigam, CFD modeling of flow profiles and interfacial phenomena in two-phase 
flow in pipes, Chem. Eng. Process. 45 (2006) 55-65. 

[7] P. Pei, K. Zhang, D.S. Wen, Comparative analysis of CFD models for jetting fluidized beds: The 
effect of inter-phase drag force, Powder Technol. 221 (2012) 114-122. 

[8] J.Y. Feng, I.A. Bolotnov, Interfacial force study on a single bubble in laminar and turbulent flows, 
Nucl. Eng. Des. 313 (2017) 345-360. 

[9] F.C. Liang, Y. Sun, Z.J. Fang, S.T. Sun, Application of multi-slot sampling method for gas-liquid 
two-phase flow rate measurement, Exp. Therm Fluid Sci. 79 (2016) 213-221. 

[10] Q. Wang, W. Yao, Computation and validation of the interphase force models for bubbly flow, Int. J. 
Heat Mass Transf. 98 (2016) 799-813. 

[11] M. Gadiraju, J.P. Jr, S.S. Munukutla, Exact solutions for two phase vertical pipe flow, Mech. Res. 
Commun. 19 (1992) 7-13. 

[12] M.V. Tabib, S.A. Roy, J.B. Joshi, CFD simulation of bubble column-An analysis of interphase 
forces and turbulence models, Chem. Eng. J. 139 (2008) 589-614.  

[13] Z. Li, J. Wei, B. Yu, Analysis of interphase forces and investigation of their effect on particle 
transverse motion in particle-laden channel turbulence, Int. J. Multiph. Flow. 88 (2017) 11-29. 

[14] D. Rybaczek, M. Kowalewicz-Kulbat, Premature chromosome condensation induced by caffeine, 
2-aminopurine, staurosporine and sodium metavanadate in S-phase arrested HeLa cells is associated 
with a decrease in Chk1 phosphorylation, formation of phospho-H2AX and minor cytoskeletal 
rearrangements, Histochem. Chem. Cell. Blol. 135 (2011) 263-280. 

[15] L. Riaño, L. Belec, J.F. Chailan, Y. Joliff, Effect of interphase region on the elastic behavior of 
unidirectional glass-fiber/epoxy composites, Compos. Struct. 198 (2018) 109-116. 

[16] R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A 
review, Mech. Syst. Signal Proc. 108 (2018) 33-47. 

[17] N. Ahmadi, G. Akbarizadeh, Hybrid robust iris recognition approach using iris image pre-processing, 
two-dimensional gabor features and multi-layer perceptron neural network/PSO, IET Biom. 7 (2018) 
153-162. 

https://www.sciencedirect.com/science/article/pii/S0920410518305321
https://www.sciencedirect.com/science/article/pii/S0920410518305321
https://www.sciencedirect.com/science/article/pii/S0920410517305594
https://www.sciencedirect.com/science/article/pii/S0920410517305594
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1886
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1886
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.1886
https://www.sciencedirect.com/science/article/pii/S0263876218303411
https://www.sciencedirect.com/science/article/pii/S0263876218303411
https://www.sciencedirect.com/science/article/pii/S1876610217335415
https://www.sciencedirect.com/science/article/pii/S1876610217335415
https://www.sciencedirect.com/science/article/abs/pii/S0255270105001145
https://www.sciencedirect.com/science/article/abs/pii/S0255270105001145
https://www.sciencedirect.com/science/article/pii/S0032591011007261
https://www.sciencedirect.com/science/article/pii/S0032591011007261
https://www.sciencedirect.com/science/article/pii/S0029549316305349
https://www.sciencedirect.com/science/article/pii/S0029549316305349
https://www.sciencedirect.com/science/article/pii/S0894177716301868
https://www.sciencedirect.com/science/article/pii/S0894177716301868
https://www.sciencedirect.com/science/article/pii/S0017931016303040
https://www.sciencedirect.com/science/article/pii/S0017931016303040
https://www.sciencedirect.com/science/article/pii/009364139290003S
https://www.sciencedirect.com/science/article/pii/009364139290003S
https://www.sciencedirect.com/science/article/pii/S1385894707006201
https://www.sciencedirect.com/science/article/pii/S1385894707006201
https://www.sciencedirect.com/science/article/pii/S0301932215301385
https://www.sciencedirect.com/science/article/pii/S0301932215301385
https://www.researchgate.net/publication/49968275_Premature_chromosome_condensation_induced_by_caffeine_2-aminopurine_staurosporine_and_sodium_metavanadate_in_S-phase_arrested_HeLa_cells_is_associated_with_a_decrease_in_Chk1_phosphorylation_formation
https://www.researchgate.net/publication/49968275_Premature_chromosome_condensation_induced_by_caffeine_2-aminopurine_staurosporine_and_sodium_metavanadate_in_S-phase_arrested_HeLa_cells_is_associated_with_a_decrease_in_Chk1_phosphorylation_formation
https://www.researchgate.net/publication/49968275_Premature_chromosome_condensation_induced_by_caffeine_2-aminopurine_staurosporine_and_sodium_metavanadate_in_S-phase_arrested_HeLa_cells_is_associated_with_a_decrease_in_Chk1_phosphorylation_formation
https://www.researchgate.net/publication/49968275_Premature_chromosome_condensation_induced_by_caffeine_2-aminopurine_staurosporine_and_sodium_metavanadate_in_S-phase_arrested_HeLa_cells_is_associated_with_a_decrease_in_Chk1_phosphorylation_formation
https://www.sciencedirect.com/science/article/pii/S0263822317338151
https://www.sciencedirect.com/science/article/pii/S0263822317338151
https://www.sciencedirect.com/science/article/pii/S0888327018300748
https://www.sciencedirect.com/science/article/pii/S0888327018300748
http://xueshu.baidu.com/s?wd=paperuri%3A%28ccb27ae94ba5cb733a39c4e675b25a78%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8302830%2F&ie=utf-8&sc_us=5818889313985212479
http://xueshu.baidu.com/s?wd=paperuri%3A%28ccb27ae94ba5cb733a39c4e675b25a78%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8302830%2F&ie=utf-8&sc_us=5818889313985212479
http://xueshu.baidu.com/s?wd=paperuri%3A%28ccb27ae94ba5cb733a39c4e675b25a78%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8302830%2F&ie=utf-8&sc_us=5818889313985212479


  

[18] G. Akbarizadeh, A new statistical-based kurtosis wavelet energy feature for texture recognition of 
sar Images, IEEE Trans. Geosci. Remote. 50 (2012) 4358-4368. 

[19] M. Modava, G. Akbarizadeh, A level set based method for coastline detection of SAR Images, ICPR 
(2017). 

[20] M. Liu, Y. Wu, P. Zhang, Q. Zhang, Y. Li, M. Li, Sar target configuration recognition using locality 
preserving property and Gaussian mixture distribution, IEEE Geosci. Remote Sens. Lett. 10 (2013) 
268-272. 

[21] G. Liu, L. Jiao, F. Liu, H. Zhong, S. Wang, A new patch based change detector for polarimetric sar 
data, Pattern Recognit. 48 (2015) 685-695.  

[22] H. Ramezani, H. Zakidizaji, H. Masoudi, G. Akbarizadeh, A new DSWTS algorithm for real-time 
pedestrian detection in autonomous agricultural tractors as a computer vision system, Measurement 
93 (2016) 126-134. 

[23] A. Alzeyadi, T. Yu, Moisture determination of concrete panel using SAR imaging and the K-R-I 
transform, Constr. Build. Mater. 184 (2018) 351-360. 

[24] G. Akbarizadeh, M. Rahmani, A new ensemble clustering method for PolSAR image segmentation, 
Information and Knowledge Technology IEEE. (2015) 1-4. 

[25] D. Karimi , G. Akbarizadeh,  K. Rangzan, M. Kabolizadeh, Effective supervised multiple-feature 
learning for fused radar and optical data classification, IET Radar Sonar Navig. 11 (2017) 768-777. 

[26] A.Venugopal, A. Agrawal, S.V. Prabhu, Performance evaluation of piezoelectric and differential 
pressure sensor for vortex flowmeters, Measurement 50 (2014) 10-18. 

[27] W. Wang, X. Liang, M. Zhang, Measurment of gas-liquid two-phase slug flow with a Venturi meter 
based on blind source separation, Chin. J. Chem. Eng. 23 (2015) 1447-1452. 

[28] H.J. Zhang, W.T. Yue, L.B. Ma, H.L. Zhou, Relationship between fluctuating differential pressure 
and void fraction of gas-liquid two-phase flow in Venturi tube, J. Chem. Ind. Eng. (China) 56  
(2005) 2102-2107 .  

[29] S.R.V. Campos, J.L. Baliño, I. Slobodcicov, D.F. Filho, E.F. Paz, Orifice plate meter field 
performance: Formulation and validation in multiphase flow conditions, Exp. Therm. Fluid Sci. 58 
(2014) 93-104. 

[30] M.O. Elobeid, L.M. Alhems, A. Al-Sarkhi, A. Ahmad, S.M. Shaahid, M. Basha, J.J. Xiao, R. Lastra, 
C.E. Ejimb, Effect of inclination and water cut on venturi pressure drop measurements for oil-water 
flow experiments, J. Pet. Sci. Eng. 147 (2016) 636-646.  

[31] F. Liang, Y. Sun, Z .J. Fang, S.T. Sun, Application of multi-slot sampling method for gas-liquid 
two-phase flow rate measurement, Exp. Therm Fluid Sci. 79 (2016) 213-221. 

[32] A. Pal, B. Vasuki, Void fraction measurement using concave capacitor based sensor-Analytical and 
experimental evaluation, Measurement 124 (2018) 81-90. 

[33] S.K. Min, A.L. Bo, W.Y. Won, Y.G. Lee, W.J. Dong, S. Kim, An improved electrical-conductance 
sensor for void-fraction measurement in a horizontal pipe, Nucl. Eng. Technol. 47 (2015) 804-813. 

[34] S. Gabriel, T. Schulenberg, G. Albrecht, W. Heiler, A. Miassoedov, F. Kaiser, T. Wetzel, Optical 
void measurement method for stratified wavy two phase flows, Exp. Therm. Fluid Sci. 97 (2018) 
341-350. 

[35] F.R.M. Yunus, R.A. Rahim, S.R. AW, N.M.N. Ayob, C.L. Goh, M.J. Pusppanathan, Simulation 
study of electrode size in air-bubble detection for dual-mode integrated electrical resistance and 
ultrasonic transmission tomography, Powder Technol. 256 (2014) 224-332. 

[36] G. Annamalai, S. Pirouzpanah, S.R. Gudigopuram, G.L. Morrison, Characterization of flow 

https://ieeexplore.ieee.org/document/6204083/
https://ieeexplore.ieee.org/document/6204083/
https://www.researchgate.net/publication/317589916_A_level_set_based_method_for_coastline_detection_of_SAR_images
https://www.researchgate.net/publication/317589916_A_level_set_based_method_for_coastline_detection_of_SAR_images
http://xueshu.baidu.com/s?wd=paperuri%3A%281ebb5414a1739e03fb8ff7efe8ed45e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6226827%2F&ie=utf-8&sc_us=5937617602986318842
http://xueshu.baidu.com/s?wd=paperuri%3A%281ebb5414a1739e03fb8ff7efe8ed45e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6226827%2F&ie=utf-8&sc_us=5937617602986318842
http://xueshu.baidu.com/s?wd=paperuri%3A%281ebb5414a1739e03fb8ff7efe8ed45e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6226827%2F&ie=utf-8&sc_us=5937617602986318842
https://www.researchgate.net/publication/268882137_A_new_patch_based_change_detector_for_polarimetric_SAR_data
https://www.researchgate.net/publication/268882137_A_new_patch_based_change_detector_for_polarimetric_SAR_data
https://www.researchgate.net/publication/304746839_A_New_DSWTS_Algorithm_for_Real-Time_Pedestrian_Detection_in_Autonomous_Agricultural_Tractors_as_a_Computer_Vision_System
https://www.researchgate.net/publication/304746839_A_New_DSWTS_Algorithm_for_Real-Time_Pedestrian_Detection_in_Autonomous_Agricultural_Tractors_as_a_Computer_Vision_System
https://www.researchgate.net/publication/304746839_A_New_DSWTS_Algorithm_for_Real-Time_Pedestrian_Detection_in_Autonomous_Agricultural_Tractors_as_a_Computer_Vision_System
https://www.sciencedirect.com/science/article/pii/S0950061818316167
https://www.sciencedirect.com/science/article/pii/S0950061818316167
http://xueshu.baidu.com/s?wd=paperuri%3A%283cd9a9e39be6a70b9c032edae1ce730b%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7288775&ie=utf-8&sc_us=8738968672877135544
http://xueshu.baidu.com/s?wd=paperuri%3A%283cd9a9e39be6a70b9c032edae1ce730b%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7288775&ie=utf-8&sc_us=8738968672877135544
http://xueshu.baidu.com/s?wd=author%3A%28Danya%20karimi%29%20Shahid%20Chamran%20University%20of%20Ahvaz%2C%20Iran&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
http://xueshu.baidu.com/s?wd=paperuri%3A%28831317363085fab49bc3d9ac8a785617%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F7914106%2F&ie=utf-8&sc_us=3678553196908273423
https://www.sciencedirect.com/science/article/pii/S0263224113006398#b0065
https://www.sciencedirect.com/science/article/pii/S0263224113006398#b0065
https://www.sciencedirect.com/science/article/pii/S1004954115001792
https://www.sciencedirect.com/science/article/pii/S1004954115001792
https://www.scopus.com/record/display.uri?eid=2-s2.0-31844439718&origin=inward&txGid=d83e2fe6ab95e73ac082a7bbe0a140b1
https://www.scopus.com/record/display.uri?eid=2-s2.0-31844439718&origin=inward&txGid=d83e2fe6ab95e73ac082a7bbe0a140b1
https://www.scopus.com/record/display.uri?eid=2-s2.0-31844439718&origin=inward&txGid=d83e2fe6ab95e73ac082a7bbe0a140b1
https://www.scopus.com/record/display.uri?eid=2-s2.0-84904354642&origin=inward&txGid=0099711c2aa7b9217486fb771db518d4
https://www.scopus.com/record/display.uri?eid=2-s2.0-84904354642&origin=inward&txGid=0099711c2aa7b9217486fb771db518d4
https://www.scopus.com/record/display.uri?eid=2-s2.0-84904354642&origin=inward&txGid=0099711c2aa7b9217486fb771db518d4
https://www.sciencedirect.com/science/article/pii/S0920410516304235
https://www.sciencedirect.com/science/article/pii/S0920410516304235
https://www.sciencedirect.com/science/article/pii/S0920410516304235
https://www.sciencedirect.com/science/article/pii/S0894177716301868
https://www.sciencedirect.com/science/article/pii/S0894177716301868
https://www.sciencedirect.com/science/article/pii/S0735193316301907
https://www.sciencedirect.com/science/article/pii/S0735193316301907
https://www.sciencedirect.com/science/article/pii/S1738573315001680
https://www.sciencedirect.com/science/article/pii/S1738573315001680
https://www.sciencedirect.com/science/article/pii/S0894177718308288
https://www.sciencedirect.com/science/article/pii/S0894177718308288
https://www.sciencedirect.com/science/article/pii/S0894177718308288
https://www.sciencedirect.com/science/article/pii/S0894177718308288
https://www.sciencedirect.com/science/article/pii/S0032591014001119
https://www.sciencedirect.com/science/article/pii/S0032591014001119
https://www.sciencedirect.com/science/article/pii/S0032591014001119
https://www.sciencedirect.com/science/article/pii/S0955598616300796


  

homogeneity downstream of a slotted orifice plate in a two-phase flow using electrical resistance 
tomography, Flow Meas. Instrum. 50 (2016) 209-215. 

[37] O. Adetunji, R. Rawatlal, Estimation of bubble column hydrodynamics: Image-based measurement 
method, Flow Meas. Instrum. 53 (2017) 4-17. 

[38] N. Raeisi, A. M. Meymand, G. Akbarizadeh, Scour Depth Prediction in Sand Beds using Artificial 
Neural Networks and ANFIS Methods, Indian J. Sci.Technol. 8 (2015).  

[39] G. Akbarizadeh, Z. Tirandaz, M. Kooshesh, A new curvelet-based texture classification approach for 
land cover recognition of sar satellite images, Malayas. J. Comput. Sci. 27 (2014) 218-239. 

[40] Z. Tirandaz, G. Akbarizadeh, A Two-Phase Algorithm Based on Kurtosis Curvelet Energy and 
Unsupervised Spectral Regression for Segmentation of SAR Images, IEEE J. Sel. Top. Appl. Earth 
Observ. 9 (2016) 1244-1264. 

[41] G. Akbarizadeh, Z. Tirandaz, Segmentation parameter estimation algorithm Based on curvelet 
transform coefficients energy for feature extraction and texture description of SAR images, Inf. 
Knowl. Technol. IEEE. (2015) 1-4. 

[42] M. Farbod, G. Akbarizadeh, A. Kosarian, K. Rangzan, Optimized fuzzy cellular automata for 
synthetic aperture radar image edge detection, J. Electron. Imaging 27 (2018) 1. 

[43] L. Fang, Y. liang, Q. Lu, X. Li, R. Liu, X. Wang, Flow noise characterization of gas-liquid 
two-phase flow based on acoustic emission, Measurement 46 (2013) 3887-3897. 

[44] F. Z. Eishita, K. G. Stanley, The impact on player experience in augmented reality outdoor games of 
different noise models, Entertainment Comput. 27 (2018) 137-149. 

[45] L.D. Fang, R. Liu, Q.H. Lu, X.J. Wang, Y.J. Liang, The flow pattern transition identification and   
interphase force detection of gas-liquid two-phase flow, AASRI Procedia. 3 (2012) 534-539. 

[46] T. Haktanir, M. Ardiçlioۜlu, Numerical modeling of Darcy-Weisbach friction factor and branching 
pipes problem, Advances in Engineering Software, Adv.Eng.Softw. 35 (2004) 773-779.  

[47] Y. Liao, X. Li, W. Zhong, G. Tao, Study of pressure drop-flow rate and flow resistance 
characteristics of heated porous materials under local thermal non-equilibrium conditions, Int.J.Heat 
and Mass Transfer. 102 (2016) 528-543. 

[48] T. Hermans, S. Wildemeersch, P. Jamin, P. Orban, S. Brouyère, A. Dassargues, F. Nguyen, 
Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT, 
Geoterm. 53 (2015) 14-26. 

[49] J. Jia, M. Wang, H.I. Schlaberg, H. Li, A novel tomographic sensing system for high electrically 
conductive multiphase flow measurement, Flow Meas. & Instru. 21 (2010) 184-190. 

https://www.sciencedirect.com/science/article/pii/S0955598616300942
https://www.sciencedirect.com/science/article/pii/S0955598616300942
https://www.researchgate.net/publication/283099203_Scour_Depth_Prediction_in_Sand_Beds_using_Artificial_Neural_Networks_and_ANFIS_Methods
https://www.researchgate.net/publication/283099203_Scour_Depth_Prediction_in_Sand_Beds_using_Artificial_Neural_Networks_and_ANFIS_Methods
https://www.researchgate.net/publication/287240312_A_new_curvelet-based_texture_classification_approach_for_land_cover_recognition_of_sar_satellite_images
https://www.researchgate.net/publication/287240312_A_new_curvelet-based_texture_classification_approach_for_land_cover_recognition_of_sar_satellite_images
https://www.researchgate.net/publication/283747835_A_Two-Phase_Algorithm_Based_on_Kurtosis_Curvelet_Energy_and_Unsupervised_Spectral_Regression_for_Segmentation_of_SAR_Images?enrichId=rgreq-96a0f106fd7bc691d8376af208df356f-XXX&enrichSource=Y292ZXJQYWdlOzI4Mzc0NzgzNTtBUzozODQxNDA4MTQ4OTcxNTVAMTQ2ODU5NzcxNTk3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283747835_A_Two-Phase_Algorithm_Based_on_Kurtosis_Curvelet_Energy_and_Unsupervised_Spectral_Regression_for_Segmentation_of_SAR_Images?enrichId=rgreq-96a0f106fd7bc691d8376af208df356f-XXX&enrichSource=Y292ZXJQYWdlOzI4Mzc0NzgzNTtBUzozODQxNDA4MTQ4OTcxNTVAMTQ2ODU5NzcxNTk3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283747835_A_Two-Phase_Algorithm_Based_on_Kurtosis_Curvelet_Energy_and_Unsupervised_Spectral_Regression_for_Segmentation_of_SAR_Images?enrichId=rgreq-96a0f106fd7bc691d8376af208df356f-XXX&enrichSource=Y292ZXJQYWdlOzI4Mzc0NzgzNTtBUzozODQxNDA4MTQ4OTcxNTVAMTQ2ODU5NzcxNTk3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/308845038_Segmentation_parameter_estimation_algorithm_Based_on_curvelet_transform_coefficients_energy_for_feature_extraction_and_texture_description_of_SAR_images
https://www.researchgate.net/publication/308845038_Segmentation_parameter_estimation_algorithm_Based_on_curvelet_transform_coefficients_energy_for_feature_extraction_and_texture_description_of_SAR_images
https://www.researchgate.net/publication/308845038_Segmentation_parameter_estimation_algorithm_Based_on_curvelet_transform_coefficients_energy_for_feature_extraction_and_texture_description_of_SAR_images
https://www.researchgate.net/publication/323441007_Optimized_fuzzy_cellular_automata_for_synthetic_aperture_radar_image_edge_detection
https://www.researchgate.net/publication/323441007_Optimized_fuzzy_cellular_automata_for_synthetic_aperture_radar_image_edge_detection
https://www.sciencedirect.com/science/article/pii/S026322411300331X
https://www.sciencedirect.com/science/article/pii/S026322411300331X
https://www.sciencedirect.com/science/article/pii/S1875952117300198
https://www.sciencedirect.com/science/article/pii/S1875952117300198
https://www.sciencedirect.com/science/article/pii/S2212671612002430
https://www.sciencedirect.com/science/article/pii/S2212671612002430
https://www.sciencedirect.com/science/article/pii/S0965997804001358
https://www.sciencedirect.com/science/article/pii/S0965997804001358
https://www.sciencedirect.com/science/article/pii/S0017931015314770
https://www.sciencedirect.com/science/article/pii/S0017931015314770
https://www.sciencedirect.com/science/article/pii/S0017931015314770
https://www.sciencedirect.com/science/article/pii/S0375650514000376#bib03
https://www.sciencedirect.com/science/article/pii/S0375650514000376#bib03
https://www.sciencedirect.com/science/article/pii/S0375650514000376#bib03
https://www.sciencedirect.com/science/article/pii/S0955598610000026
https://www.sciencedirect.com/science/article/pii/S0955598610000026


  

Highlights 

ƔTheoretical model for interphase force in gas-water two-phase flow was established 

ƔEffects of differential pressure and void fraction on interphase force was analyzed 

ƔDeveloped a dual-modality system to measure differential pressure and void fraction 

ƔThe system was used to provide a quantitative evaluation of interphase forces  
 


